
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024 707

HitGNN: High-Throughput GNN Training
Framework on CPU+Multi-FPGA

Heterogeneous Platform
Yi-Chien Lin , Graduate Student Member, IEEE, Bingyi Zhang , and Viktor K. Prasanna

Abstract—As the size of real-world graphs increases, training
Graph Neural Networks (GNNs) has become time-consuming and
requires acceleration. While previous works have demonstrated
the potential of utilizing FPGA for accelerating GNN training,
few works have been carried out to accelerate GNN training with
multiple FPGAs due to the necessity of hardware expertise and
substantial development effort. To this end, we propose HitGNN, a
framework that enables users to effortlessly map GNN training
workloads onto a CPU+Multi-FPGA platform for acceleration.
In particular, HitGNN takes the user-defined synchronous GNN
training algorithm, GNN model, and platform metadata as input,
determines the design parameters based on the platform meta-
data, and performs hardware mapping onto the CPU+Multi-FPGA
platform, automatically. HitGNN consists of the following building
blocks: (1) high-level application programming interfaces (APIs)
that allow users to specify various synchronous GNN training
algorithms and GNN models with only a handful of lines of code; (2)
a software generator that generates a host program that performs
mini-batch sampling, manages CPU-FPGA communication, and
handles workload balancing among the FPGAs; (3) an accelerator
generator that generates GNN kernels with optimized datapath
and memory organization. We show that existing synchronous
GNN training algorithms such as DistDGL and PaGraph can
be easily deployed on a CPU+Multi-FPGA platform using our
framework, while achieving high training throughput. Compared
with the state-of-the-art frameworks that accelerate synchronous
GNN training on a multi-GPU platform, HitGNN achieves up
to 27.21× bandwidth efficiency, and up to 4.26× speedup using
much less compute power and memory bandwidth than GPUs. In
addition, HitGNN demonstrates good scalability to 16 FPGAs on a
CPU+Multi-FPGA platform.

Index Terms—CPU+Multi-FPGA, graph neural network,
hardware acceleration.

I. INTRODUCTION

GRAPH Neural Networks (GNNs) have become the state-
of-the-art models for representation learning on graphs,

facilitating many applications such as social recommendation

Manuscript received 2 March 2023; revised 16 February 2024; accepted
22 February 2024. Date of publication 28 February 2024; date of current
version 18 March 2024. This work was supported in part by the U.S. National
Science Foundation (NSF) under Grant CCF-1919289/SPX-2333009, Grant
CNS-2009057, and Grant OAC-2209563, and in part by the Semiconductor
Research Corporation (SRC). Recommended for acceptance by B. DiMartino.
(Corresponding author: Yi-Chien Lin.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Southern California, Los Angeles, CA 90089 USA (e-mail:
yichienl@usc.edu; bingyizh@usc.edu; prasanna@usc.edu).

Digital Object Identifier 10.1109/TPDS.2024.3371332

system [1], [2], molecular property prediction [3], [4] and
traffic prediction [5], etc. Initially, GNNs were computed on
a CPU/GPU [6], [7], [8], [9] or an FPGA platform [10], [11],
[12], [13]; however, as the size of the graph increases, com-
puting GNNs on a single GPU or an FPGA platform becomes
time-consuming. Thus, many works [14], [15], [16], [17] have
proposed to accelerate GNN training on a multi-CPU or a
multi-GPU platform as it provides more memory bandwidth
and computation resources. To train GNN on multiple devices
in parallel, these works perform synchronous GNN training; we
describe synchronous GNN training in detail in Section II-C.

Compared with general-purpose processors like CPU and
GPU, CPU+FPGA heterogeneous platform is promising for
GNN training acceleration: the CPU can flexibly support various
graph preprocessing and mini-batch sampling algorithms; and
the FPGA can efficiently perform GNN operations because
FPGA supports customized data access patterns and memory or-
ganization, which can effectively reduce the substantial memory
traffic and random memory accesses in GNN training. Despite
the various optimizations that can be deployed on a CPU+FPGA
platform, training GNNs on a CPU+FPGA platform can still be
time-consuming due to limited computation power and mem-
ory resources; thus, it is desirable to accelerate GNN train-
ing on a CPU+Multi-FPGA heterogeneous platform. However,
accelerating GNN training on a CPU+Multi-FPGA platform
is challenging. First, training GNNs on a CPU+Multi-FPGA
platform suffers from workload imbalance and significant data
communication overhead among FPGAs, which leads to low
performance and poor scalability. Second, it requires hardware
expertise to develop optimized kernels and considerable amount
of time to explore the complex hardware design space of a
CPU+Multi-FPGA platform.

Motivated by these challenges, we propose HitGNN, a generic
framework for mapping synchronous GNN training algorithms
on a CPU+Multi-FPGA heterogeneous platform. We first for-
mulate the high-level abstraction of synchronous GNN training
algorithms and then develop HitGNN based on the abstraction;
this allows our framework to support various training algo-
rithms that can be described with the formulated abstraction. To
achieve high throughput and automate the implementation pro-
cess, we develop a hardware Design Space Exploration (DSE)
engine.

Given the platform metadata, the DSE engine determines the
accelerator configurations that optimize the training throughput.

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1710-1532
https://orcid.org/0000-0002-8115-0814
https://orcid.org/0000-0002-1609-8589
mailto:yichienl@usc.edu
mailto:bingyizh@usc.edu
mailto:prasanna@usc.edu

708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

To reduce the development effort, HitGNN features a kernel
library, which consists of optimized GNN kernels that can
be used off-the-shelf. To mask the hardware implementation
details, HitGNN provides application programming interfaces
(APIs) that allow developers to easily implement various training
algorithms and GNN models with only a handful of lines of
code. Lastly, the host program of HitGNN performs mini-batch
sampling, handles workload imbalance, and reduces data com-
munication among FPGAs.

We summarize our contributions as follows:! We propose HitGNN, a generic framework that can au-
tomatically map various synchronous GNN training al-
gorithms such as P3, DistDGL and PaGraph, and vari-
ous GNN models such as GCN and GraphSAGE on a
CPU+Multi-FPGA heterogeneous platform for accelera-
tion.! To abstract away the hardware implementation details,
HitGNN features easy-to-use programming APIs, allow-
ing users to specify various synchronous GNN training
algorithms and GNN models with a handful of lines of
software code.! To reduce the development effort, we design a GNN ker-
nel library that consists of parameterized and optimized
kernels of various well-known GNN models, and a DSE
engine that can automatically determine the accelerator
configuration.! To realize a scalable design, we develop optimizations
to reduce FPGA-to-FPGA communication overhead, and
balance the workload among the FPGAs.! Compared with state-of-the-art synchronous GNN train-
ing implementations on a multi-GPU platform, HitGNN
achieves up to 27.21× bandwidth efficiency, and 4.26×
speedup using much less compute power and memory
bandwidth.

II. BACKGROUND

A. GNN Models

Given an input graph G(V, E ,X), where V , E , and X denote
the set of vertices, the set of edges, and the feature matrix of the
graph, respectively, a GNN model is specified by:! L: number of layers.! Vt: a set of target vertices to be inferred.! f l: hidden dimension of layer l (1 ! l ! L).! A mechanism to construct mini-batches, including:! The mechanism to construct V l: the set of vertices in layer

l (0 ! l ! L). |V l| denotes the number of vertices in layer
l.! The mechanism to construct Al ∈ R|Vl−1|×|Vl|: adjacency
matrix for feature aggregation in layer l (1 ! l ! L). Al

defines the inter-layer connectivity (edges) between V l−1

and V l.! Aggregate() function that is used by each vertex to aggre-
gate information from its neighbors.! Update() function including a multi-layer perceptron
(MLP) and an activation functionσ() that is used to perform
feature update.

Fig. 1. Computation abstraction of a GNN layer.

Algorithm 1: GNN Computation Abstraction.
for l = 1. . .L do

for vertex v ∈ V l do
al
v = Aggregate(hl−1

u : u ∈ N (v) and u ∈ V l−1)
hl
v = Update(al

i,W
l,σ())

! W l ∈ Rf l−1×f l
: weight matrix of layer l (1 ! l ! L) that

is used in update function to perform linear transformation
of vertex features.! X ∈ R|V|×f0

: feature matrix of the full graph, where each
row represents the feature vector of a vertex.! hl ∈ R|Vl|×f l

: the vertex feature matrix in layer l (0 ! l !
L). Moreover, the feature matrix of the input layer is the
input feature matrix, i.e., h0 = X; and the feature matrix
of the last layer hL is the node embeddings of the target
vertices Vt.

GNN learns to generate low-dimensional vector representa-
tion (i.e., node embedding) for a set of target vertices Vt by
iteratively aggregating and updating the vertex features from
their L−hop neighbors. We depict the computation abstraction
of a GNN layer in Fig. 1. Starting from layer 1, the GNN model
computes the feature vector of each vertex in V1 by aggregating
and updating the feature vectors of its neighbor vertices in V0;
this process is repeatedL times until the node embeddings of the
target vertices Vt (which is VL) are derived. The computation
process of a GNN model is shown in Algorithm 1, which is
also known as the aggregate-update paradigm [18]. al

v ∈ Rf l
is

the intermediate result of v ∈ V l, and Ns(v) denotes sampled
neighbors of v in V l−1.

B. Mini-Batch GNN Training

GNN models can be trained in mini-batch fashion, the training
process consists of five stages [3], [6]: sampling, forward prop-
agation, loss calculation, back propagation and weight update.
In the sampling stage, a set of vertices and adjacency matrices
are sampled from the input graph topology G(V, E). We use V l

to denote the vertices sampled from V in layer l. Al denotes
the sampled adjacency matrix, which describes inter-layer con-
nections (edges) between V l−1 and V l within the mini-batch.
A mini-batch consists of target vertices VL, sampled vertices
for each layer {V l : 0 ! l ! L− 1}, and sampled adjacency
matrices (edges) {Al : 1 ! l ! L− 1}.

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HITGNN: HIGH-THROUGHPUT GNN TRAINING FRAMEWORK ON CPU+MULTI-FPGA HETEROGENEOUS PLATFORM 709

Algorithm 2: Mini-Batch GNN Training Algorithm.
1: for each iteration do
2: Sampling(G(V, E)) " Derive mini-batches
3: for l = 1. . .L do " Forward Propagation
4: for vertex v ∈ V l do
5: al

v = Aggregate(hl−1
u : u ∈ Ns(v), u ∈ V l−1)

6: hl
v = Update(al

i,W
l,σ())

7: CalculateLoss({hL
i : vi ∈ VL})

8: BackPropagation() " Derive gradient of W l

9: WeightUpdate()

In the forward propagation stage, the mini-batch is processed
layer by layer; the output of the last layer is the node embeddings
of the target vertices {hL

v : v ∈ VL}, which are then compared
with the ground truth for loss calculation. The calculated loss
served as the input for back propagation, which performs a
similar computation as forward propagation but in the reverse
direction. Finally, the gradients of W l in each layer are derived
for weight update. We show the steps of GNN training in
Algorithm 2.

GNN models can also be trained using full-graph, this ap-
proach does not require the sampling stage; however, full-graph
training causes large memory footprint [19], [20] that may not
fit in a device memory (e.g., FPGA local DDR). Therefore,
HitGNN focuses on accelerating mini-batch GNN training as
it demonstrates advantages in accuracy, scalability on large
graphs, and has been adopted by many state-of-the-art GNN
frameworks [6], [16], [21].

C. Synchronous GNN Training

Existing works [14], [15], [16] utilize Synchronous Stochastic
Gradient Descent (SGD) [22] to train GNN on a multi-CPU
or multi-GPU platform. For the rest of the paper, we use syn-
chronous GNN training to refer to training GNN on multiple
devices in parallel using synchronous SGD.

Synchronous GNN training is similar to Algorithm 2, but
with two additional stages: graph preprocessing and gradient
synchronization. The first stage is graph preprocessing. In this
stage, the input graph G(V, E) is partitioned and distributed to
each device such as GPU or FPGA for parallel training. In
addition to graph partitioning, the graph preprocessing stage
also performs feature storing which stores feature vectors in the
device local memory (e.g., GPU global memory or FPGA local
DDR). For devices like GPU or FPGA, the entire feature matrix
X of a large-scale graph may be too large to fit in the local
memory; thus, existing works [14], [15], [16] develop various
feature storing strategies to store only part of the feature matrix
in the device local memory.

We use Xi to denote the selected feature vectors stored in the
local memory of device i. For works like DistDGL, the feature
storing strategy is based on the result of graph partitioning; i.e., if
vj belongs to partition i, then the feature vector ofvj ∈ Xi. Other
works like PaGraph develop caching strategies to store feature
vectors of frequently accessed vertices, which is independent of
the graph partitioning. When the graph preprocessing is done,

Fig. 2. Synchronous GNN training on a CPU+Multi-FPGA platform.

each device performs forward propagation, loss calculation, and
back propagation in parallel. Then, a gradient synchronization
is performed, which averages the gradients collected from each
device. Then, the averaged gradient is broadcast to update the
model weight within each device. We depict the workflow of
synchronous GNN training on a CPU+Multi-FPGA platform in
Fig. 2. The CPU+Multi-FPGA platform consists of a single CPU
or multiple CPUs (depending on the number of sockets in the
machine), and multiple FPGAs. The CPUs are connected to the
FPGAs via PCIe and each FPGA is connected to a local DDR
memory.

We list several representative synchronous GNN training al-
gorithms in Table I. The differences among these algorithms
are in graph partitioning and feature storing strategy. Other
stages such as forward propagation, gradient synchronization,
etc. are identical. Thus, we only show the two different stages
for simplicity.

D. Related Work

DNN acceleration using FPGA cluster: [23], [24] accelerate
deep neural network (DNN) training using an FPGA cluster.
While these works show promising results in terms of perfor-
mance and energy efficiency, DNN accelerators cannot be di-
rectly adapted to GNN training. This is because the computation
characteristics of DNN and GNN are different: DNN models
feature structured input data with high computation intensity,
while GNN models feature unstructured input data with low
computation intensity.

Hardware Design Space Exploration: [25], [26], [27] propose
design space exploration (DSE) for DNN accelerators on FP-
GAs. These works formulate analytical models that predict the
accelerator performance by considering DNN model meta-data
and FPGA hardware meta-data. As mentioned above in the
previous paragraph, the computation characteristics of DNN are
very different from GNN; thus, existing DSE engines cannot be
directly used for exploring GNN accelerators.

GNN training acceleration using a single accelerator: [28]
accelerates GNN training on a CPU-FPGA platform and
achieves high performance and energy efficiency. However, [28]
is an accelerator specific for neighbor sampling GNNs [3],

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

TABLE I
SYNCHRONOUS GNN TRAINING ALGORITHMS

and cannot support different GNN models. [10] is the first
GNN training framework on FPGA that supports different GNN
models. However, [10] does not support synchronous GNN
training, which is essential for GNN training on large-scale
graphs using multiple accelerators. Similarly, several works
accelerate using ASIC [18], [29], [30]; while these works are
capable of supporting various GNN models, they can only run
on a single accelerator. This limits the computation and memory
resources that can be utilized, and thus limits the achievable
performance.

GNN training acceleration using multiple FPGAs: [19] ac-
celerates GNN training on a distributed platform, where the
graph is stored in multiple nodes. On a distributed platform,
the training performance is bottlenecked by the sampling stage.
In this work, we focus on a single-node platform with multi-
ple attached FPGAs. On such a platform, the performance is
bottlenecked by the propagation stage. [31] accelerates GNN
training on a CPU+Multi-FPGA platform; however, [31] can
only accelerate a specific synchronous GNN training algo-
rithm. It is necessary to support various algorithms because
they outperform each other under different setup (e.g., GNN
model, dataset) [32]. In this work, we propose a general frame-
work that can accelerate various synchronous GNN training
algorithms, while being able to scale to a CPU+Multi-FPGA
platform.

III. CHALLENGES

We identify several challenges in accelerating synchronous
GNN training on a CPU+Multi-FPGA platform.

1) Load imbalance among graph partitions: Unlike traditional
Deep Neural Networks (DNNs), it is challenging to achieve load
balance when accelerating GNN on a CPU+Multi-FPGA plat-
form. DNNs perform computations on grid-structured data such
as an image; the workload can be easily balanced among FPGAs
by partitioning the images into equal-size chunks. However, it is
non-trivial to partition the graph into sub-graphs with a balanced
workload as the GNN workload depends on numerous factors
(Section VI).

2) Cross-partition communication overhead: In addition to
load balancing, reducing the expensive inter-FPGA communi-
cation overhead is challenging. This is because graph-structured
data inherits complex data dependencies, and cross-partition
edges exist after graph partitioning. The cross-partition edges
incur inter-FPGA communication during GNN training, which
limits the achievable speedup on the CPU+Multi-FPGA plat-
form.

3) Development cost and barrier: Developing a GNN training
accelerator on a CPU+Multi-FPGA platform is time-consuming,
and requires hardware expertise. In particular, users need to be
familiar with data layout, memory organization, and many more
to accelerate the communication-intensive GNN training. Due
to the large design space of CPU+Multi-FPGA platform, it is
also non-trivial and time-consuming to perform the design space
exploration.

To address Challenges 1 and 2, we develop several optimiza-
tions for the CPU+Multi-FPGA platform to increase scalability.
In addition, these optimizations do not alter the semantics of
the original GNN training algorithm; thus, the accuracy and
convergence rate remains the same after applying the optimiza-
tions (Section V). For Challenge 3, HitGNN features optimized
GNN kernels that can be used off-the-shelves; the kernels are
parameterized and can be used to accelerate various GNN mod-
els. Furthermore, HitGNN automates the design steps via the
Software Generator and the Accelerator Generator (Section IV),
which includes automated design space exploration.

IV. FRAMEWORK

We describe the workflow of HitGNN in the following: in
the design phase, user specifies the synchronous GNN training
algorithm, GNN model, and the target platform metadata. Then,
HitGNN automatically generates optimized accelerator designs
and a host program (Section IV-A); during the runtime phase,
user launches the GNN training on the CPU+Multi-FPGA plat-
form. We show how the generated designs are mapped to the
target platform in Section IV-B.

A. Framework Overview

We depict the framework overview of HitGNN in Fig. 3.
HitGNN takes a synchronous GNN training algorithm, a GNN
model, and platform metadata as input, and generates a high-
throughput design to accelerate the training on a CPU+Multi-
FPGA platform. In particular, the design consists of (1) a host
program that manages task scheduling, data communication,
and mini-batch sampling; and (2) accelerator designs which
are optimized GNN kernels that run on the FPGA. In the input
program, user specifies a synchronous GNN training algorithm
via two sets of APIs:! Graph APIs: specify the graph partitioning and feature stor-

ing strategy for the graph preprocessing stage mentioned
in Section II-C.! GNN APIs: parameters that define a GNN model men-
tioned in Section II-A.

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HITGNN: HIGH-THROUGHPUT GNN TRAINING FRAMEWORK ON CPU+MULTI-FPGA HETEROGENEOUS PLATFORM 711

Fig. 3. Framework overview.

HitGNN then parses the input program, and extracts the
abstraction of the synchronous GNN training algorithm, which
serves as the intermediate representation for the software and
accelerator generator to produce the design that runs on the
CPU+Multi-FPGA platform. We describe each of the building
blocks as follows:

Software generator: Given the user-specified inputs, the soft-
ware generator produces a host program. During the preprocess-
ing stage, the host program performs graph partitioning, and
distributes the vertex features to each FPGA. During training,
the host program performs mini-batch generation and distributes
the mini-batches to each FPGA. The host program also consists
of a runtime system that manages FPGA task scheduling and
data communication.

Accelerator generator: The accelerator generator parses the
user input and generates parameterized hardware design using
the Kernel Library; the parameters (i.e., accelerator configura-
tion) are determined by the DSE Engine. Then, the accelerator
generator produces synthesizable hardware for the target FPGA.! Kernel Library: HitGNN provides optimized hardware

kernels written in high-level synthesis (HLS) for several
widely-used GNN models. User can either implement ex-
isting models in the kernel library or customize their own
model using the optimized kernel templates.! DSE Engine: The DSE engine takes the platform metadata
(e.g., PCIe bandwidth, number of FPGAs) as input, ex-
plores the hardware design space, and generates accelerator
configurations that optimize the GNN training throughput
(Section VI).

B. System Overview

Fig. 4 depicts the mapping of a synchronous GNN training
algorithm onto a CPU+Multi-FPGA platform. During runtime,
the host program on the CPU first performs graph preprocessing,
and distributes selected vertex features to each FPGA. Then, the
host launches GNN training. A sampler produces mini-batches,
and the runtime system distributes the mini-batches to the FPGA
local memory. In the meantime, the FPGAs perform GNN
operations. If a vertex feature needed for computation is not
present in the FPGA local memory, the FPGA sends a request
to host CPU, and the runtime system reads the data from the

Fig. 4. System overview.

CPU memory and transfers it to the FPGA (Section V-B). After
the backpropagation is performed and the gradients are derived,
each FPGA sends the gradients back to the host for synchro-
nization. The runtime system averages the gathered gradients,
and then broadcasts the averaged gradients back to each FPGA
to perform a global weight update.

HitGNN performs graph preprocessing and sampling on the
host CPU, and performs GNN operations including feature
aggregation and feature update on the FPGAs. Based on this task
assignment, the input graph topology G(V, E) and vertex feature
X are stored in the host memory for the host CPU to perform
graph preprocessing and sampling; the mini-batch topology V l

and Al and selected vertex features Xi are stored in the FPGA
local memory for the FPGA to perform GNN operations.

C. High-Level APIs

Table II summarizes the high-level APIs provided to the
users to program the synchronous GNN training using Python.
Listing 1 is an example of mapping a synchronous GNN training
algorithm onto the target CPU+Multi-FPGA platform using
HitGNN.

V. CPU+MULTI-FPGA OPTIMIZATIONS

Accelerating synchronous GNN training on a CPU+Multi-
FPGA platform suffers from workload imbalance, and high
data communication overhead. We describe the optimizations
adopted to tackle these challenges in Section V-A and V-B. In

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

TABLE II
APPLICATION PROGRAMMING INTERFACES OF HITGNN

Listing 1. An example user program.

addition, we introduce the kernel library in HitGNN, which
consists of GNN kernels optimized to achieve high training
throughput (Section V-C).

A. Workload Balancing

In the graph preprocessing stage (Section II-C), the graph is
partitioned into p partitions where p is the number of FPGAs
on the target platform. During the sampling stage, the sampler
samples mini-batches from each graph partition, and distributes
the mini-batches to each FPGA. As introduced in Section III, the
number of vertices and edges within each partition is different;
thus, the number of mini-batches within each graph partition is

Algorithm 3: Two-Stage Task Scheduling.
Input: partitioned graph topology V[i], E[i], where 0 ≤ i
< p

Output: mini-batches b and its FPGA assignment
1: # Stage 1
2: while # of mini-batches in each partition > 0 do
3: for i in 0 to p do
4: b = Sample(V[i], E[i])
5: Distribute(b, i) " Distribute to FPGA i
6: # Stage 2
7: cnt = 0 " Counter used for round-robin sampling
8: while # of mini-batches in any partition > 0 do
9: for i in 0 to p-1 do

10: if # of mini-batches in partition i > 0 then
11: avail.append(i) " List of partitions to sample
12: else
13: idle.append(i) " List of idle FPGAs
14: for i in 0 to avail.length() do
15: j = avail[i]
16: b = Sample(V[j], E[j])
17: Distribute(b, j)
18: for i in 0 to idle.length() do
19: j = avail[cnt % avail.length()]
20: b = Sample(V[j], E[j]) " Sample extra mini-batch
21: Distribute(b, idle[i]) " Assign to idle FPGA
22: cnt++
23: avail.clear()
24: idle.clear()

also different and leads to workload imbalance. We propose a
two-stage task scheduler to balance the workload among FPGAs.

Stage 1: In stage 1, the sampler is able to sample mini-batches
from each graph partition. The task scheduler distributes the
mini-batches to each FPGA based on the graph partition the
mini-batches are sampled from.

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HITGNN: HIGH-THROUGHPUT GNN TRAINING FRAMEWORK ON CPU+MULTI-FPGA HETEROGENEOUS PLATFORM 713

Fig. 5. Two-stage task scheduling.

Stage 2: In stage 2, the mini-batches within some graph parti-
tions have all been executed. We show an example in Fig. 5 where
all the mini-batches within partition 2 (which is assigned to
FPGA 2) have been executed after iteration 3. Thus, for iteration
4, the sampler samples an extra mini-batch from partition 1
to produce 3 mini-batches to perform synchronous SGD. The
extra mini-batch (i.e., mini-batch 12) is distributed to FPGA 1
by default, which leads to workload imbalance since FPGA 1
needs to execute 2 mini-batches in iteration 4. To balance the
workload, the task scheduler distributes the extra mini-batch
to an idle FPGA; in this example, the FPGA 2. The sampler
samples the partitions in a round-robin fashion, so for iteration
5, the sampler moves on and samples a mini-batch from partition
3 and produces mini-batch 13. We show the general two-stage
task scheduling with any number of FPGAs p in Algorithm 3.

B. Data Communication

In order to train GNN on multiple FPGAs in parallel, the input
graph is partitioned and distributed to each FPGA. Because of
the complex data dependency of graph-structured data, when
an FPGA is performing GNN training, the data required may
not reside in the local partition. In this case, the FPGA needs
to fetch data from another FPGA which incurs FPGA-to-FPGA
communication. With more FPGAs equipped, the graph is split
into more partitions, and the data required is more likely to
reside in a remote partition. Previous work has shown that the
inter-device communication overhead can easily dominate the
synchronous GNN training time when training on a multi-GPU
platform [33].

We show the overview of a CPU+Multi-FPGA platform
in Fig. 4; the FPGA-to-FPGA communication is done via a
shared memory space in the CPU memory. In particular, data
is first copied from the FPGA memory to the shared memory
space and then transferred to another FPGA. Compared with
CPU-FPGA communication, FPGA-to-FPGA communication
is much slower because it requires additional data copying to
the CPU memory [34]. Thus, we propose to fetch data directly
from the CPU memory. In particular, whenever a vertex feature
required for training is not presented in the FPGA local memory,
the FPGA sends a request to the host CPU to fetch the data.
Fetching vertex features from the CPU memory is feasible
because the CPU memory holds the entire graph (Section IV-B).
This optimization avoids reading vertex features from another
FPGA and thus reduces FPGA-to-FPGA communications.

Though modern FPGAs support direct communication to
another FPGA via Ethernet, this feature is not yet supported

Fig. 6. Hardware design of the aggregate kernel.

on most cloud-FPGA platforms such as Amazon Web Services
(AWS) [35] and Microsoft Azure [36]. In addition, the controller
logic to read data from another FPGA becomes complicated as
the platform is equipped with more FPGAs since the controller
needs to consider the network topology of FPGA-FPGA con-
nections, and decides the routing to fetch the required data.

C. Optimized Kernel Library

GNN computation is time-consuming because it incurs sub-
stantial random memory access. We develop parameterized
hardware templates with optimized data layout and memory
organization that can effectively reduce the communication
overhead, and therefore achieve high GNN training throughput.
Fig. 6 shows an example of 4 scatter-gather processing elements
(PEs). During pre-processing, the edges of the input graph are
sorted by the source vertex; this ensures that edges with the
same source vertex are processed together, and the kernel does
not need to re-load the same source vertex later. Initially, a
feature vector of the source vertex is loaded and broadcast to each
scatter PE via the Feature Duplicator. In each iteration, an edge
is loaded to each scatter PE. If the source vertex of the loaded
edge matches the loaded feature vector, the scatter PE reuses the
loaded feature vector for computation; otherwise, the scatter PE
waits for the Feature Duplicator to broadcast the feature vector
of the next source vertex to replace the current loaded feature
vector. Note that during computation, the feature vector of the
next source vertex is also prefetched to the Feature Duplicator.
For the update kernel, we adopt a systolic-array-based design to
perform block matrix multiplication. While the kernels exploit
data parallelism, and increase data reuse, they do not alter the
GNN training algorithm. The parameterized hardware template
follows the computation paradigm mentioned in Algorithm 1;
thus, it is able to support various GNN models.

VI. HARDWARE DESIGN SPACE EXPLORATION

HitGNN features a DSE engine that can explore the hardware
design space of a CPU+Multi-FPGA platform, and decides
the accelerator configurations automatically. In particular, the
engine takes the configuration of a mini-batch ({|V l| : 0 ! l !
L}, {|Al| : 1 ! l ! L}), GNN hidden dimensions {f l : 0 !
l ! L}, and platform metadata as input, and output a set of
parameters that optimizes the GNN training throughput.

A. Resource Utilization Model

The resource utilization model formulates the hardware re-
source consumption given a set of accelerator configurations. In

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

our kernel design, DSPs and LUTs are used the most among the
various hardware resources. Thus, we model the usage of LUTs
and DSPs as our constraints:

λ1 ×m+ λ2 × n ≤ NDSP (1)

ρ1 ×m+ ρ2 × n+ ρ3 × n log(n) ≤ NLUT (2)

NDSP and NLUT denote the available DSPs and LUTs on a single
FPGA platform. For a multi-FPGA platform, each FPGA is
constrained by (1) and 2 independently. All constraints of each
FPGA on the target platform need to be satisfied to produce
a valid design. We use m to denote the number of processing
elements (PEs) in the update kernel, and n to denote the number
of scatter-gather PEs in the aggregate kernel (Section V-C). The
coefficientsλi (1 ! i ! 2) andρi (1 ! i ! 3) are constants that
indicate the resource consumption for each PE. The utilization of
DSPs grows linearly as we instantiate more PEs; as for LUTs,
an additional n log(n) term is introduced to model the LUT
overhead of the routing network in the aggregate kernel (Fig. 6).

B. Performance Model

We define the throughput of GNN training as Number of
Vertices Traversed Per Second (NVTPS):

Throughput =
∑p

i=0

∑L
l=0 |V l|

tparallel
(3)

The numerator indicates the total amount of vertices traversed
in one iteration. For a multi-FPGA platform with p FPGAs,
p mini-batches are computed concurrently. The denominator
tparallel is the parallel execution time of one training iteration,
which includes the time for p FPGAs to perform forward propa-
gation, loss calculation, etc. (details are in Algorithm 2) and the
time for gradient synchronization. tparallel can be model as:

tparallel = max
i∈p

(
tiexecution

)
+ tgradient_sync (4)

Since there are p FPGAs processing in parallel, the parallel
execution time is limited by the slowest FPGA; an extra overhead
tgradient_sync is introduced to for synchronization.

We overlap sampling stage and the GNN computations, so the
average execution time on a single FPGA texecution is estimated
as:

texecution = max (tsampling, tGNN)

tGNN = tFP + tLC + tBP (5)

where tGNN consists of the execution time of forward propaga-
tion tFP, loss calculation tLC, and back propagation tBP.

The total propagation time tFP and tBP is the sum of the
execution time of each layer; the execution time of each layer
is decided by the task that takes longer to complete since ag-
gregation stage and update stage are pipelined. The aggregation
stage consists of two tasks: (1) vertex feature loading, and (2)
computation. Since the two tasks are pipelined, taggregate can be
modeled as:

tlaggregate = max(tlload, t
l
compute) (6)

tlload =
|V l−1|× β × f l × Sfeat

BWDDR

+
|V l−1|× (1− β)× f l × Sfeat

BWPCIe
(7)

tlcompute =
|Al|× f l

n× PESIMD × Freq.
(8)

We model the vertex feature loading time tlload as
(datatransferred)/(effectivebandwidth). f l is the feature
length, and Sfeat is the data size of each feature. β is the ratio
of fetching data from a local graph partition stored in the local
DDR memory (first term of (7)). If the data is in the remote
partition, the data is fetched from host via PCIe (second term of
(7)).

We model the compute time as (# of operations)/(# of PEs ×
kernel frequency). |Al| is the number of edges in each layer. n
denotes there are n scatter-gather PEs instantiated in the aggre-
gation kernel. Each PE features vector parallelism (Section V-C),
and can compute 512-bit of data each cycle; for single-precision
floating point data, PESIMD = 512/32 = 16.

The feature update is modeled as:

tupdate =
|V l|× f l × f l+1

m× freq
(9)

We model the tupdate as (# of operations)/(# of PEs × kernel
frequency). The numerator is the complexity of the multi-layer
perception, and m denotes the number of PEs instantiated in the
update kernel.

C. Hardware DSE Engine

Exploring the design space of a CPU+Multi-FPGA platform is
challenging since the design space can be large. For example, we
can assign some FPGAs to perform feature aggregation, and the
others to perform feature update; or, we can assign each FPGA
to perform both tasks, but with less parallelism instantiated in
both kernels. Our DSE engine adopts the latter approach for
two reasons: (1) the bottleneck of GNN computations is vertex
feature loading during the feature aggregation, so our design
should utilize as much memory bandwidth as possible. That is,
all the FPGAs (as opposed to several FPGAs) should utilize
their memory bandwidth to perform feature aggregation; and
(2) if the FPGAs are able to perform both feature aggregation
and feature update independently, the intermediate results can be
reused directly; this reduces high volume of data communication
among FPGAs.

The DSE engine explores the design space on each FPGA, and
decides the accelerator configurations that optimize the GNN
training throughput. Furthermore, many modern FPGAs consist
of multiple dies, and the available resources may vary across
dies. Thus, the engine performs DSE for each die to explore
the optimal configuration. We assume that each die is connected
to one DDR channel (e.g., Xilinx Alveo U250) for simplicity.
The DSE engine first constructs a search space by obtaining
the maximum value of n and m separately using (1) and (2).
Then, the DSE engine performs a parameter sweep through all
the possible configurations. For each set of configurations, the

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HITGNN: HIGH-THROUGHPUT GNN TRAINING FRAMEWORK ON CPU+MULTI-FPGA HETEROGENEOUS PLATFORM 715

Algorithm 4: Hardware DSE Engine.
1: for each FPGA do
2: for each die do
3: Construct_Search_Space() " Derive nmax,mmax

4: max_val = 0
5: for n = 1. . .nmax do " Exhaustive search
6: for m = 1. . .mmax do
7: # Check resource availability using (1), (2)
8: Valid← Check_resource_availability(n,m)
9: if Valid and Throughput(n,m) > max_val :

then
10: max_val← Throughput(n,m)
11: Save_configuration(n,m)

TABLE III
SPECIFICATIONS OF THE PLATFORMS

DSE engine evaluates its throughput using (3), and eventually
obtains the optimal design. We show the steps performed by the
DSE engine in Algorithm 4.

VII. EXPERIMENTS

A. Experimental Setup

Environments: We use our framework to generate GNN train-
ing implementations on a CPU+Multi-FPGA platform, and com-
pare the training throughput with a multi-GPU platform. Both
the multi-GPU and the CPU+Multi-FPGA platform are built
on a dual-socket server. The multi-GPU platform is equipped
with 4 GPUs, and the CPU+Multi-FPGA platform is equipped
with 4 FPGAs. The GPUs or FPGAs are connected to the
host CPU via PCIe. We list the data of the host CPU, GPUs,
and FPGAs in Table III. Note that both the peak performance
and memory bandwidth of the FPGA platform are much lower
than the GPU platform; thus, the GNN training performance
on the CPU+Multi-FPGA platform highly relies on the pro-
posed optimizations. The multi-GPU baseline is implemented
using Python v3.6, PyTorch v1.11, CUDA v11.3, and PyTorch-
Geometric v2.0.3. To measure the power consumption on the
CPU, GPU, and FPGA, we use PowerTop [37], Nvidia System
Management Interface (SMI) [38], and Vitis Analyzer [39],
respectively. The implementations on the CPU+Multi-FPGA
platform are described in Section VII-B.

Synchronous GNN Training Algorithms: We evaluate our
framework using three representative synchronous GNN train-
ing algorithms: DistDGL [15], PaGraph [16], and P 3 [14].
Note that we only follow how these algorithms perform graph
preprocessing (details in Section II-C), and do not implement the
optimizations in the original works since some optimizations are

TABLE IV
DATASETS AND GNN-LAYER DIMENSIONS

Listing 2. Example program of the three synchronous GNN training algo-
rithms.

platform-dependent and cannot be applied to the CPU+Multi-
FPGA platform. Furthermore, HitGNN already has its own
optimizations for the CPU+Multi-FPGA platform.

GNN Models and Datasets: We evaluate our framework on
two well-known GNN models: GraphSAGE [3] and GCN [40].
We use a 2-layer model with hidden feature size 128, the size
of target vertices |Vt| is set as 1024, and the neighbor sampling
size of each layer are 25 and 10; the GNN parameters chosen
for evaluation have been widely-used and have shown promising
results in many works [3], [6], [7], [32], [40]. We choose four
widely-used datasets with over ten million edges for evaluation:
Reddit, Yelp, Amazon [6] and ogbn-products [32]. We list the
details of the datasets and GNN-layer dimensions in Table IV.

B. Framework Implementation

HitGNN consists of several building blocks to generate a
design that runs on a CPU+Multi-FPGA heterogeneous plat-
form. The program parser, DSE engine, software and hard-
ware generator are implemented using Python v3.6, and the
accelerator templates are implemented using Xilinx Vitis HLS
v2021.2. The host program template is programmed in C++14
with OpenCL library. User interface with HitGNN using the
provided APIs (Section IV-C). In Listing 2, we provide an

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Listing 3. Example of generated code.

example of implementing the three synchronous GNN training
algorithms in our experiments; and in Listing 3, we show part
of the generated host program and synthesizable accelerator
design.
P 3 requires an extra all-to-all broadcast step at the end of

the first GNN layer; we regard this extra step as a special case,
and do not provide any APIs to handle it for design simplicity. In
Line 14-19 of Listing 3, we show that this extra step can be easily
implemented using built-in functions of the OpenCL library.

C. DSE Engine Evaluation

Given a GNN model, sampling algorithm, and CPU+Multi-
FPGA platform metadata, the DSE engine automatically decides
the accelerator configurations. We use n to indicate the number of
scatter-gather PEs in the aggregate kernel, and use m to indicate
the number of PEs in the update kernel (Section VI). We perform
a parameter sweep to explore the FPGA design space as in Algo-
rithm 4. For each design point (n,m), the DSE engine estimates
the GNN training throughput on the four datasets (Table IV), and
reports the average throughput. We execute the DSE engine on
the CPU, and the DSE engine is able to complete the parameter
sweep within 10 seconds in all of our test cases. Since the DSE
engine systematically searches through the hardware design
space, it is able to find an optimal accelerator configuration.
As shown in Table V, both accelerator configurations (8,2048)
and (16,1024) saturate the available hardware resources. Since
feature aggregation is usually the bottleneck of GNN training,

TABLE V
RESOURCE UTILIZATION AND PARALLELISM

Fig. 7. Predicted performance versus actual performance.

one might choose (16,1024) over (8,2048) to maximize the
parallelism of the aggregate kernel, intuitively. However, as the
DSE engine suggests, the configuration (8,2048) leads to higher
training throughput instead; this is because our optimized kernel
effectively reduces the communication overhead of feature ag-
gregation and shifts the bottleneck to the feature update phase.
Thus, the configuration (8,2048), which invests more hardware
resources in the update kernel delivers higher throughput.

We evaluate our DSE engine by comparing the predicted
epoch time with the experimental results. Fig. 7 shows an
example of the epoch time comparison on the ogbn-products
dataset under various number of FPGAs using the DistDGL
training algorithm. The prediction error ranges from 5% to
14% on the average. The error comes from extra latency that
is not formulated in our model, such as the overhead of kernel
launching and pipeline flushing.

D. Performance Metrics! Epoch time: the time to train one epoch (seconds).! Throughput: we define the throughput as the Number of
Vertices Traversed Per Second (NVTPS).! Bandwidth efficiency: throughput divided by the avail-
able DRAM memory bandwidth of the target platform
(NVTPS/(GB/s)). GNN training throughput highly relies
on the available memory bandwidth of the platform; since
the memory bandwidth varies on different platforms, nor-
malizing the throughput with the available bandwidth pro-
vides a fair comparison across different platforms.! Energy consumption: we measure the energy consumption
of training one epoch on the target platform (kJ/epoch).

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HITGNN: HIGH-THROUGHPUT GNN TRAINING FRAMEWORK ON CPU+MULTI-FPGA HETEROGENEOUS PLATFORM 717

TABLE VI
CROSS PLATFORM COMPARISON

TABLE VII
THROUGHPUT IMPROVEMENT DUE TO OPTIMIZATIONS

E. Cross Platform Comparison

We compare the performance of a set of designs gen-
erated by HitGNN that runs on a CPU+Multi-FPGA plat-
form, with state-of-the-art GNN training implementations us-
ing PyTorch-Geometric [21] that runs on a multi-GPU plat-
form. The CPU+Multi-FPGA platform has four FPGAs and
the multi-GPU platform has four GPUs (Section VII-A). We
show the results in Table VI, which uses the metrics defined in
Section VII-D for comparison. We use GPU to indicate the
multi-GPU baseline, and use Ours to indicate the designs gen-
erated by HitGNN; we use GSG to indicate the GraphSAGE [3]
model, and GCN to indicate the GCN [40] model. Compared
with the multi-GPU baseline, HitGNN achieves 2.11×, 2.28×,
and 2.34× speedup for the DistDGL, PaGraph, and P 3, re-
spectively. This is because HitGNN features optimizations that
balance the workload among the FPGAs and reduce FPGA-to-
FPGA communication overhead. To evaluate the effectiveness
of our optimizations, we conduct an ablation study. We first
evaluate the performance of a baseline design, and then gradually
add the workload balancing (WB) optimization and the data
communication (DC) optimization to the design. We show the
evaluation in Table VII, which uses the DistDGL algorithm as an
example, the two optimizations can deliver up to 66% throughput

improvement in total. Our workload balancing optimization
shows higher performance improvement (14% - 15%) than the
workload optimization applied in the state-of-the-art [41] (2% -
5%). This is because HitGNN balances the workload in a more
fine-grained manner. Specifically, HitGNN balances the mini-
batches distributed to the FPGAs, and the mini-batches have
similar workloads; in contrast, [41] balances graph partitions
distributed to the GPUs, and the graph partitions have relatively
diverse workloads. Our highly-optimized GNN kernels allow
HitGNN to achieve 13.4×-14.9 × bandwidth efficiency than
the multi-GPU platform w.r.t. the geometric mean. Due to the
superior bandwidth efficiency, HitGNN achieves up to 4.26×
speedup using only 0.16×memory bandwidth of the multi-GPU
platform. Finally, HitGNN demonstrates a significant reduction
in energy consumption, using 4.32× less energy compared with
state-of-the-art implementations that run on multi-GPU plat-
forms. This is because HitGNN utilizes FPGA for computation,
which is a more energy-efficient platform than GPU; in addition,
HitGNN requires less time to execute an epoch, which leads to
less static power consumption.

F. Comparison With State-of-the-Art FPGA Design

We compare HitGNN with HP-GNN [10], a state-of-the-art
framework for GNN training on a CPU-FPGA platform, in
Table VIII. We choose the widely-used DistDGL algorithm as
an example; other algorithms show similar results in terms of
throughput, bandwidth efficiency, etc. (see Table VI). HitGNN
achieves 2.20× speedup over HP-GNN. This is because Hit-
GNN supports training with multiple FPGAs, while HP-GNN
can train GNN using only a single FPGA. HitGNN achieves
79% bandwidth efficiency of HP-GNN. This is because training
with a single FPGA does not incur inter-FPGA communication
overhead or imbalanced workload, allowing HP-GNN to achieve
a higher bandwidth efficiency than HitGNN; nevertheless, with

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

718 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

TABLE VIII
COMPARISON WITH STATE-OF-THE-ART FPGA DESIGN

Fig. 8. Scalability evaluation.

our optimizations applied (see Section V), HitGNN effectively
mitigates these overheads, and is able to achieve nearly 80% of
the bandwidth efficiency of HP-GNN on a CPU+Multi-FPGA
platform. More importantly, by supporting CPU+Multi-FPGA
platform, HitGNN is capable of training on large graphs that do
not fit in the DDR memory of a single FPGA. In contrast, the
graph size for HP-GNN is strictly constrained by the available
DDR memory of a single FPGA. Due to the utilization of more
hardware resources, HitGNN consumes 1.87×more energy than
HP-GNN for each training epoch. Note that the 1.87× increase
in energy consumption also leads to a 2.20× speedup in terms
of throughput.

G. Scalability

We build a CPU+Multi-FPGA platform simulator to evaluate
the scalability of HitGNN. The simulator estimates the training
performance given the synchronous GNN training algorithm,
GNN model, and platform metadata. To verify the simulator,
we first implement the host program and the hardware kernels.
Then, we measure the host program execution time, and the
post-synthesis kernel execution time to fine-tune the simulator.
We show the speedup compared with a single FPGA for each
algorithm in Fig. 8. By reducing the FPGA-to-FPGA communi-
cation overhead, and balancing the workload, HitGNN achieves
scalable speedup. The scalability of HitGNN is limited by the
CPU memory bandwidth. This is because FPGAs fetch data
from the CPU memory if the data required is not presented
in the FPGA local memory (Section V-B). Using the EPYC
7763 CPU as an example, the CPU memory (bandwidth =
205 GB/sec.) can serve up to 205/16 = 12.8 FPGAs without

saturating the CPU memory bandwidth, where the denominator
is the bandwidth of a single CPU-FPGA connection via PCIe;
if more FPGAs are added to the platform, the scalability of the
speedup starts to decrease since the CPU memory bandwidth is
gradually saturated. In Fig. 8, we show that the throughput of
HitGNN scales up to 16 FPGAs.

VIII. CONCLUSION

In this paper, we proposed HitGNN, a general framework
to generate high-throughput GNN training implementation on
a given CPU+Multi-FPGA heterogeneous platform. HitGNN
features various optimizations to accelerate synchronous GNN
training on the CPU+Multi-FPGA platform. The optimizations
of HitGNN can be applied to various synchronous GNN training
algorithms; in addition, these optimizations preserves the GNN
training semantics; thus, they do not affect the model accuracy
or the convergence rate. The implementations generated by
HitGNN achieved up to 27× bandwidth efficiency compared
with the multi-GPU baseline, and thus achieved up to 4.26×
throughput using less compute power and memory bandwidth.

We discuss the limitations of HitGNN. First, HitGNN cannot
be directly extended to a distributed platform as it assumes that
all the data is stored on a single machine. Second, on a single ma-
chine, the scalability of HitGNN is limited by the CPU memory
bandwidth. In the future, we plan to improve the system design
of HitGNN by handling data communication across multiple
nodes; this allows HitGNN to scale to distributed platforms
with multiple nodes. We will also improve the scalability of
HitGNN on a single machine by exploiting high-speed FPGA
interconnection network (e.g., SmartNIC) to relieve the stress
on the CPU memory bandwidth.

REFERENCES

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. 24th ACM Int. Conf. Knowl. Discov. Data
Mining, 2018, pp. 974–983.

[2] R. Zhu et al., “AliGraph: A comprehensive graph neural network platform,”
Proc. VLDB Endowment, vol. 12, no. 12, pp. 2094–2105, 2019.

[3] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1025–1035.

[4] C.-I. Yang and Y.-P. Li, “Explainable uncertainty quantifications for
deep learning-based molecular property prediction,” J. Cheminformatics,
vol. 15, no. 13, 2023. [Online]. Available: https://doi.org/10.1186/s13321-
023-00682-3

[5] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” 2021, arXiv:2101.11174.

[6] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Proc. Int.
Conf. Learn. Representations, 2020.

[7] H. Zeng et al., “Decoupling the depth and scope of graph neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2021, pp. 19665–19679.

[8] Y.-C. Lin, Y. Chen, S. Gobriel, N. Jain, G. K. Jhaand, and V. Prasanna,
“Argo: An auto-tuning runtime system for scalable gnn training on multi-
core processor,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2024.

[9] Y.-C. Lin, G. Deng, and V. Prasanna, “A unified CPU-GPU protocol for
GNN training,” in Proc. ACM Int. Conf. Comput. Front., 2024, pp. 392–
404.

[10] Y.-C. Lin, B. Zhang, and V. Prasanna, “HP-GNN: Generating high through-
put GNN training implementation on CPU-FPGA heterogeneous plat-
form,” in Proc. ACM/SIGDA Int. Symp. Field- Program. Gate Arrays,
2022, pp. 123–133.

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1186/s13321-023-00682-3
https://doi.org/10.1186/s13321-023-00682-3

LIN et al.: HITGNN: HIGH-THROUGHPUT GNN TRAINING FRAMEWORK ON CPU+MULTI-FPGA HETEROGENEOUS PLATFORM 719

[11] Z. Que et al., “Ll-GNN: Low latency graph neural networks on FPGAs for
particle detectors,” 2022, arXiv:2209.14065.

[12] Y. C. Lin, B. Zhang, and V. Prasanna, “GCN inference acceleration using
high-level synthesis,” in Proc. IEEE High Perform. Extreme Comput.
Conf., 2021, pp. 1–6.

[13] P. Chen, P. Manjunath, S. Wijeratne, B. Zhang, and V. Prasanna, “Ex-
ploiting on-chip heterogeneity of versal architecture for GNN inference
acceleration,” in Proc. 33rd Int. Conf. Field- Program. Log. Appl., 2023,
pp. 219–227.

[14] S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at scale,”
in Proc. 15th USENIX Symp. Operating Syst. Des. Implementation, 2021,
pp. 551–568.

[15] D. Zheng et al., “DistDGL: Distributed graph neural network training
for billion-scale graphs,” in Proc. IEEE/ACM Workshop Irregular Appl.:
Architectures Algorithms, 2020, pp. 36–44.

[16] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “PaGraph: Scaling GNN training
on large graphs via computation-aware caching,” in Proc. 11th ACM Symp.
Cloud Comput., 2020, pp. 401–415.

[17] Y.-C. Lin and V. Prasanna, “Hyscale-GNN: A scalable hybrid GNN
training system on single-node heterogeneous architecture,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2023, pp. 557–567.

[18] M. Yan et al., “HyGCN: A GCN accelerator with hybrid architecture,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit., 2020, pp. 15–19.

[19] S. Li et al., “Hyperscale FPGA-as-a-service architecture for large-scale
distributed graph neural network,” in Proc. Proc. 49th Annu. Int. Symp.
Comput. Archit., 2022, pp. 946–961.

[20] H. Zhang et al., “Understanding GNN computational graph: A coordinated
computation, IO, and memory perspective,” in Proc. Mach. Learn. Syst.,
2022, pp. 467–484.

[21] M. Fey and J. E. Lenssen, “Fast graph representation learning with Py-
Torch Geometric,” in Proc. ICLR Workshop Representation Learn. Graphs
Manifolds, 2019.

[22] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous SGD,” in Proc. Int. Conf. Learn. Representations Workshop,
2016.

[23] T. Geng et al., “FPDeep: Acceleration and load balancing of CNN training
on FPGA clusters,” in Proc. IEEE 26th Annu. Int. Symp. Field- Program.
Custom Comput. Mach., 2018, pp. 81–84.

[24] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Patel, and M. Herbordt, “A
framework for acceleration of CNN training on deeply-pipelined FPGA
clusters with work and weight load balancing,” in Proc. Int. Conf. Field-
Program. Log. Appl., 2018, pp. 394–3944.

[25] X. Zhang et al., “DNNExplorer: A framework for modeling and exploring
a novel paradigm of FPGA-based DNN accelerator,” in Proc. Proc. 39th
Int. Conf. Comput.-Aided Des., 2020, pp. 1–9.

[26] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “DNN-chip predictor:
An analytical performance predictor for DNN accelerators with various
dataflows and hardware architectures,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2020, pp. 1593–1597.

[27] Y. Yu, Y. Li, S. Che, N. K. Jha, and W. Zhang, “Software-defined design
space exploration for an efficient DNN accelerator architecture,” IEEE
Trans. Comput., vol. 70, no. 1, pp. 45–56, Jan. 2021.

[28] B. Zhang, S. R. Kuppannagari, R. Kannan, and V. Prasanna, “Efficient
neighbor-sampling-based GNN training on CPU-FPGA heterogeneous
platform,” in Proc. IEEE High Perform. Extreme Comput. Conf., 2021,
pp. 1–7.

[29] J. R. Stevens, D. Das, S. Avancha, B. Kaul, and A. Raghunathan, “GN-
Nerator: A hardware/software framework for accelerating graph neu-
ral networks,” in Proc. 58th ACM/IEEE Des. Automat. Conf., 2021,
pp. 955–960.

[30] T. Geng et al., “I-GCN: A graph convolutional network accelera-
tor with runtime locality enhancement through islandization,” in Proc.
MICRO-54: 54th Annu. IEEE/ACM Int. Symp. Microarchitecture, 2021,
pp. 1051–1063.

[31] Y.-C. Lin, B. Zhang, and V. Prasanna, “Accelerating GNN training on cpu
multi-FPGA heterogeneous platform,” in High Performance Computing.
Berlin, Germany: Springer, 2022.

[32] W. Hu et al., “Open graph benchmark: Datasets for machine learning on
graphs,” 2020, arXiv: 2005.00687.

[33] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “DGCL: An efficient
communication library for distributed GNN training,” in Proc. 16th Eur.
Conf. Comput. Syst., 2021, pp. 130–144.

[34] Y.-K. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “In-depth
analysis on microarchitectures of modern heterogeneous CPU-FPGA plat-
forms,” ACM Trans. Reconfigurable Technol. Syst., vol. 12, pp. 1–20, 2019.

[35] “Amazon EC2 F1 [online],” Accessed: Jun. 23, 2022. [Online]. Available:
https://aws.amazon.com/tw/ec2/instance-types/f1/

[36] “Azure np-series [online],” Accessed: Jun. 23, 2022. [Online]. Available:
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series

[37] “Powertop [online],” Accessed: Jun. 23, 2022. [Online]. Available: https:
//github.com/fenrus75/powertop

[38] “Nvidia system management interface [online],” Sep. 05, 2023. [Online].
Available: https://developer.nvidia.com/nvidia-system-management-
interface

[39] V. Kathail, “Xilinx vitis unified software platform,” in Proc. ACM/SIGDA
Int. Symp. Field- Program. Gate Arrays, 2020, pp. 173–174.

[40] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.

[41] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-SAW: A framework
for graph sampling and random walk on GPUs,” in Proc. SC20: Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2020, pp. 1–15.

Yi-Chien Lin (Graduate Student Member, IEEE) re-
ceived the BS degree in electrical engineering from
the National Taiwan University, in 2020. He is cur-
rently working toward the PhD degree in electrical en-
gineering with the University of Southern California.
He is a recipient of the Viterbi School of Engineer-
ing Graduate School Fellowship at the Ming Hsieh
Department of Electrical and Computer Engineer-
ing. His research interests include Machine Learning
systems, hardware acceleration, and graph machine
learning.

Bingyi Zhang received the BS degree in microelec-
tronics from Fudan University, in 2017, and the MS
degree in Integrated Circuit Engineering from Fudan
University. He is currently working toward the PhD
degree in computer engineering with the University
of Southern California (USC). His research interests
include parallel computing, digital signal processing,
digital circuit design. He focuses on accelerating
graph-based machine learning on FPGA platform.

Viktor K. Prasanna received the BS degree in elec-
tronics engineering from Bangalore University, the
MS degree from the School of Automation, Indian
Institute of Science, and the PhD degree in computer
science from Pennsylvania State University. He is
Charles Lee Powell chair in engineering in the Ming
Hsieh Department of Electrical and Computer En-
gineering and Professor of computer science with
the University of Southern California (USC). His re-
search interests include high performance computing,
parallel and distributed systems, reconfigurable com-

puting, and embedded systems. He serves as the director of the Center for Energy
Informatics at USC. He served as the editor-in-chief of the IEEE Transactions
on Computers during 2003–2006. Currently, he is the editor-in-chief of the
Journal of Parallel and Distributed Computing. He was the founding chair of the
IEEE Computer Society Technical Committee on Parallel Processing. He is the
steering chair of the IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS) and is the steering chair of the IEEE International Conference
on High Performance Computing (HiPC). He received the 2009 Outstanding
Engineering Alumnus Award from the Pennsylvania State University, the 2019
Distinguished Alumnus Award from the Indian Institute of Science (IISc) and the
2016 Distinguished Alumnus Award from the University Visvesvaraya College
of Engineering (UVCE), Bangalore University. He received the W. Wallace
McDowell Award from the IEEE Computer Society, in 2015 for his contributions
to reconfigurable computing. He is a fellow of the IEEE, the ACM, and the
American Association for Advancement of Science (AAAS). He is an elected
member of Academia Europaea.

Authorized licensed use limited to: University of Southern California. Downloaded on May 21,2024 at 17:27:46 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/tw/ec2/instance-types/f1/
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
https://github.com/fenrus75/powertop
https://github.com/fenrus75/powertop
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

