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A B S T R A C T

This study compares two dierent strategies or connecting bike networks x� traditional design-based and
algorithm-supported x�to investigate how their results dier along metrics such as proportion o bike lanes along
simulated routes and the resulting cycling stress. The objective is to nd optimal strategies or connecting iso-
lated existing cycling inrastructure to orm complete networks that improve both active mobility and public
transit ridership. By aligning the bike network with transit and activity locations, this research develops an
algorithmic ramework or generating a skeleton o multimodal networks best suited to become "complete
streets." The network generated through an algorithm is compared with a proposed traditionally designed
network to determine their relative network perormance. The ndings suggest that a judicious combination o
traditionally designed, and algorithm-supported networks oer better cycling inrastructure than either strategy
alone. In addition, algorithms can also be developed to indicate the potential or street segments to be complete
streets.

1. Introduction

The transportation system in the U.S. has been, in most parts,
designed to promote the mobility o automobiles. This unimodal ocus
has generated a number o intractable transportation problems,
including congestion, pollution, socioeconomic disparities, and in-
eciency in the use o scarce resources such as energy and land, among
others. Among the various strategies to reduce the dominance o auto-
mobiles and promote multimodality in transportation options is the
’complete streets“�policy, which has been adopted by over 1700 juris-
dictions in the U.S. by 2023 (Smart Growth America, n.d.). This policy is
aimed at transorming street rights-o-way to accommodate multiple
modes o travel, including especially the active modes, such as walking
and cycling. The objective is to make streets sae and convenient or all
persons, including children, the elderly, and the disabled, who may
choose among multiple mobility options.

While complete streets policy is addressed in this article, this study
ocuses more specically on bike lanes and their role in complete street
designs. It is because 1) cycling and shared micro-mobility are rapidly
growing modes o travel in Atlanta and both travel modes benet rom
dedicated bike lanes; 2) dedicated bike lanes improve the saety and

comort o all travelers, not just the bicyclists; 3) cycling inrastructure is
typically the least well developed among the acilities and services
dedicated to various modes o travel (e.g., automobile, transit, and
pedestrian); and 4) improved cycling inrastructure encourages more
people to ride a bike, which promotes clean energy, better public health,
and a cleaner environment (Akar and Cliton, 2009; Aldred and Dales,
2017; Clark et al., 2019; Dill and Voros, 2007; Garrard et al., 2008;
Moudon et al., 2005). Indeed, empirical studies have identied that
better bike inrastructure has infuenced people—s travel behavior and
increased the number o bike users (Aziz et al., 2018; Buehler and
Pucher, 2012; National Association o City Transportation Ocials,
2016; Pedroso et al., 2016; Schoner and Levinson, 2014; Zahabi et al.,
2016). Moreover, a more ubiquitous bike network can provide ecient
rst-mile and last-mile connectivity, which acilitates transit use
(Hwang & Guhathakurta 2023).

The objective o this study is to develop and implement an algorithm
that would iteratively connect existing bike lanes to create a complete
bike network. This bike network is designed to align with transit routes
and connect to nearby MARTA subway stations, which increases the
potential or some network segments to be developed as complete
streets. The algorithm or creating the complete network prioritizes links
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that: 1) promote multi-modal trips, 2) connect high density o points-o-
interest (POIs), 3) serve areas with high residential and commercial
density, 4) connect marginalized neighborhoods, and 5) prioritizes
streets with low trac volumes, and 6) with gradual slopes.

The algorithm is designed to improve bike networks at a local scale
by ocusing on the local context; in other words, it seeks local optima.
Although a globally optimal network ‘design—�might be an ideal solution,
its ‘implementation—� is inevitably piecewise and takes decades (Szell
et al., 2022). A comprehensive city-wide bike network plan is usually
not carried out all at once. Local governments generally invest in bike
networks in a piecemeal manner as budgets permit. Thereore, the
critical decision aced by local governments is the sequence o devel-
opment o the bike inrastructure. That is, which segments are the most
important ones to complete rst and which segments can wait or later
implementation. Yet, bike network plans that are made by municipal-
ities are oten globally optimized and may not oer the inormation
necessary to sequence the implementation. This study will compare the
two approaches based on a case study o the City o Atlanta. We also
evaluate a network that combines the two approaches to show how our
algorithm-generated network can help improve the perormance o the
network planned by the local government.

This study seeks to introduce a pragmatic and accessible algorithm
that aims to streamline the expansion o bike inrastructure, balancing
actors like multimodality, equity, and bikeability. We anticipate that
this practical approach will not only simpliy theoretical models or real-
world application but also support the creation o more inclusive and
sustainable urban mobility solutions.

2. Prior studies

Complete streets enable all street users to make sae and convenient
trips and encourage active mobility and public transit use, which brings
a wide range o direct and indirect benets: such as more vibrant and
livable communities, lower energy consumption and GHG emission, and
enhanced public tness and health (Atlanta Regional Commission,
2019; Kingsbury et al., 2011; Litman, 2014; McCann and Rynne, 2010;
Sousa and Rosales, 2010). In terms o environmental impact, Shu et al.
(2014) reported that the number o pedestrians increased by 37% and
the emission-weighted trac volume decreased by 26% ater complete
streets treatment. Complete street measures have also improved saety
as they help reduce both pedestrian risk and trac crash risk (King et al.,
2003; Pawlovich et al., 2006). Moreover, a walk- and bike-riendly
environment encourage more physical activities, which ultimately im-
proves public health (Brown et al., 2015; Brown et al., 2016; Jensen
et al., 2017).

Most complete streets have involved designing the rights-o-way to
accommodate all street users: pedestrians, bicyclists, transit riders, and
motorists. Among them, bike users are most aected by complete street
designs according to several studies. Carter et al. (2013) compared the
Level o Service (LOS) o each type o street user ater a complete street
intervention and the results showed that bicycle LOS was improved
more than all other modes. A similar analysis by Elias (2011) also shows
that designated bike lanes signicantly improved bicycle LOS while the
LOS o pedestrians, who already had access to sidewalks, was only
marginally better by complete street elements. According to Sousa and
Rosales (2010), the designated bike lanes not only enhance the bicycling
environment but also increase walkability by providing buer areas to
pedestrians. In addition, bike lanes play an essential role in increasing
multimodal accessibility.

The connectivity o the transportation network is an important
consideration when implementing complete streets and bike lanes. One
eective way to encourage active transportation is to ensure the con-
nectivity o pedestrian and bike networks by completing missing
network segments (McCann and Rynne, 2010). In addition, connections
to transit hubs are crucial or expanding bicycling and walking access to
multimodal trips or rst- and last-mile connectivity (Atlanta Regional

Commission, 2019). While no study has ocused on the network design
o complete streets, there have been numerous studies on the network
design o bike lanes. Table 1 shows the criteria used in various studies to
evaluate or optimize bike network design. As can be noted rom Table 1,
Bicycle Level o Service and connectivity are the most requently used
measures or evaluating and prioritizing bike networks. For those
studies that ocus on bike network optimization, Bicycle Level o Ser-
vice, budget, and connectivity are the most commonly used actors. In
both categories, only a ew studies have considered the impact on car
users, multi-modality, and equity. However, since complete streets
accommodate not only bike users but also all other street users, criteria
should be considered comprehensively to design a "complete" network.

3. Conceptual approach

3.1. The design principles

The design o the bike network to enable complete street develop-
ment is based on two undamental principles.

First, the existing bike network is used as the starting point. While
most studies on bike network design tend to ignore the existing net-
works, bike network plans as implemented typically respect the existing
conditions to leverage sunk costs (Natera et al., 2019; Guerreiro et al.,
2018; Hsu and Lin, 2011). Accordingly, the network design in this study
is based on a principle o local optima, rather than global optima. While
the global optimization might lead to an ideal design, the implementa-
tion is a dierent story: operationally, the network will be built up in a
piecemeal manner as unds become available. Thus, this study hypoth-
esizes that a locally optimized network design, which ocuses on
addressing local-scale connections rom the existing context, can pro-
vide greater utilities than a globally optimized network in the process o
implementation.

Second, we develop a set o criteria to determine the links that best
serve the interest o bikers and adhere to complete street design. These
criteria include transit access, the density o activities and people,
bikeability, and equity o access to the inrastructure, among other
actors. These criteria direct the route-nding algorithm to nd the
optimum connecting path between a pair o network ragments in a
sequence that respects their importance within the network.

3.2. Multi-modality and equity in complete street design

Our study prioritizes multi-modality and equity as key criteria in
developing a complete street network. Connecting bike inrastructure to
transit hubs advances a critical goal o complete streets, which is to
reduce automobile dependency and promote both active mobility and
public transit. Thus, one o the goals o this study is to design a network
that caters to cyclists who go to or come rom transit hubs.

Equity is also one o the essential elements in the complete streets
policy. We are particularly ocused on ensuring that underserved
neighborhoods with a history o disinvestment and a lack o transit
options are not let behind in the process o complete street design.
Planning or Equity Policy Guide states that people who do not have
access to a private vehicle or who are unable to use such a vehicle either
due to physical challenges or age-related restrictions need to be sup-
ported by multi-modal acilities including complete streets (American
Planning Association, 2019).

This study addresses multi-modality and equity aspects in network
design in two ways. First, we deliberately address a possible blind spot in
connecting the existing network ragments where the neighborhoods
with no history o bike acility investments are likely to continue to be
isolated during the network build-out process. We identiy and include
as anchor points those places that have been previously underserved and
have a high potential demand or bike travel due to low levels o auto-
mobile access. Second, we add subway stations as additional anchor
points in order to build a more multimodal network. In addition, the
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algorithm assigns a higher weight to links that accommodate bus routes
to urther ensure that multimodality is achieved.

4. Data and method

4.1. Study area

The study ocuses on Atlanta, Georgia, USA, home to around 500,000
residents. As the principal city o Georgia—s most populous metropolitan
statistical area, Atlanta plays a vital role in the state—s overall dynamics.

Atlanta boasts a bus and rail transit systemmanaged by theMetropolitan
Atlanta Rapid Transit Authority (MARTA), operating over 500 buses
across more than 110 lines and a rail network spanning 38 stations on
our lines. The city also eatures about 120 miles o cycling inrastruc-
ture, comprising 65% on-street bike lanes and 35% o-street trails.

Table 2
Nomenclature.
Eall Set o all road segments in the network (Eall + Ebike ∈ Edrive(
Ebike Set o road segments with bike lanes
Edrive Set o road segments that have trac lanes, but no bike inrastructure

(excluding highways)
Ptransit Set o subway station points
Pdemand Set o points rom high-demand neighborhoods
Pequity Set o points rom underserved neighborhoods
F Set o bike network ragments (i.e., a set o continuous edges o bike

lanes) rom Ebike
I Set o inputs –Ptransit .Pdemand .Pequity, and F –�to be connected
li Length o an input i (i ≤ I(
dij Distance between inputs i and j
denpopij Average population density o neighborhoods that inputs i and j belong to
denempij Average employment density o neighborhoods that inputs i and j belong

to
wk Weight or criteria k, which is based on a sensitivity analysis result
zk z-score value (rom Eall) o criteria k
nx The normalized value o x (ranging rom 0 to 1)
scoree Composite score o an edge e (0 ◦ scoree ◦ 1)
le Length o an edge e (e ≤ Eall(
lwe Weighted length o an edge e (e ≤ Eall(
rpq Weighted-length-minimizing route –�generated by A-star algorithm –�

between node p and q
roptimumij Optimum route among a set o weighted-length-minimizing routes

between inputs i and j
scorere Route-level (r) average o scoree (0 ◦ scorere ◦ 1(
vr 1.1 i the route r is closer (, 100 m) to another bike network and 1

otherwise
Vbike�end Set o nodes where one edge rom Ebike and one or more edges rom Edrive

meet
Vbike�divert Set o nodes where two edges rom Ebike and one or more edges rom Edrive

meet and the edges rom Ebike are diverted (/240∗ or ,120∗) at the nodes

Table 3
The Network Design Algorithm.
Algorithm 1: Build a complete street network rom the given existing bike network
Step 1: Prepare input data
Step 1.1: Create F rom Ebike Step 1.2: Identiy Ptransit .Pdemand  ma Pequity

Step 2: Select a pair to connect
Select a pair rom the inputs –�F. Ptransit .Pdemand, and Pequity –�that maximizes the
ollowing gravity value:
Gravityij +

�li − lj
(
− 〉denpopij ) denempij (<

�dij
(2 (1)

Step 3: Generate weighted-length-minimizing routes that connect each possible
node pair between the chosen input pair and choose one optimum route
among them
Step 3.1: Using the A-star algorithm, nd routes that minimize the sum o the
weighted length (i.e., lwe ) or every pair o nodes between input i and j:
scoree + n/wkzk (2)
lwe + le − 〉1� scoree( (3)
Step 3.2: Choose one optimum route:
roptimumij +  ndg rrpq

〉scorere − vr( a (4)
Step 3.3: Merge the pair and its connecting route as one network ragment and
switch the edges establishing the connecting route rom Edrive to Ebike Step 4:
Iterate Step 2 to 3 until it becomes an entirely connected network

Step 5: Improve network connectivity by connecting missing links
Step 5.1: Identiy Vbike�end and Vbike�divert
Step 5.2: Generate every pair o nodes rom Vbike�end and Vbike�divert that are within 0.6
miles (1 km)
Step 5.3: Find the shortest route o those pairs on Ebike network and identiy the ones
whose network distance is too circuitous (i.e., Circuity indexb / 3)
Step 5.4: Calculate a new route on Edrive and connect i it is signicantly shorter (i.e.,
Circuity index ,1.4)

Notes: a. I the distance between nodes p and q is shorter than 650 eet (200 m),
roptimumij will be the shortest path between inputs i and j. It is to increase the e-
ciency o new connecting link between the network ragments when they are
very close. b. The circuity index indicates the ratio o the network distance to the
Euclidean distance between a certain O-D pair.

Table 1
Criteria Used in the Prior Studies or Bike Network Design.
Category Authors (year) Criteria

Access-
ibility

LTS;
BLOS

Cost-
benet;
Budget

Bike travel
demand

Connec-
tivity

Impact on car
users

Multi-
Modality

Equity

Network evaluation &
prioritization

McCahill and Garrick
(2008)

O

Rybarczyk and Wu
(2010)

O O

Lowry et al. (2016) O O O
Kent and Karner (2018) O O
Zuo and Wei (2019) O O O O

Network
optimization & allocation

Hsu and Lin (2011) O
Mesbah et al. (2012) O O O O O
Duthie and Unnikrishnan
(2014)

O O

Mauttone et al. (2017) O O
Guerreiro et al. (2018) O O O
Caggiani et al. (2019) O O
Natera et al. (2019) O O
Zhu and Zhu (2019) O O O
Akhand et al. (2021) O O O O
De Oliveira et al. (2021) O O O O O
Castiglione et al. (2022) O O O
Liu et al. (2022) O O O O
Paulsen and Rich (2023) O O
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Despite these transportation amenities, Atlanta is predominantly ori-
ented towards car usage. Data rom the 2021 American Community
Survey (ACS) 5-year estimates show that car commuting is preerred by
65% o the population, while transit, walking, and cycling account or
6%, 3%, and 0.4% respectively. This heavy reliance on cars underscores
the substantial opportunities or enhancing the city—s complete street
network to promote more sustainable and diverse modes o
transportation.

4.2. Network design algorithm

The design o the algorithm or generating a complete street network
by connecting existing bike lanes hinges on two key questions: 1) what
to connect? and 2) how to connect? The detail o the algorithm is pro-
vided in Tables 2 and 3. Note that edge and node indicate road segment
(line) and intersection (point) in the network.

4.3. What to connect

As noted earlier, this study is designed to generate a complete bike
network rom the current patchwork o bike lanes in an iterative
manner. Each bike network ragment, which reers to a set o continuous
edges o bike lanes, is used as a connecting thread in the algorithm.
These bike lanes are identied using the bike acility inventory data
provided by the Atlanta Regional Commission.

Besides the bike lanes, this study includes additional types o entities
that the complete street network would connect. These are (1) subway
stations and (2) target neighborhoods. Target neighborhoods include
two types: (2a) underserved neighborhoods –�block groups with low
income and a high proportion o minority populations that would
benet most rom bike lanes–�and (2b) high-demand neighborhoods–�
block groups that are ar rom the existing bike network but have a high
demand or bike travel. Bike travel demand is measured by the com-
bined value o population density, employment density, and POI density
in the block group. The underserved neighborhoods are selected based
on poverty rates, and percent racial and ethnic minority populations in
the block group. In each o the chosen block groups, non-residential
street nodes are selected as candidates or an anchor point to extend
the network.

The bike network ragments, the subway stations, and the target
neighborhoods make a set o ‘inputs—�o the algorithm. Both the size o
inputs and the distance among them are important actors to consider
when prioritizing the connectivity sequence (31). To that end, this study
employs a gravity model to prioritize the sequence o inputs to connect
(as described in Step 2 in Table 3). The inputs are compared in pairs
using a revised orm o the gravity model which takes account o the
input pair—s length,1 population density, employment density, and the
distance between them. Through this process, we generate the sequence
o inputs to connect so that we ultimately build out a complete network.

4.4. How to connect

Even ater we select one pair o inputs, there can be thousands o
pairs o nodes within the input pair which can be used as origin and
destination points in the connecting process. For example, i an input
pair consists o 50 nodes and the other has 60 nodes, the possible
number o node pairs is 3000. Our approach is to test and compare all
these possible pairs o nodes using an A-star search algorithm. The al-
gorithm is an advanced version o Dijkstra—s algorithm which nds the
shortest paths between two nodes in a graph by comparing all the
possible paths. While Dijkstra—s algorithm searches the whole graph and
thereby requires a huge amount o computation, the A-star algorithm

includes heuristics to guide its search, making it converge on the opti-
mum path more eciently. The algorithm heuristically nds the best
route that minimizes the cost. Depending on how we dene the cost
unction, it can be used or nding not only the shortest path but also the
optimum paths based on user-dened parameters in the network. The A-
star algorithm was implemented using the programming language R.
The recursive nature o the algorithm requires running the A-star algo-
rithm hundreds o thousands o times, which necessitates the use o
cluster computing to manage the runtime o the task. This study heavily
utilized a high-perormance, cluster computing environment.

Table 4 shows the categories and variables used in nding optimum
paths in our complete streets network. Two variables represent multi-
modality: bus requency and proximity to the subway station. Three var-
iables are about potential demand: population and employment density o
a block group and the number o POIs near the road segment. As an equity-
related variable, we use poverty, racial minority, and ethnic minority in
the block groups near the road segments. Two variables–�trac volume
and slope–�represent bikeability. Note that potential demand and equity
may seem duplicated since this study considers those aspects when
selecting neighborhoods to connect bike lanes in Section 4.1. However, the
geographic scale is dierent in the two operations. We use the macro
neighborhood scale or selecting What to Connect, and the micro road
segment scale or determining How to Connect.

The values o the our variables are aggregated into a composite
score (i.e., scoree + N/wkzk ) in the algorithm so that it can proxy as a
composite cost unction (i.e., weighted length; lwe + le − 〉1� scoree() in
the path-nding algorithm. When aggregating the values, each category
is weighted in a way that corresponds to its importance in enhancing the
perormance o the resultant network. The weights were identied by a

Table 4
Criteria used in the A-star Algorithm.
Category Variables Description Source
Multi-
modality

Bus Frequency Number o Buses passing
through the edge per day

GTFS

Transit Hub
Proximity

Proximity (, 0.5 miles) to
the nearest subway station

-

Potential
Demand

POI Counts Number o POIs within 200
eet rom the edge

OpenStreetMap

Population
Density

Population density o the
block group to which the
edge belongs

American
Community
Survey

Employment
Density

Employment density o the
block group to which the
edge belongs

Equity Poverty Ratio o the population
whose income is below the
poverty level in the block
group to which the edge
belongs

Racial & Ethnic
Minority

Ratio o racial & ethnic
minoritya population in the
block group to which the
edge belongs

Bikeability Trac Volume Annual Average Daily
Trac (AADT)b

Georgia DOT

Slope Slope o the edge (%) Google Elevation
API

Notes: a. according to —Environmental justice policy guidance or ederal transit
administration recipients—� (Federal Transit Administration, 2012), —Minority
persons—�include (1) American Indian and Alaska Native, (2) Asian, (3) Arican
American, and (4) Hispanic. b. AADT data counts the trac volume o all lanes
in both directions. Some local roads are omitted in the data. In that case, this
study assumes that those local roads have the average AADT o other local roads,
which is 450.

1 When it comes to point inputs, we assigned 650 eet (200 m) o length so
that we can handle them in the algorithm as i those are network ragments.
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sensitivity analysis.2
Based on the composite score and length o each road segment, the A-

star algorithm nds the weighted-length-minimizing routes connecting
all the possible node pairs (Step 3.1 in Table 3). The suggested routes are
then compared by their average score value. The route with the
maximum average score will be chosen as the optimum route.3 I the
optimum route is closer to another existing input network ragment, the
route is assigned extra points in the orm o a 10% addition to the
average score, which is intended to enhance the overall eciency o the
network connection process.

The network connecting process–Steps 2 and 3–are iterated until
the existing network ragments are ully connected. Although it becomes
one connected bike network ater the process, there may still be many
opportunities to make the bike network less circuitous. We look or such
links that improve network connectivity and add them to the network.
Candidate nodes or these links are usually located where the bike
network ends or turns. From the chosen candidate nodes, all pairs that
meet the ollowing three conditions are potential links that improve
connectivity: (1) not ar rom each other (less than 0.6 miles), (2) the
route using the bike network is too circuitous (Circuity index is bigger
than 3), and (3) the route on the trac network is signicantly shorter
(Circuity index is smaller than 1.4). The chosen missing link pairs are
connected using the same algorithm in step 3. Fig. 1 shows the identied
links that meet the criteria above and their new connections.

4.5. Evaluation

To evaluate whether the resultant network perorms as we designed,
this study simulates two thousand virtual bike trips. The simulation-
based evaluation again employs the A-star routing algorithm, but in
this case, the goal o optimization is to minimize the stress or disutility o
the trip rom a bike user—s perspective, which is reerred to as cycling
stress in this study. We hypothesize that the cycling stress during a bike
trip is induced by (1) cycling distance, (2) trac conditions, (3) slope,
and (4) bike lane accommodation. To combine these stress actors into a
single index, it is important to numerically identiy the trade-o be-
tween them. This study borrowed insights rom previous literature
(Broach et al., 2012; Hood et al., 2011; Lowry et al., 2016) which
quantied the actors aecting cycling stress based on the marginal rate
o substitution (MRS). MRS is dened as the amount o one good (e.g.,
cycling distance) that provides the same amount o (dis)satisaction as
another good (e.g., trac condition) x�in the context o this study, MRS
can indicate the distance by which bike travelers are willing to substitute
the stress rom the given trac conditions. For example, a route with
130% cycling stress in terms o MRS indicates that an average bike
traveler is willing to take a detour that is 30% longer but has lower
trac stress (such as trails).

The MRS values or each actor are as ollows. Firstly, the number o
lanes and speed limit are stress-inducing actors. Table 5 below details
how these two actors aect cycling stress in terms o MRS, as reported
by Lowry et al. (2016). Additionally, the steepness o the route, or slope,
is another actor that increases stress. Broach et al. (2012) determined
that the stress resulting rom the slope is measured at 37% in MRS or
slopes between 2x4%, 120% or slopes o 4x6%, and 320% or slopes

greater than 6%. Conversely, bike lanes contribute to a decrease in
cycling stress: striped bike lanes lower stress by 50%, buered lanes by
65%, and protected lanes by 75% (Lowry et al., 2016). In the evaluation
process, this study assumes that all the proposed networks will accom-
modate protected bike lanes.

The simulation is conducted using two types o trip samples: (1)
between-TAZ trip sample (n + 1000) and (2) station-access trip sample
(n + 1000). The station-access trip sample represents rst/last mile trips
and is employed to evaluate the impact o the network on improving
multi-modality. The average Euclidean distance o the between-TAZ trip
sample is 2.6 miles, and that o the station-access trip sample is 0.6
miles. The sampling method is detailed in Appendix A.

This study evaluates the proposed network improvement using three
criteria: (1) the proportion o bike lanes in the route, (2) the proportion
o either bike lanes or residential streets in the route, and (3) the average
cycling stress. The rst criterion is to see how well bike routes are
covered by bike lanes (in length). Similarly, the second criterion checks
how much proportion o bike routes are covered by either bike lanes or
residential streets because residential streets are normally sae to bike
and thus not a target o bike lane investment.

It is important to note that the two criteria used in the evaluation
phase are dierent rom the criteria used in the design phase. The sep-
aration o criteria between the two phases was a strategic decision
rooted in the desire to provide a holistic assessment o the network.
While the design phase ocused on theoretical and strategic aspects to
build an optimal network, the evaluation phase aimed to test its prac-
ticality and user-centric perormance. This dual approach allowed us to
ensure that the network is not only well-designed on paper but also
unctional and benecial in real-world scenarios. By employing dierent
sets o criteria in the design and evaluation phases, we aim to capture a
comprehensive view o the network—s eectiveness.

The simulation result is then compared to uture bike network plans
made by multiple local entities,4 assuming that those networks will also
be protected bike lanes. The comparative data shows how well the
locally optimized network proposed in this study perorms compared to
the existing plans which are globally optimized. Furthermore, this study
simulates the sample bike trips on the network that combines both the
algorithm-generated network and the planned network to demonstrate
the ecacy o the algorithm in improving the perormance o
municipality-led plans.

5. Results

5.1. Network design result

Fig. 2 shows the initial inputs or the network design. It shows the
current bike inrastructure (i.e., dedicated lanes) as well as the locations
o transit stations and target neighborhoods as noted in Section 4.3.
Among the target neighborhoods, the underserved neighborhoods are
mostly in the Southwestern part o the city, while the high-demand
neighborhoods are in the East close to Midtown.

Fig. 3 shows the network generated by the algorithm: it created a
ully connected network based on the given inputs: the existing bike
lane ragments, subway stations, and target neighborhoods (i.e., un-
derserved neighborhoods and high-demand neighborhoods).
Compared to the network planned by local entities in Fig. 4, the
algorithm-generated network looks less dense and more winding,
which does not seem very ideal. However, note that the point o the
algorithm is not to come up with a completely developed network that
serves every corner o the city; it is rather to build a skeletal network

2 To decide the set o weights, this study simulated tens o networks based on
dierent combinations o weights between our categories: multi-modality,
potential demand, equity, and bikeability. The simulated networks were then
compared in terms o per-mile eects o the network improvement. A set o
weight that provides the highest per-mile eects was chosen, which is ‘3x1-3x3 �
in the order o multi-modality, potential demand, equity, and bikeability.
3 I an input pair is too close to each other (i.e., the distance between the

closest node pair is less than 650 eet or 200 m), the shortest route between the
input pair is chosen as the optimum route to avoid generating a circuitous
network.

4 According to Annual Bicycle Report by City o Atlanta (City o Atlanta
Department o City Planning, 2018), the planned network includes all bike lane
projects listed in Cycle Atlanta 1.0, Cycle Atlanta 2.0, Renew Atlanta
(TSPLOST), and Atlanta Transportation Plan.
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Fig. 1. Illustration o Identiying Missing Links and Making New Connections.

Table 5
Cycling stress in terms o the marginal rate o substitution (Lowry et al., 2016).
Number of Lanes 2 2 2-3 4-5 2-3 6 ) 4-5 6 ) 2-3 4-5 6 )

Speed Limit 25 30 25 25 30 25 30 30 35 ) 35 ) 35 )
Cycling Stress
(in MRS)

10% 15% 20% 35% 40% 67% 70% 80% 100% 120% 140%

Fig. 2. Algorithm Inputs.
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that ocuses on connecting crucial missing links rom the existing
context, which serves as a skeletal network to build out urther based
on uture plans. On this point, combining the algorithm-generated
network with the planned network would let us get a glimpse o the
network that the authors are envisioning. Fig. 5 shows the algorithm-
generated network overlaid on top o the planned network. The gure
illustrates that about 30% o segments (i.e., red-colored streets) in the
algorithm-generated network are overlapped with segments in the
planned network. The rest 70% (i.e., green-colored streets) are unique
segments o the algorithm-generated network, and they are mostly in
the periphery o the city.

5.2. Evaluation result

Table 6 shows the simulation-based evaluation result o (1) the
existing bike network, (2) the network planned by multiple local en-
tities, (3) the network generated by the algorithm, and (4) the combined
network between the planned network and the network generated by
the algorithm.

On the existing network, only 23.6% o the routes o the between-
TAZ trips and 21.4% o the routes o the station-access trips are
covered by bike lanes on average. I we count not only bike lanes but also
residential streets in the routes, the proportion goes up to 58.2% in the
between-TAZ trips and 50.1% in the station-access trips; the 50.1%

means, when a person rides a bike to the nearest subway station, about a
hal o the total length o the route is expected to be covered by either
bike lane or residential street. The average cycling stress is, on average,
151.6% in the between-TAZ trips and 153.5% in the station-access trips.

On the planned network, which is twice as long as the current
network, the evaluation results are expectedly much better. The pro-
portion o bike lanes is 53.4% in the between-TAZ trips and 55.0% in the
station-access trips. The proportion o either bike lanes or residential
streets is much higher: 76.5% and 79.3% respectively. Accordingly, the
average cycling stress considerably decreases compared to the current
network.

The algorithm-proposed network shows similar perormance as the
planned network even though its total length is much shorter (259.2
miles) than that o the planned network (310.6 miles). The average
proportion o bike lanes is 45.0% in the between-TAZ trips and 57.3% in
the station-access trips, which displays that the algorithm does its job in
improving the quality o rst/last mile bike trips to transit stations. The
proportion o either bike lanes or residential streets is 73.0% in the
between-TAZ trips and 77.7% in the station-access trips; both are a ew
percentage points lower than the values o the planned network. The
average cycling stress in the between-TAZ trips is about 5% lower (in
terms o the MRS) than the existing network and about 10% lower in the
station-access trips.

Finally, the perormance o the network that merges the two is

Fig. 3. Algorithm-generated Network.
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remarkable. The proportion o bike lanes in the between-TAZ trips is
62.7% which is a 9.3% increase rom the result o the planned network.
The proportion o bike lanes in the station-access trips is 71.4% which is
a 16.4% increase. Again, it shows that the algorithm is particularly
eective in enhancing the accessibility to the transit network. The
proportion o either bike lanes or residential streets is 86% in the
between-TAZ trips and 90% in the station-access trips, which indicates
that only less than 10% o the routes will be non-residential streets that
do not have bike lanes. The average cycling stress in the between-TAZ
trips is 7.4% lower than the existing network and 13.3% lower in the
station-access trips. These results suggest that the algorithm can rene
the perormance o the planned network and assure a saer cycling
environment.

5.3. Limitations

This study has a ew limitations. Firstly, this study does not include a
detailed cost-benet analysis, which is crucial or understanding the
nancial easibility o implementing the proposed bike network. Future
research could explore the economic implications, weighing construc-
tion and maintenance costs against potential benets like reduced

congestion and environmental improvements. Secondly, the methodol-
ogy assumes a static demand or bike lanes, not accounting or demand
fuctuations due to actors like seasonal changes or urban development.
This could aect the network—s long-term eectiveness and utilization,
indicating a need or an adaptive approach in uture designs. Lastly, this
study does not extensively address the practical challenges o imple-
menting the proposed bike network, such as navigating existing urban
inrastructure, property rights issues, and potential resistance rom
various stakeholders. The actual process o transorming the existing
urban abric to accommodate a new bike network can be complex and
may encounter unoreseen obstacles.

6. Conclusion

Implementing complete streets should be viewed and evaluated rom
the network standpoint. As an approach to propose the complete streets
network, this study ocused on the dedicated bike lane networks since
the connectivity and accessibility o bike inrastructure are crucial not
only or bike users but also or pedestrians and transit users.

This study developed an algorithm that combines the ragmented
bike networks and expands the network to the subway stations as well as

Fig. 4. Planned Network.
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neighborhoods that are underserved and/or in high demand. The algo-
rithm picks up a pair o network ragments and iteratively connects them
until it orms one integrated network. We employed the gravity model to
choose the pair which is then connected based on the A-star path-nding
algorithm. The algorithm accounted or multi-modality, potential de-
mand, equity, and bikeability to nd the optimum route or complete
street networks. The algorithm generated an integrated network that
looks signicantly dierent rom the network planned by the local en-
tities: the algorithm-proposed network is much shorter and more evenly
distributed throughout the city. This is a reasonable outcome since the
algorithm-generated network is designed to work as an artery network

that connects existing networks and important destinations and can be
urther developed into a uller network.

To evaluate the resultant network, we ran two thousand trip simu-
lations rom the perspective o bike users seeking to minimize cycling
stress. The simulations were conducted on our types o networks: (1)
existing network, (2) planned network, (3) algorithm-generated
network, and (4) algorithm-generated ) planned network. The
algorithm-generated network, despite a shorter network length, per-
ormed as well as the planned network. On the algorithm-generated
network, compared to the existing network, the proportion o bike
lanes in the routes was increased by 21.4% (rom 23.6% to 45.0%) in the

Fig. 5. Planned ) Algorithm-generated Network.

Table 6
Simulation-based Evaluation Results.
Category Existing

Network
Planned
Network

Algorithm-generated
network

Algorithm-generated ) planned
network

Between-TAZ trip
sample

Proportion o bike lanes 23.6% 53.4% 45.0% 62.7%
Proportion o either bike lanes or residential
streets

58.2% 76.5% 73.0% 86.0%

Average cycling stress 151.6% 145.6% 147.0% 144.2%
Station-access trip
sample

Proportion o bike lanes 21.4% 55.0% 57.3% 71.4%
Proportion o either bike lanes or residential
streets

50.1% 79.3% 77.7% 90.0%

Average cycling stress 153.5% 145.0% 144.0% 140.2%
Length o the network (unit: mile) 155.8 310.6 259.2 378.8
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between-TAZ trips and 36% (rom 21.4% to 57.3%) in the station-access
trips. The simulation on the algorithm-generated network gave a
particularly better result in the station-access trips, which suggests that
the algorithm guarantees a network with a better multi-modality be-
tween active mobility and public transportation. This result is likely
because not only the subway stations are included as inputs to connect
but also because the algorithm considers multi-modality as one o the
criteria or network design. The evaluation proved that the algorithm
generates a skeletal network that guarantees perormance or the
criteria emphasized in the design process to generate complete street
networks.

The algorithm-generated ) planned network, compared to the
planned network, showed clear improvements. The proportion o bike
lanes in the routes was increased by 9.7% in the between-TAZ trips and
16.4% in the station-access trips. The proportion o either bike lanes or
residential streets was 86% and 90% respectively, which means most
street segments o the routes would be sae and comortable to bike. The
evaluation results demonstrate that the algorithm-generated network
works as it is designed to x� it not only perorms well as a stand-alone
network but also makes the bike network plan made by local entities
more complete.

This study provides an algorithmic ramework or network design
that has three distinctive aspects: local optima, equity, and multi-
modality. First, the algorithm addresses local-scale connections and
improves the overall accessibility o the existing network which is oten
ragmented. Based on the evaluation, we demonstrated that the locally
optimal network has the potential o benetting the municipality-led
network plans. Second, this study incorporated equity and multi-
modality as core values in designing the network. The algorithm is
designed to cater to a more inclusive range o neighborhoods and pop-
ulations including underserved ones and public transit hubs, which is
oten unheeded in previous studies.

Our approach to designing a bike network can go a long way in
achieving the goal o developing a complete street network that ac-
commodates all modes and users. Bike lanes benet more than just bike
users, it benets micro-mobility users and pedestrians by physically
separating pedestrian inrastructure and bike lanes. In addition, our
design deliberately connects with public transit hubs and routes to oer
rst/ last mile connectivity. Thus, designing a bike lane network that
ensures comortable access to destinations, and to public transit, oers
an eective approach to attain a complete street network.

The algorithm in this study has the fexibility o being adapted to
other criteria and objectives x� local governments can customize the
model by adding other aspects that are not considered in this study such

as saety, aesthetics o streetscape, or inputs guided by public outreach.
While this study ocused on the Atlanta metropolitan region, we believe
this approach can oer a pathway or generating optimal bike networks
and complete street networks in other places as well.

This study contributes to the literature by introducing a practical,
user-riendly algorithm or local optimization o bike network devel-
opment. Unlike more complex models, the algorithm in this study sim-
plies the expansion o bike inrastructure, ocusing on local
government needs and constraints. It eciently prioritizes network
segments based on criteria like multimodality, equity, and bikeability,
bridging the gap between theoretical models and real-world application.
This approach is particularly valuable or its practicality in integrating
bike lanes within existing urban landscapes, ensuring equitable access
and enhancing urban mobility. In essence, this research provides an
accessible, eective tool or urban planners and municipalities to
improve sustainable transportation inrastructure.
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Appendix A

The evaluation is based on two types o samples shown in Figure A1: (1) between-TAZ trip sample and (2) station-access trip sample. First, the
between-TAZ trip sample is to evaluate the cycling environment between TAZs within six miles which is considered a strong threshold o the bicycle
mode choice (Bearn et al., 2018; Winters et al., 2011). The between-TAZ trips were chosen based on travel demand: out o 17,664 possible TAZ pairs
within 6 miles in the city o Atlanta, 1000 pairs are sampled using a weighted random sampling method considering their travel demand. The travel
demand between two TAZs is dened by their population and employment size, and distance. In Eq. (5), i and j indicate TAZs.
PpTtdj �dlTmcei + 〉Enoe )Dloe( −

�
Enoi)Dloi

()
�ersTmadei (5)

Second, the station-access trip sample is generated by connecting TAZs to their nearest subway station. To be consistent with past studies (Bearn
et al., 2018; Martens, 2004), we dened the catchment area o public transit as three miles. 1000 pairs between TAZs and stations that are less than
three miles are sampled using a similar method as above: in this case, we use the requency o transit service o the station instead o population and
employment.
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Fig. A1. Two Types o Samples or the Simulation-based Evaluation.

.
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