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We obtain the Seebeck coefficient or thermopower S, which determines the conversion efficiency from thermal
to electrical energy, for the two-dimensional Hubbard model on different geometries (square, triangular, and
honeycomb lattices) for different electronic densities and interaction strengths. Using determinantal Quantum
Monte Carlo we find the following key results: (a) the bi-partiteness of the lattice affects the doping dependence
of S; (b) strong electronic correlations can greatly enhance S and produce nontrivial sign changes as a function
of doping, especially in the vicinity of the Mott insulating phase; and (c) S(T ) near half-filling can show
nonmonotonic behavior as a function of temperature. That is, our results show that electronic interactions lead
to unexpected behavior for the thermopower for given fillings, even at high temperatures, which may vary
depending on the geometry. We emphasize the role of strong interaction effects in engineering better devices
for energy storage and applications, as captured by our calculations of the power factor PF = S2σ , where σ is
the dc conductivity.
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I. INTRODUCTION

Over the past decades, a great deal of interest has been
given to increasing the efficiency of electrical devices. As
a possible route to this end, thermoelectric materials may
play a crucial role, once they exhibit induced voltage in the
presence of a temperature gradient. The efficiency of these
materials is measured through parameters that composed the
figure of merit, such as the Seebeck coefficient (thermopower)
and the thermoelectric power factor [1]. However, there are
many technical issues that make the development of efficient
thermoelectric materials a challenge, e.g., the toxicity of the
compounds, or their thermal instability. There are a few ways
to overcome these problems: (i) optimizing the already known
compounds through band-structure engineering and nanos-
tructuration techniques [2–4], or (ii) seeking new classes of
compounds that exhibit unconventional properties usually re-
lated to strong electron-electron interactions [5]. In view of the
increasing number of novel correlated compounds, controlling
and manipulating geometry and correlations to enhance the
thermopower properties is an open issue.

Despite intense experimental efforts, further theoretical
investigations are required, in particular to understand inter-
acting electronic compounds, such as NaxCoO2 or FeSb2,
which exhibit unusual large thermopower response [5–7]. In
the former, the combination of quasi-two-dimensional char-
acter with band topology and strong electronic correlations
make this material an interesting playground to examine ther-
moelectricity. Once the charge carriers are confined to the
hexagonal layers of Co atoms, a disordered distribution of
Na ions above and below it can induce a charge imbalance.

Using the local-density approximation and dynamical mean-
field theory, Held et al. [5] showed that disorder combined
with the pudding-mold band structure and strong correlations
enforce the electron-hole imbalance and enhance the ther-
mopower by 200% with respect to the noninteracting case.

The thermopower of superconducting cuprates has been
experimentally studied [8–11], with different compounds dis-
playing very similar behavior with a sign change of the
Seebeck coefficient near the maximum critical temperature
[8]. This nearly universal behavior has been a subject of
theoretical interest, being ascribed to a possible underlying
critical point [12], to the presence of a van Hove singularity
[13], and it was recently observed for the Hubbard model with
next-nearest-neighbor hopping [14].

In view of these stimulating results, we explore how
electron-electron interactions and geometry affect the See-
beck coefficient and the thermoelectric Power Factor. To avoid
the complexities behind the geometries and atomic orbitals
present in real compounds, here we examine single band cases
to further understand the main effect of the correlations (from
exact methodologies) on the thermopower properties. That
is, our findings may shed light on so far unclear anoma-
lous behavior of the Seebeck coefficient, in particular its
sign change [15,16]. To this end, we use unbiased Quantum
Monte Carlo simulations to study the single band repulsive
Hubbard model. We analyze the thermoelectric and electrical
transport properties in the long-wavelength dc limit in two
dimensions, in the square, triangular, and honeycomb lattices.
Our study finds a strong influence of particle-hole symme-
try of the many-body spectrum and density of states (DOS)
on the behavior of the Seebeck coefficient with respect to
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doping. We show nontrivial sign changes of the Seebeck co-
efficient that signal a deviation of the Fermi surface from the
Luttinger count and a subsequent anomalous change of the
type of carriers below and above half-filling. The sign change
is also accompanied by a significant increase of the Seebeck
coefficient near half-filling with respect to the noninteracting
and weakly interacting case. We show that despite using a
simplified thermodynamic formula for the Seebeck coefficient
that is independent of dynamical quantities, we are able to
capture the effects of strong correlation.

The paper is organized as follows: In Sec. II we discuss the
Hubbard model, an introduction to the Seebeck coefficient,
the Kelvin formula, and the auxiliary field QMC method used
to solve it. In Sec. III we discuss how to calculate the entropy,
and we present our results for this quantity. Section IV shows
the local density of states and conductivity results. In Sec. V
we discuss the Seebeck coefficient, and in Sec. VI the power
factor. Finally, in Sec. VIII we summarize our findings.

II. MODEL AND METHODS

The repulsive Fermi Hubbard model describes electrons
on a lattice with an on-site repulsive interaction, with the
Hamiltonian

H = − t
∑
〈i,j〉,σ

(c†i,σ cj,σ + H.c.) − μ
∑
i,σ

ni,σ

+U
∑
i

(ni,↑ − 1/2)(ni,↓ − 1/2), (1)

where the sums run over sites of a given two-dimensional
lattice, with 〈i, j〉 denoting nearest-neighbor sites. Here, we
use the second quantization formalism, with c†i,σ (ci,σ ) being
creation (annihilation) operators of electrons on a given site
i, and spin σ , while ni,σ ≡ c†i,σ ci,σ are number operators. The
first two terms on the right-hand side of Eq. (1) correspond
to the hopping of electrons and the chemical potential μ,
respectively, with the latter determining the filling of the lat-
tice. The third term describes the local repulsive interaction
between electrons, with interaction strength U; the factor of
1/2 is introduced to ensure invariance of the Hamiltonian
under particle-hole transformations on bipartite lattices. This
implies that for the bipartite lattices we consider here (square
and honeycomb lattices), µ = 0 sets half-filling for all temper-
atures and interaction strengths.

Our central quantities of interest are the transport coeffi-
cients and their behavior with respect to doping and strength
of interactions. The transport coefficients are defined through
the following relations:

�j = L
↔11 �E + L

↔12(−�∇T ),

�jq = L
↔21 �E + L

↔22(−�∇T ), (2)

where �j and �jq are the electrical and thermal currents, and the
L
↔
’s are rank 2 tensors defining conductivities of the system.

The tensors L
↔11 and L

↔22 are the electrical and thermal conduc-
tivities, and L

↔12 (L
↔21) are the thermoelectrical (electrothermal)

conductivities. The thermopower or Seebeck coefficient is

defined as

S = (L
↔12)xx

(L
↔
11)xx

= 1

T

(L
↔21)xx

(L
↔
11)xx

, (3)

where the second equality is due to Onsager’s reciprocity
relations [17]. Using linear-response theory with respect to
electrical field and temperature, the Seebeck coefficient in the
Kubo formalism can also be written as

S(qx, ω) = 1

T

χρ̂(qx ),H(−qx )(ω)

χρ̂(qx )ρ̂(−qx )(ω)
, (4)

where

χρ̂(q)H(−q)(ω)= lim
η→0

∑
n,m

( fn− fm)
〈n|ρ̂(q)|m〉〈m|H(−q)|n〉

ω + iη + εn − εm
,

χρ̂(q)ρ̂(−q)(ω) = lim
η→0

∑
n,m

( fn− fm)
〈n|ρ̂(q)|m〉〈m|ρ̂(−q)|n〉

ω + iη + εn − εm

(5)

define the electrothermal and electrical conductivities, respec-
tively. The operator ρ̂(q) is the charge density at a wave vector
q, defined by

ρ̂(q) =
∑
k,σ

ĉ†k+q,σ ĉk,σ , (6)

and H(q) is the Fourier transform of the Hamiltonian. Eval-
uation of a Kubo-like formula [Eq. (4)] is not easy for
interacting systems in the thermodynamic limit, although it is
the most insightful. Alternate formulas like the Mott formula
[18], Heikes-Mott [19], high-frequency Seebeck [20–23], and
Kelvin formula [21,24] exist but are limited by their appli-
cability to specific scenarios (weakly correlated metal at low
temperatures for the Mott formula, high-temperature limit for
the Heikes-Mott formula, and measurement of transport at
high frequencies compared to characteristic energy scale for
the high-frequency Seebeck formula). The Kelvin formula
was proposed by Lord Kelvin to provide reciprocity between
Seebeck and Peltier coefficients, and it is calculated in the
slow limit (qx → 0, ω → 0); it can be derived by taking the
slow limit of Eq. (4) [24]. The Kelvin formula for the Seebeck
coefficient is

SKelvin = −1

e

∂μ

∂T

∣∣∣∣
V,n

= 1

e

∂s

∂n

∣∣∣∣
T,V

,

where the second equality follows from Maxwell’s relations.
Although expressed in terms of thermodynamic quantities,
which are sufficient to capture the effects from the many-body
density of states, it misses kinematic factors like contributions
from velocities at the Fermi surface and relaxation times.
Nonetheless, the effects of strong correlations on the low-
frequency transport behavior are taken into account, as it
retains the ω < U approximation, which the high-frequency
formula S∗ misses. The justification and benchmark of us-
ing the Kelvin formula for strongly interacting systems like
the Hubbard model and fractionalized systems like ν = 5/2
FQHE states have already been established [24,25].

We investigate the thermodynamics and transport proper-
ties of Eq. (1) on three different lattices: square, triangular,
and honeycomb. In particular, we examine the behavior of
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the entropy, conductivity, local density of states (LDOS),
Seebeck coefficient, and power factor as functions of lattice
filling for different values of interaction strengths. To this
end, we perform unbiased determinant quantum Monte Carlo
(DQMC) simulations [26–29], a state-of-the-art numerical
method that maps a many-particle interacting fermionic sys-
tem into a single-particle (quadratic form) one, with the aid
of bosonic auxiliary fields. More details about the method-
ology may be found in, e.g., Refs. [30–32], and references
therein. Our DQMC simulations are performed for finite-
sized systems (with 100, 144, and 162 sites for the square,
triangular, and honeycomb lattices, respectively), with a Trot-
ter step size 
τ � 0.1, and each run is generated with 2000
warmup passes and 50 000 measurement passes. Through-
out this work, unless otherwise indicated, we consider for
interaction strengthsU/t = 0, 2, 4, 6, 8, and 10, i.e., from non-
interacting to strong-coupling regimes and T/t = 0.5, which
corresponds to an energy scale low enough to observe the
crossover towards an insulating phase at half-filling [33–35].
Hereafter, we define the lattice constant as unity, and the
hopping integral t as the energy scale. Finally, our simulations
have the infamous minus-sign problem of the fermion deter-
minant, which requires longer runs, and constrains the scales
of our temperatures and interaction strengths.

III. ENTROPY

We start our analysis with the electronic density n as a
function of chemical potentialμ shown in Fig. 1 for T/t = 0.5
and the different lattices studied: (a) square, (b) triangular, and
(c) honeycomb. To obtain this figure, we gather density data
on a fine grid of chemical potentials. Particle-hole symme-
try is evident for the square and honeycomb lattices, where
n(μ) = 2 − n(−μ), thereby the density data only need to be
gathered either above or below half-filling. We employ a grid
of 
 µ = 0.20 or 0.25 for fillings 0.1 � n � 0.9, and 
µ =
0.5 out of this range. In all geometries, correlations lead to the
formation of a Mott plateau (insulating phase) around half-
filling, although the critical interaction strength for the onset
of “Mottness” is strongly influenced by the lattice geometry.

As the Seebeck coefficient is obtained from the entropy,
we now turn to discuss its behavior for these geometries. The
entropy can be obtained from the electronic density, n(μ), by
integrating it over the chemical potential μ,

s(μ,T ) =
∫ μ

−∞
dμ

∂n

∂T

∣∣∣∣
μ

. (7)

Here, we define a three point derivative for dn/dT |μ, using
βt = 1.8, 2.0, and 2.2.

Figure 2(a) displays s(μ,T ) as a function of n for the
square lattice. One may notice that, at T/t = 0.5, the results
forU/t = 2 (red circles symbols) andU/t = 4 (blue diamond
symbols) exhibit very similar behavior to the noninteracting
one (solid black curve), once the temperature is high enough
to destroy the correlation effects for such small interaction
strengths. However as U/t increases, e.g., U/t = 6, 8, and
10, the entropy presents a local minimum at half-filling, being
drastically reduced as T/t → 0, due to theMott gap formation
in the ground state [34,36–39]. The increased entropy for the
metallic state in the vicinity of half-filling in the presence

FIG. 1. Density n as a function of chemical potential μ for
the (a) square, (b) triangular, and (c) honeycomb lattices, for fixed
T/t = 0.5, and different interaction strengths U/t . Here, and in all
subsequent figures, when not shown, error bars are smaller than
symbol size. A Mott plateau is formed above a critical interaction
strength that depends on lattice geometry. Note, the width of this
plateau is a measure of the charge gap or “Mottness.”

of interactions has been observed for the cubic lattice and is
relevant for cold fermionic atoms trapped in optical lattices,
where the metallic region of the atomic cloud is used to absorb
entropy and allow a central Mott region at a higher entropy per
particle [40].

Unlike what is observed for the square lattice, the entropy
behavior on the triangular geometry only exhibits such a local
minimum at U/t = 10, the largest interaction strength con-
sidered, as presented in Fig. 2(b). This suggests an absence
of a Mott gap for weak and intermediate interaction strengths.
In fact, at U/t � 8, a small dip starts to form around n = 1,
in line with the expectation for a metal-to-insulator transition
occurring for U/t ≈ 7–8 [41–43]. The lack of particle-hole
symmetry in the triangular lattice shown in Fig. 1(c) is clearly
also present in the entropy.

The entropy for the honeycomb lattice is more subtle.
Similar to the square and triangular lattices, a local minimum
appears at half-filling in the presence of strong interaction;
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FIG. 2. Entropy s as a function of the electronic density n for the
(a) square, (b) triangular, and (c) honeycomb lattices, for fixed T/t =
0.5, and different interaction strengths U/t . Note that the entropy is
very different among the three lattices in the noninteracting limit.
In the presence of sufficiently large interactions, a local minimum
appears at half-filling for all three lattices; However, it becomes
qualitatively similar for the square and honeycomb lattices, while it
is different for the nonbipartite triangular lattice.

however, different from what is seen in the two previous cases,
here s(n,T ) displays a suppression at half-filling even for the
noninteracting case. This behavior is understood by recalling
that the honeycomb lattice has a vanishing DOS at half-filling,
with van Hove singularities below and above it. That is, the
results of Fig. 2 confirm our expectations that the entropy
provides hints about the DOS, irrespective of the interaction
strengths. These odd features of the honeycomb lattice lead
to strong changes for the Seebeck coefficient at U = 0, as
we shall see in Sec. V, and they may obscure some of the
electronic correlation effects.

IV. LOCAL DENSITY OF STATES AND CONDUCTIVITY

As discussed before, Fig. 1 signals the occurrence of a
Mott insulating state due to the presence of a plateau in the
density as a function of chemical potential, driven by correla-
tions. The subtleties in the entropy, such as the appearance
of a minimum for the noninteracting case at the half-filled

FIG. 3. Local density of states (LDOS) at the Fermi level at
T/t = 0.5 as a function of density for the (a) square, (b) triangular,
and (c) honeycomb lattices. Note the similarity of the doping depen-
dence of LDOS to that of the entropy (Fig. 2) in the noninteracting
limit. When correlations increase, LDOS develops a dip near half-
filling, leading to maxima at intermediate densities which depend on
the lattice geometry. The LDOS also becomes qualitatively similar to
the square and honeycomb lattices in the strongly interacting limit,
but it is quite different from the triangular lattice, which, in con-
trast, is not bipartite and has an asymmetric particle-hole many-body
spectrum.

honeycomb lattice [see Fig. 2(c)], in contrast to the square
and triangular lattices [Figs. 2(a) and 2(b)], require an analysis
of the suppression of spectral weight for different densities.
To avoid numerical analytical continuations, we examine the
LDOS only at the Fermi level (ω = 0). Here we recall that, at
the ground state, N (ω = 0) = dN

dω
∝ κ (T = 0). Therefore, at

finite temperatures, the thermodynamic DOS [14] is given by

N (ω = 0,T ) = dn

dμ
= n2κ (T ). (8)

Figure 3 shows N (ω = 0,T ) for the (a) square, (b)
triangular, and (c) honeycomb lattices. A common feature
for all geometries is that the noninteracting case is an upper
bound for the LDOS, with data close to the empty and com-
pletely filled systems showing a negligible dependence on the
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interaction strength. For the temperature shown, T/t = 0.5,
we can see that for the square lattice and U/t = 2 the dip at
half-filling has not developed yet. As correlations increase,
the dip starts to form, leading to maxima at n ≈ 0.6 and
n ≈ 1.4. In the case of the honeycomb lattice, the noninteract-
ing ground state is known to be a semimetal, with a vanishing
LDOS at half-filling at T/t → 0. Figure 3(c) shows a dip
in the DOS at T/t = 0.5 already for U/t = 0, in line with
entropy data. Similar to what is seen for the square lattice,
maxima develop as correlations increase, but the positions are
moved to n = 0.5 and 1.5. The triangular lattice LDOS shows
a distinct behavior, as can be seen in Fig. 3(b), with a broad
peak for U/t = 0 located at n ≈ 1.6. The effects of correla-
tions are only relevant for n � 0.6. For the larger values of
U/t considered, a small broad peak is present at n � 0.75 and
a higher one is at n � 1.6, with a dip at half-filling signaling
the Mott state for largeU .

To further investigate the transport properties, we now turn
to the longitudinal dc conductivity,

σdc = β2

π
�xx(q = 0, τ = β/2), (9)

in which

�xx(q, τ ) = 〈 jx(q, τ ) jx(−q, 0)〉 (10)

is the current-current correlation function, with jx(q, τ ) being
the Fourier transform of the unequal-time current operator

jx(i, τ ) = eτH

[
it

∑
σ

(c†i+x,σ ci,σ − c†i,σ ci+x,σ )

]
e−τH. (11)

Here we also avoid analytical continuation; see, e.g.,
Refs. [44–46].

Similar to what is seen for the LDOS, correlations re-
duce the conductivity, with the noninteracting conductivity
as an upper limit for all the geometries studied as shown in
Fig. 4. Once again, correlations are shown to be irrelevant to
transport properties for densities near the completely empty
or filled bands, while their effects increase as half-filling is
approached, with σdc → 0 as U/t increases. It is interesting
to note that, for the honeycomb lattice, the dip in the noninter-
acting DOS is not accompanied by a dip in the conductivity
[shown in Figs. 3(c) and 4(c), respectively]. For large values
of U/t , the maxima for the conductivity are not at the same
densities as the ones for the LDOS; for the square lattice,
the conductivity has maxima at n = 0.5 and 1.5. For the
honeycomb lattice the maxima are at n = 0.6 and 1.4, and for
the triangular lattice the maxima are at n = 0.45 and 1.45.
For the triangular lattice, one can see that both the U/t = 0
peak and the higher intensity peak for the LDOS, which are
above half-filling, move to densities below half-filling for the
conductivity.

V. SEEBECK COEFFICIENT

We now turn to the Seebeck coefficient, which is obtained
from the entropy by using the Kelvin formula [24,25],

SKelvin = 1

e

∂s

∂n

∣∣∣∣
T,V

. (12)

FIG. 4. Longitudinal dc conductivity at T/t = 0.5 as a function
of density for the (a) square, (b) triangular, and (c) honeycomb
lattices. The dip at half-filling signifies the opening of the Mott
gap, and the presence (absence) of bipartiteness is reflected in the
particle-hole symmetric (asymmetric) behavior of the conductivity.
The locations of the peaks ofN (ω = 0) are very different from that of
σdc in the strongly interacting regime. Note that in the noninteracting
case, U/t = 0, the dip in LDOS in Fig. 3 is not accompanied by a
dip in σdc in the honeycomb lattice.

Within this approach, Fig. 5 displays the behavior of SKelvin in
units of kB/e2 as a function of the electronic density for the
(a) square, (b) triangular, and (c) honeycomb lattices.

At this point, it is worth recalling that the sign of the
Seebeck coefficient is directly related to the type of car-
rier, being negative for holes and positive for electrons.
As a consequence of particle-hole symmetry for the square
and honeycomb lattices, one has SKelvin(n) = −SKelvin(2 − n),
leading to SKelvin(n = 1) = 0. For all geometries examined,
the effect of correlations is strongly dependent on density, be-
ing negligible for n � 0.3 and n � 1.7, as previously observed
for entropy, DOS, and conductivity.

As expected, the Seebeck coefficient for the noninteracting
square lattice presents only one sign change, at half-filling,
as shown in Fig. 5(a). However, notice that in the presence
of strong correlations (U/t � 6) there is an anomalous be-
havior, characterized by a change of sign for densities away
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FIG. 5. Seebeck coefficient for different values of the interaction
strength at T/t = 0.5 as a function of density for the (a) square,
(b) triangular, and (c) honeycomb lattices. For clarity, we have
reduced the set of U/t values compared to previous plots. In the
noninteracting limit, the Seebeck coefficient changes sign at half-
filling for bipartite lattices (square and honeycomb), but at a finite
doping for triangular lattice. With strong interactions, there is an
enhancement of the Seebeck coefficient near half-filling, as well
as an anomalous sign change away from half-filling, signaling a
change in carrier type. Note that for the honeycomb lattice, there
is a sign change in Seebeck coefficient away from half-filling even
at U/t = 0, due to the presence of Van Hove singularities from the
Bloch bands.

from half-filling, also displayed in Fig. 6(a) for n ≈ 0.96. In
addition, there is a notable increase in the absolute value of the
Seebeck coefficient, compared to the noninteracting case. For
instance, at n = 0.99, SKelvin ≈ 2.37 kB/e2 atU/t = 10, while
forU/t = 0, SKelvin ≈ −0.01 kB/e2. This steep increase can be
explained by noting that the Seebeck coefficient, as defined in
Eq. (3), is the ratio between the longitudinal thermoelectric
and electrical conductivities. As we approach the Mott insula-
tor at half-filling, electrons form local moments, and electrical
transport is strongly reduced, as shown by both conductiv-
ity and LDOS in the previous section. The fast-decreasing
electrical conductivity in the vicinity of half-filling must be
accompanied by a nonvanishing thermoelectric current for
the peaks to form. We can understand this as follows: at
half-filling and strong correlations, each site is singly

FIG. 6. Seebeck coefficient as a function of U/t , at a fixed
T/t = 0.5 for different densities in (a) square, (b) triangular, and
(c) honeycomb lattices. For densities close to half-filling, the
Seebeck coefficient changes sign and enhances asU/t is increased.

occupied and local moments are completely formed, there is
no electric or thermoelectric transport, and the Seebeck coeffi-
cient is zero. As we move slightly away from half-filling, there
is a background of local moments over which p = 1 − n car-
riers lead to thermoelectric and electric currents. This reduced
number of carriers is in line with the breaking of Luttinger
count [47–49] that has been established for the Fermi Hubbard
model and is in agreement with the change in carrier density
in Hall experiments for YBCO [50].

Due to the absence of particle-hole symmetry in the trian-
gular lattice, the sign change of SKelvin in the noninteracting
limit occurs away from half-filling, at n = 1.42, as shown in
Fig. 5(b), as opposed to the square lattice, which has particle-
hole symmetry and exhibits the sign change symmetrically
around half-filling. There is a range of densities around 0.5 �
n � 0.9 where correlations lead to a small increase in the
modulus of the Seebeck coefficient. In contrast to the square
lattice, the peak in the Seebeck coefficient for the triangular
lattice at n = 0.99 is only present for very strong interactions.
For U/t = 8, SKelvin ≈ −0.18 kB/e2, while for U/t = 0, for
this electronic density SKelvin ≈ −0.55 kB/e2. Strong correla-
tions, around U/t = 10, are needed to change the sign of the
Seebeck coefficient at half-filling, as presented in Fig. 6(b).
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Interestingly, above half-filling and below the sign-change
point for U/t = 0, the correlations are detrimental to the
thermopower up toU/t = 8, bringing the Seebeck coefficient
closer to zero.

Figure 5(c) shows the Seebeck coefficient for the honey-
comb lattice. For the noninteracting system, SKelvin changes
sign at n = 0.6, 1.0, and 1.4, therefore the charge of the
carriers is negative for n < 0.6 and 1.0 < n < 1.4, while it
is positive for 0.6 < n < 1.0 and n > 1.4. Interestingly, these
densities correspond to the peaks and dip positions for the
conductivity, as seen in Fig. 4(c). We recall that such changes
in carriers come from the fact that the honeycomb lattice has
two bands for the noninteracting case, so one may expect
changes from electron to hole properties of the transport co-
efficients depending on the filling of each band. However,
correlations push the sign change to values closer to half-
filling, going from n = 0.6 and 1.4 at U/t = 0 to n = 0.85
and 1.15 at U/t = 8. One thing to note is that although the
behavior of the Seebeck coefficient is very different between
the square and the honeycomb lattice in the noninteracting
limit, adding interactions and transitioning to the Mott insu-
lating state seems to wash these differences away. This can
be understood by noting that in the noninteracting picture, the
transport is determined by the Bloch bands, which are differ-
ent for square and honeycomb lattices. However, with strong
interactions, Mott physics destroys the Bloch bands, opens up
a Mott gap, and forms upper and lower Hubbard bands. While
details of the single-particle bands are erased, the information
about the particle-hole symmetry imprinted in the many-body
spectrum is still retained. Hence the behavior of the Seebeck
coefficient is qualitatively similar between the square and
honeycomb lattice but different from the triangular lattice.

Similar to the square lattice, there is a significant increase
in the Seebeck coefficient for the honeycomb lattice close to
half-filling at U/t = 6, 8 and 10, as shown for n = 0.96 and
0.99 in Fig. 6(c). For U/t = 10, for example, we have that
for n = 0.99, SKelvin ≈ 2.30 kB/e2, while in the noninteracting
case (U/t = 0) for this density value, SKelvin ≈ 0.03kB/e2, an
enhancement of two orders of magnitude. At this point, it is
worth recalling that the sign change of the Seebeck coeffi-
cient (for a given electronic density) is an unexpected feature
for Fermi liquids, being usually related to a Fermi surface
reconstruction in cuprates [15,16]. Figure 6 describes such a
non-Fermi-liquid behavior for the geometries analyzed here;
the energy scale for the sign change depends on the interaction
strength and temperature of the system.

We also analyze the effects of temperature on the ther-
mopower for the square lattice at U/t = 10. Figure 7(a)
displays SKelvin as a function of n for different T/t , while
Fig. 7(b) shows SKelvin as a function of T/t for different
densities. The curves for different temperatures in Fig. 7(a)
display narrow crossings in 〈n〉 = 0.53, 1.47 leading to almost
horizontal lines at these densities in Fig. 7(b). The presence
of such narrow crossings suggests the existence of isosbestic
points, which can reveal interesting physics [51]; for instance,
the existence of sharp crossing points in the specific heat
curves of strongly correlated systems is related to the fact
that the high-temperature entropy is bounded and independent
of the correlation strength [52], and has been observed for
the square lattice Hubbard model [39]. Simulations for the

(a)

(b)

FIG. 7. Seebeck coefficient for the square lattice at U/t = 10
as (a) a function of density for the square lattice at different tem-
peratures, and (b) a function of temperature for different densities.
In panel (a), the Seebeck coefficient shows anomalous behavior
at low temperatures and approaches the free particle limit as T/t
is increased. In panel (b), at low densities (n = 0.2), the See-
beck coefficient has the expected sign and monotonically decreases
with temperature. At a critical density n ≈ 0.5 (also shown for
n ≈ 1.5 in the electron-doped side), the Seebeck coefficient is almost
temperature-independent. In the anomalous region (0.75 � n � 1.0),
peaks in the Seebeck coefficient start to move towards the smallest
temperature considered here, as one moves towards the half-filling
limit, where it becomes 0 for all temperatures.

SU(N ) Hubbard model show that narrow crossings on energy
curves lead to unexpected scaling relations [53]. Here we
see that for n � 0.5 and n � 1.5 reducing the temperature is
detrimental to the thermopower, as seen by a reduction of the
modulus of the Seebeck coefficient for n = 0.2. For densities
in the range 0.5 � n � 0.9 and 1.1 � n � 1.5, the behavior
of SKelvin with temperature is nonmonotonic and can change
sign with T/t , as shown for n = 0.75 in Fig. 7(b). Finally,
the anomalous behavior in the vicinity of half-filling has a
marked dependence on temperature, increasing the modulus
of the Seebeck coefficient as T/t is reduced. This fast in-
crease of the thermopower with decreasing temperature close
to half-filling has also been observed in the t-J model [24], the
Hubbard model on an fcc lattice [25], and the t-t ′-U Hubbard
model [14].

075101-7



WILLDAUANY C. de FREITAS SILVA et al. PHYSICAL REVIEW B 108, 075101 (2023)

FIG. 8. Thermoelectric power factor as a function of density for
(a) square, (b) triangular, and (c) honeycomb lattices. In the free par-
ticle limit (almost empty and almost filled lattice), the power factor
exhibits a peak for all values of U/t . Interaction causes additional
peaks to develop very close to the Mott insulating limit for large
interaction strengths. Additional features for intermediate doping
also appear that are strongly influenced by lattice geometry.

VI. THERMOELECTRIC POWER FACTOR

Proceeding, we now discuss the effects of correlations on
the thermoelectric power factor (PF), defined as

PF = S2σ, (13)

where the dc conductivity (σ ) and the Seebeck coefficient (S)
were obtained in Secs. IV and V, respectively. Simultaneously
increasing both the modulus of the Seebeck coefficient and
the conductivity maximizes the power factor. Strategies to
determine the Seebeck coefficient that lead to an optimum
thermoelectric power factor have been sought theoretically
for systems that can be described by the Boltzmann transport
equation [54] and experimentally for CZTS thin films [55] and
La-doped SrTiO3 [56] thin films.

Figure 8 shows the thermoelectric power factor as a
function of density for fixed T/t = 0.5, and for the three
analyzed geometries. A common feature to all data is
the presence of peaks close to the empty (n � 0.1) and
completely filled lattices (n � 1.9). Starting with completely
empty (filled) lattices, as density increases (decreases) the
conductivity increases, and the Seebeck coefficient modulus

decreases, leading to peaks that are independent of interaction
strength. As the conductivity goes to zero for Mott insulators,
PF → 0 at half-filling for a geometry-dependent value ofU/t .
For the square lattice, the hump in PF for U/t = 0 around
n ≈ 0.6 (1.4) turns into a peak at n ≈ 0.5 (1.5) with the
increase of correlations, the dominant contribution coming
from the conductivity.

The effect of correlations for the intermediate densities
peak of the honeycomb lattice is more subtle, as can be seen in
Fig. 8(c). The peaks for the noninteracting system at n = 0.85
(n = 1.15) decrease in intensity with correlations forU/t = 2
and 4, and then a shoulder develops at lower (higher) densities
for larger U/t . Close to half-filling once again correlations
drive the Seebeck coefficient peak up, which in turn leads to
the PF peaks.

For the triangular lattice one can see that the noninteracting
system has a peak at n = 0.95. Correlations move the peak to
lower densities and increase its intensity, as clearly seen in
Fig. 8(b), where the peak for U/t = 10 is at n � 0.7. As for
the other geometries, a peak develops in the vicinity of the
Mott insulating state, here only seen for the larger values of
U/t studied.

Comparing the overall effects of correlations in the dif-
ferent geometries analyzed, we see that there are clear
correlation-induced peaks near half-filling in all cases. For
the square and honeycomb lattices, the noninteracting ther-
moelectric power factor is zero at half-filling and is driven to
PF ≈ 0.1 k2B/e

2h. Around quarter and three-quarter fillings as
well, correlations also play a relevant role in increasing the
power factor for the square and honeycomb lattices. Corre-
lations are very effective in increasing the power factor in a
triangular lattice, where PF � 0.27 k2B/e

2h, the largest value
obtained, for U/t = 10 at n ∼ 0.7. For this geometry, we
observe that density can be used to tune the thermoelectric
power factor.

VII. FINITE-SIZE EFFECTS

In this section, we investigate finite-size effects. To this
end, we perform simulations for a 16 × 16 square lattice (i.e.,
with 576 sites), fixing U/t = 8, while varying the electronic
density. Figure 9 displays (a) the longitudinal dc conductivity
and (b) the Seebeck coefficient for this system size, compar-
ing it with our previous results for a 10 × 10 square lattice.
Figure 9 clearly shows that, for these quantities, finite-size
effects may be disregarded within the range of results ex-
amined in previous sections. Indeed, short-ranged quantities
must suffer much less from finite-size effects than long-ranged
quantities. However, these minor dependencies do not affect
the main results discussed in the previous sections.

VIII. CONCLUSIONS

We have studied the thermoelectric properties of
strongly interacting two-dimensional systems with different
geometries. Our results clearly show an anomaly in
the Seebeck coefficient in the vicinity of half-filling,
characterized by an enhanced response depending on
both geometry and interaction strength. The anomaly is
characterized by a change in the sign of the carriers, which
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(a)

(b)

FIG. 9. Comparison between results obtained for 10 × 10
(orange squares) and 16 × 16 (black triangles) lattices for (a) the
longitudinal dc conductivity and (b) the Seebeck coefficient as a
function of the electronic density atU/t = 8. When not shown, error
bars are smaller than the symbol size.

is accompanied by an interaction-induced increase. The
anomaly is also intensified with the reduction of temperature.

The thermoelectric power factor displays a competition
between the Seebeck coefficient and the conductivity. The
anomaly in the Seebeck coefficient is reflected in the PF,

FIG. 10. Density of state as a function of ω for square (a),
triangular (b), and honeycomb (c) lattices and T/t = 0.0.

with correlation-driven peaks immediately below and above
half-filling at geometry-dependent values of U/t . The de-
creasing conductivity near half-filling is the limiting factor
in the intensity of the PF in this region of densities.
Away from half-filling, at intermediate densities (around
n = 0.4–0.6 and 1.4–1.6) the peaks in the PF have a strong
contribution from the conductivity with positions strongly
dependent on geometry. For this range of densities, peak po-
sition and intensity can be tuned by correlations. Although
the Seebeck coefficient is smaller for the triangular lattice,
the power factor for this geometry shows the higher peak val-
ues and the stronger tunability with density and correlations,
making it a strong candidate for enhanced thermoelectric
properties. Finally, investigating how the spin Seebeck effect
[57] behaves at different geometries is also an interesting open
question, which we leave as a perspective.
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APPENDIX

In this Appendix, we discuss basic aspects of noninteract-
ing and interacting cases related to the geometries examined
in this work.

1. Dispersion and density of states

The tight-binding approach for a single-band (s-wave) case
leads to the following electronic dispersions:

E (k) = −2t (cos kx + cos ky), (A1)

E (k) = −2t

[
cos

(
kx − √

3k2
2

)
cos

(
kx − √

3k2
2

)

+ cos(kx )

]
, (A2)

E±(k) = ±t
√
3 + 2 cos(kx ) + 2 cos(ky) + 2 cos (kx + ky)

(A3)

for the square, triangular, and honeycomb lattices, re-
spectively. Here, we define t as the integral hopping for
nearest neighbors, while assuming the lattice parameter as
unity.

From the dispersion relation, one is able to obtain the den-
sity of states [N (ω)] for each geometry, as shown in Fig. 10.
Notice that van Hove singularities (vHS) occur for all cases,
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as expected for noninteracting electrons in two-dimensional
geometries. In particular, such a singularity is at half-filling
for the square lattice but occurs at different fillings for the
triangular and honeycomb ones. At finite temperatures, the
vHS are smeared, with the occurrence of a cusp instead of
divergence, as presented in Fig. 3. Furthermore, N (ω) also
provides us hints of another important feature: the existence of
particle-hole symmetry (PHS). The PHS implies a symmetric
distribution for electrons and holes, therefore leading to µ= 0
for the half-filling and a symmetric DOS around it. Notice
that these features are present in the square and honeycomb
lattices, but are absent in the triangular one.

2. Critical points

For the repulsive Hubbard model, the interaction may lead
to drastic changes in the DOS and other quantities’ responses.
In particular, some fillings may have instabilities with the
occurrence of phase transitions. From unbiased QMCmethod-
ologies, it is known that the Hubbard model at the half-filled
square lattice exhibits antiferromagnetism for any U/t > 0
[58–60], while one has a finite critical point in the honeycomb
lattice for Uc/t ≈ 3.8 [61–63]. By contrast, the ground state
of the Hubbard model in the triangular lattice is less clear. In
spite of this, there are pieces of evidence that a metal-insulator
transition occurs aroundUc/t ≈ 7 [41,64–67].
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