
2580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

GraphAGILE: An FPGA-Based Overlay Accelerator
for Low-Latency GNN Inference

Bingyi Zhang , Hanqing Zeng , and Viktor K. Prasanna , Fellow, IEEE

Abstract—This article presents GraphAGILE, a domain-specific
FPGA-based overlay accelerator for graph neural network (GNN)
inference. GraphAGILE consists of (1) a novel unified architecture
design with an instruction set, and (2) a compiler built upon the
instruction set that can quickly generate optimized code. Due to
the proposed instruction set architecture (ISA) and the compiler,
GraphAGILE does not require any FPGA reconfiguration when
performing inference on various GNN models and input graphs.
For the architecture design, we propose a novel hardware module
named Adaptive Computation Kernel (ACK), that can execute var-
ious computation kernels of GNNs, including general matrix multi-
plication (GEMM), sparse-dense matrix multiplication (SpDMM),
and sampled dense-dense matrix multiplication (SDDMM). The
compiler takes the specifications of a GNN model and the graph
meta data (e.g., the number of vertices and edges) as input, and
generates a sequence of instructions for inference execution. We
develop the following compiler optimizations to reduce inference
latency: 1) computation order optimization that automatically
reorders the computation graph to reduce the total computation
complexity, 2) layer fusion that merges adjacent layers to reduce
data communication volume, 3) data partitioning with a partition-
centric execution scheme that partitions the input graph to fit
the available on-chip memory of FPGA, 4) kernel mapping that
automatically selects execution mode for ACK, and performs task
scheduling to overlap computation with data communication and
achieves dynamic load balance. We implement GraphAGILE on a
state-of-the-art FPGA platform, Xilinx Alveo U250. GraphAGILE
can execute widely used GNN models, including GCN, GAT, GIN,
GraphSAGE, SGC and other GNN models supported by Graph-
Gym. Experimental results show that GraphAGILE achieves up
to 47.1× (3.9×) reduction in end-to-end latency, including the
latency of compilation and hardware execution, compared with the
state-of-the-art implementations on CPU (GPU), and achieves up
to 2.9× reduction in hardware execution latency compared with
the state-of-the-art FPGA accelerators.

Index Terms—Graph neural network, FPGA overlay accele-
rator, hardware architecture, low-latency inference.

I. INTRODUCTION

GRAPH neural networks (GNNs) have achieved un-
precedented success in graph-based machine learning.

Manuscript received 19 September 2022; revised 28 March 2023; accepted
15 June 2023. Date of publication 20 June 2023; date of current version 21
July 2023. The work of Bingyi Zhang and Viktor Prasanna was supported by
the National Science Foundation (NSF) under Grants CCF-1919289 and OAC-
2209563. Recommended for acceptance by F. Petrini. (Corresponding author:
Bingyi Zhang.)

Bingyi Zhang and Viktor K. Prasanna are with the Department of Electrical
and Computer Engineering, University of Southern California, Los Angeles, CA
90089 USA (e-mail: bingyizh@usc.edu; prasanna@usc.edu).

Hanqing Zeng is with Meta Platforms, Inc., Menlo Park, CA 94025 USA
(e-mail: zengh@meta.com).

Digital Object Identifier 10.1109/TPDS.2023.3287883

Compared with traditional algorithms, GNNs achieve superior
performance for a wide variety of applications [1], such as rec-
ommendation systems, social media [2], etc. Low-latency GNN
inference is needed in many real-world applications. Examples
include real-time traffic prediction [3], and GNN-based scientific
simulation [4].

Accelerating GNN inference is challenging because GNN
inference [5], [6], [7] requires both sparse and dense computation
kernels. While the sparse computation kernels result in poor
data reuse and irregular memory access patterns, the dense
computation kernels can be executed with regular memory ac-
cess patterns. General purpose processors (e.g., CPU, GPGPU)
are inefficient for GNN inference due to (1) complex cache
hierarchy that results in ineffective on-chip memory utilization
due to the poor spatial and temporal locality, (2) the general
microarchitecture designs are inefficient for various computa-
tion kernels in GNNs (i.e., GEMM, SpDMM, and SDDMM).
For GPUs, the state-of-the-art GNN frameworks (e.g., Pytorch
Geometric (PyG) [8], Deep Graph Library (DGL) [9]) have
large inference latency due to (1) large GPU kernel launch time,
and (2) sub-optimal execution paradigm for sparse computa-
tion leading to large memory traffic. For example, due to the
large GPU global memory footprint for storing the intermediate
results, programs written with PyG spend 55%–99% [5] time
executing the sparse computations of GNN inference.

Many GNN accelerators [5], [6], [7], [10], [11], [12], [13],
[14], [15] have been proposed to overcome the inefficiency of
CPUs and GPUs. Previous works either directly design accel-
erators for specific GNN models [10], [11] or develop design
automation frameworks [6], [12], [13] to generate FPGA accel-
erators for a specific GNN model and an input graph. However,
the design automation frameworks need to regenerate optimized
hardware design if the structure of the GNN model or the
topology of the input graph changes. The hardware regeneration
requires meta compilation, hardware synthesis, place&route,
and FPGA reconfiguration, which incur significant overhead and
are not suitable for cloud-based FPGA accelerators. A typical
end user may explore a variety of GNN models and perform
inference on various input graphs. Moreover, in a cloud-based
system, multiple users share the same FPGA. Different users
may run different GNN models with different input graphs.
Therefore, the time-consuming process of regenerating an op-
timized accelerator makes the design automation frameworks
unattractive in the above scenarios.

In this paper, we propose an FPGA-based overlay acceler-
ator, GraphAGILE. An FPGA overlay [16], [17] consists of

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8115-0814
https://orcid.org/0000-0002-2578-2147
https://orcid.org/0000-0002-1609-8589
mailto:bingyizh@usc.edu
mailto:prasanna@usc.edu
mailto:zengh@meta.com

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2581

an instruction set architecture (ISA) and a compiler, providing
software-like programmability and targeting a specific applica-
tion domain. The ISA of GraphAGILE unifies the execution of
both the sparse and dense computation kernels of GNNs without
hardware reconfiguration. To program the ISA, the compiler
takes as inputs the specification of the GNN model and the
graph meta data, and generates a sequence of instructions to
execute on the ISA of the overlay architecture. To reduce the
inference latency, we propose several optimizations for the com-
piler to efficiently utilize the ISA. To the best of our knowledge,
GraphAGILE is the first FPGA overlay accelerator for GNNs.
We summarize our main contributions as follows:! We propose an instruction set architecture to accelerate

GNN inference. It supports a broad range of GNN models
by efficiently executing various computation kernels in
GNNs, including GEMM, SpDMM, and SDDMM.! We develop a compiler that generates an instruction se-
quence based on an input graph and GNN model. Compiler
optimizations include:
– computation order optimization that automatically re-

orders the computation graph to reduce the total com-
putation complexity.

– layer fusion that merges adjacent layers to communicate
the inter-layer results through on-chip memory, which
reduces the total volume of external memory communi-
cation.

– graph partitioning that optimizes the intra-layer and
inter-layer data communication under a given on-chip
memory constraint.

– kernel mapping and task scheduling that hide data com-
munication latency and achieve dynamic load balance.! We deploy GraphAGILE on Xilinx Alveo U250, a state-

of-the-art cloud-based FPGA platform.
– We demonstrate that GraphAGILE can execute widely

used GNN models, including GCN, GAT, GIN, Graph-
SAGE, SGC, and other GNN models supported by
GraphGym [18].

– GraphAGILE achieves up to 47.1× (3.9×) speedup in
end-to-end latency (see Section VIII) compared with
the state-of-the-art implementations on CPU (GPU),
and up to 2.9× speedup in hardware execution latency
compared with the state-of-the-art FPGA accelerators.

The rest of the paper is organized as follows: Section II
introduces the background of graph neural networks; Section III
covers the related work; Section IV presents an overview of
GraphAGILE; Section V describes the microarchitecture design
of GraphAGILE; Section VI covers the details of the compiler
design; Section VII describes the implementation details and
Section VIII includes the evaluation results.

II. BACKGROUND

This section introduces the background of graph neural net-
works and briefly describes two well-known graph neural net-
work models.

A. Graph Neural Networks

Table I defines the notations in GNN layer operations.
Graph neural networks (GNNs) [19], [20] are proposed for

TABLE I
NOTATIONS

representation learning on a graph G(V, E). Each edge in G is
associated with a weight. A GNN model consists of a stack of
GNN layers. Each GNN layer performs message passing on G
where each vertex aggregates information from its neighbors.
Thus, a multi-layer GNN model recursively performs such mes-
sage passing on multi-hop neighbors. According to [8], [9], a
GNN layer can be abstracted as

Edge-wise : ml
e = φ(hl−1

u ,hl−1
v , wl−1

e), ∀e(u, v) ∈ E (1)

Node-wise : hl
v = ψ(hl−1

v , ρ({ml
e : e(u, v) ∈ E})), (2)

where φ() is the message function. Each edge uses φ() to
generate a message by combining the edge weight wl−1

e with
the features of its incident vertices. ψ() is the update function.
Each vertex usesψ() to update its features by aggregating the in-
coming messages using the reduction function ρ(). In GNNs, the
message/update functions are parameterized by neural network
modules [20], such as Multi-layer Perception. Some well-known
GNN models include:

GCN [19]: each layer is defined as

ml
i = Sum

({
αji · hl−1

j : j ∈ N (i) ∪ {i}
})

hl
i = ReLU

(
ml

iW
l
)
, (3)

where l denotes the lth layer, αji =
1√

D(j)·D(i)
(D(j) is the

degree of vj), W l denotes the weight matrix of layer l, and
N (i) denotes the set of neighbors of vi.

GAT [21]: this model has similar layer definition as GCN. In
addition, GAT applies the attention mechanism to calculate edge
weight αij dynamically

αij =
exp (LReLU (〈aatt, [W atthi||W atthj]〉))∑

k∈N (i) exp (LReLU (〈aatt, [W atthi||W atthk]〉))
,

(4)
where aatt is an attention vector, W att is an attention matrix, and
〈, 〉 is the vector inner product operator.

In addition, many other GNN models (e.g., GIN [22])
have been proposed following the recursive message-passing
paradigm. Recently, [18] proposes the GraphGym library [18]
and defines the general design space of a GNN. The design
space includes intra-layer design and inter-layer design, where
the intra-layer design follows the message-passing paradigm
defined in (1) and (2), the inter-layer design adds the residual
connections across the GNN layers.

III. RELATED WORK

There have been many FPGA overlay accelerators proposed
for CNNs targeting image-related tasks, such as AMD Xil-
inx DPU [23], Intel DLA [17], Nvidia NVDLA [24], TVM

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

VTA [25], and OPU [16]. These CNN overlay accelerators have
similar components: 1) a general architecture design with an
instruction set, and 2) a compiler that generates the instruction
sequence for the target CNN model. Compared with CNN over-
lay accelerators, the design of GNN overlay accelerators is more
challenging: 1) The major computation kernel in CNNs is convo-
lution, which can be efficiently supported by a single hardware
design, such as a 2-D systolic array. In contrast, GNNs have
heterogeneous computation kernels (e.g., GEMM, SpDMM,
and SDDMM), making it more challenging to design a unified
hardware architecture. 2) For a CNN overlay accelerator, the
compiler processes images of regular shapes. For tasks such as
image classification, CNN models accept input images of a fixed
size, and the compiler only needs to generate a single instruction
sequence for these models. In contrast, the input graphs to GNNs
are independent of GNN models, and the real-world graphs have
various sizes and connectivity. The graphs with the same number
of vertices and edges may have highly different structures. Thus,
the software compiler of the GNN overlay accelerator needs
to process graphs of various sizes and connectivity. Complex
data-dependent optimizations (e.g., complex graph partitioning)
in compiler result in large overhead at compilation time, which
may degrade the end-to-end latency (see Section VIII).

In our prior work [10], we proposed a hybrid hardware archi-
tecture to accelerate graph convolutional network (GCN) [19].
In [6], we proposed a partition-centric execution scheme to
accelerate GCN by improving the memory performance. In [26],
we proposed a unified hardware architecture that supports
GEMM and SpDMM in GNNs. Based on our previous works [6],
[10], [26], we propose 1) a unified hardware architecture to sup-
port three key computation kernels in GNNs, including GEMM,
SpDMM, and SDDMM, 2) a general instruction set that enables
software-like programmability and supports a broad range of
GNNs, and 3) a compiler with latency reduction optimizations
(including the computation order optimization in [10], and the
partition-centric execution scheme in [6]) to automatically com-
pile the GNN model into an instruction sequence for hardware
execution.

IV. OVERVIEW

In this section, we introduce the GraphAGILE workflow (Sec-
tion IV-A) and provide an overview of the hardware architecture
(Section IV-B).

A. Overview of GraphAGILE

Target Application Domain: This work targets the inference
process of various GNN-based applications, such as recom-
mendation system [20], social media, citation networks [19],
etc. In the target applications, the graphs can be very large.
For example, a graph in recommendation systems may contain
billions of vertices and edges. GraphAGILE supports a broad
range of GNN models, including (1) widely used GNN models
(GCN [19], GraphSAGE [20], GAT [21], GIN [22], SGC [27]),
(2) GNN models in the design space of GraphGym [18]. In
addition, GraphAGILE has the potential to be applied to other
GNN models. An instance to GraphAGILE is specified by (1)

Fig. 1. Overview of GraphAGILE.

the specifications of a GNN model, (2) the specifications of an
input graph.

Hardware Platform: The hardware platform consists of an
FPGA device, FPGA local DDR memory, and a host processor.
The proposed hardware accelerator is deployed on the FPGA
device. FPGA local DDR memory stores the input graph, the
GNN model, and binary files generated by the compiler. The
compiler is executed on the host processor.

Compiler: Users define the GNN using Pytorch Geometric
(PyG) library. The inputs to the compiler are (1) the computation
graph of the GNN model generated by PyG, and (2) the input
graph. The Input Parser (Fig. 1) extracts the specifications of
the GNN model and the information of the input graph to
generate the Intermediate Representation (IR). After obtaining
IR, the compiler performs the four optimization steps on the
GNN computation graph as shown in Fig. 1. Then, the compiler
generates a sequence of instructions to execute on the hardware
accelerator.

B. Architecture Overview

Fig. 2 depicts the proposed hardware architecture. There are
Npe Processing Elements (PEs) working in parallel. At runtime,
the Scheduler reads the executable/binary file from the FPGA
DDR and assigns the workload to PEs (see Section VI-F).
Each PE has an Instruction Queue (IQ) to receive the incoming
instructions assigned by the Scheduler. The Instruction Decoder
& Control Signal Generator reads the instructions from IQ and
generates the control signals for the hardware modules. Each PE
has a Weight Buffer to store the weight matrices, an Edge Buffer
to store the edges, and a Feature Buffer to store the vertex feature
vectors. Each buffer has a data loader&writer that communicates
with the FPGA DDR. Each PE has an Adaptive Computation

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2583

Fig. 2. Hardware architecture.

Kernel, which is the key novelty in our hardware design. The
Adaptive Computation Kernel (ACK, Fig. 5) can execute various
computation kernels of GNNs.

Hardware Parameters: The proposed architecture is defined
by the following hardware parameters: (1) the number of Pro-
cessing Elements Npe, (2) the dimension of the Adaptive Com-
putation Kernel (ACK)Psys × Psys, (3) dimensions of buffers, in-
cluding the dimension of Weight Buffer NW × Psys, the dimen-
sion of Edge Buffer NE × 3, the dimension of Feature Buffer
NF1 ×NF2, (4) the set of arithmetic operations supported by
the ACK and the Activation Unit.

V. MICROARCHITECTURE

In this section, we first introduce the data format used by
GraphAGILE (Section V-A) and then discuss the key com-
putation kernels in GNNs (Section V-B). Next, we describe
the proposed instruction set of GraphAGILE (Section V-C),
and provide details of the microarchitecture that supports the
proposed instruction set, including the datapath (Section V-D)
and the on-chip memory organization (Section V-E).

A. Graph Data Format

We use hl
i to denote the feature vector of vertex vi at layer l

(Table I). We use the Coordinate Format (COO) to capture all
graph edges. Each edge is a 3-tuple (src, dst, weight) denoting
the source vertex index, destination vertex index, and edge
weight, respectively. We construct the feature matrix H by
stacking feature vectors. Each row of H is the feature vector
of a vertex. Denote A as the sparse adjacency matrix where for
an edge (u, v, w), we have Au,v = w.

B. Computation Kernels in GNNs

We identify the following key computation kernels:
General Dense-Dense Matrix Multiplication (GEMM): φ(),

ψ() and ρ() can involve GEMM, where the feature matrix H
is multiplied by weight matrix W . For example, in the φ() of

GAT [21], H is multiplied by W att for calculating edge weights
((4)). In ψ() and ρ() of GraphSAGE [20], H is multiplied by
W to obtain the updated feature vectors. In general,H is a large
dense matrix with height equal to |V| and W is a small dense
matrix (e.g., W has size 256× 256 in [20]).

Sparse-Dense Matrix Multiplication (SpDMM): According
to (1) and (2), the vertices propagate the messages ml+1

e along
the outgoing edges. Then each vertex aggregates the incoming
messages through ρ(). The above message passing process is
equivalent to SpDMM A ·H .

Sampled Dense-Dense Matrix Multiplication (SDDMM): Ac-
cording to [8], in edge-wise computation ((1)), many GNN mod-
els calculate edge weights using the dot product of the feature
vectors of the source and destination vertices. The above compu-
tation process corresponds to SDDMM operationA) (HHT),
where) is the element-wise multiplication. Sampled means that
the required results are sampled from (HHT) based on the
non-zero elements in A. For each non-zero element Ai,j . we
calculate Ai,j = 〈Hi,Hj〉. Therefore, the basic operation in
SDDMM is the vector inner product.

Other Computation Kernels: GNNs also involve vector ad-
dition (e.g., residual connection), element-wise activation (e.g.,
ReLU, Softmax), batch normalization.

C. Instruction Set

1) High-Level Instructions: The proposed instruction set is
comprised of high-level instructions and microcode. All the
high-level instructions have a uniform 128-bit length, and the in-
struction fields are depicted in Fig. 3. The OPCODE field indicates
the type of instruction. Other fields contain instruction-specific
information.! Control and Scheduling Instruction (CSI): A CSI contains

the meta data of a computation layer in the intermedi-
ate representation (Section VI-A). Based on the CSI, the
scheduler assigns the workloads of a layer to the PEs.! Memory Read/Write Instruction: A memory read/write
instruction initiates data communication (model weights,
edges, vertex feature vectors) with FPGA DDR memory.! GEMM Instruction: A GEMM instruction contains the
information (e.g., matrix size, buffer ID that stores the
matrices) of the matrix multiplication between the weight
matrix (in the Weight Buffer) and feature matrix (in the
Feature Buffer).! SpDMM Instruction: A SpDMM instruction performs mul-
tiplication of A and H . The instruction specifies the num-
ber of non-zero elements in A (which enables edge-centric
computation of SpDMM. See Section V-D) and buffer ID
that stores A.! SDDMM Instruction: Similar to the SpMM instruction, it
specifies the number of non-zero elements in A and the
buffer IDs that store A and H .! Other instructions: There are other instructions including
the Initialization Instruction, Activation Instruction, etc.

2) Microcode: A high-level instruction defines a computa-
tion task in coarse-grained granularity. To execute a high-level
instruction, the Instruction Decoder & Control Signal Generator

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2584 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Fig. 3. GraphAGILE high-level instruction fields.

Fig. 4. GEMM between a block of feature matrix HB (stored in Feature
Buffer) and a block of weight matrix WB (stored in Weight Buffer).

translates it to a sequence of microcode that has fine-grained
granularity that can be executed by ACK. The translation is
through looking up the Microcode Table. For example, a GEMM
instruction defines the multiplication of a large feature matrix
(stored in Feature Buffer) and a large weight matrix (stored
in Weight Buffer). The GEMM instruction is decomposed into
block matrix multiplication (BlockMM), where block size corre-
sponds to the dimension of ACK. The microcodes of GEMM use
a three-level nested loop to execute the BlockMM on ACK. The
microcodes of GEMM, SpDMM, and SDDMM are described
as follows:

Microcode of GEMM Instructions: A high-level GEMM
instruction is translated to a sequence of microcode to execute the
GEMM between a block of feature matrix HB ∈ RSB×Len and
a block of weight matrix WB ∈ RLen×GB . The computation
process of GEMM is illustrated in Fig. 4. The Pseudocode
of the sequence of microcode is described in Algorithm 1. In
GEMM mode, the Adaptive Computation Kernel (ACK) works
as a 2-D systolic array of size psys × psys using output-stationary

Algorithm 1: Pseudocode of GEMM Microcode.
Input: HB ; WB

Output: Hout

1: for i← 1 to SB
psys

do

2: for j ← 1 to GB
psys

do
3: // Pipelined execution of Hout:ij = HT :i ×W T :j

4: for k ← 1 to Len Parallel do
5: Load the psys data of kth column of HT :i and send

them to ACK
6: Load the psys data of kth row of W T :j and send

them to ACK

Algorithm 2: Pseudocode of SpDMM Microcode.
Input: HB ; AB ; number of edges in AB : Ne

Output: Hout

1: for i← 1 to 2Ne
psys

do !Pipelined execution of SpDMM

2: Load psys

2 unprocessed edges from AB in Edge Buffer
3: Send the psys

2 edges to Index Shuffle Network (ISN)

dataflow. In each clock cycle, ACK receives psys data from
Feature Buffer and psys data from Weight Buffer, respectively.
In Feature Buffer, HB is further partitioned to small data tiles
along row dimensions, and each data tile HT :i has psys rows.
Similarly, in Weight Buffer, WB is partitioned to small data
tiles along column dimension and each data tile W T :i has psys

columns of WB . Hout:ij denotes the result of the multiplication
between HT :i and W T :j .

Microcode of SpDMM Instructions: A high-level SpDMM
instruction is translated to a sequence of microcode to execute
the SpDMM between a block of feature matrix HB (stored
in the Feature Buffer) and a block of sparse adjacency matrix
AB (stored in the Edge Buffer). The execution of SpDMM is
edge-centric (See Section V-D). Therefore, in each clock cycle,
psys

2 unprocessed edges inAB are fetched from Edge Buffer. The
psys

2 edges are sent to Index Shuffle Network to execute feature
aggregation.

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2585

Algorithm 3: Pseudocode of SDDMM Microcode.
Input: HB ; AB ; number of edges in AB : Ne

Output: weights of all the edges in AB

1: for i← 1 to 2Ne
psys

do !Pipelined execution of SDDMM

2: Load psys

2 unprocessed edges from AB in Edge Buffer
3: Extract the psys

2 src indices and psys

2 dst indices
4: Send the psys indices to ISN

Fig. 5. Adaptive Computation Kernel (when psys = 8) with ISN and DSN.
The interconnections among ALUs are specified in Fig. 6.

Microcode of SDDMM Instructions: A high-level SDDMM
instruction is translated to a sequence of microcode to execute
the SDDMM using a block of feature matrix HB (stored in
the Feature Buffer) and a block of sparse adjacency matrix AB

(stored in the Edge Buffer). Similar to SpDMM, the execution of
SDDMM is edge-centric (See Section V-D). In each clock cycle,
psys

2 unprocessed edges inAB are fetched from Edge Buffer. The
psys

2 src indices and psys

2 dst indices are extracted from the psys

2
unprocessed edges. Then, the total psys indices are sent to Index
Shuffle Network (ISN) to execute the SDDMM of AB and HB .

D. Various Execution Modes

As shown in Fig. 5, an ACK contains an array of Arithmetic
Logic Units (ALUs) of size psys × psys, where psys is the power of
2. An ALU can execute various arithmetic operations, including
Multiplication, Addition, Accumulation, Min, Max, etc. The
interconnections among ALUs are shown in Fig. 6. The array
of ALUs is divided into Update Units and Reduce Units. An
Update Unit or a Reduce Unit has size (psys/2)× 2. The Feature
Buffer has psys parallel memory banks. hi is stored in bank
(i mod psys). There are two interconnection networks – Index
Shuffle Network (ISN) and Data Shuffle Network (DSN). The
ISN routes edges to the memory banks of Feature Buffer for
fetching the features of incident vertices. The DSN routes the
input data (vertex features with the edge) to Adaptive Computa-
tion Kernel. The routing is based on the least significant log(psys)
bits of the vertex index. The ACK has various execution modes,
including GEMM mode, SpDMM mode, SDDMM mode, and
Vector-Addition mode. Each ALU maintains multiplexers with
control logic to select the input and output ports for an execution

Algorithm 4: SpDMM Following Scatter-Gather Paradigm.
while not done do

for each edge e(src, dst, weight) do !Scatter Phase
Fetch src.features from Feature Buffer
Form input pair (src.features, e)

for each input pair do !Gather Phase
Produce u←Update(src.features, e.weight)
Update vdst ← Reduce(u.features)

mode. The mode switching incurs the overhead of only one clock
cycle.

GEMM Mode: The array of ALUs is organized as a two-
dimensional systolic array with fully localized interconnection.
GEMM mode supports dense matrix multiplication of feature
matrix H and weight matrix W . Weight Buffer streams the
weight matrix into the systolic array, and Feature Buffer streams
multiple vertex feature vectors into the systolic array. Systolic
array of size psys × psys executes p2sys Multiply-Accumulation
operations per clock cycle.

SpDMM Mode: As shown in Algorithm 4, SpDMM is ex-
ecuted following the Scatter-Gather paradigm. The array of
ALUs in ACK is divided into multiple Update Units and Reduce
Units. In each Update Unit, the ALUs are organized as a vector
multiplier that multiplies the vertex feature vector by the edge
weight. In each Reduce Unit, the ALUs execute the element-
wise reduction operation ρ(). Suppose a vertex is defined by
(src, features), where src denotes the source vertex index and
the features is the feature vector of the source vertex. The gen-
erated intermediate results by the Update Units are represented
by (dst, features). The intermediate results are applied to the
destination vertex vdst by the Reduce Unit. An Update Unit
and a Reduce Unit form an “UR-pipeline”. The computation
of SpDMM is driven by unprocessed edges (i.e., edge-centric
processing [28]). Unprocessed edges are fetched from Edge
Buffer to ISN. In ISN, an edge e is routed to the corresponding
memory bank in Feature Buffer to fetch src.features, thus
forming the input pair (src.features, e). Then, the DSN routes
the input pairs to the UR pipelines based on the dst of the edge.
The input pairs having e.dst = i× psys + k (0 " k < psys) will
be routed to the +k/2,th UR pipeline. This is because the output
port of +k/2,th UR pipeline is connected to bank +k/2, and
bank +k/2,+ 1 of Feature Buffer, where ve.dst is stored. Then,
the UR pipeline processes the input pair, and the intermediate
result generated by the input pair is applied to the destination
vertex ve.dst. psys/2 input pairs can be processed by the psys/2
UR pipelines concurrently.

SDDMM Mode: The basic operation is the inner product of
two feature vectors. For each edge (src, dst), the feature vectors
hsrc and hdst are fetched from the Feature Buffer. The result
of the inner product of hsrc and hdst becomes the weight of
the edge (src, dst). To support the inner-product, the ALUs
in a UR pipeline form a multiply-adder tree. The topological
structure of the multiply-adder tree is shown in Fig. 6. Similar
to SpDMM, the execution of SDDMM is edge-centric. For an
edge (src, dst), src and dst are routed to the corresponding

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Fig. 6. The datapath of GEMM mode, SpDMM mode, SDDMM mode.

memory banks of Feature Buffer to fetch hsrc and hdst. The
inner product of hsrc and hdst is executed by a UR pipeline.
The ACK can execute psys/2 vector inner products of length psys

during each clock cycle. The dot product of two feature vectors
of length |hi| is executed in

⌈
|hi|
psys

⌉
cycles and the intermediate

result is stored at the root node of the adder tree for accumulation.
Vector Addition Mode: In Vector Addition Mode, the basic

operation is the addition of two feature vectors. An Update Unit
(See Fig. 5) works as a vector adder. To add hu and hv, the
indices u and v are routed through Index Shuffle Network (ISN)
to Feature Buffer to fetchhu andhv. Thenhu andhv are routed to
an Update Unit through Data Shuffle Network (DSN) to perform
vector addition. The results will bypass the Reduction Unit and
are sent back to Feature Buffer. The ACK can execute psys/2
vector additions of length psys at each clock cycle. Two feature
vectors of length |hi| can be added in - |hi|

psys
. cycles.

E. Parallel On-Chip Memory Access

The Feature Buffer supports parallel memory access patterns
of various computation modes enabled by ISN and DSN. Feature
Buffer has psys parallel memory banks, and the feature vector
of vertex vi is stored in bank (i mod psys). Edge Buffer can
output psys edges at each clock cycle by having port width psysde,
where de is the bit width of an edge. ISN performs all-to-all
interconnection between Edge Buffer and Feature Buffer. DSN
performs all-to-all interconnection between Feature Buffer and
ACK. The ISN and the DSN are implemented using the butterfly
network [29]

Parallel Memory Accesses in GEMM Mode: The ACK di-
rectly fetches psys features from psys memory banks per clock
cycle. No data shuffling is required for GEMM. The Weight
Buffer also has psys memory banks that can output psys data of
the weight matrix each clock cycle.

Parallel Memory Accesses in SpDMM Mode: psys/2 edges
{e1, e2, . . ., epsys/2} are sent to ISN simultaneously. The edges
are routed to the corresponding memory banks of Feature Buffer
based on their src. psys/2 edges will generate psys/2 input pairs
(src.features, e) after fetching the feature vectors. Then the
psys/2 input pairs are routed to the corresponding UR pipelines
based on their e.dst.

Parallel Memory Accesses in SDDMM Mode: psys/2 edges
{e1, e2, . . ., epsys/2} are fetched from the Edge Buffer in
each cycle. The psys/2 src indices and psys/2 dst indices

{src1, dst1, src2, dst2, . . ., srcpsys/2, dstpsys/2} of psys/2 edges
are sent to psys input ports of ISN. The ISN routes the psys indices
to the Feature Buffer to fetch the psys vertex feature vectors from
the Feature Buffer. Then, the psys feature vectors are routed to
the psys/2 UR pipelines of ACK. The ith UR pipeline performs
the inner product of hsrci and hdsti .

VI. COMPILER

We develop a compiler that reads the user-defined GNN model
and input graph, and generates a sequence of instructions. User
defines the GNN model using the high-level API in Pytorch
Geometric (PyG) Library [8], which is a general framework for
GNNs. There are two phases for instruction generation – trans-
lation phase and optimization phase. In the translation phase,
the Input Parser generates the Intermediate Representation (IR)
from the inputs. In the optimization phase, the compiler performs
four-step optimizations and generates the output instruction
sequence: 1) Step 1: the compiler reorders the computation
graph based on the theoretical computation complexity. 2) Step
2: the compiler merges some adjacent layers to communicate
intermediate data through on-chip memory. 3) Step 3: the com-
piler performs data partitioning based on the available on-chip
memory to optimize off-chip data communication and enable
dynamic task scheduling, 4) Step 4: the compiler maps various
kernels to ACK, and performs task scheduling to hide the data
communication overhead and achieve dynamic load balance.

A. Intermediate Representation

We define a unified Intermediate Representation (IR) for
each type of computation layer (Table II). A GNN layer can
be decomposed into a sequence of computation layers. We
identify six types of computation layers – Aggregate, Linear,
Vector-Inner, Vector-Add, Activation and BatchNorm. The six
types of layers can represent a broad range of models because (1)
the key computation kernels of GNNs (SpDMM, GEMM, and
SDDMM) can be represented as Aggregate, Linear, or Vector-
Inner, (2) the auxiliary kernels such as non-linear activation,
residual connection, batch normalization can be represented
using others lightweight layers (e.g., Vector-Add, Activation,
and BatchNorm). The compiler translates the GNN model to
a computation graph, with each node being the IR of a layer.
For example, the GNN model [19] in Listing 1 is translated to
the computation graph in Fig. 7. The abstraction of each type of
computation layer is described in the following:

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2587

TABLE II
IR OF A COMPUTATION LAYER

Listing 1. An user-defined GNN model using PyG [8]

Fig. 7. The computation graph of the GNN in Listing 1.

Aggregate layer: The inputs are the vertex feature vectors
{hl−1

i ∈ Rfin : vi ∈ V} and the edges {e : e ∈ E}. The output
feature vector of each vertex is calculated by

hl
i = AggOp(Aj,i × hl−1

j , j ∈ N (i)),hl
i ∈ Rfout , (5)

where fin = fout and AggOp() is the element-wise Aggregation
Operator defined in Table II (e.g., Max, Sum). The Aggregate
layer can be executed using SpDMM mode.

Linear Layer: The inputs are the vertex feature vectors
{hl−1

i ∈ Rfin : vi ∈ V} and weight matrix W ∈ Rfin×fout . The

output feature vector of each vertex is calculated by

Hout = [hl
1;h

l
2; . . .;h

l
|V|] = [hl−1

1 W ;hl−1
2 W ; . . .;hl−1

|V| W]

= [hl−1
1 ;hl−1

2 ; . . .;hl−1
|V|]W = H inW , (6)

where [hl−1
1 ;hl−1

2 ; . . .;hl−1
|V|] is the input feature matrix H in and

[hl
1;h

l
2; . . .;h

l
|V|] is the output feature matrix Hout. It can be

executed using GEMM mode.
Vector-Inner layer: The inputs are the vertex feature vec-

tors {hl−1
i ∈ Rfin : vi ∈ V} and the edges e(i, j) without edge

weight. The output is the weight of each edge calculated by

e(i, j).weight = 〈hl−1
i ,hl−1

j 〉, e(i, j) ∈ E . (7)

Vector-Add Layer: The Vector-Add layer adds feature vectors
of two layers. This layer can be used to capture the residue
connection design.

Activation Layer: The Activation layer applies the element-
wise activation function (e.g., ReLU, PReLU, Swish, Exp) to
vertex features or edge weights.

BatchNorm Layer: The input is the feature vector of each
vertex {hl−1

i ∈ Rfin : vi ∈ V}. A batch normalization opera-
tion [30] is applied to each vertex feature.

B. IR Generation Workflow

The proposed intermediate representation consists of two
components: LayerIR and ModelIR. LayerIR is the IR of a
computation layer that stores the parameters of a layer, as shown
in Table II. ModelIR stores a list of LayerIRs and represents the
computation graph corresponding to the target GNN model and
the input graph. The implementation of LayerIR and ModelIR
is demonstrated in Listing 2.

During compilation, the compiler first translates each compu-
tation layer into a LayerIR. Then, all the LayerIRs are connected
to form a ModelIR, which represents the computation graph of
the input GNN model and the input graph. An example of the IR
generation process for the GNN model in Listing 1 is illustrated
in Listing 3 (Lines 12–39). Note that for illustration, the example
in Listing 3 is an unfolded view of the IR generation process.
In the actual implementation, the input parser automatically
generates the ModelIR using afor loop. After IR generation, the
compiler performs compiler optimizations, as shown in Listing
3 (Lines 42–46).

C. Computation Order Optimization

We design the general rule for the computation order opti-
mization. First, we define the linear operator in the aggregate
layer:

Definition 1. In an Aggregate layer, the aggregation operator
AggOp() is a linear operator if AggOp() satisfies the following
two properties:! AggOp(hx + hy) = AggOp(hx) + AggOp(hy) for any

hx ∈ Rf and hy ∈ Rf .! AggOp(chx) = cAggOp(hx) for any hx ∈ Rf and any
constant c.

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2588 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Listing 2. The implementation of LayerIR and ModelIR

For example, Sum() is a linear operator while Max() is a
non-linear operator.

Then, we identify the exchangeability of computation order
in Theorem 1:

Theorem 1. For a pair of adjacent Aggregate layer and Linear
Layer, if the Aggregation operator AggOp() of the Aggregate
layer is a linear operator, we can exchange the computation
order of the Aggregate layer and Linear Layer.

Proof. The computation process of the adjacent Aggregate
layer and Linear layer can be expressed as

hl
i = AggOp(Aj,i × hl−1

j ×W , j ∈ N (i)), (8)

where AggOp() is the aggregation operator of the Aggregate
layer and the W is the weight matrix of the Linear layer. Since
the operator AggOp() is a linear operator, the above equation
can be written as

hl
i = AggOp(Aj,i × hl−1

j , j ∈ N (i))×W . (9)

Therefore, the computation order of this pair of Aggregate layer
and Linear layer can be exchanged without affecting the final
result.

The computation order can affect the total computation com-
plexity. The computation complexity (CC) of an Aggregate layer

Listing 3. The example of IR generation

is

CCAggregate(fin, fout, |E|) = 2 · fin · |E|, (fin = fout). (10)

The computation complexity (CC) of a Linear layer is

CCLinear(fin, fout, |V|) = 2 · fin · fout · |V|. (11)

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2589

Algorithm 5: Computation Order Optimizaiton.
Input: IR of input GNN model, L: number of layers in IR
Output: Optimized IR
1: for l← 1 to L do
2: # Sequentially check the following conditions
3: Check: If layer l has only one child layer: layer m
4: Check: If layer m has only one parent layer: layer l
5: Check: If layer l, m is a {Aggregate, Linear} pair
6: Check: If the operator of the Aggregate layer is linear
7: Check: If exchanging layer l, m reduces computation
8: complexity
9: # Perform conditional computation order exchange
10: if all the above conditions are met then
11: Exchange layer l and layer m in IR

Suppose the feature vector to the Aggregate-Linear pair (An
Aggregate layer followed by a Linear layer) has length f1, the
output feature vector has length f2. The computation complexity
of this Aggregate-Linear pair is

CCAggregate-Linear = 2 · f1 · |E|+ 2 · f1 · f2 · |V|. (12)

If the Aggregate layer and the Linear layer is exchangeable, the
computation complexity after the exchange is

CCLinear-Aggregate = 2 · f1 · f2 · |V|+ 2 · f2 · |E|. (13)

Theorem 2. Based on (12) and (13), if f1 > f2, Linear-
Aggregate execution order has lower complexity. If f2 > f1
Aggregate-Linear execution order has lower complexity. if f1 =
f2, Aggregate-Linear execution order and Linear-Aggregate
execution order have the same computation complexity.

Based on Theorems 1 and 2, we propose the computation
order optimization as shown in Algorithm 5 (Section VI-C). We
iteratively apply Algorithm 5 until no layers can be exchanged.

D. Layer Fusion

After computation order optimization, the compiler performs
layer fusion consisting of two types: Activation Fusion and
BatchNorm Fusion.

Activation Fusion: An Activation layer can be merged into its
adjacent layer, including Aggregate layer, Linear layer, Vector-
Inner layer, or Vector-Add layer. Through Activation Fusion, no
independent Activation layer is required, which eliminates the
external memory traffic between this Activation layer and its
adjacent layer.

BatchNorm Fusion: For inference, the coefficients
(µ,σ, ε, γ,β) in the element-wise batch normalization
operation are fixed: y = x−µ√

σ2+ε
· γ + β. Moreover, the batch

normalization operation is a linear operator. Therefore, the
BatchNorm layer can be merged with the adjacent Linear
layer. The Linear layer incorporates the batch normalization
operation into its weights and bias. After BatchNorm Fusion, the
BatchNorm layer is eliminated, which reduces total computation
complexity and external memory traffic. After layer fusion, the
number of computation layers and the computation order of the
layers are determined.

Fig. 8. Data partitioning and memory mapping.

E. Data Partitioning

In real-world applications, input graphs can be very large.
The compiler performs data partitioning for each layer, starting
from the first layer to the last layer. We propose the Fiber-Shard
data partitioning (Fig. 8) to fit the available on-chip memory.
In each layer, the graph has an adjacency matrix A ∈ R|V|×|V|

and a feature matrix H ∈ R|V|×f that need to be partitioned.
A contains all the edges and is partitioned to shards along the
row dimension. Each shard has N1 rows and is partitioned into
subshards, with each subshard having N1 columns. The edges
in a subshard are stored sequentially in DDR memory, and the
subshards in a shard are stored in the contiguous region of DDR
memory, as shown in Fig. 8. The Feature matrixH is partitioned
into fibers along column dimension, and each fiber is assigned
N2 columns. Each fiber is further partitioned into subfibers, and
each subfiber has N1 rows. For simplicity, A(i, j) denotes the
subshard j of shard i. H(i, j) denotes the subfiber j of fiber i.
The same partitioning configuration (N1, N2) is applied to each
layer. The proposed partitioning strategy enables the proposed
partition-centric execution scheme (Algorithms 6, 7, and 8),
which further ensures that the outputs of a layer maintain the
same partitioning configuration (N1,N2) as the input. Therefore,
the outputs of a layer can be directly used as the input for the next
layer since each layer has the same partitioning configuration.
Therefore, no data re-partitioning is required between layers.

Partition-Centric Execution Scheme: Based on the Fiber-
Shard data partitioning, we propose the partition-centric exe-
cution scheme that the execution of a layer is decomposed into a
sequence of operations that operate on the data tiles (subshard or
subfiber). For example, the execution of an Aggregate layer is de-
scribed in Algorithm 6. The proposed partition-centric execution
scheme leads to reduced memory traffic and random memory
access. For the detailed theoretical and empirical analysis of
executing the Aggregate layer, please see our previous work [6].
The proposed partition-centric execution scheme has the fol-
lowing benefits: (1) it enables our block-based kernel mapping
(Section VI-F) where each Tiling Block can be executed by a
PE independently, and there is no data dependency among Tiling
Blocks within a layer, and (2) it enables the unified dynamical
task scheduling for each computation layer (Section VI-F).

Data Partitioning of a Linear Layer: A Linear layer performs
matrix multiplication of input feature matrix H in ∈ R|V|×fin

and weight matrix W ∈ Rfin×fout . Output feature matrix is
Hout = H inW . For the Linear layer, we perform the standard
block matrix multiplication. For the Linear layer, the data par-
titioning keeps the same partitioning configuration as described

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2590 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Algorithm 6: Partition-Centric Execution Scheme of an
Aggregate Layer.

Algorithm 7: Partition-Centric Execution Scheme of a
Vector-Inn Layer.

on Section VI-E for the input feature matrix H in and output
feature matrix Hout. The basic computation kernel of a Linear
layer is the GEMM.

Data Partitioning of a Vector-Inn Layer: A Vector-Inn layer is
to sample the results using adjacent matrix Ain from (HinHT

in),
which is denoted as Ain) (HinHT

in). The output Aout is the
combination of Ain and the weight value of each non-zero
position in Ain. The Vector-Inn layer exploits the same parti-
tioning strategy (See Section VI-E) as the Aggregate Layer. The
execution scheme of a Vector-Inn layer is shown in Algorithm 7.

Data Partitioning of a Vector-Add Layer: The inputs to a
Vector-Add layer are two input feature matrices of the same
size – H l1

in and H l2
in . The output feature matrix Hout is the

addition of two matrices: Hout = H l1
in +H l2

in . The execution
of the Vector-Add layer is shown in Algorithm 8.

F. Kernel Mapping and Task Scheduling

Kernel Mapping: Through data partitioning, each layer in the
IR is expressed as nested loops (e.g., Algorithm 6) according to

Algorithm 8: Partition-Centric Execution Scheme of an
Vector-Add Layer.

Algorithm 9: Task Scheduling.
Input: A and H in of input graph; weight matrices; L:
number of Layer Blocks.

Output: output embedding of each vertex
for l← 1 to L do

Load CSI of Layer Block l to Scheduler
for each Tiling block in Layer Block l parallel do

if there is an idle PE: PEp then
Assign this Tiling Block to PEp

PEp Executes this Tiling Block
Wait until all the Tiling Blocks are executed

the proposed partition-centric execution scheme. The compiler
maps each layer to a sequence of high-level instructions. The ker-
nel mapping is performed hierarchically. Each layer is mapped
to a block of instructions called Layer Block (e.g., Algorithm 6).
Each Layer Block contains a Control and Scheduling Instruction
(CSI) and a set of Tiling Blocks. The Tiling Blocks are generated
by unfolding the outer nested loops of a Layer Block. For
example, for an Aggregate layer, the generated CSI contains the
information of Line 2–3 in Algorithm 6, and fin

N2
× |V |

N1
Tiling

Blocks are generated by unfolding the outer loops. A Tiling
Block has an inseparable sequence of high-level instructions
that will be executed by a PE.

Task Scheduling: As shown in Algorithm 9, GraphAGILE
executes the GNN inference layer by layer. For each Layer
Block, the Scheduler loads the heading Control and Scheduling
Instruction (CSI). Then, the Scheduler assigns the Tiling Blocks
to the idle PEs, forming a dynamic load balancing strategy.
Each PE maintains a 1-bit output port to indicate its current
status (Idle/Busy). When all the Tiling Blocks within a layer
are completely finished, GraphAGILE starts to execute the next
layer. Within each Tiling Block, the computation instructions
and memory read/write instructions are interleaved. Therefore,
we exploit the double buffering technique to overlap the com-
putation and data communication. Specifically, Instruction De-
coder & Control Signal Generator needs to issue new memory
read instructions when the old computation instruction is not
finished, which may incur Write after Read (WAR) data hazard.

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2591

Fig. 9. The mapping of GraphAGILE on Alveo U250.

Therefore, each buffer in a PE maintains a hardware mutex im-
plemented as a one-bit register. After a memory read instruction
loads data to a buffer, it locks the mutex of this buffer. After the
computation instruction finishes using the data from this buffer,
the mutex is unlocked. When a memory read instruction is stalled
by a lock, the Instruction Decoder & Control Signal Generator
will stop issuing new instructions. Locking/unlocking the mutex
is annotated in the high-level instructions by the compiler. Such
annotation is through scanning the data dependency among high-
level instructions within each Tiling Block, which has negligible
complexity. After kernel mapping and mutex annotation, the
compiler generates the executable file.

VII. IMPLEMENTATION DETAILS

We conduct comprehensive experiments to evaluate the per-
formance of GraphAGILE. Section VII introduces the imple-
mentation details and experimental settings, while Section VIII
presents the detailed experimental results, including the execu-
tion time (e.g., end-to-end latency, latency of compilation, and
latency of hardware execution) (Section VIII-A), the impact of
compiler optimizations (Section VIII-B), cross-platform com-
parison (Section VIII-C), and the comparison with state-of-the-
art accelerators (Section VIII-D).

We implement the hardware design on a state-of-the-art FPGA
platform, Xilinx Alveo U250, consisting of four Super Logic
Regions (SLRs). The FPGA DDR memory has four channels
with 77 GB/s memory bandwidth. On U250, we implement 8
PEs where each SLR contains 2 PEs of psys = 16 as shown
in Fig. 9. We develop GraphAGILE using Verilog HDL. We
synthesize the design and perform Place&Route using Xilinx
Vivado 2021.1 to obtain the frequency and resource utilization
report. GraphAGILE on Alveo U250 consumes 778 K LUTs
(45%), 10,240 DSPs (83%), 1853 BRAMs (69%) and 1,050
URAMs (82%). GraphAGILE runs at 300 MHz. Then, we build a
cycle-accurate simulator for the hardware accelerator to evaluate
its performance. We use Ramulator [31] to simulate the perfor-
mance of FPGA DDR memory. We develop the compiler using
Python. At runtime, the compiler reads the user-defined GNN
models (defined using Pytorch Geometric library (PyG) [32])
and input graphs. Then, the compiler generates the binary file
for the hardware accelerator and performs preprocessing for the
input graph. After that, the binary file, GNN model weights, and
propocessed input graph are sent to the FPGA DDR memory
through PCIe. For performance simulation, we set the PCIe
bandwidth to be 31.5 GB/s which is the same as the baseline
CPU-GPU platform for a fair comparison. The Alveo U250

board has four DDR memories, each connected to an SLR, and
each DDR memory has capacity of 16 GB. The DDR memory
on the Alveo U250 board is sufficient to store the input graphs
used in our experiments (Table IV). For example, for the largest
graph used in our experiments, Amazon-Products, has a total
size of 7.2 GB, including the vertex features and the edges.

Arithmetic Logic Unit (ALU): The proposed ALU can support
multiplication, addition, multiply-add operation, comparison
(Mux, Min), ReLU activation, PReLU activation. Each PE also
has an Activation Unit and the Activation Unit has 16 Activation
Elements (See Fig. 11) that work in parallel. The Activation El-
ement supports exponential function exp(x), sigmoid function
1/(1+ exp(x)), division.

Routing Network: The proposed Index Shuffle Network (ISN)
and Data Shuffle Network (DSN) are implemented using Buffer-
fly Network that is proposed in [29]. The structure of the Buffer-
fly Network is depicted in Fig. 12. The benefits of using this
Bufferfly Network are: (1) the Bufferfly Network is hardware
efficient that only consumes a small number of ALUs, (2) there
are intermediate buffers in the Switches that can buffer data when
there is network congestion. As shown in [29], such intermediate
buffers lead to high-throughput data routing.

RAW Unit: In SpDMM mode, read-after-write (RAW) data
hazard may occur when accumulators in the Gather Unit read
the old feature vertex vector from the Feature/Result Buffer.
To resolve the RAW data hazard, we implement a RAW Unit
before Gather Unit as shown in Fig. 13. In the RAW Unit, there
is a RAW detector to detect the RAW data hazard and a small
Reorder Buffer (implemented as a FIFO) to cache the input data
when RAW is detected. The data in the Reorder Buffer will be
sent to the Gather Unit when there is no RAW data hazard.

System Details of Alveo U250: Fig. 11 depicts the structure
of an ALU in the ACK. Each PE has an Index Shuffle Network
and a Data Shuffle Network. The Index Shuffle Network has
16 input ports and 16 output ports. Each port has 96 bits since
an edge is 96-bit (32-bit source index, 32-bit destination index,
32-bit edge weight). The Data shuffle network also has 16 input
ports and 16 output ports. Each port has (16 + 3)× 32 bits
where 16× 32 bits are used for vector features and 3× 32
bits are used for edges. Both Index Shuffle Network and Data
Shuffle Network are implemented using a butterfly network.
Each PE has an Edge Buffer of size 2 MB, a Feature Buffer
of size 3 MB, and a Weight Buffer of size 1 MB. We exploit
the double buffering technique for Edge Buffer and Weight
Buffer and the triple buffering technique for Feature Buffer. Such
triple/double buffering enables the overlapping of computation
and data communication. The dimension of a Weight Buffer
is (NW = 16384)× (Psys = 16), the dimension of an Edge
Buffer is (NE = 65K)× 3, the dimension of a Feature Buffer
is (NF1 = 16384)× (NF2 = 16).

Resource Utilization: Table III shows the resource utilization
of various FPGA accelerators in the experiments.

VIII. EVALUATION RESULTS

Fig. 10 shows the IR of various types of widely-used GNN
layers evaluated in our experiments.

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2592 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Fig. 10. Intermediate Representations of state-of-the-art GNN layers.

Fig. 11. The structure of the ALU in ACK and the structure of an Activation
Element in Activation Unit.

Fig. 12. The structure of ISN and DSN (psys = 8).

Fig. 13. RAW unit.

TABLE III
SPECIFICATIONS OF FPGA ACCELERATORS IN THE EXPERIMENTS

TABLE IV
DATASET STATISTICS

TABLE V
EVALUATED GNN MODELS IN THE EXPERIMENTS

Baselines: As shown in Table VI, we compare our design with
state-of-the-art baselines: CPU-only platform (AMD Ryzen
3990x), CPU-GPU (AMD Ryzen 3990x + Nvidia RTX3090),
HyGCN [5], BoostGCN [6], AWB-GCN [11].

Benchmarks: We use eight GNN models in Table V and seven
graph datasets1 in Table IV as benchmarks.

Performance Metric: We evaluate the performance by:! End-to-End (E2E) latency TE2E: The TE2E of GraphAGILE
includes (1) the latency of software compilation TLoC on
the host processor, (2) the latency of CPU-FPGA data
movement Tcomm, and (3) the latency of executing GNN
inference on the accelerator (Latency of hardware execu-
tion TLoH). The latency of moving data (processed graph,
GNN model, binary file) from host platform to FPGA DDR
Tcomm is estimated through: Tcomm = total data volume

sustained PCIe bandwidth .
Then, the end-to-end latency of GraphAGILE is calculated
by: TE2E = TLoC + Tcomm + TLoH.! Latency of compilation (LoC) TLoC: The latency of compi-
lation is the overhead of software or hardware compilation.
The measured TLoC of GraphAGILE is the time duration

1The dataset Reddit in Table IV is from a pre-existing publicly available third
party dataset [20].

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2593

TABLE VI
SPECIFICATIONS OF PLATFORMS

TABLE VII
END-TO-END LATENCY, LATENCY OF COMPILATION, LATENCY OF HARDWARE

EXECUTION

from the time the GNN model (defined using PyG API) and
the input graph are provided, to the time the input graph
is processed and the instruction sequence is generated by
the compiler. For the design automation frameworks [6],
[12], TLoC includes hardware meta compilation, hardware
synthesis, Place&Route, and FPGA reconfiguration.! Latency of hardware execution (LoH) TLoH: Latency of
hardware execution is the latency of executing the binary
code on the hardware accelerator. Before runtime, the GNN
model, processed input graph, and binary file are already
stored in the FPGA DDR.

A. Execution Time and Size of Binary File

Execution Time: Table VII shows the measured latency of
GraphAGILE. We observe that the software compilation time
ranges from 2 ms to 300 ms, which is proportional to the size of
the input graph. The reason is that data partitioning is the most
time-consuming operation with complexity O(|V|+ |E|). The
design automation frameworks (e.g., DeepBurning-GL [12])
undergo hours of overhead to perform hardware synthesis and

TABLE VIII
THE SIZE (MB) OF THE GENERATED BINARY FILES [ROW 1–8], AND THE SIZE

(MB) OF INPUT GRAPHS [ROW 9]

Place&Route. Thus, the proposed software compiler is fast and
lightweight.

Size of Binary File: Table VIII shows the size of the gener-
ated binary files. Compared with the sizes of input graphs or
the inter-layer intermediate results, the size of binary files is
negligible. Therefore, loading the binary files from the FPGA
external DDR memory to the on-chip scheduler results in a small
amount of memory traffic. The size of the binary files is small
because the high-level instructions are compact and powerful;
For example, a single high-level instruction (128 bits) can define
the computation task of a large data partition (up to 16,384
vertices).

B. Impact of the Optimizations

To show the effectiveness of the proposed optimizations, we
compare TLoH of using the compiler optimizations and TLoH

without compiler optimizations. Figs. 14, 15, and 16 show the
impact of (1) computation order optimization, (2) layer fusion,
and (3) overlapping the computation and data communication
(in task scheduling), respectively.

Computation Order Optimization: Computation order opti-
mization leads to 82%, 9.6%, 9.9%, 6.3%, 1.3%, 121%, 260%,
0% average speedup on b1-b8, respectively. The computation
order optimization can reduce both the computation complexity
and external memory traffic of the involved Aggregate layers.
The computation order optimization has no effect on model b8,
because model b8 uses a preprocessing MLP layer to transform
the feature vectors to a uniform length, which eliminates the
opportunities for computation order optimization. Note that the

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2594 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Fig. 14. Impact of computation order optimization on the latency of hardware execution (LoH) TLoH.

Fig. 15. Impact of layer fusion on the latency of hardware execution (LoH) TLoH.

Fig. 16. Impact of computation and communication overlapping on the latency of hardware execution (LoH) TLoH.

Computation order optimization itself has a small overhead
(≈ 0.5µs average latency) during the software compilation.

Layer Fusion: Layer fusion leads to 8.1%, 6.0%, 5.5%, 5.2%,
7.3%, 7.4%, 4.7%, 8.2% average speedup on b1-b8, respec-
tively. The performance improvement is because the individual
Activation layers and BatchNorm layers are eliminated (See
Section VI-D). Thus, extra memory traffic of the Activation
and BatchNorm layers is eliminated to reduce the latency of
hardware execution. Note that layer fusion has complexityO(L)
and incurs small overhead (≈ 0.66µs average latency) during the
software compilation.

Overlapping Computation and Communication: Overlapping
the computation and communication leads to 186%, 134%,
153%, 137%, 112%, 148%, 158%, 123% average speedup on
b1-b8, respectively. It demonstrates the effectiveness of pro-
posed double/triple buffering techniques and the effectiveness
of the software compilation optimizations.

C. Cross Platform Comparison

We compare TE2E on three baseline platforms: (1) CPU-only
platform, (2) CPU (Ryzen 3990x) + GPU, (3) CPU (Ryzen
3990x) + GraphAGILE. On CPU-only platform, we execute
CPU version of Pytorch Geometric (PyG) and Deep Graph
Library (DGL), with Intel MKL as the backend. On CPU-GPU
platform, we execute GPU version of PyG and DGL, with CUDA

11.3 as the backend. The E2E latency of CPU-only and CPU-
GPU platforms include the preprocessing overhead of runtime
systems (e.g., GPU kernel launch). Figs. 17 and 18 show the
comparison. Compared with PyG-CPU, GraphAGILE achieves
10.3×− 47.1× speedup on b1-b8. Compared with PyG-GPU,
GraphAGILE achieves 1.27×− 3.8× speedup on b1-b8. Com-
pared with DGL-CPU, GraphAGILE achieves 9.1×− 20.1×
speedup on b1-b7. Compared with DGL-GPU, GraphAGILE
achieves 1.7×− 3.9× speedup on b1-b7.

The speedup over CPU-only and CPU-GPU platforms is due
to: (1) The kernels in GNN (e.g., SpDMM, SDDMM) have
irregular computation&memory access patterns and low data
reuse. GraphAGILE hardware architecture optimizes the data
path and memory organization for various GNN computation
kernels. The processors in CPU or GPU have limited cache sizes
(e.g., 32 KB L1 cache and 512 KB L2 cache). The data exchange
(due to low data reuse) among L1, L2, and L3 caches becomes
the performance bottleneck and results in reduced sustained
performance. On CPU platforms, loading data from the L3 cache
incurs latency of 32 ns, and loading data from L2 cache incurs
latency of 5− 12ns. Compared with the CPU-only/CPU-GPU,
the ACK in GraphAGILE can access data in one clock cycle
from the on-chip edge/weight/feature buffers. Therefore, al-
though the baseline CPU-only and CPU-GPU platforms have
higher (6×) peak performance than the state-of-the-art FPGAs,
GraphAGILE still outperforms the baselines. (2) The compiler
of GraphAGILE automatically performs various optimizations

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2595

Fig. 17. Comparison of end-to-end latency TE2E with DGL.

Fig. 18. The comparison of end-to-end latency TE2E with PyG. Note that PyG-CPU cannot execute AP due to out of memory. PyG-GPU cannot execute RE,
YE, and AP due to out of memory. Therefore, these results are not shown in the Figure.

TABLE IX
ADVANTAGES OF GRAPHAGILE OVER THE STATE-OF-THE-ART WORK

to minimize execution time. While the computation order opti-
mization and layer fusion can potentially be applied to CPU-only
and CPU-GPU platforms, other compiler optimizations (such
as data partitioning for partition-centric execution schemes,
task scheduling for dynamic load balancing) are specific to the
proposed overlay architecture. For example, data partitioning
relies on an effective and customized memory organization. The
hardware architecture and the compiler of GraphAGILE perform
synergistically to achieve lower latency.

D. Comparison With the State-of-the-Art Accelerators

We compare with state-of-the-art accelerators: HyGCN [5],
AWB-GCN [11], DeepBuring-GL [12] and BoostGCN [6].

Advantages of GraphAGILE: Table IX summarizes the perfor-
mance comparison. HyGCN [5] and AWB-GCN [11] use fixed
hardware designs that only support limited GNN models. For
example, they cannot execute GAT due to the lack of support
for SDDMM. Moreover, they use additional data-dependent
optimizations, such as sparsity elimination (HyGCN). These
optimizations can reduce the latency of hardware execution
TLoH at the cost of increased end-to-end latency due to the
expensive preprocessing. Design automation frameworks such
as DeepBurning-GL [12] and BoostGCN [6] need to pay hours of
overhead to regenerate FPGA bitstream for every pair of GNN

models and input graph. Therefore, they have very large end-
to-end latency. HyGCN, DeepBurning-GL, and BoostGCN are
hybrid architectures that initialize different hardware modules
for various computation kernels. However, hybrid architectures
suffer from load imbalance and thus, hardware under-utilization.
AWB-GCN uses the same set of processing elements to execute
SpDMM under various data sparsity. It is not efficient for GEMM
and does not support SDDMM. For dense input graphs (e.g.,
AmazonProducts) or GNN models with the PReLU or SWISH
activation functions, GEMM is essential to be supported.

Comparison of Latency of Hardware Execution TLoH: Since
no previous work measure the end-to-end latency, their overhead
of graph preprocessing (Table IX) are unknown. Therefore, we
are only able to compare the latency of hardware execution
TLoH, as shown in Table X. Table III shows the detailed re-
source utilization of various FPGA accelerators. Compared with
BoostGCN, GraphAGILE achieves 1.01×− 2.51× speedup
on FL, RE, YE, and AP under comparable peak performance
and memory bandwidth. Compared with HyGCN, GraphAGILE
achieves 2.97× speedup on RE. GraphAGILE achieves higher
performance because BoostGCN and HyGCN are hybrid accel-
erators that suffer from load imbalance. AWB-GCN is 1.96×
faster than GraphAGILE on RE because (1) the platform of
AWB-GCN has 2.2× peak performance than GraphAGILE,
and (2) AWB-GCN exploits the sparsity of vertex features to
reduce the total computation complexity. However, the sparsity

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

2596 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

TABLE X
COMPARISON OF TLOH

exploitation in AWB-GCN requires a runtime system to obtain
the sparsity of the intermediate results and dynamically perform
data format transformation and kernel remapping. Therefore,
the runtime optimizations of AWB-GCN are orthogonal to our
static compiler optimizations. For an overlay accelerator, it
is challenging to exploit the data sparsity because both data
format and high-level instructions need to be generated/changed
dynamically at runtime. We leave the dynamic data sparsity
optimizations in the runtime system as future work.

IX. DISCUSSION

In real-world applications, the input graphs can be very large,
consisting of billions of vertices and edges. For example, the
ogbn-papers100M [1] dataset requires more than 100 GB DDR
memory to store the full input graph, which is beyond the
capacity of the DDR memory on the state-of-the-art FPGA
boards (e.g., Xilinx Alveo U250 board has 64 GB on-board
DDR memory). GraphAGILE can be easily extended to perform
GNN inference on large-scale input graphs. To achieve this,
the following are required: (1) coarse-grained data partitioning
by the compiler, and (2) a runtime system to perform task
scheduling and inter-data-partition communication on the host
processor. During compilation, the compiler first partitions the
input graph into super data partitions, each fitting in half of
the total FPGA on-board DDR memory. Using half of the total
FPGA on-board DDR memory, we can overlap the computa-
tion and CPU-FPGA data communication via double-buffering.
Then, following Section VI, the compiler performs fine-grained
data partitioning, kernel mapping, and task scheduling for each
super data partition. The compiler will generate a binary file for
each super data partition. At runtime, the runtime system on the
host processor schedules the execution of super data partitions
onto the FPGA accelerator. The runtime system also performs
inter-data-partition communication by sending the data from
other super data partitions (in the host memory) to the super data
partition currently on the FPGA accelerator. The computation
on the accelerator and the CPU-FPGA data communication can
be overlapped to improve the overall performance. We leave the
support for the large-scale input graphs as future work.

X. CONCLUSION AND FUTURE WORK

In this work, we proposed a domain-specific overlay acceler-
ator for low-latency GNN inference. The proposed accelerator
consists of a novel hardware architecture with an instruction set,
and a software compiler with various optimizations for latency
reduction. The experimental results showed that compared with
the state-of-the-art implementations on CPU-only and CPU-
GPU platforms, we achieved 47.1× and 3.9× speedup in end-to-
end latency. Compared with state-of-the-art GNN accelerators,
we achieved up to 2.9× speedup in terms of hardware execution
latency. GraphAGILE has supported widely-used GNN models,
including the numerous GNN models in GraphGYM.

Future Work: (1) In the future, we intend to extend GraphAG-
ILE to support various GNN minibatch training algorithms and
develop a design automation algorithm to quickly generate the
overlay accelerator for a given FPGA platform. (2) We also
plan to build a runtime system that performs dynamic sparsity
exploitation to reduce the hardware execution latency. The run-
time system will perform just-in-time (JIT) compilation, which
can dynamically map a computation task (e.g., a layer block in
Algorithm 6) to a computation kernel (e.g., GEMM or SpDMM)
based on the data sparsity.

ACKNOWLEDGMENT

Equipment and support by AMD Xilinx are greatly
appreciated.

REFERENCES

[1] W. Hu et al., “Open graph benchmark: Datasets for machine learning on
graphs,” 2020, arXiv:2005.00687.

[2] A. Lerer et al., “PyTorch-BigGraph: A large-scale graph embedding sys-
tem,” 2019, arXiv:1903.12287.

[3] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” 2021, arXiv:2101.11174.

[4] T. Pfaff et al., “Learning mesh-based simulation with graph networks,”
2020, arXiv:2010.03409.

[5] M. Yan et al., “HyGCN: A GCN accelerator with hybrid architecture,” in
Proc. IEEE Int. Symp. High Perform. Comput. Architecture, 2020, pp. 15–
29.

[6] B. Zhang, R. Kannan, and V. Prasanna, “BoostGCN: A framework for
optimizing GCN inference on FPGA,” in Proc. IEEE 29th Annu. Int. Symp.
Field-Programmable Custom Comput. Machines, 2021, pp. 29–39.

[7] H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN training on
CPU-FPGA heterogeneous platforms,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2020, pp. 255–265.

[8] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch
geometric,” 2019, arXiv:1903.02428.

[9] M. Wang et al., “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” 2019, arXiv:1909.01315.

[10] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale GCN inference,” in Proc. IEEE 31st Int. Conf. Appl.-Specific Syst.
Architectures Processors, 2020, pp. 61–68.

[11] T. Geng et al., “AWB-GCN: A graph convolutional network accelerator
with runtime workload rebalancing,” in Proc. IEEE/ACM 53rd Annu. Int.
Symp. Microarchitecture, 2020, pp. 922–936.

[12] S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, “DeepBurning-GL: An
automated framework for generating graph neural network accelerators,”
in Proc. IEEE/ACM Int. Conf. Comput. Aided Des., 2020, pp. 1–9.

[13] Y.-C. Lin, B. Zhang, and V. Prasanna, “HP-GNN: Generating high through-
put GNN training implementation on CPU-FPGA heterogeneous plat-
form,” 2021, arXiv:2112.11684.

[14] T. Geng et al., “I-GCN: A graph convolutional network accelerator with
runtime locality enhancement through islandization,” in Proc. IEEE/ACM
54th Annu. Int. Symp. Microarchitecture, 2021, pp. 1051–1063.

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GRAPHAGILE: AN FPGA-BASED OVERLAY ACCELERATOR FOR LOW-LATENCY GNN INFERENCE 2597

[15] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph
neural networks,” in Proc. IEEE/ACM 57th Des. Automat. Conf., 2020,
pp. 1–6.

[16] Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He, “OPU: An FPGA-based
overlay processor for convolutional neural networks,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 1, pp. 35–47, Jan. 2020.

[17] M. S. Abdelfattah et al., “DLA: Compiler and FPGA overlay for neural
network inference acceleration,” in Proc. IEEE 28th Int. Conf. Field
Programmable Log. Appl., 2018, pp. 411–4117.

[18] J. You, Z. Ying, and J. Leskovec, “Design space for graph neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 17009–17021.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1025–1035.

[21] P. Veličković et al., “Graph attention networks,” 2017, arXiv:1710.10903.
[22] K. Xu et al., “How powerful are graph neural networks?,”

2018, arXiv:1810.00826.
[23] DPU, 2020. [Online]. Available: https://www.xilinx.com/products/

intellectual-property/dpu.html
[24] NVIDIA NVDLA, 2017. [Online]. Available: http://nvdla.org/
[25] T. Moreau et al., “A hardware–Software blueprint for flexible deep learning

specialization,” IEEE Micro, vol. 39, no. 5, pp. 8–16, Sep./Oct. 2019.
[26] B. Zhang, H. Zeng, and V. Prasanna, “Low-latency mini-batch GNN infer-

ence on CPU-FPGA heterogeneous platform,” 2022, arXiv:2206.08536.
[27] F. Wu et al., “Simplifying graph convolutional networks,” in Proc. Int.

Conf. Mach. Learn., PMLR, 2019, pp. 6861–6871.
[28] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu, “Hit-

Graph: High-throughput graph processing framework on FPGA,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 10, pp. 2249–2264, Oct. 2019.

[29] Y.-K. Choi et al., “HBM connect: High-performance HLS interconnect
for FPGA HBM,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays, 2021, pp. 116–126.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2015, pp. 448–456.

[31] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible DRAM
simulator,” IEEE Comput. Architecture Lett., vol. 15, no. 1, pp. 45–49,
Jan.–Jun. 2016.

[32] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[33] H. Zeng et al., “GraphSAINT: Graph sampling based inductive learning
method,” in Proc. Int. Conf. Learn. Representations, 2020. [Online].
Available: https://openreview.net/forum?id=BJe8pkHFwS

Bingyi Zhang received the BS degree in microelec-
tronics from Fudan University, in 2017, and the MS
degree in integrated circuit engineering from Fudan
University. He is currently working toward the PhD
degree in computer engineering at the University of
Southern California (USC). His research interests
include parallel computing, digital signal processing,
digital circuit design. His current work is focused on
accelerating graph-based machine learning on FPGA.

Hanqing Zeng received the BEng degree in elec-
tronic engineering from the University of Hong Kong,
in 2016, and the PhD degree in computer engineering
from the University of Southern California, in 2022.
He is currently a research scientist with Meta AI. His
research interests include large scale graph represen-
tation learning, parallel and distributed computing,
and algorithm-architecture co-optimization for deep
learning applications.

Viktor K. Prasanna (Fellow, IEEE) received the
BS degree in electronics engineering from Banga-
lore University, the MS degree from the School of
Automation, Indian Institute of Science, and the PhD
degree in computer science from Pennsylvania State
University. He is Charles Lee Powell chair in engi-
neering with the Ming Hsieh Department of Electrical
and Computer Engineering and professor of computer
science with the University of Southern California
(USC). His research interests include high perfor-
mance computing, parallel and distributed systems,

reconfigurable computing, and embedded systems. He is the executive director
of the USC-Infosys Center for Advanced Software Technologies (CAST) and
was an associate director of the USC Chevron Center of Excellence for Research
and Academic Training on Interactive Smart Oilfield Technologies (Cisoft). He
also serves as the director of the Center for Energy Informatics, USC. He served
as the editor-in-chief of the IEEE Transactions on Computers during 2003–2006.
Currently, he is the editor-in-chief of the Journal of Parallel and Distributed
Computing. He was the founding chair of the IEEE Computer Society Tech-
nical Committee on Parallel Processing. He is the steering chair of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS) and is
the steering chair of the IEEE International Conference on High Performance
Computing (HiPC). He received the 2009 Outstanding Engineering Alumnus
Award from the Pennsylvania State University. He received the W. Wallace
McDowell Award from the IEEE Computer Society, in 2015 for his contributions
to reconfigurable computing. His work on regular expression matching received
one of the most significant papers in FCCM during its first 20 years award, in
2013. He is a fellow of ACM, and the American Association for Advancement
of Science (AAAS). He is an elected member of the Academia Europea.

Authorized licensed use limited to: University of Southern California. Downloaded on July 23,2023 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.

https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
http://nvdla.org/

