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ABSTRACT
In this work, we present our attempt to tackle the last-hundred-feet
problem for autonomous drone delivery.We take a computer-vision-
based approach to progressively landing towards a convenient and
safe drop-off point at all times (here, at the front/garage door).
Specifically, we develop structural semantic segmentation (SSS),
a new technique that leverages a single-family house structure
to streamline and enhance semantic segmentation in the drop-to-
door problem context. We implement SSS into an Android app; Our
preliminary evaluation in a residential zone shows SSS is promising
to make autonomous drop-to-door in real-time, with no need to
wait for slow visual processing.
Video demo is available at Youtube [5]. App is released at Github [6].

CCS CONCEPTS
• Computer systems organization→ Robotic autonomy; • Com-
puting methodologies→ Computer vision; Vision for robotics;
Image segmentation.
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1 INTRODUCTION
Drone delivery is gaining momentum. By delivering packages
through unmanned aerial vehicles (aka, drones), it is potentially
disrupting last-mile delivery with enormous convenience and ad-
vantages (e.g., speedy delivery, reduced costs, easier access to rural
areas, and good for environment) [24, 25]. Recent years have wit-
nessed intensive R&D efforts from industry and research commu-
nity, including 660,000 commercial drone deliveries to customers
and countless test flights in the field [10]. The global drone delivery
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(a) Illustration (b) Flow (c) A real-world instance over SS
Figure 1: An illustration of the last-hundred-feet delivery-to-door
solution over semantic segmentation.

market expects to grow by half every year, hitting $9.2 billion in
2027 from $2.1 billion in 2023 [25].

Drone delivery is not easy, particularly dropping off the package
at the door of a residence (like FedEx couriers) in a fully autonomous
manner. Most prior efforts are centered on the last-mile problem,
where the drone flies from the source to the destination house
through advanced route planning and navigation [7–9, 22, 23, 27].
Different from them, we target at the last-hundred-feet problem,
which aims to land at a specific-and-small point (marked as “D”,
say, in front of the garage/front door) of a residential house, instead
of any point around the destination house. As illustrated in Figure 1,
the drone starts with any point above the destination house (say,
100+ feet above) and needs to progressively locate and fly towards
a drop-off point (D-point) convenient for customers until it finally
lands at the last D-point safely (no damage to the drone and sur-
rounding environment), precisely (at a foot-level or meter-level),
and quickly (say, within tens of seconds).

A straightforward solution is to leverage semantic segmentation
(SS), a popular computer vision technique [21, 28], to recognize
meaningful segments (say, roof, lawn, wall, door, pavement, and
other house features) out of a collection of pixels (say, an image
or a video frame captured by the drone) and determine or update
the D-point. As the drone flies towards the current D-point, the
view captured by the drone changes and thus the D-point might
be updated accordingly. For example (Figure 1c), the drone later
sees a better D-point at the front door, which is invisible from the
initial top-view but becomes visible till the drone lowers below
the tree. The SS-based solution runs recursively in many rounds.
In each round, the drone performs visual sensing, SS and routing
(flight control) and repeats this process until it finally lands at
the last D-point. In this work, we target at the D-point in front of
the garage/front door of a single-family house (SFH), which is the
dominant housing type in the USA [4].

However, such SS-based solution faces two practical challenges
(§2). First, SS is not accurate enough to determine the D-point while
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(a) Test kits (b) Map (c) 10 SFHs
Figure 2: Experimental settings.

(a) Top-view instances (b) Front-view instances (c) Boundary
Figure 3: The instances with SS results and extracted boundaries.

meeting the precision requirement. As illustrated in Figure 1c, SS
fails to get the right segment boundary (here, the door/wall in the
front-view recognized as the pavement); It is impacted by envi-
ronmental factors such as sunshine, shadow, weather and color
space, etc. Second, SS is compute-intensive and very slow. It takes
several seconds to run SS once, particuarly on resource-constrained
devices like smartphones or drones. This makes real-time visual
sensing and flight control hard, if not impossible. As a result, the
drone highly likely needs to hover until SS completes (for the sake
of safety). We notice that these practical issues have not been dis-
closed or addressed in related work [11, 14, 18–20], which use SS to
determine the landing point; They all are based on theoretic models
or simulations, without taking practical factors into account. More
details are given in our preliminary study (§2).

In this work, we attempt to tackle practical challenges to de-
velop a SS-based solution for the last-hundred-feet problem. By
this means, the developed solution can work with mid-end or even
low-end drones without requiring hardware upgrades. Our design
is driven by the following heuristics. First, there is no need to run
the legacy SS to accurately recognize all the classes supported. It is
because the D-point is mostly on the pavement (driveway/walkway
in front of the garage/front door). We should focus on semantic
segments of our interest. Precisely, we should locate and track the
adjacent boundary between the house and its pavement (drive-
way/walkway), namely, the one between the roof and the pavement
in the top-view or the one between the door/wall and the pavement
in the front-view. Second, there is no need to run SS every time to

determine/update the D-point. A house structure does not change
although the view varies when the drone drops from the above. Sta-
tionary objects in the physical world can be exploited to streamline
visual processing across multiple views over time. More essentially,
a SFH follows a common structure (e.g., the driveway starts at the
road and ends at the garage, the walkway ends at the front door);
Inspired by these, we develop structural semantic segmentation (SSS)
over prior-known SFH structure customized for autonomous deliv-
ery to the door (§3). We make use of the house structure and build
SSS on top of the legacy SS solution with three main components:
(1) a quick patch over SS to handle a single view, (2) a lightweight
update and tracking across multiple views and (3) a fast algorithm
to detect movements (say, moving cars or pedestrians). More details
are elaborated in §3.

We have implemented SSS and integrated it to an Android app
to run delivery-to-door experiments in the field (§4). With SSS,
the drone successfully lands at the front/garage door of all the
participating SFHs in a residential zone in West Lafayette, IN.
Release: Demo videos are at [5] and Android app is at Github [6].

(a) Top-view (b) Front-view
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Figure 4: Comparisons of SS-old and SS-new in terms of accuracy
(F1 score), as well as the consumed time.

2 MOTIVATION: FROM SS TO SSS
We use a preliminary study over a residential zone to present the
limitations of the conventional SS solution and motivate our design.
Methodology. We use two drone models of DJI Air 2S and DJI
Phantom 4 Pro V2 to collect the top/front views of target SFHs in a
residential zone of about 240 SFHs in West Lafayette, IN (Figure 2b).
We capture the top views at an altitude of 100–150 ft above all the
SFHs and the front views at a distance of 3–10 ft away from the
garage door of 10 participating SFHs (with the consent from house
owners, Figure 2c). These SFHs have representative house plans
with various driveway visibility from the above: : fully visible, :
partially visible, : almost invisible (more details in §4). We use the
SS model developed for aerial drone images [2], which supports 24
classes and is trained by a public dataset [3]. We find that this SS
model (denoted as “SS-old”) performs poorly. We then add 50% of
images randomly selected from our dataset to train the SS model
(denoted as “SS-new”) and use the rest images for testing. By default,
we run SS over an Android smartphone, Samsung Galaxy S23 Ultra
with Adreno 740 (GPU) and Octa-core (CPU). To compare time
consumption, we also use Google Colab with A100 (GPU) [15].
Results. Figure 3 shows several illustrative instances and Fig-
ure 4 shows the results in terms of accuracy and overhead. We have
three observations. First, the conventional SS performs poorly but

can be significantly improved through proper training. SS-new out-
performs SS-old in the top-view cases (Figure 3a and Figure 4a); For
instance, the F1 score for one class of “roof” roars from 20% to 74%
(median). It matches with our common expectation: new training
samples can be effective in increasing inference accuracy because
they are collected from the same residential zone of test samples
and customize the model for the use scenario. However, we do not
observe such gains in the front-view cases, where the F1 score is
even lower with our training. We gauge that it is likely because our
training for the front-view one is improper without sufficient train-
ing samples (only 10 SFHs used to collect front views). It implies
that good training is effective, but is not easy. More importantly, in
this work, we do not intend to use customized training to improve
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SS. Second, training cannot fix all the errors, despite its effectiveness.
We clearly see that the roof is still misclassified as the pavement in
two out of six SFHs (marked by ×, Figure 3a), which could misguide
the drone to land on the roof, as the pavement areas close to the
roof are easily treated as ideal landing sites. It is even worse in
the front-view cases. The garage door is often misclassified as the
pavement, which makes it hard to find the right/proper D-point; It
even increases the risk of accidental collisions despite of built-in
obstacle avoidance. Third, SS is slow. The average time needed to
run SS once takes about 5.9 seconds (S23) and 2.1 seconds (Colab). It
implies that SS likely fails to pace up with the drone’s flight capabil-
ity (up to a speed of 3 - 10 m/s); The drone has to land very slowly
or cannot support autonomous landing in real-time (say, hovering
until SS completes for the sake of safety and landing control).
Insights for SSS. Our design of SSS is driven by one heuristics:
common house structure can be exploited to enhance the poor per-

formance of the legacy SS, which is unaware of the context of drone

delivery to SFHs. Specifically, there are three design insights: First,
there is no need for SS to recognize all the classes correctly for drone

delivery. Instead, we need to support very few classes of our interest.
For instance, only two classes (roof and pavement) are needed with
a clear top-view. When the view is obstructed by a tree, we need to
consider two extra classes: tree and lawn. Second, we even do not

need to identify the complete shape of segments, namely, all the pixels.

Instead, what truly matters is the boundary of the interested classes,
such as the boundary between the roof and driveway indicating
the garage location, as well as the boundary between the roof and
walkway denoting the front door as shown in Figure 3c. Third, house
structure does not change when the drone drops and changes its view.

It can be used to streamline SS across multiple continuous views.
Moreover, it can be leveraged for movement detection, which is
good for safety.

3 HOUSE-AWARE SEMANTICS OVER SSS
We devise SSS to leverage the SFH structure for autonomous door
delivery (Figure 5). Evidently, in the the last-hundred feet scenario,
the drone needs to handle three views (top-view, front-view and
any-view) to determine and update the D-point. SSS enables house-
aware semantics over common structural patterns in SFHs that
follow the residential construction code (e.g., [1] for Indiana and
similar codes in other states in the USA). In this work, we target at
SFHs in the USA, which follow common structural patterns [4]:
• A SFH has a driveway which connects its garage to main road1.
• A SFH usually has a walkway which connects the front door

to the driveway or the main road.
As a result, they are converted into the following adjacent posi-

tional relationships while performing house-aware SS:
•When viewed from the top, (1) one roof means a SFH2, (2) the

roof is physically adjacent to one driveway (at the garage door),
although the view might be fully or partly obstructed (see Figure 5),
(3) the driveway is of any shapewhich primarily resemble rectangles
or quadrilaterals with the length generally greater than the width.
1It is not true for a SFH with a detached garage or without a garage. But such SFHs are
not common (not observed in our study) and we leave such SFHs as our future work.
2It is true in our study though it is not true for a SFH with a detached garage or other
detached parts. For these SFHs, we will focus on the primary roof which covers the
main dwelling parts.

Figure 5: An overview of the design of SSS.

(4) the walkway, if applicable, is physically adjacent to the roof (the
SFH) on one end and to the driveway or the main road on the other
end, though the view might be fully or partly obstructed.
• In the front view or any view particularly when the drone

descends low enough (say a few feet above the ground), (1) all the
above SFH structure and the resulting positional relationships still
hold, (2) the garage/front door and the walls, which are part of the
roof (actually below the roof) in the top-view, become visible.

In a nutshell, the SFH structure and the adjacent positional re-
lationships of segments of our interests (here, roof, pavement for
driveway and walkway) are fixed in the physical world. We lever-
age this fact to enhance visual processing to locate the segments
needed to determine the D-point, even though they are not fully
visible in any view taken by the drone.

We notice that the initial D-point might be not good due to the
limited field of aerial view (see the example in §1). Therefore, the D-
point must be continuously adjusted based on the changing position
and shooting angles of the drone. Given the constantly changing
views, the unchanging house structure serves as a reference to
accelerate visual processing across multiple continuous views.

SSS puts all above ideas together with three key modules: (§3.1)
SSS over a single view to find or update the D-point, (§3.2) SSS
across multiple views to quickly verify wether the D-point needs to
be updated, and (§3.3) a light-weight movement check over a small
region-of-interest to ensure a safe landing.

3.1 SSS for a Single View
There are two key insights of SSS to find the D-point: First, we are
concerned with specific key structural elements (roof, driveway,
walkway) rather than the entire segments. Second, based on the
adjacency of these key components, we can swiftly identify a suit-
able D-point, away from the boundary, maintaining a certain safety
distance (here, 1.5 m). However, if we observe that the extracted
driveway and roof are not adjacent in the top-view, it may indicate
potential obstructions. In such cases, we rely on other structures
like trees or lawns to find a suitable boundary. As the drone de-
scends, we then continuously track the boundary and update the
D-point, which will be elaborated in §3.2. In the following, we will
mainly use top-view to discuss how SSS works.
Top-view. The most important task is to identify roof and drive-
way, which assists the D-point selection. In order to fully utilize
the SFH structure, we ensure the orientation of the orientation of
drone is to face the target house, with the main road positioned at
the bottom of the view. The details are elaborated at the end.
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(a) Clear view (b) Obstrcuted view
Figure 6: Top-view over two examples.

However, this task is still challenging. As discussed in §2, the
existing SS models perform poorly and they treat both public roads
and private roads as pavement; Consequently, they cannot distin-
guish different types of pavement like driveway, walkway and main
roads. To tackle this issue, we use the output of the legacy SS to
further extract the main road and the roof based on their shapes.
By this means, we limit the search range for the driveway if visible.

Algorithm 1 shows how to find the driveway and determine
the D-point. We first extract the main road by locating the largest
rectangle in the bottom third of the SS output with the labeled
pavement. All classes detected as vehicles and obstacles will be
replaced as pavement. Subsequently, we locate the initial roof by
seeking the largest rectangle located in the middle of the view
while considering all the parts classified as pavement and roof
due to potential confusion by SS models (line 1). Note that not
all roofs have rectangular shapes as shown in Figure 6, we utilize
pixel similarity over YUV space to expand the detected rectangle
(marked in purple dotted line), resulting in a complete roof (marked
in purple solid line). After that, the region between the extracted
main road and roof are the search range for the driveway (line 5-12).
We implement a scoring mechanism to assess candidates within the
search range (line 7). And choose the one with the highest score
based on its shape, area, and D-score, which measures the relative
distance from the extracted roof using a trapezoidal score function
as shown in Figure 6a.

For the found driveway, we first verify whether it meets the
standard (line 13). In cases where no suitable driveway is found,
it may indicate that the driveway is either entirely concealed by
trees or does not exist. Consequently, the drone will land above the
lawn (line 14) and capture new views (e.g. any-view) to update the
D-point. Otherwise, we further examine if the driveway intersects
with the roof (lines 14-17). If it does (Figure 6a), it indicates the
location of the garage door. The D-point is naturally selected at
a safe distance from the boundary, preferably aligning with the
center of the door. If there is no intersection, it suggests there is an
obstruction in between (Figure 6b). We then select a location with
the safety distance below the boundary line between the obstruction
(e.g. trees) and the driveway as the D-point.

Note that we perform an extra adjustment when the starting
point is insufficient to capture the entire house upon the drone’s
arrival at the target SFH. The drone initiates a random flight to find
a viewpoint that can encompassthe entire house. In the meanwhile,
we apply canny edge detection [12] and Hough Line Transform [17]
to ensure that our captured view of the house is aligned properly.
If not, a necessary rotation is made for adjustment.
Front-view and any-view. As the drone descends, front-views
and any-views become available. Considering the limited effec-
tiveness of SS in these views, we prioritize leveraging the drone’s

Algorithm 1 Find Driveway and D-point
Input: Original image (O ), semantic result (S = SS(O )), the maximum

iteration count (Nmax ), score threshold (θ )
Output: D-point, Driveway (BDrive ), obstruction type (Obs )

1: Main = FindMainRoad(S ), Roof = FindRoughRoof(S )
2: Roof = RefineRoof(Roof ,O )
3: PaveArea = Crop(S == pavement ∪ S == gravel,Main)
4: Scoremax = 0
5: for n ← 1 to Nmax do
6: Drive = FindLargestSqaure(PaveArea)
7: Score = D-score(Drive , Roof ) ∗ Size(Drive) ∗

CheckShape(Drive)
8: if Scoremax < Score then
9: Scoremax = Score , BDrive = Drive
10: end if
11: PaveArea = Crop(PaveArea, Drive)
12: end for
13: if Scoremax < θ then
14: D-point = FindD(S == grass, Roof ), Obs =

Fully Obstructed or No Driveway
15: else if CheckConnectivity(BDrive , Roof ) == False then
16: D-point = FindD(BDrive , Roof ),Obs = Partially Obstructed
17: else
18: D-point = FindD(BDrive , Roof ),Obs = No Obstruction
19: end if
20: return D-point, BDrive ,Obs

sensing data to perform a geometric transformation, involving ro-
tating and projecting the semantic results onto a top view. We apply
the above same way to get the boundary and update D-point. It’s
important to note that the boundary will now be between either
the wall/roof and the pavement (driveway/walkway). However, per-
forming SS for every captured view is resource-intensive and not
feasible in real-time. Moreover, for different obstruction scenarios
determined in Algorithm 1, we need to guide the drone to take
different actions. We will handle these issues next.

3.2 SSS Across Continuous Views
While the drone flies toward the initial D-point determined in §3.1,
we continuously seeks better alternatives as new perspectives arise.
As the house’s physical layout remains stable, we can efficiently
track the boundaries identified in §3.1 across multiple views and
adjust the D-point accordingly. In Figure 7a, two types of continuous
views are depicted: First, the views are captured when the drone
is descending (t0 to tk+n ) or flying horizontally without changing
the camera angle. Second, the drone remains stationary while its
camera angle keeps changing (after tk+n ). We will illustrate how
we facilitate lightweight boundary checks for these views to update
D-point. Furthermore, we will explain how SSS addresses invisible
views, a unique case within continuous views.
Fixed camera angle. While descending towards the initial D-
point, we maintain a downward-facing camera perspective to check
if the identified boundaries are still valid. To achieve this, we can
easily perform matrix transformations to zoom, rotate and match
the current view with the previous one, with the assistance of the
drone sensing data (e.g. GPS, altitude). As we have already identified
the boundaries in the top-views, continuouslymatching enable us to
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(a) Views over time

(b) Fixed camera angle (c) Changing camera angle
Figure 7: SSS over multiple views.

roughly know its position in the current view. We select tk and tk+6
to show the matching in Figure 7b. It is evident that the matching
is successful; all views align closely, with only slight mismatches
due to drone vibrations. In summary, the descent process is akin
to zooming in on a top view. Furthermore, we can swiftly refine
and track the boundaries by inspecting specific regions containing
essential house structures (such as the extracted driveway and roof),
rather than analyzing the entire view.
Changing camera angle. However, when the drone is below
a certain altitude, as the last view (tk+n ), the boundary between
the tree and pavement may be out of sight. In such cases, adjusting
the drone’s camera angle to capture new house views becomes
necessary. As the camera angle continuously adjusts, moving θ
degrees upward in pitch, the views transition from top-views to
front-views, as shown in Figure 7c. Utilizing known camera pa-
rameters and drone’s orientation sensing data, we establish point
correspondences between these two views via camera projection
model [16]. This process enables real-time tracking of boundaries.
When we have confidence in the results, such as when no obstruc-
tions hinder the top-views and SSS accurately recognizes the house
structure, which can be inferred by finding a boundary of roof and
driveway in the processed top-view, we may bypass SS for a light-
weight check. In situations of low confidence, such as in cases of
invisible views, we will handle them differently as follows.
Invisible views. After applying SSS for top-views (§3.1), we can
determine the presence of obstructions. For example, in Figure 7,
the driveway is partially blocked since the detected boundary is
between driveway and tree instead of roof. As the drone descends
below a certain altitude, like when it is under a tree, drone should
adjust the gimbal pitch angle to let the camera face the house. We
may apply SSS for the front-view, as introduced in §3.1, to acquire
more semantic details about the house. Then we can detect the
boundaries between the wall and the driveway. Additionally, know-
ing that the driveway is currently beneath the drone and should
be visible from the bottom of the captured view, the localization
becomes more efficient compared to the similar process used for
top-views. In fully obstructed scenarios, the drone will take an
additional step to figure out the location of the driveway with the
any-view, focusing on the potential area between the identified
roof and the main road. If it’s confirmed that the driveway doesn’t
exist, the drone opts to land on the lawn instead.

3.3 SSS for Moving Objects
At the stage when the final D-point is determined, the landing
process begins. To ensure the drone’s safety, monitoring moving
obstacles is essential. We devise sparse optical flow+ to detect mo-
tion and track the movement of potential obstacles (e.g. vehicles,
dogs and pedestrians). Instead of performing pixel-wise matching
for motion vectors between each pair of continuous frames, we
focus on tracking a limited set of key points, which mainly located
at the corners of objects. However, this approach has limitations. By
concentrating on fixed key points, we may overlook newly appear-
ing moving objects. Therefore, we need to update our key points
wisely. For each frame, we aim to select new key points out of
objects that have already been recognized and filter out previous
noise points. Moreover, in some scenarios, there may be more than
one moving object in the scene. To differentiate multiple moving
objects, we leverage DBSCAN [26] to group motion vectors based
on their speed and directions. Upon them a table is built to track
each moving object and to predict future movements. Despite the
drone being in motion, we apply optical flow to the matched view
pairs, as discussed in §3.2, to eliminate its influence on misleading
optical flow to find wrong motions. Moreover, SSS leverages the
extracted driveway and walkway as RoIs and solely monitors them.
If a moving object halts within the designated landing area as we
approach the ground, we consider updating the D-point accordingly.

4 PRELIMINARY EVALUATION
We have implemented SSS into an Android app which controls the
paired DJI drone for a waypoint-based flight, using Java (∼3,600
lines of code) and Python (∼1,900 lines of code). The core algorithm
is implemented in Python; It acquires real-time video and sensor
data through DJI Mobile SDK [13], updates the D-point over SSS
and control the flight towards the updated D-point accordingly.
Experimental setting. We run a field test with two drone kits
(Phantom 4 Pro V2 and Air 2S), which are tethered to a smartphone
(Samsung Galaxy S23 Ultra) that implements SSS. We run drop-to-
door experiments with 10 participating SFHs (Figure 2c), which are
located in one residential zone (Figure 2b). These target SFHs are
divided into two groups: garage door delivery (labeled from A to D)
and front door delivery (labeled from E to J), based on whether the
walkway is safe to fly. In this study, we set the safety distance from
an obstacle on the front as 5 ft (1.5 m) and the one from the side as
1.5 ft (0.5 m). The experiment starts at one point at an altitude of
100 – 150 ft (30 – 45 m) above the target SFH.
Microbenchmark: Single view. We achieve almost a two-fold
accuracy improvement of SSS over SS for a single view with no
more than 8% computing overhead. Figure 8a uses the same ex-
ample instance from Figure 3 and the outcome of SSS and SS is
labeled in cyan and black respectively (bolded the results for better
visibility). To quantify the accuracy improvement, we introduce a
new metric: boundary precision, instead of using pixel-wise classi-
fication accuracy. Precisionboundary = TP/bounddetected , where
TP is boundlabeled ∩ bounddetected . It is challenging to achieve
a perfect boundary without pixel deviations by labeling. To com-
pensate for it, we expand the labeled boundary by delta pixels,
representing a real-world distance of 0.2 meters. The specific delta
values differ based on views (here, 7 pixels for top-view and 25
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(a) SSS over top-view and front-view
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Figure 8: SSS vs. SS for a single view.
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Figure 9: SSS over multiple views and moving objects (MO).

pixels for front-view). We evaluate the precision over 10 selected
SFHs (Figure 8b), SSS outperforms SS significantly, particularly in
the challenging front-view (averagely 84% over 16% ). In terms of
increasing computing time (Figure 8c), on average, SSS only adds
430ms to the processing time compared to SS for both views.
Microbenchmark: Multiple views and movement. We use
the distance error (DE) to evaluate the accuracy of boundary track-
ing across multiple views. Figure 9a shows two captured adjacent
views (with a 1s interval) in the drone descent and the matched
results. The black dashed line represents the found boundary in
the lower view, which differs by 7 pixels (namely, 0.22 m in this
instance). Figure 9b shows that the overall DE is small (mostly be-
low 0.22 m and all below 0.4 m). Meanwhile, Figure 9c shows the
output of sparse optical flow+, revealing the successful detection of
both moving objects. Boundary tracking and sparse optical flow+
are both lightweight, taking about 190 ms and 10 ms, respectively.
Drop-to-Door Performance. We evaluate how SSS assists the
door delivery over 10 SFHs with different drop-off complexities:
SFHs D, I, J do not have fully visible driveways from the above,
which are obstructed by a tall tree. Among them, the top-view of J
cannot see the driveway at all. In addition to the static scenario, we
take into account the presence of moving cars for SFH J, denoted
as J+M. For each setting, we perform at least 10 runs.
◦ Precision.We use the distance (D∗) of actual D-point from the

best D-point (1.5m either from the front door or the garage) to quan-
tify the accuracy. We observe, in all the experiments (Figure 10a),
drone successfully drops near the best drop-off point with D∗<1
m. The median D∗ is below 0.5 m. Especially noteworthy, even
in situations where the D-point is entirely out of view from the
top-view (case J, J+M), we can still ensure a safe landing at the door.
This underscores the effectiveness of SSS.
◦ Computing Overhead. We present the total computing time

for SSS on different views in Figure 10b. We significantly reduced
the number of times we need to invoke semantic segmentation.
For all test cases, it requires a maximum of only four calls (SFH

(a) Distance D∗

(b) Computing time
Figure 10: Performance of SSS for 11 test cases.

J), with the majority requiring only two calls. The frequency of
calls depends on the visibility of the driveway in the front view.
When the driveway is partially or fully obstructed, we need to run
SSS over more views. For instance, in SFH J, we apply SSS in the
top-view, front-view and two any-views. Specifically, over the top-
view, D-point will be initialized over a lawn, giving no driveway
can be seen. Then observe the SFH from the lawn to determine the
driveway’s location. Upon reaching the driveway, the perspective
shifts to face the front, searching for the walkway. Finally, we follow
the walkway to find the front door. Besides, comparing the J+M
with J, we find the processing time is slightly larger, showing the
low computing overhead for both static and moving scenarios. In a
nutshell, for all SFHs, the computing can be done within 25 s.

5 RELATED WORK
One most relevant work is [19], which also targets at dropping off
at the door using SS. However, it is based on simulations and many
practical problems are largely overlooked; It focuses on classifying
the front and back yard primarily based on the house orientation,
heavily relying on the pixel-level performance of the SS model,
without exploiting the known and common house structure, which
is the focus of our work. A few studies [11, 14, 18, 20] also use SS to
solve a similar problem (landing) but they are all based on theoretic
models or simulations. Other studies [7–9, 22, 27] are centered
on the last-mile problem instead of the last-hundred feet landing
problem. To our best knowledge, there is no prior work in the
literature that exploits a house structure to expedite and improve
semantic segmentation for drone landing towards the door.

6 CONCLUSION
We present our preliminary efforts towards autonomous drone de-
livery to the door. In this work, we develop structural semantic
segmentation (SSS), a new computer vision technique that lever-
ages known house structure to efficiently decide the drop-off points
so as to control the landing flight of the drone in real-time. While
promising, there are many remaining issues including but not lim-
ited to handling SFHs that do not follow our basic structural rules
as well as other residential houses like condos, apartment and even
multi-floor buildings. The developed SSS is sensitive to light condi-
tions and performs poor at nighttime, which calls for an enhanced
technique that works robustly well under various conditions.
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