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Machine learning reveals features of spinon
Fermi surface
Kevin Zhang 1, Shi Feng2, Yuri D. Lensky1,3, Nandini Trivedi 2 & Eun-Ah Kim1,4,5,6✉

With rapid progress in simulation of strongly interacting quantum Hamiltonians, the chal-

lenge in characterizing unknown phases becomes a bottleneck for scientific progress. We

demonstrate that a Quantum-Classical hybrid approach (QuCl) of mining sampled projective

snapshots with interpretable classical machine learning can unveil signatures of seemingly

featureless quantum states. The Kitaev-Heisenberg model on a honeycomb lattice under

external magnetic field presents an ideal system to test QuCl, where simulations have found

an intermediate gapless phase (IGP) sandwiched between known phases, launching a debate

over its elusive nature. We use the correlator convolutional neural network, trained on

labeled projective snapshots, in conjunction with regularization path analysis to identify

signatures of phases. We show that QuCl reproduces known features of established phases.

Significantly, we also identify a signature of the IGP in the spin channel perpendicular to the

field direction, which we interpret as a signature of Friedel oscillations of gapless spinons

forming a Fermi surface. Our predictions can guide future experimental searches for spin

liquids.
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As our ability to simulate quantum systems increases, there
is a corresponding need for determining how to char-
acterize unknown phases realized in simulators. Going

from measurements to the nature of the underlying state is a
challenging inverse problem. Full quantum state tomography1 of
the density matrix is impractical. Although the classical shadow2

scales better than full tomography, the approach does not pre-
scribe to researchers the proper observables to evaluate. Viewing
the inverse problem as a data problem invites adopting machine
learning methods: a quantum-classical hybrid approach. Machine
learning has been widely applied for characterizing quantum
states3. Such methods have been most fruitful with symmetry-
broken states, with a diverse set of approaches increasingly
bringing more interpretability and reducing bias4–6. The char-
acteristic features of ordered phases are ultimately local and
classical, hence ML models tuned for image processing have
readily learned such features. By contrast, past learning of
quantum states defined without order parameters has relied on
theoretically guided feature preparation7,8. However, such reli-
ance on prior knowledge blocks the researchers’ access to new
insights into unknown states: the ultimate goal of simulating
quantum states.

To push the limits of the nascent quantum-classical hybrid
approach, we need a setting known to host a non-trivial quantum
phase of unknown nature. Recent investigations into extended
Kitaev models9–12 have led to the observation of a mysterious
intermediate gapless phase (IGP) sandwiched between the Kitaev
spin liquid and the trivial polarized state under a non-
perturbative [111] magnetic field13–16, whose identification pre-
sents an interesting and important puzzle away from the per-
turbative limit. However, the nature of this field-induced IGP has
raised debate in the community.

Several theories have shown evidence that supports a gapless
quantum spin liquid phase with an emergent U(1) spinon Fermi
surface15,17–19, while there are also mean field theories indicating that
the low energy effective theory of the intermediate phase is gapped
with a non-zero Chern number20,21. This tension between theories
arises due to the challenge in determining the nature of the IGP that
forms in a non-perturbative region under a magnetic field. Unlike the
gapped topological phase adiabatically connected to the exactly sol-
vable limit with known loop operators7,22,23, the absence of mea-
surable positive features for the possible candidate IGP states18,19 also
makes this problem a worthy challenge for machine learning.

We present a quantum-classical hybrid approach, QuCl, to
reveal characteristic motifs associated with states without known
signature features. We treat variational wavefunctions obtained
from density matrix renormalization group (DMRG)24–26 as
output of a quantum simulator. Namely, we sample snapshots
from the ground state and train an interpretable neural network
architecture, i.e. the correlator convolutional neural network
(CCNN)4 (Fig. 1c). Based on the trained network, we use reg-
ularization path analysis27 to determine the distinct correlation
functions learned by the CCNN as characteristic features of the
state captured by snapshots. We benchmark the performance of
this hybrid approach on the known phases and confirm that the
CCNN learned features are consistent with the known char-
acteristic features. Importantly, we reveal the signature feature of
the IGP to imply the existence of a spinon Fermi surface, as
proposed in refs.18,19.

Results and discussion
Model. The Kitaev-Heisenberg model under an external field is
defined by

H ¼ ∑
γ¼x;y;z

∑
hijiγ

KγS
γ
i S

γ
j � J ∑

hiji
Si � Sj �∑

i
h � Si ð1Þ

where γ= x, y, z enumerates the three colorings of bonds on the
honeycomb lattice (Fig. 1a), and Sγ is the γ projection of spin-1/2
degrees of freedom on each site. We also add a uniform Zeeman
field h along the [111] direction, i.e., the out-of-plane ê3 direction
in the lab frame (see also Supplementary Note III), as well as a
ferromagnetic Heisenberg term of strength J. Here we investigate
the antiferromagnetic Kitaev intereaction (K > 0), for which a
field in the [111] direction gives rise to an intermediate phase
over a significant field regime. For the ferromagnetic Kitaev
interaction, on the other hand, the intermediate phase is either
absent or exists over a very small field regime18. Starting from the
exactly solvable point at Kx= Ky= Kz= 1, h= J= 0, which is a
nodal Z2 spin liquid28, we consider three axes of the phase dia-
gram that are controlled by the parameters h, J, and Kz (Fig. 1b).

For the J axis of the phase diagram in Fig. 1b, the system
undergoes a sequence of transitions through magnetically ordered
states11. For small values of J the system preserves time-reversal
symmetry and the system remains a gapless Z2 spin liquid. As J is
increased, the system acquires a zigzag magnetic order (also
experimentally observed in α-RuCl311,29,30). At even larger values
of J, the system eventually becomes a Heisenberg ferromagnet. On
the other hand, a small magnetic field h∥[111] breaks the time
reversal symmetry of the Kitaev model and opens a gap in the
spectrum of free majorana fermions, resulting in a CSL28.
However, upon leaving the perturbative regime, numerical
evidence through DMRG19 and exact diagonalization16,18 have
shown that the system goes through an IGP before entering a
partially polarized (PP) magnetic phase. Although the precise
nature of the IGP is unknown, a U(1) spinon Fermi surface has
been proposed recently18,19, which, as we are to show, is in
agreement with our CCNN results. Finally, the Kitaev model has
an exact solution along the Kz axis when J= h= 028, where the
system undergoes a transition to a gapped Z2 spin liquid upon
increasing Kz. We use this axis for benchmarking the QuCl
outcome to known exact results.

In order to generate a single snapshot from a wavefunction, we
perform the following procedure sequentially on each site i of the
lattice:

1. Find the reduced density matrix for site i, and exactly
evaluate the expectation value of the spin operator
projected along the chosen axis αi.

2. Choose eigenvalue+ or−with probabilities Pþ ¼ 1þhσαi i
2 ,

P−= 1− P+; record the eigenvalue and axis of projection.
3. Collapse the wavefunction onto the associated eigenstate of

site i using the projector ± αj ii ± αh ji.
4. Repeat 1-3 until every site is addressed.
5. Organize the snapshots into channels, one for each unique

axis αi; see Fig. 1c.

The choice of axis αi is random for the J and Kz axes but
tailored to the target phases for the h axis. The wavefunctions at
phase space points of interest are obtained using DMRG on finite
size systems composed of 6 × 5-unit-cell (60 sites). In Supple-
mentary Note III we also show results from an extended 12 × 3-
unit-cell (120 sites) cylinder geometry. In both cases we used a
maximum of 1200 states, giving converged results with a
truncation error ~ 10−7 or less in all phases. Within a phase, we
generated 10,000 snapshots for each wavefunction in question.
Each resulting snapshot forms a three-dimensional array of bit-
strings, with two spatial dimensions and a “channel” dimension
(see Fig. 1c). Such a collection of snapshots is a classical shadow
of the quantum state2. Since our goal is to characterize a quantum
state without prior knowledge of the best operator to measure, we
treat the snapshot collection as data rather than using them to
estimate an operator expectation value as in refs. 2,31.
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For each axis of the phase diagram, we set up a binary
classification problem between a pair of phase space points, Ψ0

�� �
and Ψ1

�� �
, each deep within a phase. The machine learning

architecture of choice, CCNN, was introduced in Ref. 4 as an
adaptation of a convolutional neural network where a controlled
polynomial non-linearity splits into different orders of correlators

for the neural network to use (Fig. 1c). Compared to the more
standard CNN architecture, the CCNN has reduced expressibility
due to using a low-order polynomial as the nonlinearity.
However, at the expense of this reduction, we gain access to
interpreting the network’s learning that can be analytically
connected to the traditional notion of correlation functions.
Combined with regularization path analysis (RPA; see Methods
and Supplementary Note I for details)32, the CCNN can reveal
spatial correlations or motifs that are characteristic of a
given phase.

For a given channel α of filter k to be learned, fk,α, the CCNN
samples correlators for each snapshot bit-string Bα(x) through an
estimate for the n-th order spatially averaged correlator associated
with filter k

cðnÞk ¼ ∑
x

∑
ða1;α1Þ≠¼≠ðan;αnÞ

Yn
j¼1

f k;αj ðajÞB
αj ðx þ ajÞ; ð2Þ

where the inner sum is over all n unique pairs of filter positions a
and filter channels α. These correlator estimates are then coupled
to coefficients βðnÞk of the linear layer (Fig. 1c; green arrows)

according to ŷ ¼ 1þ expð�∑n;kβ
ðnÞ
k cðnÞk Þ

h i�1
, where 0≤ ŷ ≤ 1 is

the CCNN output for the given input snapshot. We reserved
1000 samples from each wavefunction as a validation set, and
used the remaining 9000 for training. The orders of correlators
were restricted to be between 2 and 6, inclusive. We allowed the
neural network to learn up to 4 different filters, corresponding to
0 ≤ k ≤ 3. The training optimizes the model parameters, namely
the filters and the weights, by comparing the output ŷ to the
training label (see Methods).

Fig. 1 The Kitaev-Heisenberg model and schematic of the Quantum-Classical (QuCl) approach. a Honeycomb lattice of Kitaev model with bond-
dependent interactions indicated by the three different colored bonds. b Phase diagram of Kitaev-Heisenberg model in an external magnetic field (Eq (1))
long three axes of Kz, h, and J. c A schematic description of QuCl: (i) From a pair of variational wavefunctions Ψ0

�� �
and Ψ1

�� �
, labeled projective

measurements ("snapshots'') B0 and B1 are generated. (ii) The collection of labeled snapshots are used to train the correlator convolutional neural network
(CCNN). (iii) The CCNN is configured with four filters (k= 0,⋯ , 3) each with three channels, for the binary classification problem minimizing the distance
between the prediction ŷ and the label. (iv) Once the training is completed, we fix the filters and use regularization path analysis to reveal signature motifs
of the two phases, 0 and 1, under consideration. The correlator weight β onsetting, upon reduction of the regularization strength λ, to a negative (positive)
value signals a feature of the phase 0 (1).

Fig. 2 Gapless Z2 v.s. Heisenberg ordered phase. a Ground state
wavefunctions from the gapless Z2 phase and ferromagnetically ordered
phase are obtained at the points on the J-axis marked by stars. The
highlighted box shows the two most informative filters for the classification
task. The pink and blue dots in filters correspond to projections in z and y
basis. b The regularization path analysis results pointing to the filters in
panel a as signature motifs of the ordered phase.
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Fig. 3 The chiral spin liquid v.s. the intermediate gapless phase, benchmarking the indicator of the chiral spin liquid phase. a Ground state
wavefunctions from the chiral spin liquid (CSL) phase and the intermediate gapless phase (IGP) are obtained at the points on the h-axis marked by stars.
The highlighted box shows the most informative filter that signifies the CSL phase. Inset shows the bond anisotropy for the three colorings of bonds, e.g., x
refers to a Sxi S

x
j coupling. b The plaquette operator Wp is a operator defined on the six sites around a hexagonal plaquette. c A sample snapshot from the

CSL phase showing the measurement basis that makes the plaquette operator Wp accessible. d The regularization path analysis pointing to the six-point
correlator of filter in panel a as indicator of the CSL.

Fig. 4 The chiral spin liquid v.s. the intermediate gapless phase, discovering the indicator of the intermediate gapless phase. a The rotated basis
vectors in relation to the cardinal axes; the external field is along e3. The signature of the intermediate gapless phase (IGP) is targetted using e1 basis
snapshots from the same pair of wavefunctions as in Fig. 3a. b The regularization path analysis results pointing to the filter in c as an indicator of the IGP. c)
Most significant filter learned by the correlator convolutional neural network to be associated with the IGP. d Fourier transform of filter in c, with black lines
indicating first and extended Brillouin zones. Green circles mark six Bragg peaks associated with the filter tiling pattern in e. e Simplest possible tiling of
filter shown in panel c, resulting in a superlattice of antiferromagnetic stripes. The Bragg peaks of this tiling pattern are marked by green circles in panels
d and g. f On-site magnetization hSe1i i of the wavefunction Ψ0

�� �
in the IGP. g Real part of Fourier transform of f, again with Bragg peaks of antiferromagnetic

tiling marked (imaginary part is negligible). h Real part of Fourier transform of hSe1i i of the wavefunction Ψ1

�� �
in the CSL phase showing no discernable

features. i The perpendicular magnetization hSe1 ðrÞi as a function of distance from boundary for various values of field strength h, showing decreasing
modulation period with increasing field strength. Solid lines show fitted curve based on Equation (3).
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Once the CCNN is successfully trained for a given phase, we
uncover the characteristic motif that is most informative for the
contrast using RPA32. For this, we fix the filters and relearn the
weights of each learned correlation βðnÞk with regularization that

penalizes the magnitude of the βðnÞk ’s with strength λ (see

Methods). The βðnÞk that turns on at the lowest value of 1/λ points
to the specific filter k and the correlation order (n) of that filter
which is most informative for the contrast task. The sign of the
onsetting βðnÞk reveals whether the associated correlation is a
feature of phase 0 (− sign) or of phase 1 (+ sign); see Fig. 1(c).

Gapless Z2 versus Heisenberg phases. As a benchmark, we first
focus on the phases along the J axis (Fig. 2a). At intermediate J,
the system has zigzag order, while it is a Heisenberg ferromagnet
for large J. We trained the CCNN to distinguish wavefunctions
from the two points marked by stars in Fig. 2a, at J/K= 0 and
K/J= 0, corresponding to the Kitaev spin liquid and Heisenberg
ferromagnetic states, respectively. The snapshots were generated
by choosing a random axis from x, y, or z for each site. The RPA
shown in Fig. 2b reveals that the most informative correlation
functions are the two-point functions of filters 2 and 3 presented
in Fig. 2a. The negative sign of the onsetting β’s means these
features are positive indicators of the ordered phase (see Sup-
plementary Note I). Given that the correlation length vanishes at
the exactly solvable point at the origin (phase 0), the network’s
choice to focus on features of phase 1 is sensible. Moreover, the
learned motif of phase 1 is clearly consistent with a ferromagnetic
correlation. Hence this benchmarking confirms that the CCNN’s
learning is consistent with our theoretical understanding when
both phases 0 and 1 are known.

Chiral spin liquid. Next, we contrast the CSL phase (phase 1)
and the IGP (phase 0) along the h axis (Fig. 3a). Neither of these
phases is characterized by a local order parameter. However, the
chiral phase is known to be a Z2 quantum spin liquid char-
acterized by non-local Wilson loop expectation values28. To
confirm that such non-local information can be learned with our
architecture, we first use snapshots with a fixed basis shown in
Fig. 3c so that the architecture can access the necessary infor-
mation. The RPA with the positive onset of βð6Þ0 (Fig. 3d) implies
that a sixth-order correlator of the filters shown in Fig. 3a is
learned to be the key indicator of phase (1), the CSL phase.
Remarkably, the relevant correlator hσz1σx2σy3σz4σx5σy6i is exactly the
expectation value of the Wilson loop associated with the plaquette
p consisting of the six sites 〈Wp〉, shown in Fig. 3b. Theoretically,
〈Wp〉 ≈ 1 implies the state is well-described by the Z2 gauge
theory of the zero-field gapless phase28. The fact that none other
than 〈Wp〉 was learned to contrast the CSL phase from the
intermediate gapless phase reveals that the latter is a distinct state.
However, discovering the indicator of the intermediate phase
requires a different approach, as we discuss below.

Intermediate gapless phase. We next discuss how we discover
the physically meaningful features of the IGP (phase 0). Previous
work has focused on mapping out the low energy excitations
S(q, ω ≈ 0) in momentum space. Also, in real space, the spin-spin
correlations averaged over all directions show power-law decay,
indicating gapless spin excitations for intermediate fields. How-
ever, it has not been clear how to translate these correlations to
positive signatures of a particular state that can be experimentally
detected. While the QuCl approach has the potential to reveal
such signatures, we have to first overcome a ubiquitous challenge
accompanying using ML for scientific discoveries: the need to
guide the machine away from trivial features. While the unbiased

pursuit of representative feature in data is the benefit of using ML,
a non-trivial cost is that the neural network’s learning can be
dominated by features that are trivial from the physicist’s per-
spective. The neural network’s propensity to make decisions
based on what appears most visible to the network means it is
essential that we guide the CCNN away from the trivial yet
dominant difference between phase 0 and phase 1: the field-
driven magnetization along the e3 axis (see Supplementary
Note II). This basic requirement for extracting meaningful
information using ML led us to supply CCNN with snapshots in
the basis orthogonal to the field direction, such as e1 basis (see
Fig. 4a). This decision to guide the CCNN away from trivial
features led to a sought-after discovery.

The RPA shown in Fig. 4b unambiguously points to two-point
correlators of the filter shown in Fig. 4c as a signature feature of
the IGP. As is clear from its Fourier transform shown in Fig. 4d,
the filter implies the emergence of a length scale in the e1
component of the magnetization. Given that the e1 direction is
perpendicular to the direction of h-field, the repeating arrange-
ment of the motif the filter is detecting must be anti-
ferromagnetic. One such ansatz we conjecture shown in Fig. 4e
will single out specific momenta points marked in Fig. 4d from
the Fourier intensity of the filter (see Supplementary Note IV for
more details). To confirm this conjecture, we explicitly measure
the per-site e1-magnetization, hSe1 ðrÞi, of the two states. The
measurement outcome (Fig. 4f) and its Fourier transform (Fig. 4g)
confirms indeed the IGP state has a modulating e1-magnetization
that we inferred from the CCNN learned filter and the ansatz
tiling the filter. Furthermore, the contrast between Fourier
transforms from the IGP Fig. 4g and from the CSL Fig. 4h
establishes that the pattern and the associated length scale are
unique features of the IGP. Remarkably, we find such modulation
to be consistent with a conjecture15–19,22,33 that the IGP is a U(1)
spin liquid with a spinon Fermi surface. Note here that in a
translationally invariant system the corresponding quantity is the
two-point spin-spin correlation function hSe1 ð0ÞSe1 ðrÞi and its
Fourier transform.

As detailed in Supplementary Note III, hSe1 ðrÞi can be mapped
to fermionic spinon density in the Kitaev model. If spinons are
gapless and deconfined to form a spinon Fermi surface, the
Friedel oscillation of the spinon density due to the open
boundary34–37 will be reflected in the modulation of hSe1 ðrÞi:

hSe1 ðrÞi � hn1ðrÞi �
kF
π

1� sinð2kFr þ θÞ
2kFr þ θ

� �
þ C ð3Þ

where C and θ are constants, and r the distance measured from
the boundary. We confirm the spinon Friedel oscillation origin of
the observed modulations by fitting the hSe1 ðrÞi measured at
different field strengths h to Eq. (3). The resulting excellent fit in
Fig. 4i shows that the modulation period increases with the
increase in the perpendicular field h. This is consistent with a
mean field picture in which the magnetic field plays the role of the
chemical potential; the spinon bands successively get depleted
upon increasing field until the system enters a trivial phase
through a Liftshitz transition38. Evaluation of Se1 on a longer 20
unit cell system of a 3-leg ladder shows a modulation pattern that
agrees with the 6-leg ladder results in Fig. 4i (see Supplementary
Note III).

Gapless Z2 vs gapped Z2. Finally, we contrast the gapless and
gapped Z2 phases along the Kz axis as a sanity check in distin-
guishing two spin liquid phases. As one tunes Kz, the model Eq.
(1) is known to go through a phase transition between a gapless
Z2 and a gapped Z2 spin liquid phases28. However, since both
phases have only short-range correlations in the ground state the
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distinction cannot be learned from the correlation lengths, unlike
usual transitions between a gapless phase and a gapped phase.
Hence it is a non-trivial benchmarking test for QuCl-based state
characterization. Contrasting the two points marked by stars in
Fig. 5a, again using the random basis snapshots, we find signature
motifs consistent with exact solutions. Specifically, the RPA
(Fig. 5b) shows that nearest-neighbor correlation functions of x
and y axes are a feature of the gapped Z2 phase while the z axis
nearest-neighbor correlation function is the feature of the gapped
Z2 phase. These results are consistent with the exact solution of
the zero-field Kitaev model39,40.

Conclusion. The significance of our findings is threefold. Firstly,
we gained insight into the intermediate field spin liquid phase in
the Kitaev-Heisenberg model. Confronted by two complementary
predictions: a gapless spin liquid based on exact diagonalization
and DMRG versus a gapped spin liquid in the same region from
mean field theory, an identification of a positive signature for
either possibilities was critical. The need for guiding the CCNN
away from a trivially changing feature led to the discovery that it
is critical to focus on snapshots taken along a direction e1 per-
pendicular to the magnetic-field e3 axis. Remarkably, the network
then learned a geometric pattern characteristic of Friedel oscil-
lations of spinons in the IGP. This observation strongly supports
earlier theoretical proposals of a spinon Fermi surface in the IGP,
thus advancing our understanding of this phase.

Secondly, our discovery translates to a prediction for experi-
ments by providing a direct evidence of spinon FS in the
modulated magnetization and the spin–spin correlations perpen-
dicular to the field direction along e1. Such a feature in the
computational data has been previously missed since the focus
has been on isotropic spin correlation hSi � Sji which is dominated
by the e3 component. Our results can guide future experimental
searches for spin liquids with spinon Fermi surfaces.

Finally, on a broader level, we have demonstrated that hidden
features of a quantum many-body state can be discovered using
QuCl: a data-centric approach to snapshots of the quantum
states, employing an interpretable classical machine learning
approach. Conventionally, quantum states have been studied
through explicit and costly evaluation of correlation functions.
However, when the descriptive correlation function is unknown
in a new phase, the conventional approach gets lost in the
overwhelming space of expensive calculations. Although our
method does not explicitly evaluate the correlation functions that
it extracts, snapshots that can be readily treated with QuCl will

enable computationally efficient identification of new phases
associated with a quantum state, including topological states or
states with hidden orders. Finally, our method is also broadly
applicable to searches for physical indicators of states prepared on
quantum simulators which are naturally accessed through
projective measurements.

Methods
In this section, we describe the architecture of the neural network
and the training procedure. The CCNN, as first proposed in ref. 4,
consists of two layers: the correlator convolutional layer and the
fully connected linear layer. We fed as input to the CCNN three-
spin-channel (two-spin-channel for rotated basis measurements)
snapshot data. Since the CCNN was originally applied to square
lattice data at its conception, we reinterpreted our hexagonal
lattice geometry as a rectangular grid with a 1 × 2 unit cell
forming its two-site basis. We modified the convolutional layer to
consist of 4 different learnable filters of dimension 2 × 2 unit cells,
for a total receptive field of 8 sites each. To accommodate the
1 × 2 unit cell, we also introduced a horizontal stride of 2 in the
convolution operation between filters and snapshots.

The filter weights are learnable nonnegative numbers indicated
by fα,k(a), where 0 ≤ k ≤ 3 indexes the filter, 1 ≤ α ≤ 3 indexes the
channel of the weight, and a is a spatial coordinate. The weights
are convolved with the input snapshots using the recursive
algorithm described in ref. 4 to produce per-snapshot correlators
as

CðnÞ
k ðxÞ ¼ ∑

ða1;α1Þ≠¼≠ðan;αnÞ

Yn
j¼1

f k;αj ðajÞB
αj ðx þ ajÞ; ð4Þ

where CðnÞ
k ðxÞ is the position-dependent n-th order correlator of

filter k, and Bαj ðx þ ajÞ indicates the snapshot value at location
x+ aj in channel αj. The correlator estimates are then defined as
the spatially-averaged correlators, cðnÞk ¼ ∑xC

ðnÞ
k ðxÞ, which are

coupled to coefficients βðnÞk of the linear layer, and summed to
produce the logistic regression classification output

ŷ ¼ 1

1þ expð�∑n;kβ
ðnÞ
k cðnÞk Þ ð5Þ

so that they are constrained to the range 0≤ ŷ ≤ 1. For a visual
overview of the architecture, see Fig. 6.

Fig. 5 Gapless v.s. gapped Z2 spin liquid, benchmarking distinguishing two spin liquids. a Ground state wavefunctions from the gapless Z2 phase and
gapped Z2 phase are obtained at the points on the Kz-axis marked by stars. The highlighted boxes shows the most informative filters that signifies the each
phases. b The regularization path analysis results associate two-point correlators of filters 0 and 2 to the gapped phase and that of filter 1 to the gapless
phase.
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During training, the weights of the network are updated with
stochastic gradient descent to optimize the loss function

Lðy; ŷÞ ¼ �y log ŷ � ð1� yÞ logð1� ŷÞ
þ γ1 ∑

α;k;a
jf α;kðaÞj þ γ2 ∑

α;k;a
f α;kðaÞ2 ð6Þ

where y∈ {0, 1} is the ground truth label of the snapshot, and γ1
and γ2 are L1 and L2 regularization strengths, respectively. We
took γ1= 0.005 and γ2= 0.002. The training was performed for
20 epochs consisting of 9000 snapshots each with a learning rate
of 0.006, using Adam stochastic gradient descent. For the reg-
ularization path analysis, the weights f are kept fixed, and the
model is retrained in the same way with loss function

Lðy; ŷÞ ¼ �y log ŷ � ð1� yÞ logð1� ŷÞ þ γ∑
k;n

jβðnÞk j; ð7Þ
where γ is the regularization strength to be swept over.

Data availability
Data is available upon request to the authors.

Code availability
Code is available upon request to the authors.
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