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Traffic congestion can have a detrimental effect on public transit systems, and understanding and mitigating
these effects is of critical importance for effective public transportation. Implementing Dedicated Bus Lanes
(DBLs) is a well-known intervention to achieve this goal. A DBL is a designated lane for bus transit, which avoids
congestion and substantially lowers the travel time. This makes transit more attractive, encouraging more
travelers to adopt public transportation. This paper studies the impact of congestion and DBLs on novel On-
Demand Multimodal Transit Systems (ODMTS). ODMTS combine traditional rail and bus networks with on-
demand shuttles. Previous case studies have shown that ODMTS may simultaneously improve travel time,
reduce system cost, and attract new passengers. Those benefits were shown for an ideal world without traffic
congestion, and this paper hypothesizes that the advantages of ODMTS can be even more pronounced in the real
world. This paper explores this hypothesis by creating realistic congestion scenarios and solving bilevel opti-
mization problems to design ODMTS under these scenarios. The impact of DBLs on ODMTS is evaluated with a
comprehensive case study in the Metro Atlanta Area. The results show that DBLs can significantly improve travel
times and are effective at increasing adoption of the system.

1. Introduction

Traffic congestion can have a detrimental effect on public transit
systems, and understanding and mitigating these effects is of critical
importance for effective public transportation. Implementing Dedicated
Bus Lanes (DBLs) is a well-known intervention to achieve this goal. A
DBL is a designated lane for bus transit, which avoids congestion and
substantially lowers the travel time for riders. This makes transit more
attractive, encouraging more travelers to adopt public transportation.
Increased ridership in turn leads to a plethora of benefits, including
fewer cars on the road, less emission, and increased revenue for transit
operators that can be used to further improve service.

This paper studies the impact of congestion and DBLs on novel On-
Demand Multimodal Transit Systems (ODMTS). ODMTS combine
traditional rail and bus networks with on-demand shuttles (Van Hen-
tenryck, 2019). Trains and buses serve the busy corridors on a fixed
schedule, while shuttles dynamically serve the first and last miles. Fig. 1
provides an example of an ODMTS and the path of a single passenger.
Passengers provide their origin and destination through a mobile
application, after which the ODMTS provides a route to serve them. In
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this case, a passenger is picked up by an on-demand shuttle close to their
origin and brought to the train station. The passenger is then instructed
to take a train and a bus, which both run on a fixed schedule. When the
passenger arrives at the bus station closest to the destination, another
on-demand shuttle is ready to pick them up and serve the last mile. The
Socially Aware Mobility Lab (2020) provides a video of this process.

Case studies in Canberra, Australia (Mahéo et al., 2019), Ann Arbor,
Michigan (Basciftci and Van Hentenryck, 2020, 2023; Auad and Van
Hentenryck, 2022), and Atlanta, Georgia (Dalmeijer and Van Henten-
ryck (2020); Auad et al. (2021); Guan et al. (2022); Van Hentenryck
et al. (2023)) demonstrate that ODMTS may simultaneously improve
travel time, reduce system cost, and attract new passengers compared to
the existing systems. Those benefits are shown for an ideal world
without traffic congestion, and this paper hypothesizes that the advan-
tages of ODMTS can be even more pronounced in the real world. By the
very nature of ODMTS, shuttle trips are inherently local and minimally
affected by traffic. Furthermore, buses are only used to serve high-
density corridors, making DBLs for ODMTS potentially more impactful
than for a traditional system.

A case study is conducted to fill the critical gap in understanding the
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Fig. 1. Example ODMTS with Passenger Path (solid lines).

impact of congestion on ODMTS. Furthermore, it is shown that DBLs
may lead to significantly increased rider adoption. The case study fo-
cuses on traffic from Gwinnett Country to the city of Atlanta, both in the
Metro Atlanta Area (Georgia, USA). Gwinnett County is the second-most
populated county in Georgia, with close to a million residents (U.S.
Census Bureau, 2021). Many of these residents work in Atlanta and drive
the Interstate 85 (I-85) for their commute, creating significant traffic.
Fig. 2 summarizes Average Traffic Volume (ATV) from continuous count
stations along I-85 (Georgia Department of Transportation, 2022). When
driving south from Gwinnett to Atlanta, the ATV more than doubles on
the highlighted section, which shows the importance of this highway
and the high potential for congestion. Table 1 uses data from Google
Maps to demonstrate the enormous potential of DBLs to reduce travel
time on I-85. The table compares rush hour travel time to free flow travel
time for both the full segment and for the highlighted segment. It can be
seen that a DBL may save commuters from Gwinnett up to 61 min every
morning.
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Table 1
Travel Times and Potential Savings on I-85 (March 21-25, 2022).
Full segment Highlighted segment
Distance 28.8 miles 12.0 miles
Rush hour time (7am-9am) 28-85 min 12-50 min
Free flow time (2am) 24 min 10 min
Potential savings 4-61 min 2-40 min

The impact of DBLs is studied by creating different congestion sce-
narios and designing ODMTS with and without DBLs. Designing the
optimal ODMTS is modeled as a bilevel optimization problem in which
passengers choose whether to adopt the system based on the quality of
the trip they are offered. This work combines the general model by Auad
et al. (2021) with the adoption model by Basciftci and Van Hentenryck
(2023). To solve this model at the scale of the case study, this paper
applies the heuristic algorithm by Guan et al. (2022) and uses Benders
decomposition to solve the fixed-demand ODMTS design problem in
every iteration. This enables a comprehensive case study in the Metro
Atlanta Area that considers different levels of congestion, shows the
impact of DBLs, and demonstrates the increase in adoption of the
ODMTS.

The contributions of the paper can be summarized as follows:

1. The paper creates realistic congestion scenarios and solves bilevel
optimization problems to design ODMTS under these scenarios.

2. The paper evaluates the effect of congestion on ODMTS with a
comprehensive case study in the Metro Atlanta Area.
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Fig. 2. Average Traffic Volume along I-85 during the 7am-9am Rush Hour (March 21-25, 2022).
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3. The paper demonstrates on the case study that DBLs can significantly
increase ODMTS adoption.

The remainder of this paper is structured as follows. Section 2 gives
an overview of the literature. Section 3 presents the methods for
generating congestion scenarios and designing ODMTS with and
without DBLs. Section 4 introduces the case study area and the experi-
mental settings. The effect of congestion on ODMTS without DBLs is
analyzed in Section 5, after which Section 6 analyzes the effect of adding
DBLs to the system. Section 7 concludes the study with final thoughts on
DBLs in ODMTS.

2. Literature Review

DBLs have been studied through a variety of simulations and case
studies. Basso et al. (2011) analyse a model where travelers have the
choice between car, bus, and an outside option. The authors optimize
frequency, vehicle size, spacing between stops, and capacity on DBLs to
study different urban congestion management policies. It is found that
implementing DBLs is a better stand-alone policy than subsidizing
transit or pricing congestion. Russo et al. (2022) study the welfare effect
of DBLs in Rome, Italy and conclude that DBLs may decrease bus travel
time by 18%, decrease waiting time by 12%, and increase ridership by
26%. Furthermore, travel time for other motor vehicles may improve as
well. Other case studies include the study by Ben-Dor et al. (2018) for
Sioux Falls, South Dakota. The authors present an agent-based model
and use the MATSim simulator to demonstrate that DBLs fundamentally
improve the effectiveness of public transit and essentially make public
transit trip durations similar during peak hours and non-peak hours.
Hoonsiri et al. (2021) consider an intervention where fixed buses are
allowed onto dedicated Bus Rapid Transit (BRT) lanes. A case study on
the Rama 3 road in Bangkok, Thailand shows potential savings in travel
time and a reduction in greenhouse gas emissions. Tsitsokas et al. (2021)
formulate a nonlinear combinatorial optimization model to solve a DBL
allocation problem on a large-scale road network. A case study in the
San Francisco Metropolitan area demonstrates that the road network
with DBL configurations significantly improves travel times for both cars
and bus users compared to no DBLs.

Dedicated lanes have also been studied in the context of Autonomous
Vehicles (AVs), where similar benefits are observed. Chakraborty et al.
(2021) consider the problem of deciding which lanes on a freeway
network should be AV-exclusive. Traveler choice between AVs and
regular vehicles is captured by a logit model, and the resulting non-
convex mixed-integer nonlinear program is solved through a combina-
tion of Benders decomposition and the Method of Successive Averages.
The authors construct multiple freeway networks with up to 23 links to
demonstrate the algorithm. Chen et al. (2020) explore the idea of giving
AVs access to dedicated BRT lanes and focus on the interaction between
AVs and BRTs. The authors first consider a model for mixed-use lanes,
and propose a sequential optimization method to analyze the perfor-
mance. The second model allows AVs to move in and out of the BRT lane
at different locations, and is solved through successive linear program-
ming. A case study for BRT Line 1 in Beijing, China shows that mixed-use
lanes can both improve efficiency of AVs and reduce congestion on the
other lanes.

The ODMTS concept was proposed by Mahéo et al. (2019). They
leverage ideas from hub arc location problems for transportation and
telecommunication networks (Campbell et al., 2005) to design a hub
and shuttle transit system that determines which bus arcs to open and
how to serve the first/last miles with shuttles. A Benders decomposition
algorithm is introduced to solve the problem, and a case study in Can-
berra, Australia demonstrates that the new system improves transit
times without negatively affecting system costs. Auad et al. (2021) build
on this work to present an end-to-end ODMTS solution that combines
demand estimation, network design, fleet sizing, and real-time shuttle
dispatching. Earlier methods are adapted to the multimodal setting, and
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practical constraints are introduced, such as a limit on the numbers of
passenger transfers. The pipeline is used to conduct a case study in
Atlanta, Georgia and to demonstrate the resiliency of ODMTS under
various scenarios of COVID-19 pandemic response.

Recent studies on ODMTS have focused on including latent demand
into the design of the network. Basciftci and Van Hentenryck (2020,
2023) study ODMTS Design with Adoptions (ODMTS-DA) with bilevel
optimization models. The ODMTS-DA aims to design an ODMTS while
taking into account that new passengers may adapt the system based on
a personalized choice model. Exact methods are introduced to solve the
ODMTS-DA, and a small-scale case study in Ann Arbor, Michigan dem-
onstrates that ODMTS can improve service for the existing riders and
attract new riders at the same time. Guan et al. (2022) develop heuristics
to solve the ODMTS-DA for large-scale systems to which the exact
method does not scale. These heuristics solve the problem iteratively by
solving an ODMTS design problem with fixed demand, evaluating the
passenger choices based on the new network, updating the ODMTS
design problem, and repeating this process until convergence. A case
study in Atlanta, Georgia is used to demonstrate that the heuristic is able
to find high-quality solutions in significantly less time than the exact
algorithm.

Other studies have investigated the coordination between on-
demand services and public transit systems. Salazar et al. (2018)
develop a network flow model and a pricing scheme to capture the
interaction of Autonomous Mobility-on-Demand (AMoD) fleets with
public transit. They undertake a case study on the existing transit system
in New York City and show that integrating AMoD fleets with public
transit brings significant benefits compared to AMoD fleets operating
independently. Pinto et al. (2020) study the allocation of resources be-
tween transit systems and shared-use autonomous mobility services.
They design a bilevel mathematical programming formulation that de-
cides the balance between open bus routes and fleet sizes. Their case
study in Chicago demonstrates significant benefits to passenger waiting
times compared to the existing multimodal transit network.

The current paper studies whether the advantages of DBLs translate
to ODMTS. Previous works on DBLs either study the effect of policy
changes on existing systems or optimize how to modify existing systems.
This paper leverages the fact that ODMTS is a novel type of transit
system to introduce models that take congestion into account while
designing the system. It also presents a case study for a large multi-modal
system, while related optimization-based studies often focus on a single
mode and a single corridor.

3. Methodology

This section introduces the methods that are needed to rigorously
study the effect of congestion on ODMTS and to assess the benefit of
DBLs. It first proposes an approach to model congestion in ODMTS with
limited resources, and how to create the congestion scenarios that are
used in the analysis. It then presents a bilevel optimization model to
design ODMTS for these scenarios. It concludes by discussing how to
incorporate DBLs into the design.

3.1. Congestion Modeling

Obtaining travel time predictions for various levels of congestion for
each rider becomes computationally challenging or financially expen-
sive for a large ridership. Therefore, this paper constructs congestion
scenarios in two steps. The first step is to obtain a basis of travel times,
and the second step is to multiply the travel time basis with a factor that
depends on the congestion scenario and the local conditions.

Step 1: Travel Time Basis The travel time basis serves as the default
travel time for any origin—destination pair (OD pair) in this study. For a
given congestion scenario, the travel time basis is multiplied by a
congestion scaling factor, resulting in the travel times under that sce-
nario. The travel time basis is obtained from the POLARIS
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Transportation System Simulation Tool (Auld et al., 2016). POLARIS is
an agent-based modeling software tool created by Argonne National
Laboratory that uses a dynamic simulation of travel demand, network
supply, and network operations. It is used for a variety of cities to
simulate an average day of activities, and has been tuned specifically for
Atlanta using survey data from the Atlanta Regional Commission
(Atlanta Regional Commission, 2022). POLARIS provides travel times
between every pair of Traffic Analysis Zones (TAZs). The travel time
between arbitrary points is approximated by the travel time between the
corresponding TAZs. POLARIS does model congestion, but tuning to the
survey data only provides a single scenario. This motivates the next step.

Step 2: Congestion Scaling Factors To determine an appropriate
congestion scaling factor for every OD pair (without querying all of
them), this paper introduces a set Q of Query Reference Locations (QRL).
The set Q is shown by Fig. 3, and consists of existing Gwinnett bus stops,
MARTA rail stations, and local points of interest in Gwinnett. For a given
OD pair and a scenario k, the idea is to first identify the reference
location i € Q closest to the origin and j € Q closest to the destination.
The congestion scaling factor R{; is then calculated as r{} /rg, where the
travel time r{j for scenario k is queried and rg is from the travel time basis
in Step 1. The estimated travel time for the OD pair under scenario k is
obtained by multiplying the OD travel time basis by RS The benefit of
this approach is that it allows for region-specific scaling but only queries
travel times between the QRLs, which avoids prohibitively expensive
data collection. In the case where i = j, i.e., the origin and the desti-
nation are mapped to the same QRL, the scaling factor is calculated
between i and the QRL closest to i. (see Fig. 4).

Scenarios. The baseline scenario k = 0 is provided by the POLARIS
travel time basis. To generate the congestion scenarios, this paper uses
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the Directions API on Google Maps Platform (2022) to obtain scaling
factors for different levels of congestion. The Directions API supports
two traffic models: best_guess and pessimistic, which approxi-
mate travel times under congestion. Based on these traffic models, three
congestion scenarios are created:

e Expected: use best_guess travel times.

e 50-50: use the average of best_guess and pessimistic travel
times.

e Pessimistic: use pessimistic travel times.

; ; exp 50
The corresponding travel times 7,737,

allij € Q. Then the scaling factors R;*, R,

are calculated accordingly and define the scenarios.

and 7* are queried between
and RY” between all i,j € Q

3.2. ODMTS Design

This paper combines the general model by Auad et al. (2021) with
the adoption model by Basciftci and Van Hentenryck (2023) to design an
ODMTS that takes passenger adoption into account. The resulting bile-
vel model inherits support for transfer constraints, multiple frequencies,
and both bus and rail connections. A full description is included below to
clarify the assumptions and make the paper more self-contained. A more
implicit description of a similar model can be found in Guan et al.
(2022).

Problem Description. In the general model from Auad et al. (2021),
the first input to the ODMTS network design problem is a transit
network modeled by the directed multigraph G = (V, A). Vertices V
represent locations, and arcs a € A capture potential methods of trans-
portation between these locations. Every arc from i(a) € Vtoj(a) € Vis

Flowery
Branch

Grayson

Snellville

Loganville

Betwee

Youth

Walnut Grove

Conyers

Fig. 3. Query Reference Locations with Respect to the Case Study Area (Gray) and Gwinnett County (Purple).
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Fig. 4. Bilevel Optimization Model for ODMTS Design with Adoptions.

associated with a mode m(a) € {shuttle, bus, rail} that indicates how this
connection is served, and bus and rail arcs additionally have a frequency
f(a) from the set F?* or F® respectively. Bus and rail arcs are used to
transport riders between a set of transit hubs Vi C V, while shuttle arcs
provide the connections to and from the hub network. For example, arc
a € A may correspond to opening a bus connection with frequency 10
per hour between hub i € Vg and hubj € Vy. It is important to note that
G may have parallel arcs that model the same connection, but differ in
mode or frequency. This is the case when a bus service can be offered at
different frequencies, for example. The network design problem decides
which potential arcs a € A to make available. In line with earlier work it
is assumed that shuttle connections and the fixed rail network are al-
ways available, and the model only decides whether or not to open each
bus arc (Auad et al., 2021; Guan et al., 2022). Furthermore, bus and rail
capacities are ignored, as the high-frequency vehicles are almost never
full in practice (Auad et al., 2021). Shuttle capacities are captured
implicitly: the cost of using a shuttle represents the average cost for
serving passengers in a ridesharing system with small vehicles. For
convenience, the set of bus arcs is denoted by A?®. Finally, every arc a €
A is associated with a distance d,, a travel time 7,, and an expected
waiting time . For shuttles and buses the travel time is based on the
congestion scenario (as discussed in Section 3.1), while for rail the travel
time approximates the current schedule.

The second input to the network design problem is a set T of pas-
senger trips. Each trip t € T is an OD pair with origin o(t) € V and
destination d(t) € V, and is associated with p(t) number of travelers.
Capturing latent demand is essential when designing public transit
services, as omitting these potential riders may cause inefficiencies and
unfairness (Basciftci and Van Hentenryck, 2023). For this reason, the set
T consists of both potential riders (i.e., latent demand) T' C T who will
only adopt the ODMTS if their travel time is sufficiently short, and
existing riders T\T who will always adopt the ODMTS. This study as-
sumes existing riders have no alternative travel options, because they
are already transit users. This behavior is captured by a choice function
Z* that will be defined later. A trip that is served by the ODMTS is
modeled as a path in G from o(t) to d(t). To prevent a large number of
transfers, these paths are limited to at most K > 1 arcs.

The objective is to minimize a convex combination a € [0, 1] of sys-

tem cost (weight 1 —a) and passenger inconvenience (weight a) for the
travelers who adopt the system. The fixed cost of opening bus arc a € A
is defined as §, = (1 —a)zqf(a)c?™, which combines the travel time z,,
the number of buses over the time horizon f(a), and the bus cost per hour
c?. The rail network is assumed to be fixed, and the corresponding
constant is omitted from the objective. Using arc a € A for trip t € T
contributes to the objective as follows:

) {p(t)((l —a)d,e"" +ar,) ifm(a) = shuttle )

Ta =\ p(t)a(t, + o) ifm(a) € {bus, rail}.

For shuttles, the distance d, is multiplied by the shuttle cost per mile
cthutte the inconvenience is the travel time 7, and the sum is multiplied
by the number of passengers p(t). For the other modes the only costs are
fixed costs, such that y! only consists of the inconvenience 7, + wq,
which sums the travel time and the waiting time. For shuttles and buses,
recall that 7, is based on the congestion scenario. This means that
opening bus arcs becomes more expensive, and using shuttles and buses
becomes more inconvenient as congestion increases. Following earlier
work it is assumed that shuttles are readily available and do not impose
additional waiting time. This is motivated by the fact that shuttle
waiting times are typically short (Van Hentenryck, 2019; Auad et al.,
2021) and are comparable to the time it takes to park a car or walk to a
bus station, which is not penalized either. For a given network design,
passengers are always offered a route that minimizes the objective, but
whether they accept this route and adopt the system depends on their
personal preferences. If trip t € T is adopted, this additionally leads to a
benefit of {* = (1 —a)p(t)ci™, i.e., the number of tickets multiplied by
the price per ticket. Without loss of generality, the constant revenue
from tickets sold to the existing riders is omitted from the objective.
Optimization Model. The bilevel optimization model by Basciftci
and Van Hentenryck (2023) consists of the leader model (3) and a fol-
lower model (4) for every trip t € T. For brevity, 5" (i) denotes the set of
arcs going out of i € V, and &7 (i, bus) further restricts this set to bus arcs.
The sets §~ (i) and &6 (i, bus) are defined similarly for in-arcs. The leader
model uses the binary variables z, to decide which bus arcs a € A® are
opened (z, = 1) or closed (z, = 0). Constraints (3b) ensure that the bus
frequencies are balanced at every hub, and Constraints (3c) ensure that
at most one frequency is selected among parallel bus arcs (recall that G is
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a multigraph and may offer multiple frequency options for the same
connection).

The leader anticipates the behavior of follower t € T through a bi-
nary variable x that represents the choice function #*(I') (Eq. (3d)). The
choice function equals one if t € T adopts, and zero otherwise. In
particular, it is assumed that travelers adopt if they are offered a path of
length I* at most equal to the adoption factor p times the travel time by

car I,

ear 1€,

(1) =1(I'<pley)- @
The leader Objective (3a) then sums the fixed cost for opening bus arcs,
the cost and inconvenience for the existing riders, and the cost and
inconvenience including ticket revenue for the potential riders that
adopt (xf = 1).

Based on the network design z, the follower model (4) finds a path for
trip t € T that minimizes the lexographic Objective (4a). The binary
variables y’, for a € A define a unit flow from o(t) to d(t) that represents
the path for this trip. Constraints (4b) enforce flow conservation, Con-
straints (4c) ensure that arcs can only be used if they are opened by the
leader, and Constraint (4d) enforces the transfer limit. Followers are
offered a path that minimizes the primary objective of cost and incon-
venience, and ties are broken by minimizing the secondary objective of
trip length. The corresponding optimal values are denoted by g* and I
respectively. Note that travelers decide whether to adopt based on the
length of the trip ', while the leaders minimize a combination of trip
lengths and cost.

Solution Method. Solving the bilevel model (3)-(4) is computa-
tionally challenging for large-scale instances. For this reason, this paper
uses the iterative algorithm arc-s2 by Guan et al. (2022) to approxi-
mate the optimal solution. This algorithm splits the original bilevel
framework into two components: (i) a regular ODMTS network design
problem without considering latent demand and (ii) a choice model to
analyze the adoption behavior of the potential riders. The regular
ODMTS network design problems are solved with the Benders-
decomposition algorithm by Auad et al. (2021). After the initial design
of the ODMTS, a subset of the bus arcs is permanently fixed in the
optimization, the behavior of the potential riders is analyzed, and the
active set of riders is updated. The ODMTS then undergoes a redesign
based on the new set of riders, and this process is iterated until
convergence. The output is an ODMTS network: It defines bus and rail
connections and their frequencies, and it defines which areas are served
by on-demand shuttles.

3.3. Including Dedicated Bus Lanes

It only remains to include DBLs into the ODMTS network design.
Recall that the travel time for congestion scenario k is obtained by
scaling the travel time basis with the appropriate congestion factor. For
buses on DBLs, this travel time is simply replaced by the free-flow travel
time, after which the same optimization methods can be used. The travel
time basis is not necessarily the free-flow travel times: the baseline travel
times are thus taken from OpenStreetMap (2021). It should be noted that
the congestion scenario and the availability of DBLs are both inputs to
the network design problem, such that the ODMTS delivers the best
possible performance under these circumstances.

The approach to include DBLs in the network is flexible in the sense
that any road or set of roads can be replaced with DBLs for analysis. The
model is also not prescriptive in how the DBLs are realized, e.g., by using
an existing lane or by adding a new lane. This paper focuses on the
impact on the public transit system, but an interesting direction for
future research could be to study the trade-off with car congestion when
a regular lane is converted to a DBL. On the side of ODMTS, previous
studies have shown that ODMTS generally reduce the total number of
cars on the road (Auad et al., 2021; Van Hentenryck et al., 2023).
Furthermore, increased traffic on the car lanes favors ODMTS, as the
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DBLs provide an even larger benefit.
4. Case Study Gwinnett and Atlanta

The case study in this paper focuses on Interstate 85 (I-85) from
Gwinnett County to the city of Atlanta, both in the Metro Atlanta Area.
The area is notorious for traffic, and Atlanta consistently ranks among
the most congested cities in the US: After a temporary reduction in
traffic during the COVID-19 pandemic, the city has jumped back to the
10th place on the list in 2021 (Pishue, 2021). Gwinnett County has
almost a million residents, many of which work in Atlanta and drive the
1-85 for their commute. Gwinnett County recognizes the integral role of
transit in the transportation system and published a transit development
plan in 2018 (Gwinnett County, 2018). In 2019, Gwinnett County and
the Georgia Department of Transportation (GDOT) presented a study of
1-85 traffic and strategies to alleviate the extreme congestion (Wickert,
2020). However, the Atlanta Journal Constitution reports that Gwinnett
County and GDOT officials are still seeking solutions to reduce conges-
tion on I-85 (Wickert, 2021). This highly congested area serves as an
excellent case to study the extent to which DBLs can improve passenger
adoption in ODMTS. Fig. 5 visualizes the case study area and its relation
to Gwinnett County. The area is specifically chosen to encompass I-85
and the immediate surrounding areas, and includes the current
commuter routes operated by Gwinnett County Transit. The markers
represent strategic locations that will be used as potential hubs to design
the ODMTS. To clearly demonstrate the effect of congestion, the case
study focuses on the morning rush hour from 7am to 9am and the
associated southbound traffic from Gwinnett to Atlanta.

Current System. The bus transit system in Gwinnett County is
operated by Gwinnett County Transit (GCT). GCT operates seven local
bus routes within Gwinnett County and five commuter routes that
connect to DeKalb County (Emory University) and Fulton County
(Midtown Atlanta and Downtown Atlanta). The commuter routes are
shown by Fig. 6, and it can be seen that all routes use the I-85. In Atlanta,
the buses stop at destinations in Emory University, Midtown, and
Downtown: they connect to the MARTA transit system that is operated
by the Metropolitan Atlanta Rapid Transit Authority (MARTA), e.g., at
the Civic Center station. Where available, transit vehicles make use of
High Occupancy Toll (HOT) lanes on the I-85 (Georgia Department of
Public Safety, 2022). These lanes are shared with three or more person
carpools and with drivers who pay toll, among other traffic. To isolate
the effect of DBLs, this study compares the situation without HOT lanes
to a new situation where the extra lane is dedicated to buses only.

Existing Ridership. This paper uses real transit data to generate a
realistic set of trips that represents the existing ridership. Historical
ridership is obtained from the Automated Fare Collection (AFC) system
of GCT. Riders use a transit card known as the Breeze Card to tap onto the
buses. For every tap, the AFC system records card id, time of transaction,
type of transaction, and which reader was tapped. This information is
combined with the Automated Vehicle Location (AVL) system that
tracks the buses, and the Automated Passenger Counter (APC) system
that counts boardings and alightings at every stop. Data was collected
for the 7am-9am morning peak for April 16-19, 2018. Trip chaining
techniques from Barry et al. (2002) are used to estimate OD pairs.
Finally, the trips are sampled from the dataset to obtain a set of 898
passengers that represent the existing ridership. Together these pas-
sengers generate 648 unique OD pairs. The GCT transit data is the most
representative and fine-grained data available for the existing ridership,
but it does not track riders beyond their current boarding and alighting
stops. Existing riders may therefore see an additional improvement if
they switch to ODMTS for their full door-to-door commute, eliminating
the time it takes to get to and from the current transit stops.

Potential Riders. In addition to existing riders, a set of potential
riders is generated: they may choose to adopt the system if the travel
time is sufficiently short. The set of potential riders is based on simulated
travelers in the Metro Atlanta Area provided by the Atlanta Regional
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Fig. 5. Case Study Area (Gray), Gwinnett County (Purple), and Potential Hub Locations (Markers).

Commission (2022). This data was generated by an activity-based
model, calibrated with data from the 2011 Regional Houshold Travel
Survey, and projected into 2020. This dataset does not include the
impact of the COVID-19 pandemic, but Auad et al. (2021) have
demonstrated that ODMTS are generally resilient to changes in demand.
To create a set of potential transit users, travelers are selected from those
who

e commute alone by car from Gwinnett County;

e depart during the 7am-9am morning peak and stay within the case
study area; and

e commute to the Emory University area, Midtown Atlanta, Downtown
Atlanta, or stay within Gwinnett.

This results in 33,769 potential riders: 31,295 local riders (who
commute within Gwinnett) and 2,474 non-local riders who work outside
of the county. The trip origins, which are provided at the level of traffic
analysis zones, are distributed over smaller census blocks based on
population counts. Similarly, the trip destinations are distributed over
points of interest based on size, resulting in 27,202 unique OD pairs.
Note that potential ridership is based on simulated demand from the
survey, while existing ridership is based on the current actual demand.

Experimental Settings. The congestion scenarios are created ac-
cording to Section 3.1, using Directions API data for 8am on Wednesday
March 22, 2022. The MARTA rail system is fixed, while the GCT buses
are redesigned. The ODMTS provides service to 1733 conveniently-
placed virtual stops that span the case study area (chosen from existing
transit stops, census block centers, and points of interest), and the OD
pairs are mapped to nearby virtual stops. Fig. 5 shows the potential hub
locations that are used for the case study. These include hubs near I-85
(yellow), hubs in Gwinnett (blue), MARTA rail stations (red), and hubs
at or near current GCT commuter bus stops in Atlanta (green).

Table 2 shows the parameter values used for the ODMTS design, with

a, ¢ and ¢ taken from Auad et al. (2021). The bus cost of $72.15
per hour is based on data from Federal Transit Administration (2018)
and Dickens (2020) and consists of salaries and wages ($39.55 per
hour), maintenance ($19.17 per hour), and vehicle depreciation ($13.43
per hour). The shuttle cost per mile is the estimated total cost to serve
passengers with a real-time ride-sharing system. The suggested shuttle
cost per mile is multiplied by the congestion factor to capture the in-
crease in cost due to traffic. Ticket prices are set to follow GCT. Buses are
added at a frequency of 10 buses per hour to maintain the notion of high-
frequency connections. It is worth noting that because buses only serve
the busy corridors, ODMTS can operate them at higher frequencies
compared to typical routes. Auad et al. (2021) do not explicitly model
bus lines, and assume that every arc corresponds to a transfer that in-
duces wait time. As bus lines from Gwinnett to Atlanta play an important
role, this paper removes the limit on how many arcs riders can use (K =
o) and adds waiting times in a post-processing step, rather than at every
stop. Waiting for a bus or train is assumed to be five minutes, which is a
conservative estimate based on the three-minute expected waiting time
and a two-minute buffer for transfers or to get into a station. Shuttles are
assumed to be readily available, as discussed in Section 3.2. The set of
adopting riders is updated accordingly in post-processing.

The ODMTS network design problem with adoptions is solved with
the iterative algorithm arc-S2 by Guan et al. (2022), which is imple-
mented in Python 3.7. In every iteration, the algorithm calls the
Benders-decomposition algorithm by Auad et al. (2021) to solve an
ODMTS network design problem for fixed demand. The Benders-
decomposition algorithm is implemented in C++ and uses CPLEX 12.9
to solve (mixed-integer) linear programs.

5. Impact of Congestion on ODMTS

This section studies the impact of congestion on ODMTS. For each of
the congestion scenarios, an ODMTS is designed to deliver optimal
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Fig. 6. GCT Express Routes.

Table 2
ODMTS Parameters for Case Study.
Parameter  Value
a 0.1078 (value time at $7.25/hour to match U.S. federal minimum
wage).
cbus $72.15 per hour.
cshuttle Basis of $1/mile multiplied by congestion scaling factor.
clicket $3.50/trip for local and $5/trip for non-local.
Fous {10} buses/hour.
K oo (no transfer limit).
P 1.5 adoption factor.

performance in that scenario, and it is analyzed how these systems differ
in service quality and cost. This analysis also serves as the baseline for
studying the impact of DBLs in Section 6.

Network Designs. Fig. 7 presents the ODMTS network designs,
optimized under the different congestion scenarios. The lines in the
Southwest represent the Red, Gold, Blue, and Green lines of the MARTA
rail system. The lines with arrows (gray) show the bus arcs that are
opened by the optimization model, where the thickness of the line
corresponds to the number of travelers that use this arc. Finally, the thin
lines (green) indicate which connections are served by on-demand
shuttles. It is striking that none of the designs feature a bus connection
on the I-85 from Gwinnett to Atlanta. This corridor is so congested that
the ODMTS transfers passengers to rail at Chamblee and Doraville sta-
tions rather than provide a direct bus connection to the city. In the ex-
pected and 50-50 scenarios, there is a bus service that connects the rail
to Emory University. Under the pessimistic scenario, this bus also dis-
appears in favor of serving a small number of people by shuttles. The
overall designs look similar for the different scenarios, but the ODMTS

increases its reliance on shuttles as congestion increases: the total shuttle
distance increases from 62k miles for the expected scenario, to 66k miles
for the 50-50 scenario, and 72k miles for the pessimistic scenario.

Travel Time and Adoption. Fig. 8 zooms in on the travel time and
adoption of non-local travelers, who are most likely to be affected by
congestion. Congestion has a major effect on the existing riders: travel
time increases from 64 min under the expected scenario to 86 min under
the pessimistic scenario. While the number of existing riders is fixed,
potential riders adopt the ODMTS if the travel time is not too long
compared to driving. Surprisingly, Fig. 8 shows an increase in adoption
when congestion increases, despite the increase in travel time. This is
due to the fact that travel time by car is also negatively impacted,
making transit a more favorable option. There is 52% adoption of po-
tential non-local riders under the expected scenario (1279 people),
which increases to 72% under the pessimistic scenario (1770 people).
Local riders are less affected by congestion, but show similar trends.
Travel time for existing riders increases from 23 min under the expected
scenario to 33 min under the pessimistic scenario, while the adoption
rate increases from 61% to 66% of the potential riders (from 19,013 to
20,646 riders). The high adoption rates suggest that ODMTS may
significantly improve access to transit and may compete with
commuting by car for a variety of congestion levels.

Congestion. To get a better understanding of how congestion affects
system operations, Fig. 10 displays the scaling factors for the roads used
by the ODMTS. For the expected scenario (Fig. 10a) the average scaling
factors for roads used by shuttles and buses are R"¢ — .78 and R —=
0.89, respectively. These are averages over the arcs, weighted by dis-
tance. In the pessimistic scenario (Fig. 10b) these scaling factors go up
significantly to R™% — 1,13 and R®™ = 1.17. It is important to note
that these networks are designed while taking congestion into account.
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That is, the optimal designs avoid the extremely congested I-85 and
distribute the remaining burden of traffic about equally over the shuttles
and the buses. As congestion increases, substituting buses for shuttles
makes this possible.

System Cost. Fig. 9 details the cost and revenue of the ODMTS under
the different scenarios. Ridership increases with congestion, which leads
to a small increase in revenue. The costs increase at the same time,
mainly because of the increased travel time for buses and shuttles.
Shuttle costs play the most prominent role, making up 79% to 85% of the
total cost. The bus costs stay relatively constant because the ODMTS
increases its reliance on shuttles as congestion increases. Fig. 9 also in-
dicates that the ODMTS is profitable for the first two scenarios, but has a
net cost of $0.42 per person in the pessimistic scenario. However, note
that traditional transit systems are often heavily subsidized, where the
ODMTS almost breaks even while serving more than 20k additional
passengers and providing better access to transit. Furthermore, Auad
et al. (2021) show that a stricter budget can be enforced by reducing the
number of on-demand shuttles at the cost of a relatively small increase in
waiting time.

6. Impact of Dedicated Bus Lanes

The previous section has shown that without DBLs, congestion has a
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major impact on ODMTS travel times. This section studies to what extent
DBLs can mitigate these negative effects, even when shuttles are still
affected by traffic. The impact of DBLs is assessed by opening a DBL on I-
85, reoptimizing the networks, and evaluating their performance. The
ODMTS with DBLs is compared to the baseline in terms of design, travel
times, passenger adoption, and cost of the system. Finally, this section
explores how adoption changes with the adoption factor p.

Network Redesigns with DBLs. Fig. 11 presents the ODMTS
network redesigns that are optimized to leverage the DBLs (indicated by
dashed lines). As a major change from the baseline ODMTS, the ODMTS
with DBLs now include buses traveling south on I-85 from Gwinnett to
Atlanta for all scenarios. This corridor was too congested to be used in
the baseline, but the thick dashed lines in Fig. 11 indicate that riders
now benefit extensively from these new bus connections. The local
network within Gwinnett is similar across the scenarios, and also similar
to the baseline. Recall that the baseline sees a substitution effect of buses
for shuttles when congestion increases. This effect largely disappears as
the important bus lanes are no longer affected by congestion (shuttle
mileages are 65k, 66k, and 67k for the three scenarios, respectively).
Overall the new networks suggest a major improvement for non-local
travelers, and similar service for local travelers.

Travel Times and Adoption. Tables 3 and 4 support the view that
DBLs bring significant benefits to non-local travelers while local service
levels remain high. The tables separate adopted riders into those who

+

(a) Expected Scenario
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would adopt even without DBLs (PreDBL) and those who would only
switch to ODMTS if DBLs are implemented (PostDBL). Table 3 shows
huge improvements for non-local travelers in terms of both travel time
and adoption. Without DBLs, existing riders are expected to spend 64
min in the ODMTS, compared to 47 min by car. With DBLs, the average
ODMTS travel time goes down to only 43 min and becomes faster than
driving. This is possible because the buses are able to avoid traffic.
PreDBL and PostDBL adopters also benefit from significantly improved
travel times compared to ODMTS without DBLs. For example, PostDBL
riders would have an average travel time of 107 min if they use ODMTS
without DBLs, which reduces to only 60 min when DBLs are imple-
mented. In fact, DBLs are so effective that the travel times under the pessi-
mistic scenario are better than the expected scenario without DBLs. This is
strong evidence that DBLs can mitigate the effects of congestion, even
when shuttles are still affected by traffic.

The lower travel times for non-local riders result in a significantly
increased adoption rate. For the expected scenario, the increase is 32
percentage point (from 52% to 84%), and for the pessimistic scenario it
increases from 72% to 93%. This suggests that, in a congested envi-
ronment, DBLs are able to attract almost all potential riders that can
benefit from the traffic-free lane. Table 5 provides additional informa-
tion on the mode distribution of the non-local adopters. Without DBLs,
the only viable option is to take a shuttle to a bus station, take the bus to
Chamblee or Doraville station and transfer to the rail. With DBLs, it
becomes viable to directly take the bus to Atlanta rather than take a
detour by rail, and this attracts a significant number of additional riders.
Using the rail is still popular but, rather than transferring at Chamblee or
Doraville station, riders get on the rail in Midtown Atlanta to complete
the last mile.

Non-local riders receive the most benefit from DBLs, but Table 4
shows that these improvements do not come at the expense of local
transit users. Existing local riders see a small improvement in average
travel time (up to 3 min in the pessimistic scenario), and the travel times
for PreDBL adopters are more or less constant. Adoption of the ODMTS
stays high, with over 60% of potential riders adopting in all cases.
However, there is some decrease in adoption when DBLs are imple-
mented in the 50-50 scenario (63% to 62%) and in the pessimistic
scenario (66% to 63%). On the other hand, the DBL redesign also brings
in new riders by significantly lowering their average travel time by up to
17 min in the pessimistic case. Overall the service level for the local
travelers is comparable between the baseline and the DBL redesign,
while the service level for non-local travelers improves significantly.

System Cost. Table 6 shows how DBLs impact the cost of the system.
As congestion increases, DBLs become more useful compared to the
baseline, and the table shows bigger investments in buses. For example,

(b) Pessimistic Scenario

Fig. 10. Baseline ODMTS Congestion Scaling Factors of Used Roads (darker is higher).
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Fig. 11. ODMTS Designs with DBLs under Three Congestion Scenarios.

Table 3
Adoption and Travel Times for Non-local Riders.

Ridership Average Travel Time (minutes)
Existing Adoption Car ODMTS

Scenario DBL Count Count Rate PreDBL PostDBL Existing Existing PreDBL PostDBL
Expected No 806 1,279 52% - - 47 64 70 70

Yes 806 2,078 84% 1,263 815 47 43 54 47
50-50 No 806 1,693 68% - - 59 75 79 85

Yes 806 2,153 87% 1,665 488 59 44 56 53
Pessimistic No 806 1,770 72% - - 71 86 88 107

Yes 806 2,307 93% 1,752 555 71 52 61 60

in the expected scenario, the redesign increases the shuttle cost by $3k
while the bus cost remains the same. In the pessimistic scenario, on the
other hand, investing $4k into buses allows the shuttle cost to be reduced
by $7k, leading to a lower total cost. For the expected scenario and the
50-50 scenario, the increase in revenue balances out the increase in cost,
resulting in only $0.03 difference in net profit per rider. For the

11

pessimistic scenario, the lower system cost results in a savings of $0.10
per passenger. As aresult, DBLs are effective in reducing travel times and
increasing adoption without negatively affecting system cost. At the
same time, DBLs do not resolve the issue that system cost increases with
congestion, as depicted in Fig. 12. However, it is worth repeating that
traditional transit systems tend to be heavily subsidized, where the
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Table 4
Adoption and Travel Times for Local Riders.
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Ridership Average Travel Time (minutes)
Existing Adoption Car ODMTS
Scenario DBL Count Count Rate PreDBL PostDBL Existing Existing PreDBL PostDBL
Expected No 92 19,013 61% - - 10 20 11 31
Yes 92 19,091 61% 17,942 1,149 10 18 11 19
50-50 No 92 19,706 63% - - 13 23 14 35
Yes 92 19,266 62% 18,121 1,145 13 22 14 21
Pessimistic No 92 20,646 66% - - 15 28 16 48
Yes 92 19,618 63% 18,295 1,323 15 25 16 31
7. Conclusion
Table 5
Mode Distribution for Non-local Adopted Potential Riders. . . .
P This paper studied the effect of congestion on ODMTS and to what
Expected 50-50 Pessimistic extent Dedicated Bus Lanes (DBLs) can improve rider adoption. To
NoDBL DBL NoDBL DBL NoDBL DBL enable this study, the paper introduced a method to create realistic
Bus 0 1 0 1 0 1 conge.st}on scenarios without querying all orl.gln—destlnatlon pairs by
Bus and Rail 4 5 6 4 5 4 combining data from multiple sources. Designing the ODMTS was
Shuttle and Bus 0 674 0 754 0 876 modeled as a bilevel optimization problem in which potential riders
Shuttle, Bus, and Rail 1275 1398 1687 1394 1765 1426 choose whether to adopt the system based on the quality of the trip
Total 1279 2078 1693 2153 1770 2307

ODMTS almost breaks even when serving 20k additional passengers.

6.1. Sensitivity Analysis on Adoption Factor

This section analyzes how changing the adoption factor affects
adoption by potential riders. Recall that the adoption factor p is used in
the choice model to decide whether travelers adopt the ODMTS: Po-
tential riders adopt the system if the ODMTS travel time is at most p
times the travel time by car. Fig. 13 shows the different adoption rates
for non-local potential riders when the network is designed for different

offered. These methods were then applied to perform a comprehensive
case study in the Metro Atlanta Area, based on real data by Gwinnett
County Transit and the Atlanta Regional Commission.

The case study revealed that, even with significant traffic, ODMTS is
able to provide accessible transit, experiences high adoption, and almost
breaks even in terms of cost. That being said, Interstate 85 from Gwin-
nett to Atlanta is so congested that the ODMTS avoids using this corridor
at all. Instead passengers are transfered to take a detour through the rail
system and experience long travel times. The congestion is not isolated
to the highways, and slower shuttle trips are a major source of increasing
costs as congestion increases.

120
scenarios and different adoption factors ranging from p = 1.4 (less 1104 = Total Bus Cost
willing to adopt) to p = 1.6 (more willing to adopt). Even without DBLs, mmm Total Shuttle Cost
adoption rates are typically high (above 50%) across scenarios and 1001 = Revenue
adoption factors. However, this is not the case for the expected scenario 90
with adoption factor p = 1.4: Relatively low congestion favors driving z 80 4
by car. This, combined with less willingness to adopt the ODMTS, results -
in an adoption rate closer to 20%. Introducing DBLs in this situation has E 701
a major effect on adoption, which climbs to above 60%. This demon- g 60 -
strates the effectiveness of DBLs in attracting non-local riders. &i 50 4
Fig. 14 explains why DBLs are so effective in increasing adoption. It 2 40l
considers the networks designed for p = 1.5 and shows the ratio of S
ODMTS to car travel times for all non-local potential riders under the 301
different scenarios. In other words, it shows the actual ratio that the 20 A
potential riders observe, where riders adopt if the ratio is at most p = 10 4
1.5. These curves are very steep. For example, in the expected scenario ol
without DBLs ridership quickly increases around the 1.5 cut-off. Expected 50-50 Pessimistic
Including DBLs makes the ODMTS more competitive and moves the Scenario
curves to thf: left, resulti'ng in a sharp increase in adoption, especially Fig. 12. ODMTS with DBLS System Costs.
when adoption was previously low.
Table 6
ODMTS System Costs.
Cost
Scenario DBL Ridership Total Bus Shuttle Revenue Net Profit
per Rider
Expected No 20,292 $ 61k $ 13k $ 48k $ 77k $0.76
Yes 21,169 $ 64k $ 13k $ 51k $ 82k $0.79
50-50 No 21,399 $ 77k $ 14k $ 63k $ 82k $0.20
Yes 21,419 $ 79k $ 16k $ 63k $ 83k $0.17
Pessimistic No 22,416 $ 95k $ 14k $ 81k $ 85k -$0.42
Yes 21,925 $ 92k $ 18k $ 74k $ 85k -$0.32
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The paper then studied the case where DBLs were added to the
network and the ODMTS was reoptimized to benefit from the
congestion-free lanes. The new networks feature buses on I-85 that are
used extensively by riders. Non-local travel sees huge improvement in
terms of travel time and ODMTS adoption. In fact, DBLs are so effective
that the travel times under the pessimistic scenario are better than the
expected scenario without DBLs. These improvements do not come at
the expense of local travel, which sees a service similar to the baseline.
While system costs still increase with congestion, DBLs do not contribute
negatively to the operating cost.

This case study shows that DBLs may significantly increase ODMTS
adoption. Future work should compare the benefit of DBLs in ODMTS
across different cities, since Atlanta is a particularly congested city
relying heavily on its highway system. Within various cities, studies may
also involve scenarios with different bus transit frequencies and
different sets of existing riders. Another direction for future research
may be to improve the modeling of bus transit wait times to more
accurately assess travel times.
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