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ABSTRACT: We present the investigation of 1,2,4,5-tetrazine derivatives
as low-cost and synthetically modular organic electrode materials in
rechargeable aqueous Zn-ion batteries (AZIBs). The substituents at the 3,6-
positions of tetrazine were found to be critical for cycling stability. While
heteroatom substituents (chloro, methoxy, and pyrazole) lead to the rapid
decomposition of electrode materials in the electrolyte, the installation of
phenyl groups enhances the cycling stability via 7—7 stacking. Spectroscopic
characterization suggests a cooperative Zn*" and H' insertion mechanism.
This unique cooperativity of Zn** and H' leads to a steady discharge
plateau in contrast to the undesirable sloping voltage profile typically
observed in Zn-organic batteries.
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B INTRODUCTION

Aqueous zinc-ion batteries (AZIBs) are a class of promising
grid-scale energy storage systems due to their inherent safety
and low cost. The high theoretical capacity (820 mAh g™'),
stability, and low toxicity of zinc metal make it an ideal anode
material for AZIBs."” Conventional cathode materials in
AZIBs are based on inorganic metal materials, e.g., manganese
oxides,® vanadium oxides,”* and Prussian blue analogues.é_8
However, supply chain issues and high costs associated with
transition metals limit their adoption in grid-scale energy
storage. As an alternative, organic electrode materials (OEMs)
based on abundant elements, e.g, C, H, N, and S, could
overcome these problems.””~"" Recently reported Zn/quinone
batteries'> ™" (Figure 1A) exhibit comparable performance to
state-of-the-art Zn/MnQO, and Zn/VO, batteries.

Due to the structural diversity of organic compounds, a wide
range of redox mechanisms have been discovered, including
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Among them, the most intriguing is Zn**/H" coinsertion, as
coinsertion of H* with Zn*" generally affords additional specific
capacity. However, a disadvantage of Zn>'/H" coinsertion is
that it often leads to discharge profiles with multiple plateaus
(Figure 1A) because of the distinct electrochemical kinetics of
Zn*" vs H insertion. A sloping discharge profile means that
the cell voltage falls progressively throughout the discharge
cycle, which is undesirable for energy storage applications.
Herein, we report several 1,2,4,5-tetrazine derivatives that
undergo cooperative Zn** and H* coinsertion in one step in
contrast to stepwise sequential Zn?*/H* insertion in other
OEM:s. This unique ion-insertion mechanism affords a steady
discharge plateau (Figure 1B), unlike the sloping discharge
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Figure 1. Comparison of sequential and cooperative Zn**/H*
coinsertion mechanisms and the representative voltage profiles of
(A) OEMs in AZIBs with conventional quinone and/or imine-based
motifs and (B) tetrazine cathode materials reported in this work.

profile in conventional OEMs.'"7'%*172* Moreover, 1,2,4,5-
tetrazines can be readily produced from gram-scale reactions of
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low-cost sulfur powder, hydrazine (N,H,), and organic nitriles.
This stands in contrast to conventional OEMs, which typically
require multiple synthetic steps and expensive reagents and
suffer from poor scalability. Among the six tetrazine derivatives
examined (Scheme 1), the best-performing compound 4 (3,6-

Scheme 1. Structure of Tetrazine Derivatives Investigated as
Cathodes in AZIB in This Study
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diphenyl-1,2,4,5-tetrazine) exhibits a specific capacity of 222
mAh g_1 at a stable voltage of 0.78 V in a Zn cell, giving rise to
a specific energy of 173 Wh kg™ that rivals the performance of
start-of-the-art inorganic cathode materials in AZIBs.

B MATERIALS AND METHODS

All experiments were carried out under a nitrogen (or argon)
atmosphere using an MBraun glovebox and/or standard Schlenk
techniques unless stated otherwise. 'H and *C NMR spectra were
recorded on a Bruker 400 or 600 MHz spectrometer and were
externally referenced to the NMR residual solvent peaks. ATR-IR
spectra were measured using a Nicolet IR 200 with a diamond ATR
accessory. Cyclic voltammetry and potentio-electrochemical impe-
dance spectroscopy experiments were performed with a Biologic SP-
150 or SP-50 single-channel potentiostat. Galvanostatic cycling
experiments were performed with a LAND CT2001A battery testing
system. X-ray fluorescence (XRF) spectra were measured by an
Olympus/Innov-X X-5000 XRF analyzer with a tantalum X-ray tube
source and a silicon drift detector. Unless otherwise noted, all solvents
were degassed and dried using a Pure Process Technology (PPT)
solvent purification system and stored under an atmosphere of
nitrogen over 4 A molecular sieves. All glassware were dried at 175 °C
before use. All reagents were purchased from Sigma-Aldrich unless
otherwise noted.

B RESULTS

Solution and Solid-State Cyclic Voltammetry Study.
Several tetrazines, including 3,6-bis(3,5-dimethylpyrazol-1-yl)-
1,2,4,5-tetrazine (1), 3,6-dichloro-1,2,4,5-tetrazine (2), 3,6-
dimethoxy-1,2,4,5-tetrazine (3), have been studied as anolytes
in nonaqueous redox flow batteries*® and as cathodes in Li-ion
batteries.”””® Tetrazines typically exhibit a one-electron redox
at ca. —0.09 V vs Zn**/Zn (Figure 2A, red trace), rendering it
impractical as cathode materials in AZIBs. However, the
coordination of Lewis acidic ions, e.g,, Sc**, Fe**, and Zn®", to
tetrazine has been shown to shift their redox potentials
anodically.”” ™'
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Figure 2. (A) Three-electrode solution CV of 4 with 0.1 M TBACIO,
in MeCN (red) and 0.1 M TBACIO,, + 0.01 M Zn(OTf), in MeCN
(blue) and (B) three-electrode solid-state CV of Zn-4 with 3 M
Zn(OTf), as the electrolyte (blue) and with pH 4 HOTS as the
electrolyte (black).

To investigate the effect of Zn** on the redox potential of
tetrazines under conditions relevant to AZIBs, we synthesized
six derivatives 1—6 (Scheme 1).%**73¢ The cyclic voltammo-
gram (CV) of 4 in acetonitrile (MeCN) with 0.1 M
tetrabutylammonium perchlorate (TBACIO,) and 0.01 M
zinc triflate (Zn(OTf),) shows a quasi-reversible redox event
at 0.68 V vs Zn>*/Zn, representing a remarkable shift of 0.77 V
upon Zn** addition (Figure 2A, blue trace). The solid-state CV
of 4 in a two-electrode cell with 3 M Zn(OTf), as an
electrolyte shows a quasi-reversible redox process at 0.83 V vs
Zn**/Zn (Figure 2B, blue trace).

The redox event at 0.83 V could be attributed to the
insertion of either Zn>* or H* due to the acidic nature of the
electrolyte (pH 3.5—4.0).”” To discern the insertion of H* vs
Zn>*, we measure the solid-state CV of 4 without Zn>* at the
same pH. A distinctly different CV profile was observed
(Figure 2B, black trace). In the absence of Zn**, compound 4
undergoes a two-electron two-proton insertion to form 4-H,
(Scheme 1), a process that has a large voltage hysteresis
(Figure S34). The significant voltage hysteresis in the 4/4-H,
redox couple is likely attributed to substantial geometric
rearrangements’® and hydrogen bonding in the formation of 4-
H,.” In summary, the addition of Zn*" decreases the charge—
discharge gap and increases the redox potential; both are
desirable outcomes for battery application.

Galvanostatic Cycling of Tetrazine Derivatives 1—6.
The cycling performances of tetrazine derivatives 1—6 were
investigated in two-electrode coin cells by using Zn metal as
the anode and 3 M zinc sulfate (ZnSO,) or Zn(OTf), as the
electrolyte. The galvanostatic charge—discharge (GCD)
cycling experiments were performed at a rate of 1C assuming
two-electron redox processes (200 mA g~' for 1, 356 mA ¢!
for 2, 284 mA g~' for 3,229 mA g~ ' for 4, 311 mA g for S,
and 288 mA ¢! for 6) with a voltage window of 0.4—1.6 V vs
Zn**/Zn. Coin cells of compounds 1, 2, and 3 show rapid
capacity fading within the first 10 cycles (Figure S27—S29).
The instability of 1—3 was attributed to their high solubility
(Figures S41—S43), as coloration of the separator was
observed (Figure S27B—S29B).

We sought to reduce the solubility of tetrazine in an aqueous
environment by implementing 7—z stacking.'”*°~*" The
structure of compound 4 in the solid state features extended
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Figure 3. (A) Galvanostatic charge—discharge profile of Zn-4 cells, (B) variable-rate performance, and (C) long-term cycling stability at a rate of

1C (229 mA g™).

n—n stacking (Figure S38), which is expected to prevent
dissolution. Indeed, the GCD of Zn-4 cells exhibits a discharge
capacity of 222 mAh g, corresponding to 96.9% of the
theoretical capacity (Figure 3A, purple). The GCD curve
shows a flat discharge plateau at 0.78 V and a charge plateau at
0.86 V with a small voltage hysteresis of only 84 mV (Figure
3A). Variable-rate experiments conducted at 0.2C, 0.5C, 1C,
2C, 5C, and 10C of Zn-4 cells show capacities at 222, 210,
198, 187, 170, and 148 mAh g~', respectively (Figure 3B).
Long-term cycling of compound 4 at 1C exhibits good stability
with ca. 80% capacity retention after S00 cycles (Figure 3C).
Post-mortem analysis of the cathode after 200 cycles shows
buildup of the an(OTf)y(OH)ny*(HZO)n precipitate, which
could contribute to the loss of capacity.

A Ragone plot of specific energy and power (specific energy
and power based on the mass of active material of 4 in the
cathode only) shows that compound 4 exhibits a performance
similar to that of state-of-the-art inorganic cathode materials in
AZIBs, e.g, MnO, and V,0; (Figure 4, red trace). Despite
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Figure 4. Ragone plot comparing the performance of 4 to state-of-
the-art inorganic and organic cathodes in AZIBs.*'>*~*

having a slightly lower specific capacity (222 mAh g™'), 4
shows comparable or superior specific energy than state-of-the-
art organic AZIB materials, such as HATN (418 mAh g_l,
Figure 4, blue trace).'”” This was attributed to the stable
discharge voltage of 4.

We also attempted to increase the specific capacity of 4
further by replacing one phenyl group with a methyl group in §
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or an ethyl group in 6. However, the removal of the phenyl
group in 5 and 6 leads to a higher solubility (Figures S41—
S43) and significantly faster capacity fading (Figures S30—
$32).

Evidence for Zn?* Insertion in 4. After demonstrating
the cycling performance of 4 in AZIBs, we set out to
investigate its redox mechanism that leads to a stable discharge
profile. A galvanostatic intermittent titration technique study
showed that 4 has a diffusion coefficient of 1.15 X 107" m*
s7, similar to typical diffusion rates for Zn** in organic
cathodes (Figure $35)."7*

X-ray fluorescence spectroscopic (XRF) analysis shows a
significant increase of the Zn signal from 0 to 1796 counts/s
upon discharge, followed by a significant decrease upon
recharge (Figure SB). This result, however, must be
interpreted with care since the substantial variation in the Zn
XRF signal can also be attributed to the formation of zinc
hydroxide-based precipitation, such as an(OTf)y(OH)Zx_y'
(H,0),, upon proton insertion.”””*” Upon charging, the Zn
signal was reduced to 112 counts/s. The small amount of the
residual Zn signal is likely due to incomplete dissolution of
an(OTf)y(OH)Zx_yy-(HZO)n precipitation upon charging
(vide infra, Figure S22).

To address this ambiguity, we performed scanning electron
microscopy (SEM) measurements and energy-dispersive X-ray
spectroscopy (EDX) for elemental mapping. The discharge
product of 4, as marked by N mapping, overlaid with elemental
mapping of Zn and F, suggesting that it contains evenly
distributed [Zn(OTf)]* ions (Figure 6). This observation is
consistent with the insertion of Zn** during discharge.
Additionally, on the surface of the electrode, we found distinct
flake-like crystals with strong Zn signals that can be attributed
to Zn,(OTf),(OH),, y-(H,0), (Figure S21B).”**

Evidence for H* Insertion in 4. After confirming the
insertion of Zn**, we considered if H' insertion was playing a
role in the redox of 4. Typically, Zn** and H* coinsertion
results in two-separate plateaus because of the distinct
electrochemical kinetics of Zn** vs H* insertion.'” >* The
stable discharge profile of 4 suggests that the coinsertion of
Zn** and H" is unlikely.

However, to our surprise, we found substantial evidence of
H* insertion. First, IR analysis of the discharged cathode
powder shows a sharp peak at 3294 cm™' and a broad peak
from 3300 to 3650 cm™' (Figure SC). The sharp peak was
assigned to the N—H stretch from the proton-inserted product.
The broad peak was assigned to Zn,(OTf),(OH),,_y-(H,0),,
a common product of H' insertion due to the local basic
environment created by H* insertion.® Upon charging, the N—
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Figure 6. SEM image (top left) with corresponding EDX signal
mapping of N (gray), F (yellow), and Zn (green) atoms for discharge
state 4-Zn—H.

H and the O—H vibrations both disappear, and the original IR
profile for pristine 4 returns.

The formation of an(OTf)y(OH)Zx_yy'(HZO)n is further
supported by powder X-ray diffraction (PXRD) study. The
PXRD pattern of the inorganic residues matches those
reported for Zn,(OTf),(OH),,_y-(H,0), (Figure SD).*7?
The formation of zinc hydroxide precipitate is commonly
attributed to H* insertion.'” ** These PXRD features
disappear upon charging, suggesting that most of the
an(OTf)y(OH)Zx_yy(HZO),, dissolves upon deinsertion of
H*. Overall, both IR and PXRD studies confirmed the
insertion of H' in 4.

Cooperativity of Zn?* and H* Insertion in 4. Further
examination of the PXRD data allows us to identify a PXRD
pattern unique to the discharge product (Figure SD).
Importantly, these features do not match that of 4-H, (Figure
$20), which is the discharge product of 4 under acidic
conditions without Zn?*. This intriguing observation indicates
that the coinsertion of Zn** and H' into 4 does not yield
distinct H'-insertion and Zn>*-insertion products, in contrast
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to previous studies.'”~>* Although we cannot entirely rule out
the possibility of a different phase of 4-H,, the cycling behavior
of 4-H, is drastically different from that of 4 (Figure S34). This
dissimilarity strongly suggests that 4-H, is not a discharge
product of 4 within a Zn electrolyte environment.

Taken together, the most likely redox mechanism involves a
two-electron, one-proton reduction of 4 to 4-Zn—H, which
precipitates out as a triflate salt. The increase in pH in the local
environment leads to the concurrent formation of
Zn,(OTf),(OH),y-(H,0), (Scheme 2). During charging,

Scheme 2. Proposed Mechanism for the Redox of 4 in AZIB

+2e N-N
2 A\ ZnOTf
N“ N znoTF/H* Ph—q Y-Ph
Nol N =—m//———= N-Ng
Y _znoTFM* .
Ph e

an(OTf)y(OH)Zx—y*(HZO)n

Zn** and H* deinsert to restore the pristine crystalline
structure of 4 and decrease the local pH, causing most of
Zn,(OTf),(OH),,y-(H,0), to redissolve (Figure $22). This
cooperative Zn>*/H" insertion mechanism is consistent with
the single stable discharge plateau observed in the GCD
profile, in contrast to conventional Zn**/H* coinsertion
materials, which often exhibit discharge profiles with multiple
plateaus (Figure 1A) due to the distinct electrochemical
kinetics of Zn>" vs H* insertion.

B CONCLUSIONS

In summary, we describe the electrochemical performance of
low-cost tetrazine derivatives in AZIBs. The substituents on
the 3,6-position of the tetrazine have a significant impact on
the cycling stability in AZIBs. Installation of phenyl groups in 4
leads to decreased solubility, likely as a result of additional 7—x
stacking interactions. Compound 4 exhibits discharge at a
capacity of 222 mAh g™' at a steady voltage of 0.78 V, giving
rise to a specific energy comparable to that of the state-of-the-
art inorganic cathode materials in AZIBs.

Electrochemical and spectroscopic studies reveal a unique
redox mechanism of 4 where Zn®>* and H' insertion
cooperatively occurs in one electrochemical step to generate
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a single discharge product. Our work highlights that
cooperative insertion of Zn®>* and H* produces a stable
discharge plateau, in contrast to the sloping discharge profile
typically seen in Zn** and H' coinsertion materials. We
anticipate that cooperative Zn**/H" insertion mechanism will
be observed in a broader range of redox-active organic
materials in AZIBs.'*>’ Cooperative insertion of Zn**/H*
should be considered as a strategy for designing OEMs with
stable discharge voltage profiles.
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