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The Kitaev model on a honeycomb lattice with bond-dependent Ising interactions offers an exactly solvable
model of a quantum spin liquid (QSL) with fractionalized excitations: gapped Z, fluxes and gapless linearly
dispersing Majorana fermions in the isotropic limit (K, = K, = K;). We explore the phase diagram along two
axes, an external magnetic field &, applied out of plane of the honeycomb, and anisotropic interactions K, larger
than the other two (K, = K, = K). For K. /K >> 2 and h = 0, the matter Majorana fermions have the largest gap,
and the system is described by a gapped Z, toric code. One of the central questions we address is whether the
fractionalized excitations in the different phases have sharp signatures that can be detected in experiments. We
show that while the response to single-spin excitations is broad, the spectral function corresponding to two-spin
excitations across a bond has sharp signatures that can be attributed to specific anyons. In the toric code regime,
the € = e x m fermion, formed from the bosonic Ising electric (e¢) and magnetic (i) charges, disperses along a
specific one-dimensional direction that provides a fingerprint of fractionalization. At lower K; in the center of
the Abelian phase, in a regime we dub the primordial fractionalized regime, the field generates a hybridization
between the € fermion and the Majorana matter fermion, resulting in a ¢ fermion which too has a distinct
quasi-one-dimensional dispersion. All the other phases in the field-anisotropy plane are naturally obtained from
this primordial soup. These highly constrained fractonlike dispersions can be observable by inelastic light and
neutron scattering, thereby providing “smoking gun” signatures of fractionalization in the QSL phase. Our
analysis is based on calculations of susceptibilities, topological entanglement entropy, and excitation dynamics,
obtained using exact diagonalization and density matrix renormalization group, and supported by perturbation

theory.
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I. INTRODUCTION

A Mott insulator is formed because of strong local repul-
sive interactions in a system with an odd number of electrons
in a unit cell [1,2]. The fate of the resulting local magnetic
moments, interacting with its neighbors on a specified lattice,
can progress along two paths as the temperature is lowered:
the moments can undergo long-range ordering, spontaneously
breaking the spin rotation and/or lattice symmetries, leading
to a conventional ordered phase; or the moments can re-
main disordered but get quantum mechanically entangled with
long-range patterns of many-body entanglement and form a
quantum spin liquid (QSL) [3-6]. The possibility of obtaining
QSL phases is enhanced by having a low spin, which leads
to greater quantum fluctuations, and frustration arising from
the lattice geometry and/or competing exchange interactions
[4,7,49].

The Kitaev model is a paradigmatic model for QSLs
[8], consisting of S = % local moments or qubits on a
two-dimensional (2D) honeycomb lattice with very spe-
cific bond-dependent compass interactions given by the
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Hamiltonian

Hi =Y Kuiofol, (1)
(i ))a

where o = x, y, z refer to the three bonds of the honeycomb
lattice. The ground state of the Kitaev model is known to be
a topologically nontrivial QSL with fractionalized excitations
that have anyon statistics [9,10]. Topological order in a QSL
is reflected in multiple ground-state degeneracy characterizing
the genus of the lattice manifold. The promise of utilizing
these anyons for robust quantum computing has led to con-
siderable excitement and activity in the field, all the way from
fundamental theories to applications [11-14].

In this model each spin fractionalizes into itinerant Majo-
ranas and static Z, fluxes of the emergent Ising gauge field
that are minimally coupled with the itinerant Majoranas. The
conservation of fluxes at each plaquette allows for an exact so-
lution of the interacting spin model. In particular, the ground
state lies in the flux-free sector [15] where, upon fixing a
translation-invariant gauge, the problem reduces to a nearest-
neighbor tight-binding model for the itinerant Majoranas. At
the isotropic point K, = K, = K, = K, the matter Majorana
excitations are gapless, whereas the flux excitations have a
small but finite energy gap Ay ~ 0.26 K. Upon increasing
one of the three bond-exchange interactions relative to the
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others (e.g., K; > K,/,), the matter Majoranas remain gap-
less whereas the gap to flux excitations starts decreasing. At
K, = 2 K there is a phase transition to a gapped Abelian phase
where the matter Majoranas also get gapped. For large K,
the gap for matter Majoranas increases as ~K; and greatly
exceeds the flux gap which decreases as ~K4/Kz3. In this
regime the system maps to a toric code (TC) gauge theory [8].

In the TC regime the excitations can conveniently be un-
derstood by dividing the Ising fluxes into two classes of
bosonic quasiparticles: the Ising electric charges e and mag-
netic charges (also referred to as fluxes) m, with mutual
semionic statistics that see each other as sources of 7 flux
[8,16,17].

Another experimentally relevant handle that can affect the
energetics of the phases is an external magnetic field. In par-
ticular, we consider a Zeeman field  along the [111] direction
given by

H,=—h Z (o +0f +0}) 2
added to the Kitaev Hamiltonian [Eq. (1)]. It is known that
a perturbatively small [111] magnetic field in the isotropic
limit stabilizes the chiral spin liquid (CSL) by gapping out
the Majoranas, while the fluxes still remain gapped [8]. In the
anisotropic limit, the primary role of a small magnetic field,
however, is to provide dispersion to the Z, fluxes while the
Majoranas remain gapped.

Despite the proliferating investigations on the itinerant
Majoranas in candidates of Kitaev QSL, the dynamics of
Z, fluxes is less explored. Recently, there have been both
phenomenological and microscopic theories which predict
thermal Hall effects of flux and vison bands of perturbed Z,
QSLs near the isotropic limit of the Kitaev model [18,19].
This sets up an interesting question whether one can use the
anisotropy Kitaev interaction and the magnetic field to manip-
ulate the nature of the low-energy fractionalized quasiparticles
and understand the nature of the resultant phases that they
favor along with associated phase transitions. Specifically, we
would like to ask the following questions:

(1) Aside from the prediction of quantized edge modes in
the chiral spin liquid, are there sharp and direct signatures of
fractionalized anyons in the bulk? And are these experimen-
tally detectable?

(2) What is the interplay between the matter Majorana and
flux excitations induced by an external magnetic field?

(3) What is the nature of different phases, the low-energy
excitations in these phases, and the dynamical mechanisms
that drive the phase transitions?

We address the above questions with a set of comple-
mentary tools starting from strong coupling perturbative
expansions to exact diagonalization (ED) and density matrix
renormalization group (DMRG) calculations, to elementary
ideas of low-energy effective quantum field theory appropriate
for topologically ordered phases. For the purposes of this
paper, K, = K, = K are set to unity, while we vary K, > 0
and h.

The most important finding in our results shows that it
is possible to find sharp dynamical signatures of the gapped
Abelian anyons and Majoranas through spectral functions of
appropriate local spin flips. For low fields, the fractionalized

fluxes propagate as composite gauge fermions € (e x m) that
show distinct one-dimensional dispersion, in contrast to the
dispersion of Majoranas and bosonic fluxes previously in-
vestigated in [18,19], illustrated schematically in Figs. 1(d)
and 1(e). Such highly constrained fractonlike mobility of the
gauge excitation € provides a direct and sharp signature of
fractionalized excitations within linear response potentially
detectable by inelastic light and neutron scattering experi-
ments, without involving higher-order nonlinear correlations
[22,23].

For higher fields, we find that there is significant matter-
gauge flux hybridization in the gapped Abelian QSL creating a
regime that we dub the primordial fractionalized (PF) regime.
In this regime too the signature of anyons is dominated by
the one-dimensional fractonlike dispersion, but different from
the behavior at low fields where matter and gauge degrees of
freedom were uncoupled. The importance of the PF phase can
be seen from the fact that all the other phases surrounding the
PF region in the phase diagram can be obtained from the insta-
bilities of this region along different axes [see Figs. 1(a) and
1(b)]. The surrounding phases include the CSL and TC phases
with increasing bond anisotropy at low fields, the intermediate
gapless phase at low bond anisotropy and intermediate fields,
and the valence bond solid and polarized phases at high fields
and high anisotropy.

The paper is organized as follows. We first discuss the
phase diagram in Sec. II as a function of (h/K, K,/K): the
[111] magnetic field and the anisotropy in the exchange cou-
plings. We briefly review the existing knowledge of the phase
diagram and discuss the ground-state properties using various
diagnostics with 24-site ED under periodic boundary condi-
tion, revealing two new regions that have not been scrutinized
previously: the valence bond solid (VBS) state consisting of
isolated dimers on z bonds, which is smoothly connected to
the partially polarized state; and the primordial fractionalized
(PF) region that features the interplay between Majoranas and
gauge fluxes. In Sec. III we discuss the anyon dynamics in-
duced by [111] magnetic field inside the Abelian QSL phase,
whose signature is sharply dispersing bound excitations that
should be observable within linear response theory. We show
numerical evidence of hybridized anyonic excitations inside
the PF regime by ED, which is supplemented by a perturbation
analysis and by dynamical DMRG on a cylindrical system of
12 x 4 unit cells (96 sites) with truncation error ~1078. We
also discuss how excitations in the PF regime are connected to
those in adjacent phases, the chiral spin liquid (CSL), the par-
tially polarized magnetic (PPM) phase, and the field-induced
intermediate gapless QSL phase. Finally, we conclude our
investigation in Sec. IV with outlook for future directions,
and explain the low-field integrable limit and computational
details in the Appendixes.

II. PHASES AND EXCITATIONS

In absence of time-reversal (TR) symmetry-breaking per-
turbations, i.e., for 7 = 0, the Kitaev model is integrable due
to the extensive number of conserved Z, gauge fluxes resulting
in an effective quadratic hopping problem for the Majorana
fermions in each flux sector with the ground state belonging
to the zero flux sector in accordance with Lieb’s theorem
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FIG. 1. (a), (b) Schematic phase diagram in the bond strength anisotropy K,/K vs magnetic field & along the [111] direction. We identify
the general gapped Z, phase dubbed the primordial fractionalized phase (PF) in yellow color in the center, from which all the other phases
around originate. The key low-energy excitation of the PF regime is a gapped fermion ¢ that carries Z, gauge charge and is obtained via
magnetic field mediated hybridization of the Majorana fermion ¢ of the Kitaev QSL and the € = e x m fermion obtained in the TC limit where
e and m are the Ising electric and magnetic charges, respectively, of gapped Z, QSL obtained in the TC limit at large K. Starting from the
PF phase with dynamic Z, matter and gauge fields, for large K, and small 4, there is a crossover to the Z, Abelian regime as the ¢ fermion
gap increases beyond the flux gap with a concomitant reduction in the magnetic field induced hybridization, approaching the pure TC gauge
theory as K,/K — oo. For large K, and large A there is a first-order phase transition to a z-bond dimer or VBS phase (in blue) formed due to
the confinement of the gauge theory [20]. The VBS is smoothly connected to the polarized state at large magnetic field at lower anisotropy.
In the lower left region for small K, and small &, the flux sector has a larger gap while the Majorana sector is gapless at & = 0 and a finite
smaller gap for small 4. In this phase, the Majorana fermions form a gapped non-Abelian CSL (shown in green) equivalent to a gapped
p + ip superconductor. With increasing field the pairs break forming a gapless QSL with spinon Fermi surfaces [21] (in pink) and ultimately
a polarized phase for large 4 (in gray). (c) Mapping of the anisotropic Kitaev model of o qubits on a honeycomb lattice to an effective square
lattice with t qubits on links made out of the two ¢ spins on the z bond. (d) The 1D soft mode of the composite € = e x m fermion induced
by a weak out-of-plane magnetic field shown in the honeycomb lattice, whose dispersion within the second Brillouin zone is shown in (e) in
arbitrary unit.

[15]. For 1 < K,/K < 2 the Majorana fermions are gapless, lowest-energy excitations in the gapless and gapped Z, liquid
while in the highly anisotropic regime K,/K > 2 they are are very different: For K, &~ K, the Majorana fermions form
gapped. This exact solution is easily obtained following Ki- linearly dispersing gapless excitations, similar to graphene.
taev’s original prescription [8] of representing the spin degrees However, deep inside the anisotropic phase K,/K > 2
of freedom in terms of Majorana fermions. The nature of the =~ the model approaches the TC limit since the effective
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Hamiltonian can be written in terms of mutually commuting
Ising stabilizers [16]. In this regime, the lowest-energy exci-
tations are gapped Z, fluxes of the honeycomb model which
now form Abelian anyons: bosonic Ising electric and magnetic
charges with mutual semionic statistics [8,16,17], while the
Majorana fermions have a gap much larger than the fluxes.

In this background, it is rather interesting to understand
the response of both the gapped and gapless Z, QSLs to the
simplest experimental probe of spin systems, an external mag-
netic field, represented by Eq. (2). Given the fractionalized
nature of the low-energy excitations and the fact that they
couple to the magnetic field differently, a rich set of novel
phases can emerge beyond the integrable limit.

For large anisotropy of the bond strengths, i.e., K,/K > 2,
the gapped Kitaev QSL can be mapped to the TC defined
on an underlying square lattice as shown in Fig. 1(c) [17],
where the ground-state manifold for large K,/K is given
by {IT{), [{1)} and the excited states by {|11), [{{)}.
The fourth-order perturbation in this ground-state manifold
gives the four-point interaction between these new degrees
of freedom 7% = (o — o5)/2 which is equivalent to the TC
model [17].

The quantum phase transition between the gapless and the
gapped QSLs arises due to a modification of the Majorana
band structure at K,/K = 2 in the zero flux sector. At the
isotropic point K,/K = 1 the Majorana band has Dirac-type
gapless modes located at K and K’ points of the Brillouin
zone (BZ) similar to electrons in graphene. As is shown in
Fig. 1(b), upon increasing the anisotropy, the two Dirac points
move towards each other and ultimately combine into a single
semi-Dirac gapless mode at the M’ point when K,/K =2
is reached [24], which, interestingly, would become linear
Dirac modes under weak magnetic field (see Appendix A)
and, furthermore, the bands get gapped out immediately af-
ter the transition point with a gap that continues to increase
monotonically with K, in the zero flux sector by O(K;)
for K;/K > 2, while the energy to create a m flux scales
as ~K*/K3. These low-energy fluxes in the TC limit are
canonically best described in terms of a deconfined Ising
gauge theory in which these fluxes form electric and magnetic
charges [17].

Thus, the primary effect of a small [111] external magnetic
field is to couple the Majorana fermions in the zero flux sector
to the low-energy Ising gauge charges in the TC limit. This
opens up the window for interplay and selective tunability
of the different fractionalized excitations which, as we shall
show, is best understood in terms of a generic primordial Z,
QSL of which the exactly solvable model is a special limit.
This primordial fractionalized liquid allows for instabilities
along different channels as a function of bond anisotropy
and magnetic field well beyond the currently known small
field perturbative regimes: the CSL at low magnetic field in
the isotropic regime obtained by the gapping out the linearly
dispersing Majoranas via a Chern mass while the fluxes still
remain gapped [8]. In addition, we expect a dimerized short-
range entangled phase formed out of TC topological order
[17,20] in the highly anisotropic limit via a first-order transi-
tion owing to the confinement of the Z, gauge charges. These
perturbative limits miss the physics of phases at intermediate
anisotropy and magnetic field, the central topic of this work.

Central to our observation is, while the TC is traditionally
described in terms of the bosonic Ising electric ¢ and magnetic
charges m, an equally valid description is, according to the
fusion rule

exe=1l, mxm=1,,exm=c¢ 3)

in terms of the fermion € = e x m and either e or m [25].
These are also quasiparticle excitations of the Z, emergent
gauge field that are created when the topological order of the
QSL is disturbed, and are able to carry topological charges
with emergent braiding statistics. Notably, the € fermion lies
in the same superselection sector as the matter Majorana [8]
and hence can hybridize with it via local spin operators. As we
show, the two complementary effects of the [111] magnetic
field are (1) dispersion of € fermions, and, (2) hybridization
of the ¢ gauge fermions and matter Majoranas leading to
the emergence of a low-energy hybridized fermion, the v
fermion, carrying a Z, gauge charge whose dynamics deter-
mines the fate of the system in the intermediate regime far
from the perturbative limits. It is useful here to consider the
analogy of the Anderson model in context of heavy-fermion
system where there are two species of fermions (electrons),
one almost localized and the other itinerant, that hybridizes
via the Anderson coupling. The situation is somewhat similar
except for the fact that both the bandwidth of the localized
fermions and the magnitude of the hybridization are fostered
by the magnetic field. The PF liquid is therefore the analog
of the heavy-fermion phase, albeit in this case, it is gapped.
From such point of view, the Kitaev model is the exactly
solvable limit where the hybridization goes to zero concomi-
tantly with the gapping of the € fermion, while the Majorana
fermions form a gapped or gapless spectrum depending on the
anisotropy.

A. Diagnostics of the phases and phase transitions

As the [111] magnetic field is turned on, there emerges a
far richer phase diagram as a function of both K, and / than
known previously. Figure 2 summarizes various diagnostic
calculations, which together determine the phase boundaries
and crossovers shown in the schematic diagram Fig. 1.

Our discovery lies in the behavior of the gapped Z, Abelian
phase in a finite magnetic field obtained by making the cou-
pling K, larger compared to the other two. For K, > K in
the TC limit, the Z, Abelian QSL undergoes a first-order
transition to a confined short-range entangled dimerized phase
discussed in greater detail in the next section, which, in turn
gives way to a polarized phase at even larger fields & ~ K.
However, we find that there exists a remarkably richer physics
between the integrable Z, Abelian phase at zero field and the
polarized phase at large field as already indicated schemat-
ically in Fig. 1(b). This includes (1) a CSL phase at small
magnetic field, (2) a U(1) gapless quantum spin liquid at
intermediate magnetic field and almost isotropic limit, (3)
centrally, for weak fields a gapped Abelian QSL in which
the € anyon excitations are effectively one dimensional, and
(4) a gapped Abelian Z, QSL at intermediate magnetic field
and anisotropy that we dub the PF regime also showing
characteristically dispersing one-dimensional hybridized
fermions. Here we would like to note that there is still ongoing
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FIG. 2. Various diagnostics of the phase diagram as a function of (K, #) and their cuts along 4 at different K. correspondingly shown on
the right side of each density plot. (a) The magnetic susceptibility x;, = 87E,s/dh?. (b) Fidelity susceptibility x, = B,ZQEgS /0K2. (c) The xx
component of VBS order parameter 0. (d) Bipartite von Neumann entropy S,y with subsystem boundary cutting only through y bonds. (e)
The zz component of VBS (of z dimers) order parameter Q%. (f) Bipartite von Neumann entropy S¢y with subsystem boundary cutting only
through z bonds. (g) Tripartite entanglement entropy /3, equivalent to the topological entanglement entropy y at small 2 where the correlation
length scale £ is smaller than the size of the subsystem used in the Kitaev-Preskill construction. (h) Ground-state average of the flux operator
W,. Data are obtained by diagonalizing a 24-site cluster with torus geometry.

discussion about the nature of the intermediate field phase
near the isotropic limit. In addition to the gapless U(1) QSL
revealed by various approaches including DMRG [21,26-28],
a gapped Abelian Z, QSL with nonzero Chern bands within
mean-field theory has been suggested in [29,30]. The DMRG
result can be affected by finite-size effects and the mean-field
result is susceptible to fluctuations; further investigations are
needed to understand the dichotomy arising from the different
gauge groups: the presence of low-lying pockets of fermionic
excitations in DMRG points to a U(1) gauge group whereas
mean-field theory finds a Z, gauge group arising from fermion
pairing. In the following text we discuss different diagnostics
of them.

Susceptibilities. We first calculate the susceptibilities as the
conventional measure of quantum phases and phase transi-
tions:

 PE (K., )

o 02 Egy(K:, h)
onz T

SK2 “

Xh

The results are shown in Figs. 2(a) and 2(b) and their cuts
on the right side of the contours. Figure 2(a) shows the
zero-temperature magnetic susceptibility x;, which marks out
several boundaries highlighted in the schematic phase di-
agram. At finite field in about the range 0.4 < h/K < 0.7
and for near-isotropic interaction, there is a gapless QSL
sandwiched between two singularities of y;,, reported in our
previous works [21,31,32] as well as others [26,27,33-37].
For even larger h the system becomes partially polarized,
whose phase boundary is also clearly visible in Fig. 2 as sin-
gularities in different measures (see below). x; marks out the
four phases: the CSL in the lower left region, the Abelian Z,
QSL at high anisotropy and finite field, the gapless QSL, and
the VBS /polarized phase; while in y, [Fig. 2(b)] the boundary
between Abelian Z, QSL and the VBS/polarized phase is not
as clear since the transition is being driven by the field.

von Neumann entanglement entropy. The distinction be-
tween the VBS and the polarized state is not revealed by the
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susceptibility measurements. To characterize the emergence
of the VBS phase we calculate the von Neumann entropies
$7y and S%, for subsystems obtained by cutting along y bonds
or z bonds, respectively. These are shown in Figs. 2(d) and
2(f). While SﬁN drops off once the QSL is destroyed, Siy
persists in the VBS phase indicating the presence of dimers
on them, which finally gives way to the polarized phase at
even larger magnetic fields where Sy falls off to zero. The
entanglement entropies are also generically sensitive to all
gap-closing transitions such as the one out of the CSL.

Quadrupolar order. We define the following operator to
probe dimerization:

e o%"h +oboce
0% = (% - %ﬁgp,gp), 5)

where pp’ stands for the z bond and «, 8 € {x, y, z}. This is
formally equivalent to a quadrupolar order or spin nematic
order, though the symmetry is explicitly broken away from
the isotropic limit. The behavior of the order parameter is
discussed in more detail in the next section. A finite value of
the quadrupolar order parameter as shown in Figs. 2(c) and
2(e), marks out the distinction between VBS and polarized
phase as schematically shown in Fig. 1(b).

Mutual information I;. The PF regime is not visible in
standard measurements based on two-point correlations, e.g.,
Xz and x;, shown in Figs. 2(a) and 2(b), however, its nature is
explicitly revealed by the third-order mutual information /5:

LA Ayt Az)
=I(A; : &)+ 1A : A3) —I(A; : A, A3),  (6)

where I(A; : Ay Aj3) is the quantum mutual information be-
tween the region .4, and A, U A3, as shown in Fig. 2(g). The
physical meaning of /5 converges to the topological entangle-
ment entropy y [38—40]:

L — —y =8(A4) + S(A2) + S(A3) — S(A1A2)
— S(A1A3) — S(A2A3) + S(A1 A A3) (D)

when the correlation length satisfies £/]0.4;] — 0 and A;
are chosen such that they share boundaries with each other.
This has been used in characterizing various of Z, topological
orders [31,41] where y = In2. We will discuss details in the
forthcoming sections.

Plaquette fluxes. We calculate the flux expectation for
ground states at different (K, h) [Fig. 2(h)] which marks out
the deconfined phases, both the gapped and gapless QSLs,
with the ground states belonging to the zero flux sector. In the
PF regime, there are strong fluctuations of flux excitations that
give rise to a definitive dispersion of fractionalized anyons,
discussed in the next section. Based on the dynamics of the
excitations and their dispersion, we show below how all the
other phases surrounding the PF region emerge by confine-
ment or by Fermi-surface construction of composite fermions.

B. Strong K, limit: Toric code

The low-energy degrees of freedom in the limit of K, /K >
2 are obtained by considering only the z bonds and the
interaction K 0405 which results in the ground-state dou-

blet {|1}), |{71)} and excited states {|11), [{!)}. The
ground-state manifold is spanned by eigenstates of 7% =
(o5 —op)/2[17].

The effective Hamiltonian for the T operators is system-
atically obtained via degenerate perturbation theory on the
Kitaev Hamiltonian in the presence of a [111] magnetic field
h. To leading order in 4 it is given by

2h?
H=—J W; — T, 8
AR 2
where W; and Jrc are given by
K4
Wi= TiZerl rizfdz Tiyri)+d| —dy’ JTC = 16|KZ|3 : (9)

While the first term is the TC Hamiltonian (in Wen’s represen-
tation [4]), the second term arises due to the [111] magnetic
field. Note that this term is in fact time-reversal symmetric
since it is quadratic in 4 and t* is even under time reversal
given that ¢ is a non-Kramers doublet [17,20]. Therefore,
Eq. (8) retains the time reversal (and some other lattice sym-
metries) that are lifted at higher order in perturbation theory.
Indeed, the next order in perturbation / contributes the term
hS
NF (Tiidztiztiidl - Tix*dl Tiztix*dz) (10)
g

which is odd under 7, o,, C;, and even under R,. This
operator is significantly smaller than the leading-order con-
tribution in Eq. (8) which dominates the essential dynamics of
the Abelian QSL phase.

It is useful to understand the physics described above in
terms of T operators also in terms of the o spins. For instance,
the TC ground state is given by

L+ W,
) =H<+T> ®:110). (1n
where W; [see Eq. (8)] flips both the spins on two consecutive
z bonds albeit with a decorated sign structure that depends
on the other z bonds. This highly entangled state leads to a
finite topological entanglement entropy with low-energy exci-
tations above it being comprised of bosonic e and m charges
corresponding to (W;) = —1 on vertices and plaquettes of the
square lattice [in Fig. 1(c)], respectively. These excitations
are static in the absence of a field but gain field-dependent
dispersions. The instability of these excitations led to various
phase transitions.

We now perform unitary transformations on the horizontal
and vertical bonds according to

horizontal bonds : {t*, 77, t*} — {7, T, =77}, (12)
vertical bonds : {t*, 77, 7%} — {7, 7%, T*}. (13)

The transformed Hamiltonian is given by

H=—Jic| Y A+ B,
K P

20
-y =1, 14
K.

i
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where Jrc = %;Bl, and Ay, B), are the star and the plaquette
operators :
A=l B =[] (15)
i€ty ied,

of the standard TC lattice as shown in Fig. 1(c). Therefore, to
leading order in perturbation theory, the honeycomb model is
equivalent to the TC Hamiltonian perturbed by a Zeeman field
in the y direction shown in Eq. (14). Next, we will discuss both
the static and dynamical effects of this effective Hamiltonian
in the honeycomb model.

C. The VBS and the polarized phase

The polarized state in the 77 direction, in terms of o pins,
is given by

1
|Wyes) ®z\/§(|T‘l’>+N/T>) (16)
which is a short-range entangled dimer state with zero to-
tal magnetization, i.e., (Wyps|o|Wyps) = 0. However, the
expectation value of the bond operator (Wygps|Q%? | Wygs) =
(0*P)yps # 0 as shown in Fig. 2(c) for (0*)ygs = 2/3. This
state, even while being a short-range entangled (product over
the z bonds), is however distinct from a completely polarized
state found as 4 > K, where all the spins are polarized in
the [111] direction. In this state the magnetization is finite but
(O*)pm = 0. For the dimerized VBS and polarized states, the
expectation of the order parameter in Eq. (5) is found to be

20 o 01
(Qves= [0 2 04 ,» (Q)pm = 3 (1) 3| A7)
0 0 -3 3 03 0

Note, however, that the VBS and polarized phases are
smoothly connected and unlike a symmetry-broken state, here
time-reversal, spin-rotation, and lattice symmetries are explic-
itly broken due to a K, anisotropy and a field. This gives
rise to excitations distinct from the trivial PPM. Above the
VBS ground state, the gapped excitations are singlet state
(1)) = 141)) at energy scale ~h*/K;, and (|11), [L})) at
~K./K.

Notably the fully polarized state is a direct product state in
terms of the individual o spins such that the bipartite entangle-
ment between any subsystem bipartition is zero. On the other
hand, the dimer state | Wyps) is a product state over the z bonds
and hence any bipartition cutting a z bond would contribute
In2 per z bond to the von Neumann entanglement entropy.
Such Bell-pair contribution is absent when the bipartition is
made across the y bonds. This is shown in Figs. 2(d) and
2(f). An alternative insight to the physics of Eq. (14) including
the nature of the transition between the gapped QSL and the
VBS in the Kz/K > 2 limit, can be obtained via a series of
mappings [56] starting with Eq. (14) via Xu-Moore models
[42] leading to the compass model [43].

D. The PF region and Z, phases

The PF region can be targeted by /3. For small £ the fluxes
are approximately conserved, and we retrieve the exact mutual
information /3 = —y = —1In2 in both CSL and Abelian Z,

QSL as is shown in the white area of Fig. 2(g). Note that
for the Kitaev QSL phase at 4 = 0, the spin-spin correlation
length £ is short ranged because of conserved Z, charges
despite the presence of gapless Majorana modes. For small 4,
& continues to be extremely small due to the (approximate)
orthogonality between different gauge configurations so it
is possible to retrieve the topological entanglement entropy
locally [44].

For 1 < K;/K < 2 with intermediate magnetic field, the
mutual information exceeds |I3| = In2 and marks out a gap-
less QSL phase with a large correlation length &. Interestingly,
for relatively large i within the Abelian Z, QSL, |I3| >~ 2 In 2,
indicating strong scrambling of the Hilbert space and delocal-
ization of information [45,46], arising from a strong mixing
between gauge and Majorana sectors. This is the region we
dub the primordial fractionalized (PF) regime, which is con-
nected to the Abelian Z, QSL by a crossover illustrated in
Fig. 1(b). This region becomes a thin sliver which ultimately
disappears as the anisotropy increases K,/K > 2 because in
this region the large Majorana gap prevents the matter-gauge
hybridization, as is also visible in Fig. 2(g).

III. ANYON DYNAMICS

In this section we discuss the spectral function of spin
excitations under a [111] magnetic field and with varying
anisotropy obtained by ED and DMRG, followed by their
interpretation based on perturbation theory.

It is well known that the spectrum of single-spin excitations
is broad in a QSL [47-50] in contrast to sharp well-defined
dispersing modes in energy and momentum in an ordered
magnet. The main question we address below is whether it
is possible to have a sharp diagnostic of a QSL that could
be measured in a linear response experiment. We show that
the linear response spectrum of two-spin excitations across
a bond indeed shows very particular 1D dispersion at low
energies. The reason for considering two-spin excitations can
be seen from Eq. (11). While the magnetic field that cou-
ples to a single-spin operator o or o projects the z dimer
into high-energy configurations {|11), |{ )} at the order of
O(K;/K), the two-spin operator can project it back into the
low-energy manifold {|1J), || 1)}, hence is potentially ca-
pable of probing excitations within the low-energy sector of
the high-anisotropy QSL. Also, when projected into the TC
model, the magnetic field to the lowest order couples to a
7V as shown in Eq. (14), leading to low-energy excitations
above the TC ground state with tractable dynamics. This 77
perturbation in TC defined in a square lattice is in fact a
two-spin operator in terms of the underlying honeycomb spin
system which therefore provides a concrete reason to probe
low-energy excitations of Kitaev spin liquids.

We show from perturbation theory that the aforementioned
1D dispersion arises from the fractionalized ¢ fermions in-
duced by the [111] magnetic field in the low-energy gauge
sector of the anisotropic Abelian QSL. However, as the
anisotropy K,./K is lowered towards the gapped to gapless
transition point, the Majoranas and fluxes hybridize as the Ma-
jorana gap decreases and becomes on the order of the flux gap.
We show that the dynamical structure factor and the dispersion
of € anyon changes qualitatively in this regime, to the leading
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FIG. 3. (a) Identifying spin operators that create specific fractionalized excitations. (b) Excitation spectrum $* (@) for the operator o507, .
at K;/K = 2.5 for different values of 4. The dashed black lines track the evolution of the different peaks as a function of 4. (c¢) Excitation
spectrum $%(w) for the operator oo, with the same cut along K, /K = 2.5. (b), (c) Rescaled in magnitude so as to make peaks clear; the
intensity of the peak in (b) is the order of 103 times that of the peak in (c). The origin of multiple peaks at finite field is a distinct signature of the
fractionalization of spins. This is in sharp contrast to the sharp magnon mode of a Heisenberg magnet with anisotropic Heisenberg exchange
observed in this field range, as shown in (d). (¢) Shows the schematic phase diagram focusing on the crossover from the region with the lower
flux gap to the PF phase where the matter fermions and flux degrees of freedom hybridize. We calculate the evolution of dynamics along the cut
marked by the red arrow. (f)—(h) Show the momentum-resolved dynamical structure factor $*(k, w) of the first peak only of panel (b) under
different magnetic fields. The dotted hexagons mark the first and second Brillouin zones. $*(k, w) for the operator oo, . for three different
fields: (f) #/K = 0.08 in the Abelian phase with fluxes; (g) #/k = 0.20 in the PF phase with hybridized Majoranas and fluxes; (h) #/K = 0.40
in the partially polarized phase. The excitation in the first peak is dominated by the € = e x m particle that only disperses along the fixed d,
direction, giving the 1D dispersion defined by Eq. (20) as seen in (g). Inside the PF region the hybridization between the Majorana and the ¢
fermions leads to missing intensity near the I" points as seen in (h). The first-order phase transition to the polarized phase shows peaks at the
I" points as expected for a ferromagnet.

order the dispersion is dominated by the one-dimensional and the spectral density of states for the two-spin operator:
dynamics of € anyon, however, there are significant changes

to the spectral weights in momentum space. These changes in 1

the spectral properties can be understood as arising from the
hybridization between the € anyons and matter Majoranas.

We next present our results on the effects of two-spin
excitations on the dynamical signatures in energy and momen-
tum within linear response and propose their identification
by probes such as inelastic light and neutron scattering as
“smoking-gun” signatures of fractionalization and anyon ex-
citations in the Abelian QSL phase.

A. Dynamics in the Abelian QSL and PF regimes:
ED and DMRG results

To understand the nature of the low-energy excitations,
we focus on two excitations: (i) created by OF = oj'oi, ., and
(ii) created by @f = o0, across a z bond. The response of
these composite particles to an external field is revealed by the

dynamical momentum-resolved structure factor:
1

1 R
soP Kk, =——I VO —
(k, @) T m|:( | ka)—H—i-in

@fkl\ll)} (18)

af _ _l |: Ao AB :|
S (w) = nImXi: (WO —r l_noi )| (19)
excluding the ground-state contribution, where the operator
OB s the two-spin operator, H is the total Hamiltonian with
Zeeman field, and 7 is a small spectral broadening. Figure 3(a)
illustrates fractionalized excitations created by single and dou-
ble Pauli matrices.

The spectral density of states $™(w) and S¥(w) for the
two operators are shown in Figs. 3(b) and 3(c). For a small
h/K =0.04, 070}, has a large spectral peak at an energy
of O(J1c). Remarkably, with increasing #, the peak fraction-
alizes into many subpeaks. The lowest-energy peak develops
around @ = 1.6 x 1072, as shown in Fig. 3(b), whose inten-
sity grows as the field increases. Indeed, as we discuss below,
the k-resolved dynamics at the energy values of these spectral
peaks reveals the 1D dispersion of fractionalized anyons. On
the other hand, $%*(w) for a?o]? 4> has nonzero weight only
at w ~ O(K;/K) for small & and therefore gives no signal
for w ~ Jyc, as shown in Fig. 3(c). A nonzero signal begins
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FIG. 4. Dynamics of higher-energy quasiparticle excitations, in the Abelian phase with only gauge degrees of freedom and in the PF phase
with coupled matter and gauge degrees, using ED and DMRG. (a) Schematic diagram with the blue point near the PF regime used to obtain
the dynamics with 96-site DMRG. The red point marked inside the PF regime is used to obtain the dynamics with 24-site ED. (b) The 12 x 4
lattice geometry (96 sites) used in dynamical DMRG, with PBC in y and OBC in x direction. (c), (d) Dynamical structure factor $**(k, w)
of o707, near PF regime. (c) Shows the lowest excited mode of operator 007, that corresponds to the 1D e dispersion; and (d) shows the
second lowest excited mode, i.e., the hybridized yr particle. (e) The spectral function of operator 6707, at K;/K = 2.5, h/K = 0.2 in arbitrary

units. The first three modes are further revealed in the momentum resolved $* (k, w) in (f)—(h).

to develop at h = 0.16, whose intensity, however, is much
smaller than that of $™(w).

We would like to emphasize that such spectral weight frac-
tionalization is precisely a signature of spin fractionalization.
The external magnetic field acts like a “dispersive prism” that
reveals the identity of dynamical modes of each constituent
fractionalized degrees of freedom. This is in sharp contrast
to the signature of a quasiparticle in an ordered Heisenberg
magnet with a magnon peak that disperses in a field but
remains intact throughout, as shown in Fig. 3(d). In addition,
the field dependence of the peaks in the ordered magnet and
the QSL shows opposite behavior, as marked by dashed lines
in Fig. 3(b).

The momentum resolved S (K, w) further reveals the
sharp dispersion of the fractionalized quasiparticles. Fig-
ure 3(f) shows the dynamical structure factor of the lowest
peak of the corresponding S™(w) at h = 0.08, K,/K = 2.5
shown in Fig. 3(b). These results are consistent with the
large-scale 96-site dynamical DMRG calculations at 7 = 0.1
[51-55] as shown in Fig. 4(c), whose details are discussed
in Appendix B. Remarkably, S**(k, w) under small magnetic
field exhibits a readily discernible one-dimensional pattern.
We would like to emphasize that this sharp 1D signature of
fractionalization of anyon excitations appears within linear
response. In previous work, the linear response of single-spin
operators yielded broad continua [48-50] due to fractional-
ized quasiparticles and sharp signatures were reported only in
the nonlinear response regime [22,23].

In a larger field, the system is driven into the PF regime
where we expect strong Majorana-flux hybridization, as is

shown in Figs. 3(g) and 4(f). Spectral weight is found to be
missing near the I points as shown in Fig. 4(f) and is pushed
to higher energy reflected in the second peak of $**(w) at
h = 0.2 cut [Figs. 4(e) and 4(g)], whose momentum-resolved
intensity pattern resembles that of the PPM shown in Fig. 3(h).
Indeed, the hybridization between fluxes and gapped Majo-
ranas inside the PF regime at this energy scale leads to a
confined magnonic mode immediately above the lowest-lying
anyon excitation as the precursor of the forthcoming transition
into PPM, which is made clear by the comparison between
Figs. 3(h) and 4(g). These lowest-lying dynamical signatures
together establish the interesting connection between the PF
regime, the TC, and the PPM phase. The hybridization within
the PF regime gives rise to trivial bosonic modes at low energy
as the field is increased into the PPM phase. On the other side
with lowering of the field, the PF regime smoothly crosses
over to the TC regime as the gauge excitations (¢) and matter
Majoranas separate out.

Higher o cuts of $*(k, w) further reveal the relation be-
tween PF and the CSL phase, as is indicated by the intense
peaks in the spectral function around the M’ points shown in
Figs. 4(d) and 4(h). The third lowest mode in the PF regime, as
shown in Fig. 4(e), whose dynamical signal centers around the
M’ points of the first Brillouin zone, is a signature of itinerant
Majorana fermions residing near the non-Abelian to Abelian
transition at K, /K = 2.

We therefore predict that the momentum distribution at
specific w cuts in the low-energy region of the dynamical
structure factor reveals sharp signatures of different fraction-
alized excitations or partons, deconfined Majoranas, gauge
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FIG. 5. 1D dispersion of e-m composite fermions at large K, /K (TC) limit and small magnetic field along [111] (Zeeman field 7, in TC).
(a), (b) In the square-lattice representation of TC, the 7, perturbation reduces the gap along the diagonal directions which leads to €, and ¢,
fermions dispersing along these fixed one-dimensional directions. (c) The corresponding directions of ¢, and (d) €, fermions in the honeycomb
lattice; the € particle can be excited by local o, or o, which, respectively, give €, and €, at the energy scale O(Jrc), with Majorana excited

simultaneously at high-energy sector O(K,/K).

anyons, and emergent bosonic modes, in the PF regime that
should be observable in inelastic scattering experiments. We
will discuss the details regarding the nature of excitations and
perturbation theory in the forthcoming sections.

B. Perturbation analysis: The dispersion of € fermions in TC

In this section, we present insights into the aforementioned
ED and DMRG results using perturbation theory based on
different effective descriptions via the dynamics of TC and
of the parton representation of spin. For & = 0, the exactly
solvable Z, QSL phase of the TC is gapped and hence stable
against small magnetic fields. While the excitations of this
gapped QSL are usually described in terms of the bosonic
Ising electric charge e on the vertices, and the magnetic flux
m on the plaquettes, of the square lattice in Fig. 1(c) where
As(B,) = —1 [16], we present an alternative, but equivalent,
description of this Ising gauge theory in terms of the fermion
€ = e x m and the bosonic electric or magnetic charge, that
allows for a transparent understanding of the effect of the
magnetic field on the TC phase. The description in terms of
the € fermion and boson can also be successfully extended to
the near-isotropic limit.

While all e, m, and € have a gapped flat band for & = 0,
the second term in Eq. (14) provides, to leading order in
h, dispersion to €, rather than individual e and m charges,
along the diagonal directions d; or d, as shown in Fig. 5.
We label € fermions that disperse along these two directions
€, and €, respectively. To leading order, the one-dimensional
dispersions of ¢, and ¢, are given by

4h? NG
ex(K) = 4Jtrc e cos (ka + 5 ky>, (20)

Z

4n? 1 V3
8),(1() = 4JTC — E Cos (Ekx — 7]@), (21)

where 4Jrc is the gap to an e-m excitation in absence of the
magnetic field. These e-m composite fermions with extremely
anisotropic, e.g., the dispersion in Eq. 20, have a group veloc-
ity v(k) = dkex(k) = %dl sin(d; - k) that propagate only in
d, direction, as demonstrated in Fig. 5(c) and are in agreement

with numerical results discussed in Fig. 3(f). They develop
zero modes at k, + \/§ky = 4nm for 4Jrc = %2 if the per-
turbation theory remains valid. Interestingly, it is known that
given the duality in the system [56,57], a y E?rturb;ltzion to

the TC leads to a first-order transition at o0 = < ie.,

at h, = \/gi—zzK between a topologically ordered state and a
y-polarized state. The critical value of the first-order transition
is of the same order where the gap of the ¢ fermion reduces,
suggesting that these fermions are energetically low lying as
the system undergoes a phase transition to the VBS phase.
Note that this scale is still within the perturbative regime in A
and is far from the 4 ~ K, scale where the microscopic spin
operators polarize in the [111] direction.

The dispersing modes defined by Eqgs. (20) and (21) can
be readily understood in the TC lattice or Wen’s plaquette
model [58]. Indeed, a local 7, can be decomposed into 7.,
up to a phase factor. It is then clear that a t,, when acting
on the shared link of a e-m composite fermion, annihilates
the e charge on one end of the link and creates another on
the other end of the link; by the same token, 7, causes the m
charge to hop to the nearest plaquette with which the existing
m charge shares a common link. As shown in Figs. 5(a) and
5(b), to leading order, a 7, induces a fractonlike hopping of
an € particle in a fixed direction, with e and m exchanging
their relative positions after each hopping; and depending on
whether the initial local excitation is €, or €, as shown in insets
of Figs. 5(a) and 5(b), the transport directions are rotated by
90° on the square lattice.

Such fractonlike hopping of € anyons as described in
Eq. (20) or (21), depending on the initial local excitation,
offers a definitively sharp signature of anyonic fractionalized
spins in the Abelian QSL with high anisotropy, whereby
Majoranas are gapped out at the high-energy scale O(K;/K)
while anyons dominate the low-energy physics at Jpc ~
O(K* /K;). These types of excitations can be created, for
example, by the local operator o'}, i.e., two spin flips on a
z bond, which creates a pair of € anyons with a phase factor
from the two Majoranas. Upon introducing a [111] magnetic
field, the € excitation begins to hop in a fixed direction defined
by the lowest-lying soft mode, while Majoranas disperse at
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much higher energy compared to that of the € excitation,
leaving the signature of the anyons unaffected at low energy.
We will discuss this dynamics in greater detail in the following
sections.

C. Gauge-matter hybridization in PF regime

In order to discuss the dynamics of Majoranas and anyons,
and potential field-induced hybridization at lower anisotropy,
here we briefly review the canonical fermion representation
of the Kitaev model. This picture is an alternative to the
Majorana-flux picture up to a gauge transformation, but with
better lucidity in formalizing the interplay between the two
sectors. The integrable limit of the Kitaev QSL (KSL) is
most naturally described in terms of fractionalized degrees
of freedom (c;, bY) where o = ic;b? [8] and c;, b} are Ma-
jorana fermions that are responsible for the matter Majorana
and gauge sector, respectively. The sublattice character of the
honeycomb lattice allows these Majoranas to be combined
into canonical fermions

c=fit+fl, cpe=ilfi— ), (22)

where c; denotes the Majorana operator on the A sublattice of
the ith site of the Bravais lattice, and c;;+; denotes that of B
sublattice thereof. Similarly for the bond fermions x [59],

xi)- (23)

This maps the Ising exchange on the z bonds as

b? = Xia + X;;a b?+5[ = i(Xia —

K.oioh, = —K.(2n] —1)(2nF — 1), 24)

where nlf and n{ are the number operators of f and yx;,
fermion. Hence, it maps the spin states on the sites i and i + 2
(labeled by |o0?)) to an occupation number basis In!, %)
on every z bond. The spin configurations |1]), || 1) map
to 100}, |11) and |11), |[11) map to |10), |01) states. Simi-
larly, the other Kitaev exchanges K0 0/, , are transformed
to —K,ciciyo(2nf —1). The static flux sector, whereby a
uniform n¥ =1 is a valid choice of gauge, then leads to a
free-fermionic description for the f fermions that at K, = 1
the model is effectively a p + ip superconductor with Dirac
cones at the £K point [8,60]. Increasing K, displaces the
Dirac cones, merging them via a semi-Dirac dispersion at
K, = 2 (see Appendix A). Increasing K, further opens up a
gapped phase which is smoothly connected to the TC phase as
detailed above. The operator correspondence between various
ways of describing the excitations of the Kitaev model is
illuminating. A two-spin flip operator ~o;'0,, on |0G) state
corresponds to a two-fermion excitation ~f; x; + fixiz» in
terms of f and yx, fermions, which in turn correspond to four
flux excitations (two e-m pairs or a pair of € particles) in terms
of the 77 operator acting on the ground state of the TC [see
Eq. (14) and Fig. 3(a)].

In the strong K limit, given the mapping to the TC, it is
natural to describe the excitations in terms of just e and m
charges or the flux excitations, or their bound state € = e x m
which is a fermion. However, as K, is reduced, we must in-
clude the effect of the itinerant Majoranas (f) which becomes
gapless at K,/K = 2 and remain gapless for 1 < K,/K < 2.
Given that the € particles and the f fermions belong to the

same superselection sector they can, in general, hybridize via
local spin operators. Hence, the strength of the hybridization
can be tuned via local interactions in the spin Hamiltonian
such as the magnetic field at a relatively low anisotropy. It
is useful to interpret these in light of the emergent degrees
discussed in Egs. (22) and (23). A magnetic field of the form
= Zi h%cf leads to hybridization between y, and f fermions,
though their behavior at low energies is significantly different.
The magnetic field introduces a term of the form

Ko ~ B (ib%ci) ~ ih* (Xia + X0 )(fi + £, (25)

where i belongs to A sublattice. This indicates that #* mediates
hybridization between f fermions and yx,. Including such
contributions from both sublattices leads to hybridization,

ih[(™ — Dy for — @ + Dy fI1+He,  (26)

and similarly for y (x — y,d; — d). For 1 < K;/K < 2, the
f fermions are gapless and easily hybridize with the low-
energy x, fermions via the above mechanism in the presence
of the magnetic field.

Such hybridization is negligible in the TC limit since, con-
trary to the case in 1 < K,/K < 2, the gap of the f fermion
in the limit K, > 2 is large compared to that of the bond
fermions. However, upon reducing the bond anisotropy from
the TC limit, the gap of the f fermions closes at the M’
point in the BZ and reopens at finite magnetic field through a
change in the Chern number of the band. Under the static flux
approximation [8], even at a finite field, the transition between
the CSL and the Abelian QSL occurs via a Dirac closing at the
M’ point. In particular near M’ = {0, X} where f fermions
are low-lying near K, /K ~ 2, the hybridization leads to

—2hi(xaxfok — £ X0 ) + (x < y) 27)

which implies instead of considering x,,, and f fermions
separately (as near 4 ~ 0), we should instead consider

1
¥~ E{(x,; +x) +if i (28)
as the low-energy excitations of the Z, liquid for intermediate
fields and K, ~ 2. It is this regime of the phase diagram we
dub the PF regime. Thus, the PF regime we find is a generic
7, liquid, the primordial fractionalized Z, QSL, from which
specific cases of Z, spin liquids as realized in the Kitaev model
arise. This qualitatively explains the fanlike shape of the PF
regime which emanates from K,/K ~ 2 shown in Figs. 1(b)
and 2(g).

For large K, the single-particle excitations for both yx,
and f fermions are gapped at the ~K, scale, which can be
integrated out, consistent with Eq. (24). The low-energy ex-
citations are the x, and x, fermions that gain an independent
dispersion due to the quadratic perturbation in (A*)? and (#”)?.
In fact, a quadratic perturbation in (4*) gives (h* )2(7;‘01{F 4"
~UP @] = 1) (0 a0 A+ X X+ 20 2

(29)
When acting on a single-fermion sector, it gives rise to the

dispersion for the bond fermions albeit normalized by the
occupancy of f fermions within mean field. The dispersion
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of x, fermions is of the form
&4, (K) ~ 2(h*)? cos(k - d,) (30)

which is indeed the dispersion shown in Eq. (20). An equiv-
alent picture emerges when x — y, di — d,. Therefore, the
composite (e-m) pairs distilled in the large-K, limit and
the TC mapping in the previous subsection are in fact describ-
able by the y, and x, fermions as discussed in Eq. (23). These
excitations are energetically low lying close to the VBS phase
at large K, when perturbed by 4. Note that in this regime,
f fermions behave as spectators and do not mix with x,
fermions, and therefore do not affect the low-energy physics
except when confinement leads to the VBS phase.

D. Two-spin-flip dynamics in terms of partons

Equipped with insights from perturbation theory in terms
of partons, we can now understand the numerical results
shown in Figs. 3 and 4. The excitation created by the operator
@j‘ = o0j'0;% . near h = 0 is equivalent to the composite parti-
cle consisting of both occupancy of canonical f fermion and a
creation of a pair of € particles [or equivalently y, of Eq. (29)].
Further, the excitation created by @f = o0}, is equivalent
to a product of number operators for both f fermion and
X, fermion [see Eq. (24)]. It is important to note that while
the purity of these operators is true in the exactly solvable
limit (h = 0), in intermediate fields these particles hybridize
as discussed near Eq. (26).

The large spectral peak on the order of Jyc previously
shown in Figs. 3(b) and 3(c) at small # can now be under-
stood as arising from the composite object consisting of the
f fermion and two x, particles that disperse at low energy,
even though a single f excitation is gapped out on the order
of O(K,/K). Aside from this f — y, composite object there is
another signal, which is lowest in energy in Fig. 3(b) at around
w = 1.6 x 1072 under low field, whose intensity grows as
the field increases. This signal rises due to the dispersion of
€ anyons described previously in Eq. (20) [or equivalently
that of x, in Eq. (30)], which obviously agrees with the
quadratically decreasing energy scale with the increasing 4, as
marked out by an eye-guiding dashed line in Fig. 3(b). Indeed,
the k-resolved dynamics at the energy cut reveals the 1D
dispersion of € (see schematic in Fig. 5). However, as is shown
also in Fig. 3(b), for higher # as the PF regime is approached,
the highest peak relevant for f — x, composite in $*(w) of
Gfaf . splits into several smaller peaks, that is, the composite
particles consisting of the bound state of f fermions and two
X further fractionalizes into its constituent parts, separating
out the dispersion of f fermion from the amalgam, as in-
dicated in the next lowest spectral mode that branches out
linearly with the increment of 4 shown in Fig. 3(b). Similarly,
we find at the spectral mode of € also branches into two
pieces upon entering PF: while the lowest spectral mode is
still dominated by €, the outer branch is primarily due to the
hybrid mode v, whose energy scales linearly with & and is
consistent with Eq. (27). The spectral weight of S¥(w) at
h 2 0.16 in Fig. 3(c) is indicative of the ¥ fermion formed
from the hybridization of f — € by the [111] magnetic field.
Furthermore, the energy scale of hybridized modes shown in
Fig. 3(c) changes linearly with respect to / in agreement with

Eq. (27), which is in sharp contrast to the quadratic scaling of
€ particle.

The relation between PF and the CSL phase is revealed
by higher w cuts of $*(k, ), as is indicated by the intensity
peaks around M’ points shown in Figs. 4(d) and 4(h). These
modes are precisely dominated by the Y particle defined in
Eq. (28), which would become the lowest-lying excitation
dominated by Majoranas in CSL near transition. To under-
stand the essence of this mode, recall that itinerant Majorana
fermions (or f fermion) reside near the M’ points near the
non-Abelian to Abelian transition at K,/K = 2, which is
given by the static flux sector calculation shown in Fig. 6 of
Appendix A. Hence, at the perturbative field the Majorana
particle is responsible for signals at M’ points. However, as
the magnetic field increases, Majoranas and fluxes (or bond
fermions x) begin to hybridize, giving rise to the ¢ mode near
M’ points whereby the intensity of f is modified by y, as is
shown in Figs. 4(d) and 4(h) where the spots near M’ points
are distorted and stretched along the d; direction due to the 1D
dispersion of y,/,. Interestingly, this mode is also the lowest
excitation in the CSL phase at a nonzero field near TC-CSL
transition, which is already present in the PF regime of the
Abelian phase. The nature of excitations in all the phases is
summarized in Table L.

Aside from the sharp flux signature reviewed in the dynam-
ical structure factors, the excitations in the PF regime also
provide the key to understanding the rich phase diagram in
Fig. 1: the Zeeman field induced hybridization between the
€ and Majorana fermions resulting in a ¢ fermion. All the
other phases in the (4, K;) plane are naturally obtained from
this primordial soup: the gapped PF liquid is continuously
connected to the TC limit by a crossover where the latter is
governed by e fluxes; through continuous phase transitions
to the CSL via a change in the topological invariant of the
band structure of the i fermions, which reduces to the usual
Majoranas in the weak field limit [a Chern number transition
always occurs at M’ point, as is consistent with Figs. 4(d) and
4(h)]; to a gapless U(1) QSL with a Fermi surface via loss
of (¥ i) pairing; and to the VBS phase with a dimer order
parameter via confinement.

IV. DISCUSSION AND CONCLUSION

The possibility of observing signatures of Majoranas in Ki-
taev QSL has been discussed in the context of spin dynamics
and thermal Hall effects. It has been argued that the dynamical
spin susceptibility [48,61,62], which exploits the orthogonal-
ity between flux excitations, would allow the extraction of
the two-point correlation between itinerant Majoranas. Also,
the nonzero Chern number of Majorana bands in presence
of gap-opening perturbations suggests nontrivial thermal Hall
conductivity. As potential QSL candidates, the most studied
is ¢-RuCl;z [63—74] in which some recent experiments appear
to see a half-quantized Hall plateau of thermal edge conduc-
tion indicative of chiral gapless edge modes of Majoranas
[70]. While the experimental situation is currently unclear
[75], given various material growth issues and the presence
of non-Kitaev spin interactions, it raises another theoretical
aspect less studied in the field: the physics of fluxes and their
interplay with Majoranas.
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TABLE I. The summary of phases, the nature of low-energy excitations, and their associated energy scales. The ~h*/K? scaling of f
fermions in Z, CSL is valid only in the perturbative regime where fluxes remain conserved [8,26]; this picture breaks down at larger & whereby
f and x hybridize. The central PF phase marked with an asterisk is connected to the TC QSL by a crossover.

Phase Hierarchy of low-energy excitations

Isotropic KQSL Gapless ¢ Majoranas (or f fermions), gapped flux excitations

Z, CSL f fermions at energy ~h>/K?; hybridized particle of f and x

Z, Abelian QSL Highly gapped f fermions; gapped fluxes [1,e, m, €], only € disperses under [111] field
VBS One gapped (|1}) — |41)) at energy scale ~/*/K.; two gapped (|11). [{1)) at ~K./K
Gapless QSL Neutral Fermi surface of f fermions

Polarized Spin waves at ~h/K

PF* Damped ¢ fermions, gapped v fermions, and magnons at energy ~K* /K;’

In this work we have probed this rich physics with an ex-
perimentally relevant perturbation, an external magnetic field,
for various parameter regimes of the Kitaev model to reveal
the structure of the underlying fractionalized excitations in
terms of their response to the magnetic field. We have focused
on the resultant phases and the dynamics of the excitations
generated from the interplay of bond anisotropy and the mag-
netic field.

The central result reported in this paper is that the effect
of an external magnetic field in the [111] direction is remark-
ably different on the gapless and the gapped Z, QSL. While
the former shows transitions to a gapped non-Abelian chiral
QSL, followed by a further transition to a gapless U(1) QSL,
before entering the polarized phase, the latter gives way to €
fluxes dispersing in fixed one-dimensional directions before
transitioning to a valence bond solid phase. The significance
of our results is that typically one expects in a QSL phase, the
energy and momentum imparted to the system in an inelastic
scattering experiment will be shared among the fractionalized
components, leading to broad features in spectroscopy. How-
ever, we find quite remarkably, that there are indeed sharp sig-
natures of the different anyon fractons in the linear response
of appropriate local spin-flip operators that are further tunable
by a magnetic field. In addition to linear spectroscopy, time-
resolved nonlinear pump-probe experiments that can explore
the dynamics of two anyons created at different times braiding
around each other [76,77] could be a powerful probe of the
fractionalized excitations and ultimately provide the smoking-
gun signatures of anyons in a QSL. In particular, it is shown
in [77] that in a 2D system with nontrivial braiding statistics,
the nonlinear response is divergent in time according to ~¢'/2.
Given the unique 1D dispersion of € quasiparticles induced by
the [111] field, the scaling in time or frequency of nonlinear
response functions can be distinct from general 2D fermionic
systems. We also expect that the nonlinear response signal in
the Abelian QSL can be tuned by tilting the magnetic field.

We have also reported our discovery of a gapped primor-
dial Z, fractionalized (PF) phase, the generalized Abelian Z,
phase with coupled matter and gauge degrees of freedom at
intermediate bond anisotropy and magnetic field in the center
of the phase diagram in the anisotropy-field plane. Key to this
phase is the twin role of the magnetic field that (1) provides
dispersion to the Z, fluxes which in turn selectively pro-
vides dispersion to the € = e x m fermions in the anisotropic
limit, and (2) provides hybridization between the € and the
Majorana fermions to produce hybridized fermions whose

properties naturally explain the PF phase. The significance
of this finding is that all the phases surrounding this central
region [the gapless Kitaev spin liquid, the gapped Abelian
QSL, the TC phase, the gapped chiral non-Abelian QSL, the
gapless U(1) QSL, the dimer or valence bond phase, and
the polarized phase] emerge from the primordial fractional-
ized phase. We have therefore identified the essential coupled
matter and Z, gauge degrees of freedom in the PF regime
that produce the surrounding gapped phases with topological
order, gapless phases with spinon Fermi surfaces, and first-
order transition driven by € to the VBS order. The most direct
information on the nature of the PF regime has come from
the dynamics and their dispersion in the Brillouin zone of
different combinations of spin operators that create particu-
lar fractionalized excitations. By observing the peaks of the
structure factor corresponding to these spin operators as a
function of the magnetic field and anisotropy, we have been
able to track their evolution across phase transitions. Since the
manipulation of an anisotropy in the exchange coupling was
recently proposed in the realistic materials by means of the
light irradiation [78], and that the toric code (TC) topological
phase was recently realized in cold-atom setup [12], we expect
our results can inspire relevant experiments on Kitaev QSLs
in both quantum materials and cold-atom platforms.
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APPENDIX A: NONINTERACTING MAJORANAS
AT THE LOW-FIELD LIMIT

Although the focus of this paper is the flux dynamics, it
is necessary to explain the dynamics of Majoranas in the
low-field limit which provide the anchor point for under-
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FIG. 6. Dispersion for the itinerant Majoranas in the static flux
sector near K./K =1,2,2.5 in presence and absence of field-
dependent coupling g ~ #*/(KK.) = 0.5, showing the low-energy
itinerant fermions near the K and M’ points. (b)-(d) Show the disper-
sion through the Brillouin zone cut in (a); (f)—(h) show that through
the cut in (e).

standing the dynamical signatures of hybridized excitations
of fluxes and Majoranas at higher magnetic field. In this Ap-
pendix we explain the low-energy dispersion of Majoranas (or
f fermions) at integrable limit and in the regime of low-field
perturbation theory where fluxes are static (Z, fluxes remain
conserved), as is shown schematically in the inset bands of
Fig. 1(b) in the main text. At this limit the Majorana and
gauge sector remain separated from each other. The model is
integrable in absence of magnetic field, where the low-energy
Hamiltonian is governed by the matter Majoranas in the zero-
flux sector. The Kitaev Hamiltonian then becomes quadratic in
Majorana operators [8] Hx = ZieA,& iciACiysp, Withd =X, 9
or Z. In momentum space the Kitaev Hamiltonian reads as
1 .
HK = E Z[lt(k; Kx’ Ky, Kz)ck,AC—k,B + H.C.], (Al)
k

FIG. 7. The momentum-space resolution of (a) the 24-site lattice
with 3 x 4 unit cells used in ED and (b) the 96-site lattice with 12 x 4
unit cells used in DMRG. Blue dots denote the available momenta in
the first and second Brillouin zones of the corresponding clusters.

where for convenience we set K, = K, = K = 1, and the (k)
above is given by

3 3
t(k;K,) = K, + 2 exp (izky> cos (%

kx>. (A2)
At isotropic point (K, = K, = K; = 1) and without magnetic
field, Eq. (A2) gives two Dirac modes at K and K’ points as
shown Figs. 6(b) and 6(f) and also illustrated in Fig. 1(b) of the
main text. However, for a generic anisotropic K, /K, Eq. (A2)
has gapless modes at

K.\ 2
k, = 0, k, = % arccos <——Z> — (A3)

2 J.J/3
hence, the gapless modes defined by Eq. (A2) shift from K
and K’ points and move towards each other until they meet
and merge at the gapless M’ points when K, /K = 2 [Figs. 6(c)
and 6(g)], beyond which there is no gapless solution and Ma-
joranas become gapped; and the previously gapless momenta
K, K’ become gapped as is shown in Figs. 6(d) and 6(h). At
h =0and K,/K = 2, the soft-mode expansion for f fermions
near M’ gives the effective Hamiltonian

{ . 32 =3iky\ [ fx
Har= =3 2 Ui f W0 SR e

where all momenta are measured with respect to M’. Hence,
the Majorana excitations form semi-Dirac instead of Dirac
cones at the M’ point shown in Fig. 6(b). Interestingly, in
presence of a weak [111] magnetic field whereby the third-
order perturbation breaks TR while keeps the integrability [8],
the H,, becomes

Hy = Hy +4V3 Z(f]j f—k)gka"C(;?(k), (AS)
- Sl

B .
KK’
Dirac cone at low energy near the M’ point as presented by the
black solid line in Fig. 6(g) and also schematically in Fig. 1(b).
Such low-energy excitation at the M’ point near K,/K = 2
transition qualitatively agrees with the low-lying excitation
in the strongly hybridized regime near transition, where the
dynamical signals are centered at the M’ points while distorted

where g = hence, the semi-Dirac cone becomes a linear
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err ~ 1073 err ~ 1070
err ~ 1074 err ~ 1077
err ~ 107° err ~ 1078
1071
(==}

FIG. 8. (a) Convergence of ground-state energy Ey (shifted for
logarithm scale) in 96-site DMRG with cylinder geometry. £, con-
verges within 150 steps for truncation tolerance that is smaller than
err ~ 1077, (b), (c) Two energy cuts of S**(k, w) at @ = 0.0054 and
0.0072 obtained by (b) 48-site DMRG and (c) that by 80-site DMRG.

and stretched along the d; direction due to the 1D dispersion
of € fermions.

APPENDIX B: COMPUTATIONAL DETAILS

In this Appendix we present details of DMRG and ED used
to calculate the dynamics of anyons in the main text.

The dynamical structure factor S(k, w) as a function of
frequency w and k can be measured with relevant inelastic

scattering experiments. S(k, w) is defined as usual
o
Pk, w) = Z e kT f dt{0?)OF L (0))e™,  (B1)

where O corresponds to two-spin-flip operators defined on
the Bravais lattice as described in the main text. The density
of states can be derived accordingly by S(w) = f dk S(k, w).
The numerical results are obtained by both ED and DMRG,
and interpolated according to the momentum space resolu-
tion shown in Fig. 7. To evalute Eq. (B1) under cylindrical
geometry by DMRG, we take the central site of reference
¢, and compute the dynamical structure factor by its analytic
continuation which is given by the real-space function

of ~ Ao -
S (r, ¢, w) ~ (gs|O; wtintH—E
with respect to all sites at r and ¢, where |gs) is the ground
state of the Hamiltonian A in the Abelian phase of the Kitaev
model, with or without magnetic field, E, the correspond-
ing ground-state energy, and n a small broadening factor
to ensure the convergence of the Green’s function. From
the Fourier transform we obtain S(Kk, w) and by integrating
over all momenta, the density of states S(w) ~ S(c, ¢, w).
Note that we are interested in the dynamical signatures of
gapped excitations, thus, the operator should be normal or-
dered to remove the ground-state contribution. We therefore
replace the operator @ in Eq. (B2) by the fluctuation oper-
ators 80 = O — (@)0 where (@)0 denotes the ground-state
expectation. This is equivalent to the Lehmann representation
of dynamical structure factor excluding the ground-state con-
tribution S(r, ¢, ) — (O,)0(Oc)od(w), as is implemented in
our computation, where we use the Lorentzian function with
broadening factor n = 1.2 x 1073 for the Dirac delta, and
scan the frequencies in increments of Aw = 4 x 10~* in units
of exchange energy K. We use the Krylov-space approach
of dynamical DMRG which is described and implemented in
Refs. [55,79] (see also Ref. [80] and Supplemental Materi-
als thereof). We here also provide evidence of convergence
with the number of states m kept within DMRG, and show
when finite-size effects in the dynamical structure factor can
be neglected. As shown in Fig. 8(a), the largest truncation
error ~107% that requires a maximum number of m ~ 700
kept states; and in Figs. 8(b) and 8(c) where the dynamics of
anyons remains robust with respect to the increasing size of
clusters.
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