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Abstract:Mechanical metamaterials with negative Poisson’s
ratio (NPR) have emerged as a novel class of engineering
material, and have attracted increasing attention in various
engineering sectors. Most studies available on the buckling
problem of laminated plates with positive or NPR are those
under uniaxial compression. Here, we report that the buck-
ling phenomenon may occur for auxetic nanocomposite
laminated plates under uniaxial tension when the unloaded
edges of the plates are immovable. Two types of nanocom-
posites are considered, including graphene/Cu and carbon
nanotube/Cu composites. Governing equations of the auxetic
nanocomposite laminated plates are formulated based on
the framework of Reddy’s higher-order shear deformation
theory. In modeling, the von Kármán nonlinear strain–
displacement relationship, temperature-dependent mate-
rial properties, thermal effects, and the plate–substrate
interaction are considered. The explicit analytical solutions
for postbuckling of auxetic nanocomposite laminated plates
subjected to uniaxial tension are obtained for the first time by
employing a two-step perturbation approach. Numerical
investigations are performed for tension buckling and post-
buckling behaviors of auxetic nanocomposite laminated
rectangular plates with in-plane NPR rested on an elastic
substrate under temperature environments.

Keywords: nanocomposites, auxetic laminates, tension buck-
ling, rectangular plate, elastic substrate, temperature-dependent

1 Introduction

Buckling is an important problem for the thin plates sub-
jected to uniaxial or biaxial compression [1]. Under tensile
loads, thin plates usually do not experience buckling. How-
ever, according to the literature survey, there are two special
cases, in which buckling can occur under tensile loads,
namely “tension buckling,” for the thin plates/sheets. One
case is if a plate contains a hole [2–4] or a crack [5–7], the
compressive stresses arise locally near the hole or the crack
under a uniaxial tensile load, where these compressive
stresses may cause local buckling. Another case is wrinkling
(i.e., local short-wavelength buckling), which is commonly
observed in stretched-thin sheets [8–12] and single-layer gra-
phene sheets [13–16] due to the variation of Poisson’s effect.
For nanocomposite structures, which are generally consid-
ered as the next-generation composite structures, although
much research has been done on the buckling and postbuck-
ling analyses of nanocomposite plates under uniaxial or
biaxial compression, no attention is paid to the buckling of
nanocomposite plates when they are subjected to a tensile
load. The buckling of nanocomposite plates under tensile
load represents a unique and crucial failure mode in the
design of these structures, which has not been reported in
the literature. To guide the design and optimization of nano-
composites for future engineering applications, it is of great
significance to establish a scientific and theoretical tool to
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predict the critical tension buckling load, and hence, the
factor of safety under this unique buckling failure mode.

Auxetic laminated composites with negative Poisson’s
ratio (NPR) are one class of mechanical metamaterials.
With the development of nanotechnology and additive man-
ufacturing technology [17,18], nanofillers such as graphene
sheets [19] or carbon nanotubes (CNTs) [20] can be
embedded in a single-crystal copper matrix to achieve
auxetic nanocomposite laminates [21,22]. Owing to their spe-
cial properties and characteristics, auxetic nanocomposite
materials have shown better performance in certain aspects
than those of conventional materials and are expected to
have a wide range of technological applications [23,24].

Recently, Shen et al. [25] combined the functionally graded
(FG) concept with the auxetic concept to design the FG-GRMMC
(graphene-reinforced metal-matrix composite) laminates. Con-
sidering the auxetic effect of GRMMCs, Shen and his co-authors
[25,26] investigated the impact of in-plane NPR on the compres-
sive postbuckling behaviors of FG-GRMMC laminated and
sandwich plates subjected to uniaxial compression. Unlike
fiber-reinforced composite (FRC), graphene-reinforced compo-
site (GRC) and carbon nanotube-reinforced composite (CNTRC)
laminated plates with positive Poisson’s ratios [27–29] where
the buckling loads and initial postbuckling load–deflec-
tion curves for the plate with unloaded edges that are
movable (i.e., displacement is unconstrained in the in-
plane direction) are higher than those of the same plate
with unloaded edges that are immovable (i.e., displacement
is constrained in the direction perpendicular to the loaded
edges), the auxetic GRMMC laminated plates showed the
opposite behavior. Specifically, for auxetic laminated
plates, the buckling loads and postbuckling load–deflection
curves with unloaded edges that are movable in the in-
plane direction are lower than those of the same plate
under immovable unloaded edges. This indicates that the
unique lateral contraction of the auxetic laminates under
uniaxial compressive load locally enhanced the buckling
strength. Such an exceptional behavior leads us to believe

that auxetic laminated plates with unloaded edges that are
immovable may buckle under a uniaxial tensile load as
compressive reaction force will be produced on unloaded
edges to restrict the lateral expansion of the auxetic plates
under uniaxial tension. This provides the motivation for
the present investigation.

The present research is to investigate the buckling
and postbuckling behavior of auxetic nanocomposite lami-
nated plates with unloaded edges that are immovable and
subjected to the uniaxial tensile load under thermal envir-
onmental conditions. In the current study, we chose two
types of auxetic nanocomposite laminates. One is a gra-
phene/Cu laminated plate with in-plane NPR and the other
is a CNT/Cu laminated plate with in-plane NPR. The mate-
rial properties of both graphene/Cu and CNT/Cu composites
are temperature-dependent. The governing equations of
the auxetic nanocomposite laminated plates are estab-
lished based on the framework of Reddy’s higher-order
shear deformation theory (HSDT). In modeling, the von
Kármán nonlinear strain–displacement relationship, the
effect of temperature, the interaction between the plate
and substrate, and the effect of the plate's initial geometric
imperfection are also taken into consideration.
The explicit analytical solutions for buckling and post-
buckling of auxetic nanocomposite laminated plates sub-
jected to uniaxial tension are obtained for the first time by
employing a two-step perturbation approach. The impacts of
the plate aspect ratio, the plate width-to-thickness ratio, tem-
perature variation, and foundation stiffness on tension buck-
ling and postbuckling behavior of auxetic nanocomposite
laminated plates are discussed in the numerical investigation.

2 Modeling

Consider an N-ply laminated rectangular plate, where each
ply is made of nanocomposites having an in-plane NPR. As
shown in Figure 1, a is the length, b is the width, and h is

Figure 1: Auxetic nanocomposite laminated rectangular plate rests on an elastic substrate under uniaxial tensile load.
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the total thickness of the plate. The coordinate system (X, Y,
Z) is located on the middle surface of the plate with its origin
placed at one corner of the plate, where the X and Y axes are
set along the length and the width directions, respectively,
while the Z-axis is set along the thickness direction pointing
downward. The plate is rested on an elastic substrate that is
idealized as a Pasternak-type foundation model with two
stiffnesses, where K¯

1

denotes the vertical spring stiffness
and K¯

2

denotes the shearing layer stiffness.
The plate is exposed to elevated temperature and is sub-

jected to uniaxial tensile load. Based on the framework of
HSDT of Reddy [30] and that coupled with the von Kármán
nonlinear strain–displacement relationships, the governing
equations for the postbuckling of the nanocomposite lami-
nated plate with in-plane NPR are given by Shen [1]
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whereW¯ is the plate displacement in the Z direction,W¯

⁎ is
the initial geometric imperfection, F¯ is the stress function defined
by = ∂ ∂N F Y¯ ¯

/x
2 2, = ∂ ∂N F X¯ ¯

/y
2 2, and = −∂ ∂ ∂N F X Y¯ ¯

/xy
2 , and

Ψ¯x andΨ¯y are two rotations with respect to the Y and X axes.
L˜ij( ) represent the linear operators [1], and L˜( ) representing
the nonlinear operator involving geometric nonlinearity in
the von Kármán sense is expressed by
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Meanwhile, the interaction of the plate founda-
tion defined by − ∇K W K W¯ ¯ ¯ ¯

1 2

2 along with the thermal
effect is included in equations (1a)–(1d). The thermal
forces, the thermal moments, and the higher-order thermal
moments (N¯ T , M¯

T , P¯
T ) due to elevated temperature are

given by
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and S¯
T in equations (1c) and (1d) are given by
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In equation (3a), TΔ = T − T0 denotes the temperature
increase with reference to temperature T0, and
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where α
11

and α
22

are the thermal expansion coefficients in
the longitudinal and transverse directions of the kth ply,
respectively, and Q¯

ij
represent the transformed elastic con-

stants, defined by
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where E11, E22, G12, G13, G23, ν
12

, and ν
21

are Young’s moduli,
shear moduli, and Poisson’s ratios for the kth ply, and

=c θcos and =s θsin (θ is the lamination angle with
respect to the plate X-axis).

Besides the governing equations (1a)–(1d), for the boundary-
value problem, we require the boundary conditions for the
auxetic laminated plate. In order to derive the theoretical
solution, the four edges of the auxetic laminated plate are
assumed to be SSSS (i.e., simply supported on all four edges).
Specifically, on the X = 0 and X = a edges,

= = = =W Ψ M P¯ ¯
0,

¯ ¯
0,y x x (6a)

and on the Y = 0 and Y = b edges,

= = = =W Ψ M P¯ ¯
0,

¯ ¯
0,x y y (6b)

where M¯x and M¯y are the bending moments, and P¯x and P¯y

are the higher-order moments, as given in the study of
Reddy [30].
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The tensile loads are applied on the X = 0 and X = a
edges and the two loaded edges are freely movable (i.e., the
displacement can move in the X-direction), while the other
two unloaded edges are immovable (i.e., the displacement
is constrained in the Y-direction). The in-plane boundary
condition on the Y = 0 and Y = b edges is

=V¯ 0,

(7)

whereV¯ is the displacement of the plate in the Y direction,
and equation (7) can be expressed in an average sense as
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Although the governing equations (1a)–(1d) have the
same forms for the compressive buckling and tension
buckling problems, unlike the compressive buckling pro-
blem [25,26], in the current study, the equilibrium of force
in the X-direction is expressed as

∫ − =N Y σ bh¯
d 0,

b
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where σx denotes the average tensile stress at X = 0 and X =

a edges.
In equation (8b), the reduced stiffness coefficients are

contained in the reduced stiffness matrices, including [ ∗
Aij],
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where the plate stiffness coefficients Aij, Bij, etc., are
expressed as
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3 Solution procedure

In order to solve the buckling and postbuckling problems
of nanocomposite structures analytically, the Ritz and
Galerkin methods are usually employed [31–38]. The accu-
racy of applying the Ritz and Galerkin methods depends
strongly on the chosen modal shape functions. Shen [39]
developed a two-step perturbation approach that gives
explicit analytical expressions of all the variables in the
large deflection region. The advantage of this method is
that it is unnecessary to guess the form of the modal shape
function, which can be obtained step by step, and such
solutions satisfy both the governing equations and the
boundary conditions accurately in the asymptotic sense.
This approach has been applied to successfully solve var-
ious plate nonlinear boundary-value problems by other
research teams [40–50]. To employ this approach for sol-
ving the postbuckling problem of auxetic laminated plates
with in-plane NPR, the governing equations (1a)–(1d) are
first converted into the non-dimensional forms as
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where the non-dimensional operators Lij( ) and L( ) are
given in the study of Shen [1]. Note that the operators
L15( ), L25( ), L35( ), and L45( ) vanish due to the uniform
temperature field. The dimensionless parameters are
defined by
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where k1 and k2 are only utilized for numerical examples
in Section 4, E0 is the reference value of Young’s modulus
for the single-crystal copper matrix at T = 300 K, and is set
to be E0 = 101.14 GPa [22]. Ax

T , Dx

T , Fx

T , etc., are given by
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Accordingly, the plate boundary conditions on the x =

0 and x = π edges can be nondimensionalized as

= = = =W Ψ M P0, 0,y x x (15a)

and those on the y = 0 and y = π edges can be nondimen-
sionalized as

= = = =W Ψ M P0, 0.x y y (15b)

And, hence, the in-plane boundary condition for the
plate becomes
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where γ
230

and γ
526

are defined in the study of Shen [1].
For the auxetic laminated plate subjected to uniaxial

tension, equation (9) becomes
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The initial geometric imperfection of the auxetic lami-
nated plate in the dimensionless form is given by

=W x y ε εμA mx ny, , sin sin ,

⁎

11
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( ) ( )
( ) (18)

where ε is the small perturbation parameter and μ is the
imperfection parameter.

By employing the two-step perturbation approach, the
asymptotic solutions of equations (12a)–(12d) along with
the boundary conditions (15a) and (15b) are obtained as
follows:
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Note that to restrict the lateral expansion of the auxetic
laminated plate subjected to uniaxial tensile loads, compres-
sive stresses are produced in two unloaded edges that are
immovable, so that

= − + +

+
⎡
⎣⎢
− + +

+
⎤
⎦⎥

+
⎡
⎣⎢

+
⎤
⎦⎥

+
⎡
⎣⎢
− +

+ +

+ +

+ +

+
⎤
⎦⎥

+

F b
x

B
y

ε B mx ny

ε b
x

B
y

B mx

B ny ε B mx ny

B mx ny ε b
x

B
y

B mx B ny

B mx ny B mx

B ny B mx ny

B mx ny O ε

2 2

cos cos

2 2

cos 2

cos 2 cos cos 3

cos 3 cos

2 2

cos 2 cos 2

cos 2 cos 2 cos 4

cos 4 cos 2 cos 4

cos 4 cos 2 .

00

0

2

00

0

2

11

1

2

00

2

2

00

2

2

20

2

02

2

3

13

3

31

3

4

00

4

2

00

4

2

20

4

02

4

22

4

40

4

04

4

24

4

42

4

5

[ ]

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

(22)

It is worth noting that solution (22) is different from
that obtained for the compressive postbuckling problem,
as reported in the study of Shen et al. [25]. Thereafter, by
substituting equation (22) into equation (17), one has
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Similarly, we have
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From perturbation procedure, we can obtain the
expressions for − +m β B n β b
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and substituting W, Ψx , Ψy, and F into equation (16)
yields
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From equations (25) and (26), we obtain
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where (A ε
11

1( ) ) is treated as the second perturbation para-
meter and is related to the non-dimensional plate deflec-
tion Wm. From equation (19), one has

= + ⋯A ε W Θ W .m m
11

1

3

3( )
( ) (28)

In the current study, buckling is caused by com-
pressed stress on the unloaded edges. By minimizing the
compressive stress in equation (27) with respect to m and
n, the buckling load of a perfect plate can readily be
numerically obtained by setting μ = 0 (orW h¯

/

⁎ = 0), while
taking Wm = 0 (or W h¯

/ = 0). The corresponding buckling
mode (m, n) is obtained simultaneously, which deter-
mines the number of half-waves in the X and Y directions,
respectively.

After the buckling mode (m, n) and buckling loads are
determined, the postbuckling tensile load–deflection curve
can be obtained as
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2
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All symbols used in equations (27)–(29) are explained
in Appendix.

4 Numerical results

In this section, we will present numerical studies for ten-
sion buckling and postbuckling behavior of perfect and
imperfect auxetic nanocomposite laminated plates with
in-plane NPR that are rested on elastic foundations. Two
types of nanocomposite materials are selected for each ply
of the laminated plate. One is the graphene/Cu composite
with the graphene weight fraction wG = 3%, while another
is the CNT/Cu composite with the CNT weight fraction wCNT

= 3%. The material properties of the two composites are
both temperature-dependent and are taken from the mole-
cular dynamics simulation results of Fan et al. [21] and
Zhang et al. [22], respectively, which are listed in Tables 1
and 2, respectively.

In the current research, symmetric (0/90/0)S and anti-
symmetric (10/−10)3T laminated rectangular plates are con-
sidered. The thickness of each ply is identical and the total
thickness of the plate is h = 1.2 mm. The plate aspect ratios
are selected as a/b = 2, 3, 4, and 5. To avoid cases where
stresses increase beyond the elastic range, the plate width-
to-thickness ratio is set as b/h = 50, 100, and 200. The
in-plane effective Poisson’s ratio (EPR) ν

e

12

of these nano-
composite laminated plates are determined by employing
the method as reported in the study of Shen et al. [51], and
listed in Table 3. From Table 3, it can be seen that the
absolute value of NPR of (0/90/0)S CNT/Cu laminated plate
is the largest, whereas that of the (10/−10)3T graphene/Cu
laminated plate is the smallest at all three temperature
levels considered.

The buckling load is of practical concern of the nano-
composite laminated plates and, therefore, we need to
determine the buckling tensile load and the corresponding
buckling mode for the auxetic nanocomposite laminated

Table 1: Temperature-dependent properties of graphene/Cu compo-
sites (wG = 3%) [21]

T = 300 K T = 500 K T = 700 K

E11 (GPa) 207.55 193.15 180.50
E22 (GPa) 196.69 183.94 171.58
E33 (GPa) 61.454 55.773 47.192
G12 (GPa) 66.389 62.092 58.314
G13 (GPa) 33.617 31.536 28.928
G23 (GPa) 32.327 31.009 28.200
ν12 −0.0649 −0.0721 −0.0751
ν13 0.6297 0.6298 0.6826
ν23 0.6512 0.6617 0.6742
α11 (×10−6 K−1) 1.4224 1.5037 1.6222
α22 (×10−6 K−1) 1.4194 1.5006 1.6278
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plates first. Since the tension buckling of the auxetic lami-
nated plates is investigated for the first time, no experi-
mental data are currently available for model validation.
In order to validate the accuracy and reliability of the
present solution method, the finite element analysis is per-
formed and the results are depicted in Figure 2. The buck-
ling load associated with the buckling mode agrees well in
each case, which clearly shows the validity and accuracy of
the current solution for the tension buckling analysis of
auxetic laminated plates.

Buckling tensile loads Pcr (kN) of the (0/90/0)S and
(10/−10)3T graphene/Cu laminated plates and (0/90/0)S
CNT/Cu laminated plates, with different values of plate
aspect ratios (a/b = 2, 3, and 4) rested on the elastic founda-
tions under temperature conditions are presented in
Tables 4–6. The thermal environments are set as T = 300,
500, and 700 K. Two foundation models with (k1, k2) = (10, 0)
for the Winkler foundation and (k1, k2) = (10, 1) for the
Pasternak foundation are considered. Owing to the NPR
effect, the applied tensile load acting in the longitudinal
direction produces a compressive reaction force and,
hence, compressive stress, when the transverse displace-
ment is constrained. Buckling occurs when the compressive
stress reaches a critical value. As can be observed, the buck-
ling tensile loads for the (10/−10)3T graphene/Cu laminated
plates are larger than those of the (0/90/0)S graphene/Cu

laminated plates, whereas the buckling tensile loads of the
(0/90/0)S CNT/Cu laminated plates are lower than those of
the (0/90/0)S graphene/Cu laminated plates, even if the (0/90/
0)S CNT/Cu laminated plate is relatively thicker (i.e., lower b/h)
than the (0/90/0)S graphene/Cu laminated plate. This is because
the (10/−10)3T graphene/Cu laminated plate has the lowest

Table 2: Temperature-dependent properties of CNT/Cu composites
(wCNT = 3%) [22]

T = 300 K T = 500 K T = 700 K

E11 (GPa) 226.24 216.70 209.84
E22 (GPa) 96.918 89.186 81.311
E33 (GPa) 68.336 63.629 59.185
G12 (GPa) 15.496 14.090 12.584
G13 (GPa) 48.932 45.508 42.145
G23 (GPa) 49.838 46.357 43.688
ν12 −0.1537 −0.1637 −0.1762
ν13 0.7508 0.7677 0.7833
ν23 0.8121 0.8215 0.8316
α11 (×10−6 K−1) 8.3366 8.3227 8.3089
α22 (×10−6 K−1) 12.649 13.000 13.349

Table 3: Effective Poisson’s ratios ν
e

12

for nanocomposite laminates

T (K) CNT/Cu laminates Graphene/Cu laminates

(0/90/0)S (0/90/0)S (10/−10)3T
300 −0.111 −0.064 −0.040
500 −0.115 −0.071 −0.047
700 −0.120 −0.074 −0.050

Figure 2: Comparisons of buckling loads of nanocomposite laminated
plates under uniaxial tension: (a) a/b = 2, (m, n) = (1,3); (b) a/b = 3, (m, n) =
(1,3); and (c) a/b = 4, (m, n) = (1,2).
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negative EPR, while the (0/90/0)S CNT/Cu laminated plate has
the highest negative EPR among the three. In other words, a
higher negative EPR will exacerbate the compressive stress
caused by the reaction force, and hence, make the composites
more prone to buckle.We also observe that the bucklingmode
(m, n) changes from (1, 3) to (1, 2) for the (0/90/0)S CNT/Cu and
graphene/Cu laminated plates, whereas the buckling mode (m,
n) changes from (1, 4) to (1, 2) for the (10/−10)3T graphene/Cu
laminated plates when the plate aspect ratio a/b changes from
2 to 4. The changes in the buckling mode can also be observed
when the temperature increases from 300 to 700 K. These
simulation results indicate that changing the aspect ratio of
the plates and applying the temperature condition signifi-
cantly affect the distribution of the compressive stress along

the unloaded edges, thereby resulting in shifts in the buckling
mode. Additionally, similar to cases of compressive buck-
ling [25], the buckling tensile loads decrease when the
temperature increases and increase when the foundation
stiffnesses are increased.

Figure 3 shows the effect of plate aspect ratio a/b ( = 3, 4
and 5) on the postbuckling behavior of (0/90/0)S and (±10)3T
graphene/Cu and (0/90/0)S CNT/Cu laminated plates under
tension at T = 300 K. The depicted curves in Figure 3 indi-
cate that increasing the plate aspect ratio significantly
reduces the critical tension buckling load as well as the
peak of the postbuckling load–deflection curves. These
simulation results suggest that in the postbuckling range,
the increase of the amplitude of the plate deflection will
counteract the lateral expansion displacement of the auxetic
plate. The stress on the unloaded edges changes from com-
pressive stress to tensile stress when the amplitude of the
plate deflection reaches a certain value, which leads the
tensile load–deflection curve to switch from rising to falling
at the peak point. The postbuckling curves of tensile load vs
deflection for the imperfect auxetic laminated plates are
also plotted in Figure 3, where W h¯

/

⁎ = 0.1 (or 0.05) denotes
the non-dimensional maximum initial geometric imperfec-
tion of the auxetic laminated plates.

The effect of plate width-to-thickness ratio on the post-
buckling behavior of the three configurations of auxetic
laminated plates with a/b = 3 under tension at 300 K is
illustrated in Figure 4. Three cases of b/h = 50, 100, and
200 are chosen for the (0/90/0)S CNT/Cu and graphene/Cu
laminated plates, while b/h is set as 100, 150, and 200 for the
(10/−10)3T graphene/Cu laminated plates. Such choices of
the b/h ratios for the two types of laminates have ensured
that the compressive or tensile stresses stay within the

Table 4: Buckling tensile loads Pcr (kN) of (0/90/0)S laminated plates
made of graphene/Cu with unloaded edges that are immovable
[h = 1.2 mm, b/h = 100]

T (K) a/b = 2 a/b = 3 a/b = 4

(k1, k2) = (0, 0)
300 630.6308 (1, 3)a 281.1347 (1, 2) 205.3563 (1, 2)
500 199.6882 (1, 2) 209.9876 (1, 3) 189.8835 (1, 3)
700 62.7413 (1, 3) 40.8513 (1, 3) 35.6539 (1, 3)
(k1, k2) = (10, 0)
300 635.3398 (1, 3) 291.7302 (1, 2) 213.2104 (1, 2)
500 250.4258 (1, 2) 212.8428 (1, 3) 192.4932 (1, 3)
700 66.4007 (1, 3) 43.5732 (1, 3) 38.1518 (1, 6)
(k1, k2) = (10, 1)
300 678.3310 (1, 3) 334.7214 (1, 2) 244.7016 (1, 2)
500 335.6300 (1, 3) 238.5179 (1, 3) 215.8357 (1, 3)
700 99.8081 (1, 3) 68.0491 (1, 3) 60.4938 (1, 3)

aBuckling mode (m, n).

Table 6: Buckling tensile loads Pcr (kN) of (0/90/0)S laminated plates
made of CNT/Cu with unloaded edges that are immovable [h = 1.2 mm,
b/h = 50]

T (K) a/b = 2 a/b = 3 a/b = 4

(k1, k2) = (0, 0)
300 523.3330 (1, 3)a 233.8883 (1, 2) 189.9320 (1, 2)
500 118.3289 (1, 3) 91.2130 (1, 3) 84.3524 (1, 3)
700 86.4904 (1, 4) 75.9266 (1, 4) 72.7877 (1, 4)
(k1, k2) = (10, 0)
300 529.4551 (1, 3) 247.6630 (1, 2) 201.1594 (1, 2)
500 176.8505 (1, 3) 95.8015 (1, 3) 88.6184 (1, 3)
700 89.1192 (1, 4) 78.2660 (1, 4) 75.0403 (1, 4)
(k1, k2) = (10, 1)
300 585.3463 (1, 3) 303.5543 (1, 2) 246.1761 (1, 2)
500 230.2771 (1, 3) 137.0625 (1, 3) 126.7755 (1, 3)
700 131.2807 (1, 4) 115.4652 (1, 4) 110.7512 (1, 4)

aBuckling mode (m, n).

Table 5: Buckling tensile loads Pcr (kN) of (±10)3T laminated plates made
of graphene/Cu with unloaded edges that are immovable [h = 1.2 mm,
b/h = 100]

T (K) a/b = 2 a/b = 3 a/b = 4

(k1, k2) = (0, 0)
300 1569.6150 (1, 4)a 774.6838 (1, 3) 395.1861 (1, 2)
500 658.9609 (1, 3) 345.4806 (1, 3) 294.1510 (1, 3)
700 131.6798 (1, 3) 65.4747 (1, 3) 53.8327 (1, 3)
(k1, k2) = (10, 0)
300 1573.5280 (1, 4) 780.7916 (1, 3) 410.8407 (1, 2)
500 667.8953 (1, 3) 350.3338 (1, 3) 298.3353 (1, 3)
700 139.4096 (1, 3) 69.9492 (1, 3) 57.7324 (1, 3)
(k1, k2) = (10, 1)
300 1636.2960 (1, 4) 835.7136 (1, 3) 473.6080 (1, 2)
500 749.4606 (1, 3) 393.9758 (1, 3) 335.7609 (1, 3)
700 209.9779 (1, 3) 110.1851 (1, 3) 92.6123 (1, 3)

aBuckling mode (m, n).
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Figure 3: Effect of the plate aspect ratio on the postbuckling behavior of
auxetic laminated plates under tension: (a) (0/90/0)S graphene/Cu plate;
(b) (10/−10)3T graphene/Cu plate; and (c) (0/90/0)S CNT/Cu plate.
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Figure 4: Effect of the plate width-to-thickness ratio on the postbuckling
behavior of auxetic laminated plates under tension: (a) (0/90/0)S graphene/
Cu plate; (b) (10/−10)3T graphene/Cu plate; and (c) (0/90/0)S CNT/Cu plate.
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elastic range. As a result, no peak can be observed on the
postbuckling tensile load–deflection curves for b/h = 50
for the (0/90/0)S laminated plates and b/h = 100 for the

(10/−10)3T laminated plates. It is found that the postbuck-
ling tensile load–deflection curves are reduced when the
plate becomes thinner.
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Figure 5: Effect of temperature variation on the postbuckling behavior of
auxetic laminated plates under tension: (a) (0/90/0)S graphene/Cu plate;
(b) (10/−10)3T graphene/Cu plate; and (c) (0/90/0)S CNT/Cu plate.

(a)

(b)

(c)

0.0 0.2 0.4 0.6
0

300

600

900

1200

1500

1800
(10/-10)

3T
 Graphene/Cu plate

h=1.2 mm, a/b= 3, b/h = 100 
(m, n)=(1, 3), T=300 K 

 (k
1
, k

2
)=(0, 0)

 (k
1
, k

2
)=(50, 0)

 (k
1
, k

2
)=(50, 5)

P
x (

kN
)

W/h

W*/h = 0

W*/h = 0.1

0.0 0.2 0.4 0.6 0.8
0

200

400

600

800

1000
(0/90/0)

S
 CNT/Cu plate

h=1.2 mm, a/b= 3, b/h = 50 
T=300 K, (m, n)=(1, 2) 

 (k
1
, k

2
)=(0, 0)

 (k
1
, k

2
)=(50, 0)

 (k
1
, k

2
)=(50, 5)

P
x (

kN
)

W/h

W*/h = 0

W*/h = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0

300

600

900

1200

1500

1800
(0/90/0)

S
 graphene/Cu plate

h=1.2 mm, a/b= 3, b/h = 100 
T=300 K, (m, n)=(1, 2) 

 (k
1
, k

2
)=(0, 0)

 (k
1
, k

2
)=(50, 0)

 (k
1
, k

2
)=(50, 5)

P
x (

kN
)

W/h

W*/h = 0

W*/h = 0.1
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The effect of temperature change on the postbuckl-
ing behavior of three configurations of auxetic laminated
plates with a/b = 3 is depicted in Figure 5. Three thermal
environmental conditions, T = 300, 500, and 700 K, are
considered. The temperature effect is included in the simu-
lations by using the temperature-dependent material prop-
erties of both graphene/Cu and CNT/Cu composites. As the
temperature increases, the elastic moduli reduce and the
strength degrades for nanocomposites. As a result, the
postbuckling tensile load–deflection curves are decreased
as the temperature increases. Note that the initial geo-
metric imperfection is set as W h¯

/

⁎ = 0.05 in this example.
Our results show that the (10/−10)3T graphene/Cu laminated
plate has no buckling mode change. Additionally, the post-
buckling tensile load–deflection curve becomes extremely
low at T = 700 K compared to the case at T = 300 K.

Figure 6 illustrates the effect of foundation stiffnesses
on the postbuckling behavior of three configurations of
auxetic laminated plates with a/b = 3 rested on elastic
foundations at T = 300 K. In this example, two foundation
models with (k1, k2) = (50, 0) for the Winkler foundation
and (k1, k2) = (50, 5) for the Pasternak foundation are con-
sidered. Similar to conventional observations in laminated
plates [25], the postbuckling curves of tensile load vs deflec-
tion increase with higher foundation stiffnesses. This implies
that the tensile buckling could be mitigated by using a stiffer
foundation as a substrate. Furthermore, no change in the
buckling mode is observed when the auxetic laminated plate
is supported by either the Winkler foundation or the Pas-
ternak foundation.

5 Conclusion

Tension buckling and postbuckling phenomena of auxetic
nanocomposite laminated plates with immovable unloaded
edges are presented. The material properties of the two
nanocomposites considered in this study, CNT/Cu and gra-
phene/Cu composites, are both dependent on temperature.
Based on the two-step perturbation method, the explicit
analytical solutions are obtained for the first time. The
numerical studies have been presented for three configura-
tions of laminated plates, including (0/90/0)S and (10/−10)3T
graphene/Cu laminated plates and (0/90/0)S CNT/Cu lami-
nated plates, with or without an elastic substrate under
temperature environments. The buckling tensile loads and
associated buckling modes have been verified by FE simula-
tion. The results presented explore for the first time the
important issue of auxetic nanocomposite laminated plates,
and thus are greatly useful in the engineering design of the

novel nanocomposite structures. The findings are summar-
ized as follows:
1) Due to the impact of in-plane NPR, the buckling tensile

loads exist for the auxetic laminated rectangular plates
with unloaded edges that are “immovable” under uni-
axial tension. The tensile loads on “movable” ends lead to
compressive stress on “immovable” ends, which is
exactly the origin of tension buckling and postbuckling.

2) Unlike the traditional compressive postbuckling case
where the postbuckling load–deflection curve rises
slowly, in the tension postbuckling case, the postbuck-
ling tensile load–deflection curve rises rapidly, in parti-
cular for cases when the temperature variation is under
consideration.

3) In the postbuckling range, the increase of the amplitude
of the plate deflection will counteract the lateral expan-
sion displacement of the auxetic plate. The stress on the
unloaded edges may shift from compressive stress to
tensile stress when the amplitude of the plate deflection
reaches a certain value. In most cases, a peak point exists
on the postbuckling tensile load–deflection curves.
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Appendix

In equations (27) and (29),
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where (with other symbols being defined as in the study of
Shen [1])
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