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Abstract— Many special events, including sports games and
concerts, often cause surges in demand and congestion for
transit systems. Therefore, it is important for transit providers
to understand their impact on disruptions, delays, and fare
revenues. Ridership after large sporting events is distinct from
many other ridership patterns due to the high density of ridership
localized to a few nearby stations. This paper provides the
following novel methodology for long-term planning of large-
event, post-game ridership by 1) predicting the total post-game
ridership; 2) combining the total prediction with historical trends
to forecast the passenger flow curve at nearby stations after
the game; and 3) estimating the required train frequencies to
serve these customers with minimal passengers left behind by
each train. Additionally, this paper proposes a suite of data-
driven techniques that together create a data-driven pipeline to
exploit Automated Fare Collection (AFC) data for evaluating,
anticipating, and managing the performance of transit systems.
This paper includes a case study where the proposed pipeline is
used to generate an adjusted train schedule for the post-game
period and simulated with the rail ridership data from the
Metropolitan Atlanta Rapid Transit Authority (MARTA). The
simulation results highlight how the proposed schedules based
on the estimated required post-game train frequencies could
significantly improve post-game congestion and wait time. Fur-
thermore, the results show that the long-term post-game demand
forecasts could be an effective tool for tactical planning decisions
such as the number of additional trains and operators that
are needed during post-game periods compared to the regularly
scheduled timetables.

Index Terms— Special events, machine learning, public trans-
portation, smart cards, demand forecasting.

I. INTRODUCTION

PECIAL events, including sports games, concerts, and

festivals, are important for transit providers; they often
lead to fundamentally different ridership patterns and bring
significant fare revenues. In addition, special events may be
the introduction of certain riders to a transit system. Hence,
it is critical to ensure that the system is smooth and efficient,
the wait time is reasonable, and that the vehicles are not too
crowded in order to attract additional recurring ridership.
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This paper originated as a study of special events for the
Metropolitan Atlanta Rapid Transit Authority (MARTA), the
transit system of the city of Atlanta in the state of Georgia.
In particular, the study aims at addressing two main objectives
of MARTA:

1) Isit possible to forecast special event rail ridership based
on expected attendance and the type of event using
historical Automated Fare Collection (AFC) data;

2) Can scheduling train frequencies based on forecasted
ridership significantly improve passenger wait time and
congestion following the events?

Ridership after large sporting events is distinct from many
other ridership patterns due to the high density of ridership
localized to a few nearby stations. Post-game demand surges
can negatively impact wait time and congestion for both event
and non-event riders. In the case of MARTA, large events, e.g.,
at the Mercedes-Benz Stadium in downtown Atlanta, can lead
to demand that far exceeds the capacity of the usual weekday
or weekend train schedules. Therefore, additional trains are
required to increase the system frequency and capacity to help
mitigate safety, congestion, and performance concerns.

From a high-level perspective, this paper provides a novel
methodology for tactical planning of large-event, post-game
ridership consisting of the following steps:

1) Obtain an attendance prediction from stadium ticket
sales and predict ridership from that attendance using
supervised machine learning;

2) Combine the total prediction with historical trends to
forecast the passenger flow curve at nearby stations after
the game;

3) Based on the forecasted arrivals, estimate required train
frequencies to serve the demand with minimal passen-
gers left behind by each train.

This paper includes a case study where the proposed method-
ology is used to estimate required post-game train frequencies
for the post-game period. The proposed schedule is sim-
ulated with the rail ridership data from the Metropolitan
Atlanta Rapid Transit Authority (MARTA). The simulation
results highlight how the using the estimated required train
frequencies for tactical planning could significantly improve
post-game congestion and wait time. To our knowledge, there
are no comparable methods for highly accurate forecasts of
the post-game ridership curves.

This paper additionally makes the following technical and
analytical contributions for leveraging Automated Fare Col-
lection (AFC) data:

1) This paper proposes a technique that uses unsuper-

vised machine learning models to cluster passengers and
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analyze which trains they take, their waiting time, and
the departure time of trains without accurate train sched-
ule or train tracking data.

2) This paper presents simple supervised learning models
to predict the total ridership for various types of recur-
ring special events that can be used along with historical
trends to forecast passenger flows at nearby stations after
the game allowing for longer-term planning as opposed
to real-time disruption planning.

3) This paper demonstrates a data-driven, end-to-end spe-
cial event preparation pipeline for transit agencies with
all components from ridership prediction to schedule
adjustment.

The rest of the paper is organized as follows. Section II
reviews prior work on similar topics. Section III presents the
case study, analysis of the baseline ridership, and the mean
passenger flow for entries and exits at rail stations on weekdays
and weekends. It also analyzes the special event ridership and
estimates how many riders use the rail to travel to and from the
events and where they come from. Section IV first introduces
the unsupervised learning to cluster riders by tap-out times to
estimate train departures times and proportion of passengers
left behind. It then presents supervised learning models to
predict the ridership for various types of recurring special
events, an algorithm for estimating the required train frequen-
cies based on forecasted demand, and simulation techniques
used to validate the methodology. Section V presents the
validation results of the clustering method and the evaluation
of the proposed schedules created based on the estimates of
required train frequency using simulations. The simulation
results demonstrate the potential benefits of the proposed
methodology on post-game congestion and wait time.

II. LITERATURE REVIEW

The focus of this paper is on providing transit operators
with valuable insights for tactical planning decisions surround-
ing special event ridership, especially for post-game demand
surges for large events. Special events can lead to a high
density of ridership late at night or on weekends when a transit
agency might normally be running a less frequent schedule.
To prepare for this, planners often need to schedule additional
shifts for operators to handle these influxes of demand. The
literature is structured as follows: Section II-A presents prior
work around analyzing AFC data to characterize ridership for
both event days and non-event days. Section II-B addresses
other papers that focus on prediction of special event ridership.
Finally, Section II-C presents works that focus on creating and
adjusting train timetables.

A. Analysis With AFC Data

Automated Fare Collection (AFC) technologies have
enabled more sophisticated analysis of transit ridership. This
section focuses on related work that exploits AFC data for
evaluating, anticipating, and managing the performance of
transit systems.

Station-level analysis of AFC data has provided knowledge
on ridership behavior and passenger flow as a result of
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various characteristics of the station and surrounding area.
El Mahrsi et al. [1] use AFC data to extract mobility patterns
for different types of passengers and stations, clustering sta-
tions based on their activity curves. Moradi and Trépanier [2]
use smart card data to identify stable temporal habits of rail
riders across the week. Ghaemi et al. [3] also use a clustering
approach to analyze smart card data temporally. Shen et al. [4]
use clustering methods to study the time-varying pattern of
passenger flow at Shanghai rail stations. They find that the
pattern of passenger flow is consistent during the work week,
as well as weekends. Li et al. [5] use smart card station entry
data and the day’s train schedule at a station in Shanghai
to cluster passengers and determine passenger route choice
probability.

Significant work has been done for estimating the passen-
gers left behind by high-frequency trains operating at capacity
using AFC transaction data and Automated Vehicle Location
(AVL) data. Zhu et al. [6] estimate the probability distribution
of the number of left-behind passengers using entry-exit AFC
data and train-tracking AVL data. Miller et al. [7] estimate
the level of crowding at train stations in real-time using AFC
data and train departure times. When historical or real-time
AVL data is unavailable, the train departure times can often
be estimated with the scheduled times. However, for special
events, additional trains are sometimes added off-schedule.
Hence there is a need to estimate the arrival and departures
of the trains for downstream analysis of wait times and train
loads.

This deviation from the schedule due to the variability of
special events makes these estimations necessary in many
cases. Tan et al. [8] propose a technique to derive train arrival
times though clustering of passengers by tap-out time at each
station then matching these clusters into trains. Hong et al. [9]
focused on determining the connections of passengers by
estimating the boarding and alighting time windows based
on distributions of platform to gate times and the schedules.
From here, they were able to reliably estimate the connections
of passengers. They noted the that it was a non-trivial task
to derive the time intervals solely by plotting the tap-in and
tap-out times.

However, this paper applies an unsupervised learning tech-
nique that requires little tuning to reliably cluster passengers
based on their train, after first applying a time-adjustment to
account for varying destinations. Its effectiveness is demon-
strated during peak periods such as post-game demand surges.
Simulation is used to validate this method and to estimate
metrics such as passenger load and wait time. This method
can also be generalized to other entry-exit systems. In addition
to being helpful when rails are running without an accurate
schedule, the method can also be used to measure on-time
performance and deviations from the published schedules.

B. Ridership Forecasting for Special Events

Various data sources have also been used to study
special-event ridership including survey, AFC, and web
data [10], [11]. Additionally, Pereira et al. [12] use average
daily passengers flows to detect overcrowding hotspots and
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calculate an estimation of event ridership. Special events are
an interesting challenge for transit providers because their time
and place is known ahead of time, but there tends to be more
uncertainty compared to commuting ridership.

Short-term prediction has also been the focus of other
ridership models in [13] and [14], which contrasts to the longer
time horizon considered in this paper. Noursalehi et al. [15]
develop a general methodology for short-term ridership predic-
tion within 15 minutes for planned special events like soccer
games in London. Li et al. [16] predict riders at a station
half an hour in the future using a one-step-ahead multiscale
radial basis function network model for three large Beijing rail
stations.

Ni et al. [17] predict ridership from the number of tweets for
Mets games and US Open tennis matches using linear regres-
sion and established a correlation between tweets related to an
event and event ridership flow. King [18] predicts NBA game
attendance using random forest models. Karnberger et al. [19]
analyze weekly system averages of the Munich public transit
system, using AFC data to build a gradient-boosted random
forest prediction system with 30-minute resolution for rider-
ship between linked stations using information about type of
day (holiday, weekend, etc.) and existence of a few types of
events.

Rodrigues et al. [20] focus on the arrival curve of riders,
grouped into 30 minute bins, for stations nearby to special
events using a Bayesian additive model and Singapore smart
card data and 30 minute bins. The Bayesian models allow for
decomposing the activity into pieces contributed from habitual
activity and each event.

In contrast, this paper focuses on predicting non-habitual
demand surges, specifically those during post-game periods.
Section III highlights how these congestion peaks can over-
whelm the capacity of the standard schedule for MARTA. This
method focuses on having an accurate prediction at the total
ridership number and leverages consistency in the passenger
flow curves after similar events to create a highly accurate
(11-12% MAPE) and high resolution (5)-minute intervals)
demand forecast. The results of this paper show how transit
planners may be able to use the demand forecasts from these
proposed methods to mitigate congestion and disruptions from
demand surges that exceeded the capacity of the normal
weekday or weekend schedules.

C. Train Scheduling

Traditionally, public transit schedules are operated on
timetables with relatively consistent headways at each sta-
tion [21], [22]. Zimmermann and Lindner [23] use a
MILP-based approach for rail schedule optimization for rail-
roads with repeating fixed-period schedules. Wang et al. [24]
use a genetic algorithm based optimization approach through
Hadoop to come up with an optimized rail schedule for a sta-
tion in Beijing. Guo et al. [25] model the input passenger flow
and then uses an adaptive large neighborhood search algorithm
to generate an optimized rail timetable. Ceder et al. [26]
determine timetables for buses with different capacity sizes
using a simulation-based and optimization-based approach

with predicted ridership flows to minimize congestion and wait
times. Li et al. [27] optimize demand-oriented schedules with
short turning and heterogeneous headways.

In the case of disruptions or special events, traditional
timetables are usually not as effective. Li et al. [28] allow
for non-cyclic timetables, which allow headways to vary
in accordance with demand patterns such as special events.
Niu et al. [29] have both online and offline scheduling mod-
els that can respond to variation of temporal and spatial
demand distributions, exploring both buffer time assignment
and train skip-stop patterns. Short-turning, skip-stop patterns,
and buffer time are also techniques that can be used used to
improve service quality for special events. Schettini et al. [30]
present a MILP and heuristic for scheduling of a metro
line serving a special event and conclude that minimizing
passenger wait-time yields a good compromise between their
four presented objectives.

Additional factors such as train running area, turnaround
times, and operating costs are used in other studies to
determine optimal train schedules. In determining ideal train
schedules, Zhao et al. [31] consider train turnaround time and
train coupling constraints while scheduling in such a way that
minimizes operating cost. Wong et al. [32] minimize passenger
wait times when scheduling trains based on manipulation
of many factors, including headways and train turnaround
times. Qi et al. [33] minimize total running distance of
unoccupied seats and the total number of stops for all involved
trains via skip-stop techniques that consider train running
area, turnaround times, and operating cost. Wang et al. [34]
consider various stop plans when constructing rail schedules
that employ flexible pricing to maximize rail system revenue.

In contrast, this paper focuses on a tactical planning per-
spective. The simulation results showcase the benefits of
utilizing the methods forecasting and estimating the required
train frequencies to serve riders with minimal passengers left
behind when planning a train schedule for post-game periods.
During these periods, demand often far exceeds the supply
generated by the normal timetable. To address this increased
demand during a period of reduced schedule capacity, transit
agencies often add additional trains to the normal timetable to
help serve these short periods with high demand from special-
event riders. Large special events often occur at night or on
weekends when train schedule is not typically running at peak-
level capacity. To our knowledge, there are no comparable
methods that focus on this combination of forecasting and
scheduling methods to more effectively address the demand
of post-game ridership.

III. RIDERSHIP ANALYSIS

Figure 18 depicts the four MARTA rail lines [35]. The Red
and Gold lines run North-South and the Blue and Green lines
run East-West, with the two directions intersecting at Five
Points. The three event locations considered in this paper are
noitemsep

1) The Mercedes-Benz Stadium;

2) The State Farm Arena;
3) The Georgia World Congress Center.
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TABLE I
EVENT DATA EXAMPLE
Date Category Event Location Attendance
01/15/2018 Hawks v
15:00:00 Basketball San Antonio Spurs State Farm Arena 15,000
01/16/2018 Mary Kay Leadership Georgia World
07:00:00 Conference Conference Congress Center 7,000
01/16/2018 . Intnl Gift & .
09:00:00 AmericasMart Home Furnishings AmericasMart 72,000
TABLE II
THE EVENT DATA OVERVIEW
. ) Avg. Post-Game
Primary Event # of Days  Avg. Attendance Ridership
Basketball - Hawks 67 15,278 1,425
Football Games 28 69,477 10,846
Soccer 39 52,712 8,037
. Avg. Attendance  Avg. Post-Game
Day Type # of Days of Primary Event Ridership
Single Event 78 38,062 5,487
Two Events 56 36,712 5,082

These three key venues located in downtown Atlanta on the
Blue and Green lines are highlighted in the left center of the
map. The two closest stops are Dome/GWCC and Vine City.
Users coming from the North or South can use the Red or
Gold line and transfer at Five Points to get on the Blue or
Green line. These locations are important for the subsequent
analyses.

A. Event Data

The event data provided by MARTA is a list of many public
events in the Atlanta area during 2018 and 2019 containing
types of events, locations, date, time, and estimated attendance.
An example of event entries is presented in Table I.

The three most popular venues for large events in Atlanta
are the Georgia World Congress Center, the Mercedes Benz
Stadium (MBS), and the State Farm Arena, which were
mentioned earlier as the focus of this paper. In 2018 and 2019,
there were 1330 special events with an estimated attendance
greater than 500 people in Atlanta. 706 of these 1330 special
events were held in the Georgia World Congress Center, the
Mercedes Benz Stadium (MBS), or the State Farm Arena.
The three locations are geographically close to each other;
moreover, the closest two rail stations are the Dome/GWCC
and Vine City stations.

This paper focuses on events with the largest impact and
occur frequently, in particular, the 200 sporting events (Basket-
ball, Soccer, and Football games). All basketball games were
held in the State Farm Arena, while the soccer and football
games were held in the MBS. Apart from the sporting events,
there were 74 conferences, 53 conventions, and 102 expos &
shows at the target locations. However, the conference center
events tends to have little impact on congestion as the ridership
is smaller and more diffuse, making them less interesting for
analysis. The event data is summarized in Table II.

B. Automated Fare Collection Data

To enter or exit the MARTA rail system, customers are
required to use a ticket or a reloadable card (the ‘“Breeze
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Card”) at the gates of individual stations. MARTA pro-
vided anonymized transaction-level data showing tap-in and
tap-out times and locations for the rail network from 2016 to
mid-2020.

Trip chaining is performed to turn these individual transac-
tions into Origin-Destination (OD) pairs. Tap-ins and tap-outs,
when chained, are sufficient to determine where a rider enters
and exits the rail network. For the most part, entries are
matched to the following exit and create an OD pair. In some
cases, the chained trip is an entry and exit at the same station
back to back. For example, when an exit tap occurs, but there is
a missing entry tap, then the system records a “forced entry”
transaction and an exit transaction at the exit station at the
same time. Similarly, if someone tries to re-enter a station, but
there is a missing exit transaction or an extended amount of
period has elapsed (3-4 hours), the system will add a “forced
exit” transaction at the most recent tap-in location. Since the
majority of transactions follow the expected pattern (pairs of
distinct locations), the analysis focuses on these transactions.

This section first analyzes ridership on non-event days,
as average day patterns help identify the effects of special
events on the system. The analysis considers baseline days
and looks at the mean passenger flow in and out of a station
in 15-minute segments over the course of a day. These flows
are then used to calculate the ridership that can be attributed
to special events. The analysis also assesses the consistency
of special-event ridership.

C. Mean Passenger Flows

To create mean passenger flow graphs for baseline days,
the daily average passenger flow for each station is calculated
from the transaction data and partitioned on the basis of (i)
weekday versus weekend, and (ii) entry versus exit.

This partitioned data is used to create four baseline mean
passenger flows for each station: weekday entry, weekday exit,
weekend entry, and weekend exit.

Since the rail is closed between 1:30am and 4:30am, the day
is defined as the 24-hour period starting at 3AM and finishing
3AM to capture passengers returning after midnight. Each day
is further partitioned into 15 minute intervals and the number
of passengers are counted for each interval for each of the four
types of transactions. These flows are consistent within each
type.

Figure 1 shows how the mean passenger flows are very sim-
ilar and consistent month-to-month. This kind of consistency
is good for future modeling and planning. In the appendix,
Figures 19a—19d depict the four baseline mean passenger
flows for the North Avenue and Midtown stations. The shaded
region represents the 10th-90th percentile range for each bin.
The mean passenger flows show regular commute spikes on
weekdays for both entry and exit flows. They also show that
passengers follow similar patterns throughout the year. These
mean passenger flows are calculated for every day in 2018 and
2019 and then partitioned in the ways described above. Figures
19e—19f report the results for the Vine City station, which does
not have many regular commuters. There is still a weekday
and weekend difference for the ridership of Vine City station,
but the overall magnitude of ridership is low compared to the
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Regular Station Entry by Month at North Avenue
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Fig. 1. Monthly baseline mean passenger entries per 15-minute bin for entries
at North Ave rail station.

TABLE III
NOTATIONS USED IN THIS STUDY

Descriptions

P Set of passengers p
S Set of stations s
I

t

-

Set of trains itineraries ¢

A point in time

A time interval
My Mean passenger flow at time ¢
Ut 90th percentile of the passenger flow distribution at time ¢
Ry Actual ridership at time ¢

tstart  Earliest time with E; > M; to capture the start of the event
ridership
tend Latest time with Ey > M; to capture the end of the event
ridership
E: Number of Rail Riders at time t who attended the event
E Number of Event Riders
tisn, P Passenger p’s entry time into the rail system at station s
tf;’p Passenger p’s arrival time (or boarding time) by train at station s
toup  Passenger p’s exit time out of the rail system at station s

¢ of . . . s . .
758 Train travel time from station s to s, Positive if s is a upstream
station of s’, Negative other wise.

Sref . . . .
el Ppagsenger p’s reference arrival time for a given reference station

in,p
Sref

wWp Passenger p’s wait time in the rail system before boarding the
train

t? Departure time of train ¢ at station s

C; Capacity of train ¢

C? Remaining capacity of train ¢ at station s

D} Number of passengers arriving at station s between t;_; and t;

R; Number of passengers who are available to board train ¢

L Number of passengers left behind by train ¢ at station s

J24 Proportion of passengers left-behind at station s by train ¢

North Avenue and Midtown stations. As will become clear,
this low ridership changes drastically in presence of an event
as it is one of two closest stations to the nearby Mercedes-
Benz Stadium and State Farm Arena.

D. Event Ridership Estimation

The last section highlights the consistency of the baseline
passenger flow. This section describes how the special event
ridership is characterized and measured. The estimation for
special event ridership aligns with how Pereira et al. [12] use
the 90th percentile to measure hotspot impact. This analy-
sis focuses on riders with an origin or destination at the
Dome/GWCC and Vine City stations, since the majority of

Passenger Flow into Vine City Station

— 2018-09-22

©
=
S

—— Weekend Baseline

o
=3
S

Ridership per 15 min interval
w
(=3
o

0- n nn

3 5 7 9 1M1 13 15 17 19 21 23
Time (Hour)

Fig. 2. Vine City station’s post-game ridership on September 22, 2018 versus
its baseline weekend flow.

Passenger Flow into Dome/GWCC Station
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Fig. 3. Dome/GWCC station’s post-game ridership on September 22,

2018 versus its baseline weekend flow.

riders use these two stations to get to and from the events at
the three venues of focus. This measurement is formalized as
follows.

The number of rail riders who attend the event at time #,
i.e. E;, is given by the number of riders U; — M; at the points
where R; is strictly greater than the 90th percentile U;.

EIZ[UI—MI, R; > U;

0, R, < U; M

The number of rail riders attending the event is given by

> E. )

Vt€ltstarttend]

E:

To illustrate the equations above, consider the Atlanta
United game on September 22, 2018. Approximately
10,813 people entered the Dome/GWCC and Vine City sta-
tions after the game, including 3,787 from Vine City and
7,026 from Dome/GWCC. These values were calculated using
Equations 1 and 2. The event had no significant influence on
the ridership on any other station. The two station flows for
September 22, 2018 are presented in Figures 2 and 3. It can
be seen that the two stations are rarely used outside of special
events due to the low baseline flow. Thus, the impact of special
events on the station passenger flow can be clearly identified.
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Passenger Flow into Dome/GWCC Station
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Fig. 4. Tllustrating a double event day.

A double event day is shown in Figure 4. A double event
day occurs when two large special events are held on the same
day. The later spike corresponds to Hawks v.s. Philadelphia
76ers game in State Farm Arena at 17:30. The earlier spike
corresponds to MODEX 2018, an expo in Georgia World
Congress Center, which starts at 10:00. It can be observed that
the event departure pattern of the riders for the non-sporting
event depart is much more spread-out than for sporting events.

The obtained values represent estimates for special-event
ridership that are later used to build prediction models. It is
assumed that the vast majority of these riders are indeed
traffic due to the special events, as the ridership shows large
deviations above the normally low baselines at these stations.

E. Event OD Patterns

This section focuses on the OD analysis of all Atlanta
United games to understand which areas the special event
ridership is coming from. The analysis can be used to under-
stand the distributions for the origins (before the game) and
the destinations (after the game) of these riders. Understanding
where special-event riders come from can help transit agencies
improve their offerings. The destination analysis suggests
where riders might live, what forms of transportation they
take, and what other factors contribute to the stations they
use. Analysis of other types of games give similar results with
changes mainly to the magnitude of station ridership.

a) Data: Without loss of generality, this section focuses
on the destinations after Atlanta United games, since the
later sections will focus on post-game service analysis and
simulation. This post-game analysis focuses on riders who
enter Dome/GWCC or Vine City stations 1 to 4 hours after
the start of the game.

For this analysis, the raw ridership counts for each game
are normalized to obtain the percentages of riders alighting
at the destination stations. These median percentage for each
station are also shown on the left side map in Figure 5 to give
a geographical representation of this data.

The right-side heat map in Figure 5 shows number of
parking spots available at each station. The heat map suggests
that two major factors explain why riders use a particular
station for events: noitemsep
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Fig. 5. Heat maps showing the median percentages for post-game destinations
(left) and number of parking spots (right).

1) the proximity of the event location to the East/West line;

2) the parking space availability.
The stations with a high number of riders are on the East/West
line or have ample parking or both. The four stations most
used by riders (i.e., North Springs station, H.E Holmes station,
Lindbergh Center Station, and East Lake Station) are all in the
top six for parking spots. A larger number of riders also use
the East/West line although the North/South line is closer to
larger population centers.

IV. METHODS

This section presents multiple techniques that use Auto-
mated Fare Collection (AFC) data to evaluate, anticipate,
and manage the performance of transit systems during recur-
ring congestion peaks due to special events. Section IV-A
presents a technique using unsupervised machine learning
to cluster passengers and estimate the departure times of
the trains they boarded without an accurate train schedule
or train-tracking data during periods with high levels of
overcrowding. Section IV-B presents linear regression and
random forest models for predicting total event ridership that
are used in combination with historical trends to forecast
post-game passenger flows at nearby stations after the game.
The forecasted demands are used to estimate the required
frequencies to serve these customers with minimal passengers
left behind by each train. Finally, a simulation algorithm is
presented for evaluating a given train schedule in terms of
performance metrics such as proportion of left-behind riders
and waiting times.

A. Train-Level Clustering

This section presents a clustering method that helps estimate
the actual train departure times and proportion of riders left
behind at the station when there is not an accurate schedule
data or historical vehicle location data. A large event can lead
to demand that exceeds the capacity of the the regular train
schedules, leading transit agencies to add additional trains
compared to the normal weekday or weekend schedules during
the post-game peaks. This method can also be helpful to
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evaluate on-time performance of trains when there is not a
record of vehicle location data, such as that produced by AVL
technologies.

The train-level clustering analysis identifies the train sched-
ules and which riders were on the same train based on the
AFC data. It consists of three steps:

1) Time Adjustment: Exit times of riders are adjusted based

on scheduled travel time between stations;

2) Rider Clustering: Riders are clustered into trains based
on their adjusted exit times;

3) Schedule Estimation: The train schedule is estimated
from the clustering results with a cluster corresponding
to group of passengers on the same train.

1) Time Adjustment: To determine the departure time of
riders at the event stations, their station exit time is shifted
backwards, using the train travel times. Suppose a passenger’s
origin station is s1, and the train takes the passenger to their
destination station s3 passing through station s, in the middle.
Here it is assumed the boarding time is taken into account in
the train schedule as MARTA does and that the travel time is
defined as the time between departure times. It is also assumed
that passengers exit the system at station s at departure time
of station s, i.e. 15, , = f; ,- A passenger’s travel time in the
transit system can be decomposed by the following equation,
where 7°1%2 is obtained from MARTA train schedule.

53 451
tout,p - tin,p

+w, + T2 4 52 (3)
Subsequently, if a passenger enters the system at station s
ST 51
t&,p - tin,p + Wp- (4)

From equation 3 and 4, assuming instead of traveling from
s1 to s3, the passenger travels from sj to s,. Passenger’s exit
time at station s, can be inferred as:

52 52 .83 52,83
2y =132 = o p — T2, (5)

As an event can have effect on multiple neighboring sta-
tions, in order to make the start time comparable, the entry
time of a passenger at the event station s; from a separate
origin station sq is defined as:

51

__ 450
in,p — L

! in,p

+ 70, (©)

The goal of time adjustment is for passengers with different
OD. Their entry time and exit time are adjusted based on
equation 5 and 6 to the same OD.

2) Rider Clustering: Once the entry times and exit times
are adjusted to the same OD, it is possible to apply an unsuper-
vised learning model to cluster riders in trains. Unsupervised
learning algorithms are commonly used for analyzing patterns
in unlabeled data. In this case, an unsupervised learning
algorithm is applied on the times that riders exit the system to
learn the patterns of their exit times since riders on the same
train and with the same OD have similar exit times. Algorithm
HDBSCAN [36], [37] was selected for this task because of its
strength in obtaining clusters of varying densities according
to the mutual distances between the data points. HDBSCAN
is faster than other density based methods and only requires a
single parameter for minimum cluster size, unlike other multi-
parameter methods. Since the number of trains after any given

game are not always known or constant, HDBSCAN works
well as it is not needed to specify the number of clusters. The
fact that this method uses only a single parameter also makes it
very accessible to transit agencies even if there is not someone
with extensive experience in machine learning and parameter
tuning.

3) Schedule Estimation: The clustering algorithm identifies
which passengers are on the same train for the adjusted
OD pair. The train departure time at the origin station s is
approximated as the latest arrival time of the riders on that
train at that station. Given the train schedule of the origin
station, the train schedule for all stations can be derived from
s 'S/, using
2 =1+ (7)

1

B. Predictive Analytics

This section presents methods to train linear regression and
random forest models using historical AFC and event data to
predict the total number of event riders to help prepare for
post-game peaks. Then, it presents a method for creating a
new proposed schedule for a future game based on the total
event ridership prediction and average passenger flow curve for
similar events as well as the simulation used for evaluation.

1) Ridership Prediction Model: This section presents super-
vised machine learning models to predicted total event
ridership. Supervised learning models can be used to create
a mapping function from input features to the output. Here,
the output is the number of event riders that can be estimated
by equation 1 and 2. These models can be used with the
mean rider throughput curves (see Figure 9, 10) for each event
type to forecast the post-game passenger flows. Table IV lists
the input attributes compiled for the predictive models to use
as input and outputs T, i.e., the total number of riders for
the event at the considered station. In the table, Event 1 is
the event whose ridership must be predicted and Event 2 is
another event on the same day. For days with a single event,
the attributes of Event 2 are set to null. Note that, for future
events, a prediction of event attendance can be used in place
of actual attendance. For example, NBA game attendance has
been predicted using random forest models with a 6% MAPE
using team/opponent statistics, stadium capacity, local average
income, team popularity and other factors in [18].

The first predictive model is a simple linear regression (LR),
which uses Attendance from Event 1 as the sole feature.

E = By + B1 x Attendance, ®)

where fp and B; are parameters to be estimated using
minimization of sum-of-squares error. It captures the strong
linear dependency between the event ridership and the event
attendance, which is highlighted in Figure 11. This is mainly
due to the size of Mercedes-Benz Stadium in comparison to the
other two venues, leading to much higher attendance numbers.
The second predictive model is a random forest (RF) that uses
all the attributes in Table IV. The third model (LR+RF) is
a two staged approach. The first stage is a linear regression
model described in Equation 8 using the Attendance from
Event 1 as the sole feature. The second stage is a random
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TABLE IV
THE INPUT ATTRIBUTES FOR THE PREDICTIVE MODELS

Attributes Type
Category Factor: Soccer, Football Game, Basketball

Event 1 Factor:
Location State Farm Arena, MBS,

MBS with Upper deck Open
Attendance Numeric, Attendance for Event 1
Win Percentage | Numeric, Home Team win percentage
Difference minus Away Team win percentage
Regularized Numeric, h/{a'rgin of vich)r.y (losjg) .
Margin d¥v1ded by standard deviation margin of
victory for that league

Category 2 Factor (15 Categories)

Event 2 | Location 2 Factor (GWCC/MBS/SFA/No Location)
Attendance 2 Numeric Attendance for Event 2)
Time Time difference (in minutes) of the two events,
Difference 0 if there is no second event
Two_Event Binary (True, if there is a second event)
Week Binary (True, if the day is weekend)
Month Factor (Month of the event)

forest model used to predict this error term using the remaining
features in Table IV as described in Equation 9,

1 B
€= E;Tb(x), 9)

where B is the number of decision trees, 7, is the p'h
decision tree, and x is the input vector. B is an hyper-
parameter obtained by fitting the model over different values
and selecting the one minimizing the RMSE. Not only do
these methods work well for this scenario, but they also need
minimal tuning and are easily interpretable relative to other
types of supervised learning models.

2) Proposed Schedule: To prevent the overcrowding of the
stations, the key strategy in this paper is to estimate the
required train frequencies to serve the forecasted demand
with minimal passengers left behind. Transit agencies may
select a minimum frequency fpnin and maximum frequency
fmax requirement. Generating a new train schedule, which we
refer to as the proposed schedule, for the periods of increased
demand can be done by following these steps:

1) For a given direction of a line, scale the total event
ridership forecast based on the average percentage of
riders that use the line in that direction during the peak
period after the game. This set of ridership is the targeted
post-event riders P.

2) Divide the post-game period into bins [By,,a =
{1...n}], where {r1,..,7,} are consecutive 5-minute
time intervals for similar previous events based on event
end time.

3) For each event station s € S, compute the forecasted
arrivals for each bin B;, by multiplying the average
percentage of post-game event riders that arrived during
B, for similar previous events. For non-event stations,
the baseline mean passengers can be used to forecast
arrivals.

4) For each station s and bin B, , generate arrivals times
tisnﬁ that are equally distributed in the interval 7. Let
{ni:f; = t{i’l,p + 5%ef; p € P,s € S} be the sorted

reference arrival times for passenger set P, station set
S, and reference station Sref.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 1 Train Scheduling for Post-Games on Reference
Station Seef
Input: Set of Trains: /
Train Capacities: C; Vi €
Sorted Reference Arrival Times: nfr':fp VpeP
p<0
for i in I do
C; < 0
while c < Ci do
¢ +=1
if ¢; == C; then
‘ t;ref <~ max(”in,p» ti—1 + fmin)
break
end
else if ;1" > 6" + fruqr then
‘ 17— 1)+ fmax
break
end
else
| p+=1
end

end

end
Output: Proposed schedule tf“f Viel

5) Generate a proposed set of departure times for a ref-
erence station using Algorithm 1 by estimating the the
required frequencies to serve the forecasted passenger
flows at nearby stations with minimal passengers left
behind.

6) Finally, align each train in the original time table to
the nearest train in the proposed schedule based on the
reference station. As long as fiax is equal to or less than
the frequency of the normal timetable, then each train
will be uniquely mapped to the new proposed schedule.

Algorithm 1 estimates the required frequencies to effectively
manage forecasted passenger flows, ensuring minimal passen-
gers are left behind. The notation is presented in Table III. This
algorithm focuses on minimizing the number of passengers left
behind during periods when demand surpasses the capacity of
the normal rail schedule to reduce wait time for both event
and non-event riders.

During post-game periods for large events, demand often far
exceeds the supply generated by the normal timetable. Large
special events often occur at night or on weekends when train
schedule is typically reduced compared to peak commuting
periods. In the case of MARTA, many additional trains are
added to the normal timetable during the post-game periods to
service the increased demand with reasonable wait times. This
method leverages forecasts of the passenger flow curves for
the post-game period to create a proposed post-game schedule
for transit agencies to use during their the tactical planning.
This method is designed to serve the forecasted demand with
minimal passengers left behind. Due to the importance of
preventing excessive overcrowding, delays, and disruptions for
transit agencies, additional buffer can be added to forecasts
potential to account for potential uncertainty.
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Algorithm 2 Proportion-Left-Behind Simulation

Input: Set of Trains: / Set of Stations: S
Train Capacities: C; Vi € [
Train Departure Times: ¢’ Vi € I,Vs € S
Passenger Arrival Times : tfn’ » VpeP
15=0
C? = C;
for i in 1:1 do
for s € S do
Calculate demand D; from 7}, »
R =L} + D]
Li=max(R; — C;},0)
Calculate wait times w, for passengers on train s
Cf'H =Smax(0, C! —R))

s i

Pi = RS

i

end

end
Output: o} Vie I Vs € S
wp Vp e P

3) Simulation:  This section presents an algorithm,
Algorithm 2, used to simulate a first-in-first-out (FIFO)
queue of riders at stations in set S. This simulation is used
to validate the clustering results and also evaluate system
performance in terms of fundamental metrics such as the
passenger load per train, the wait times (wp) of riders, and
the proportion of riders left behind p;. For each train i and
station s, Algorithm 2 calculates the amount of new demand
D7, the total number of passengers trying to board R;, the
amount left behind L}, the remaining capacity C f'H, and the
proportion left behind p;.

V. RESULTS

This section presents the results of the techniques used to
exploit Automated Fare Collection (AFC) data for evaluating,
anticipating, and managing the performance of transit systems
during recurring congestion peaks due to special events. First,
the results of the unsupervised machine learning algorithm
HDBSCAN used to cluster passengers and estimate the depar-
ture times of the trains are presented and validated with
simulation. Simulation are also used to estimate the average
train load during these peak periods with high proportion
of riders left behind. Then, in Section V-B, the results of
the linear regression and random forest models for predicting
total event ridership are shown. Additionally, the consistency
of the passenger flows post-game for both Atlanta Falcons
and Atlanta United games are shown. Finally, simulations are
performed that showcase how the adjusted train schedules
based on forecasted demand using the proposed methods may
significantly improve the post-game congestion and wait time.

A. Train-Level Clustering

This section presents the results of the unsupervised
machine learning algorithm HDBSCAN used to cluster pas-
sengers and estimate the departure times of the trains. The

~
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Fig. 6. Arrival and departure time of riders at the Dome/GWCC station.

clustering results are presented and validated with simula-
tion. First, it goes through an example day starting with the
departure time inference step and ending with the simulation
estimation of train capacity by simulating various train capac-
ities and comparing the proportion of passengers left behind
to that of the clustering results.

1) Case Study Data: The analysis in this section focuses
on the Atlanta United game on September 22nd, 2018 for
concreteness. Due to the nature of the rail system, the primary
focus is on riders using the rail to travel in the east direction
after leaving the stadium and entering either the Dome/GWCC
or the Vine City stations. Some passengers may proceed to
switch to another rail line, but the analysis focuses on the
subset of passengers who solely use the West to East tracks
(either the Blue or Green line).

2) Departure Time Inference: Figure 6 shows departure
time inference results with Dome/GWCC as the event station.
In the figure, the colors represent a different alighting station
for the riders. Observe the horizon clusters that represent sets
of riders boarding the same train.

3) Clustering: This section reports the results of this clus-
tering for riders entering the Vine City and Dome/GWCC
stations after the game and alighting at Edgewood/Candler
Park, East Lake, Decatur, Avondale, and Kensington. The most
crowded period is between 20:40:00 and 22:00:00 and is the
focus of this section.

To cluster the selected 2,392 riders in selected time interval,
HDBSCAN was run with its parameter MinPt s for minimum
cluster size set to 50. An initial run detected 12 clusters and the
21:45 and 21:49 trains were not separated because the 21:45
train was delayed at some stations and hence the departure
time inference resulted in some scattered data points. The
first HDBSCAN run identified the noisy data points and a
second HDBSCAN run was applied to produce the 13 clusters
that correspond to the 13 trains that left Dome/GWCC after
the game. The cluster results and the estimated train arrival
times at Dome/GWCC station are presented on Figure 7. The
estimated train departure times at the Dome/GWCC station
are plotted with dash lines which represent the latest rider
boarding time for each train.

The clustering algorithm assigns each rider to the corre-
sponding train they boarded. These passengers enter MARTA
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HDBSCAN result and Estimated Train schedule after ATL United Games
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Fig. 7. Train clusters for riders entering the dome/GWCC and vine city
stations after the atlanta united game on september 22nd, 2018.

from two stations, Vine City and Dome/GWCC. Because the
trains are heading to Dome/GWCC from Vine City, Vine City
riders have a priority to board the train. During peak times
after the game, some riders cannot board the first “available”
train. Moreover, some riders entering Dome/GWCC have to
wait up to three trains to board. Hence, an important metric
to evaluate MARTA’s performance is the proportion of riders
left-behind by each train, which is referred to as proportion-
left-behind. Note that 3 of the 13 trains did not stop at the
Vine City station while all 13 trains did stop at Dome/GWCC
station. Many of the trains are mostly filled with Vine City
passengers, so this decision likely helps improve the wait time
for riders using the Dome/GWCC station.

4) Train Capacity Utilization: From the previous clustering,
it is possible to tell, for a subset of passengers, which train they
were on and identify what was the number and frequency of
trains departing the stadium area. This section uses simulation
with the arrival data and the train frequencies to match the
proportion-left-behind to determine roughly how many people
were boarding the trains when the stations are crowded, which
will be helpful for later simulations.

To estimate the train capacity, this section presents a sim-
ulation that estimates the proportion-left-behind at a station
based on the arrival time of passengers and the train capacity.
By comparing the proportion-left-behind computed by the
simulation and the clustering, it becomes possible to estimate
how the trains are utilized. More precisely, the goal is to find a
train capacity that minimizes the absolute difference (L1 loss)
between the proportion of left-behind passengers from the
simulation and clustering.

Algorithm 2 is repeated for train capacities from 600 to 900
(assuming every train has the same capacity C; = C;j
Vi, j € I) while keeping I and T7; the same. The I and T;
used in this section are estimated from the clustering model.
Each simulation on a capacity outputs an estimation of the
proportion-left-behind by each train. The L1 loss between the
proportion of riders left behind from the simulation and from
the clustering is calculated.

Figure 8 depicts how the L1 loss function evolves for differ-
ent train capacities. When assuming the train capacity is 707,
the proportion-left-behind from the simulation best matches
the proportion-left-behind from the clustering, suggesting a
train capacity of 707. Table V presents the results and reports
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Fig. 8.  Minimization of MAE for L loss function when searching for the
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TABLE V

SIMULATION RESULTS FOR THE PROPORTION-LEFT-BEHIND
BY EACH TRAIN

Proportion-left-behind Proportion-left-behind

Train Time estimated at Dome at Dome in the simulation

by the clustering (Maximum Capacity 707)
20:52 4% 0%
21:00 11% 18%
21:09 8% 19%
21:12 60% 70%
21:16 29% 29%
21:20 16% 0%
21:25 9% 0%
21:29 37% 31%
21:34 35% 17%
21:39 12% 0%
21:45 7% 0%
21:49 0% 0%
22:00 0% 0%

the proportion-left behind by both the clustering and simula-
tion models for a train capacity of 707 at the Dome/GWCC
station. The “real” percentages (from clustering) are larger
than the simulated percentages when the numbers are small.
This is due to the fact that the simulation assumes an orderly
first-come-first-served system where a full train has exactly
C; passengers. In reality, the number of people in “full” trains
will vary when the station is crowded.

The maximum capacity of 707 is a lower bound estimation
because riders already on the trains (approximately a total
of 35 people for the whole time period) are not counted
here. These trains are 6-car trains post-game which have a
recommended maximum capacity of 576 people. From this
analysis, however, one can see that the maximum capacity
is often exceeded post-game: people often cram together in
very close quarters as a result. It is also likely that this over-
capacity situation leads to an increased risk of accident, injury,
or illness. However, the analysis simply confirms the anecdotal
evidence that people have a tendency to “pack it in” after
sporting events. Note also that, under the assumption that
people left behind end up boarding the next train before the
new arrivals, riders wait a maximum of two trains, which
corresponds to the case in Figure 7.
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Fig. 9. Post-game rider throughput at Dome/GWCC after Atlanta United
games with the upper-deck seating opened.

B. Predictive Analytics

This section presents the results of the demand forecast-
ing and train scheduling with a focus on regular season
Atlanta United games with larger attendances. Simulations
are performed that showcase how the adjusted train schedules
based on forecasted demand using the proposed methods may
significantly improve the post- game congestion and wait time.

1) Throughput Consistency: This section highlights the
post-game throughput consistency for stations near special
events. Due to their larger sizes, events at Mercedes-Benz
where the upper-deck seating was open are the focus of this
section. In games with an open upper deck, an additional
30,000 seats are available for purchase in the upper deck
of Mercedes-Benz Stadium. Due to the additional attendance,
these events have a much larger impact on the MARTA rail
system, especially compared to Atlanta Hawks games where
the average attendance is only around 15,000 people. In this
section, the post-game throughput is analyzed from 40 minutes
before the end time to 80 minutes after the end time.

In most games, it is assumed that the end time is the
average game length after the scheduled start time: 1 hour &
50 minutes for soccer and 3 hours & 10 minutes for football.
However, a few of the end times were adjusted in this analysis
because it was believed that the end time might have been
delayed due to injuries, delayed starts, or overtime. The delay
in the actual end time of the game compared to the end time
calculated using the average game length is referred to as the
offset. For each game, the offset is estimated by comparing the
throughput curves in cases where there was a clear delay to
the peak of the throughput. When there are delays to the game,
such as overtime for a Falcons game, the train operator waits
to make the necessary adjustments to the actual schedule.

Figure 9 shows the entries to Dome/GWCC and Vine City
are grouped into 5 minute bins and plotted for analysis. Note
that three games had offset adjustments as stated later in
Table VII. This highlights the consistency of arrivals to the rail
stations Dome/GWCC and Vine City rail stations after Atlanta
United games with an open upper deck. The highest number of
riders arriving in any bin is almost 1,200, which can be served
with less than two trains assuming a train capacity of 707 as
estimated in Section V-A.4. Note also that only roughly 8%
of people take a train going west, while the rest of the riders
wait for trains going east. Figure 10 show a similar, yet distinct
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Fig. 10. Post-game rider throughput at Dome/GWCC after falcons games.
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Fig. 11. Linear trend between attendance and ridership increment after the
main event.

consistency for the football games. In some of the Falcons’
games, there are some peaks that could align with the end
of the third quarter (ex. 10/27/2019 where the Falcons were
losing 24-0 at halftime). Falcons games are typically more than
an hour longer than Atlanta United games in length, so this
could also explain why more fans leave early for Falcons
games than for Atlanta United games.

The mean curve gives an relatively accurate estimation of
the arrival patterns at the station. The mean curve is converted
into percentages by dividing by the average ridership and used
later in combination with the predicted ridership to obtain a
predicted throughput curve. Given a ridership prediction, it is
possible to estimate the arrival distribution over time at the
station quite accurately.

2) Ridership Prediction: The results presented in this
section focus on sporting events near Dome/GWCC station and
Vine City station, i.e., Atlanta Hawks games, Atlanta Falcons
games, and Atlanta United games, as there are enough data
points for those events to build strong models. These events are
also among those that had the largest impact on ridership. Post-
game ridership is estimated using Equation 1. The training
data consists of 134 event days ranging from January 2018 to
December 2019.

After the first stage, the error term ¢ is calculated from the
fitted LR model as shown in Equation 10, with the parameters
Po = —1201 and B; = 0.1739.

Ridership = —1201 4 0.1739 x Attendance + ¢ (10)
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TABLE VI
PREDICTION RESULT FOR MODEL 1
MAE | MAPE | RMSE
LR 509 0.1169 | 509.26
RF 582 0.1356 | 582.10
LR+RF 506 0.1130 | 506.24

The LR+RF model recognizes that the error term of the
linear model depends on other factors, e.g., whether there is
a second event at that day or the win percentage of the home
team.

Table VI presents the results obtained using a leave-one-out
cross validation because of limited sample size. RF uses 1,500
trees and LR+RF uses B = 800 trees. The proposed LR+ RF
outperforms the other models among all metrics, i.e., MAE,
MAPE, and RMSE.

3) Simulation: The goal of this section is to take the results
from the previous section and demonstrate how they can be
combined into a predicted passenger flow for a future post-
game event. To do this, the passenger flow for previous games
is predicted and simulated to evaluate how it would have
performed versus the actual schedule. Again, please note that
the train operators pulled additional trains from reserves during
this period to deal with excess demand.

The forecast splits the post-game ridership in five minute
bins and can then be used to create a train schedule. The
proposed schedule can be compared to the actual (recovered)
schedule, giving key insights to help dispatchers improve
performance of the rail service during post-game spikes.

The case study is focused on the Atlanta United games with
the upper deck open. Two Atlanta United games were excluded
from the analysis, one because it was a playoff game and
the other because there was an overlapping basketball game
and no similar examples to use for the predictions. For each
day, the actual schedule is recovered using the methods in
Section IV-A. Note manual adjustments are made to add in
trains in the case that two trains were close together to make
sure that it was a fair comparison.

Due to the results of Section V-A.4, it is assumed that each
train will fill up to a max of 707 passengers. Based on the
analysis in III-E, the total ridership prediction is scaled by
92% (the percentage of riders using the green/blue lines in the
east direction), then by 68% (the percentage of riders leaving
during this post-game peak period), then finally by 110% to
add a buffer, based on the average MAPE from the previous
section IV-B.1. Then, this forecasted demand is used to create
the proposed schedule using Algorithm 1.

The vector graph for MARTA’s regular eastbound service
on weekends can be seen in Figure 12. These times were
derived from MARTA’s past GTFS schedule. The eastbound
direction consists of alternating trains of the Blue Line, which
goes all the way from H. E. Holmes to Indian Creek, and
the Green Line, which covers some of the middle stops and
additionally covers Bankhead station. Figure 13 shows the
proposed eastbound train schedule derived from the generated
departure times for Dome/GWCC using Algorithm 1. § trains
are added in the eastbound direction, with the 5 blue line
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GTFS Weekend Eastbound Train Schedule

Indian Creek 1 —a— Blue Line
kensington | _g Green Line
Avondale -
Decatur
East Lake
Edgewood -
" Inman Park
& King Memorial -
E Georgia State
n Five Points
Dome/GWCC
Vine City
Ashby } } }
Bankhead -
West Lake -
H.E. Holmes -
T T
21 22
Hour of day
Fig. 12.  The normal (non-event) weekend eastbound train schedule based
for MARTA.
Proposed Eastbound Train Schedule
Indian Creek 1 —e— B|ue Line »
Ke:sm:cgit{?n | —®— Green Line ;
wondale - i
Decatur 1 —8— Added Trains
East Lake -
Edgewood -
" Inman Park -
& King Memorial -
:"g Georgia State
e Five Points -
Dome/GWCC -
Vine City |
Ashby -
Bankhead
West Lake 1
H.E. Holmes -
T T
21 22
Hour of day
Fig. 13. The proposed eastbound post-game train schedule for the atlanta

united game on september 22, 2018 based on the generated departure times
for Dome/GWCC from Algorithm 1.

trains staying relatively consistent. However, it is important
to note that of the 8 added trains, 4 of them are simply
extensions of the 4 green line trains seen in Figure 12 that
now go all the way to the Indian Creek station. Thus, only
4 additional trains are needed. The trains are more frequent
in the proposed schedule, but meet the minimum headway
requirements of MARTA. Figure 14 is the reconstruction from
Breeze Card data of the actual stops and frequencies of trains
on September 22, 2018. The lines each train belongs to is
depicted as well. In comparing Figure 13 and Figure 14, one
can see that the proposed schedule uses a reasonable number
of trains relative to what actually transpired. Furthermore,
the added trains start slightly earlier and are more evenly
spaced out. Figure 15 compares the capacity of the actual and
composed schedules against the arrival rate for the Atlanta
United game on September 22, 2018. It demonstrates how the
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Actual Eastbound Train Schedule

—&— Blue Line

—&— Green Line

—8— Added Trains
T T
21 22

Hour of day

Indian Creek -
Kensington -
Avondale
Decatur

East Lake -
Edgewood -
Inman Park
King Memorial
Georgia State
Five Points
Dome/GWCC
Vine City |
Ashby -
Bankhead -
West Lake -
H.E. Holmes

Stations

Fig. 14. The actual eastbound post-game train schedule for the Atlanta United
game on September 22, 2018 estimated from the Breeze data.

w Post-Game Throughput vs. Schedule Capacity
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Fig. 15. The arrival rate for the Atlanta United game on September
22, 2018 is depicted along side the “capacity” of the actual and proposed
schedules, which have their height represented by the capacity per train
(707 passengers) divided by the minutes since the last train.

capacity of the proposed schedule more closely aligns with
the actual demand, which leads to better service quality.

The proposed and actual schedules are compared by evaluat-
ing their simulation results using Algorithm 1 across the subset
of Atlanta United game day with the upper deck seating open
while keeping the other inputs the same. The train capacities
C; Vi € I are set to 707. I and S are the actual I/ and S for
the specific game day. The simulations focus on the post-game
time period, which requires an increased train frequency to
service the surge in demand. It is assumed that the schedules
return to normal (every 20 minutes per line) following this
modified schedule for the peak period.

Table VII displays the results of the 16 simulations: two
for each of the eight Atlanta United games of focus where
the upper-decks were open. There is significant decreases to
the average percent left behind (p; ;) on average for each train
compared to the actual train, which shows the schedule is
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Fig. 16. For each of the eight Atlanta United games with the upper deck

open, the two box plots compare simulated actual train schedules vs. simulated
proposed train schedules. Note the number of trains is represented with x
markers.
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Fig. 17. For each of the eight Atlanta United games with the upper deck

open, the proportion-left-behind for each train is plotted for both simulations.
The results from the simulations of actual (recovered) schedules are in red
and results from simulations with proposed schedules are in blue. Note trains
near the beginning and end of the schedules tend to have O riders left behind.

better matching the increased demand. Additionally, average
passenger wait time (wp) improves in most cases. In the
case of MARTA, the majority of riders during this post-game
period are boarding at Vine City and Dome/GWCC stations.
There is a less significant impact on wait time and passengers
left behind for non-event riders at the following stops, since
enough passengers alight and transfer at Five Points, the stop
following Dome/GWCC. On average about one more train is
used as an extra buffer was added to protect against the times
that the ridership is underpredicted. This is the number of
trains that depart from Dome/GWCC within the considered
time window.

Figure 16 shows boxplots of the simulated wait time using
both actual and proposed schedules. The number of trains
represented by the x markers. Note that, in most cases, the
maximum wait time is decreased, as well as the 75th percentile
and median.

Figure 17 highlights the proportion of people left behind
by individual trains. The proposed schedules performed sig-
nificantly better in this category as the demand matches
the proposed train schedule more accurately. In the existing
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TABLE VII

RESULTS FROM TWO SIMULATIONS FOR EACH OF THE EIGHT ATLANTA UNITED GAMES USING ACTUAL AND PROPOSED
SCHEDULES ASSUMING A MAX OCCUPANCY OF 707 RIDERS PER VEHICLE

Game Data Ridership Simulated with Actual Schedule Simulated with Proposed Schedule
Date Offset | Actual | Predicted | # trains | Avg. wp | Std. | Avg. %p? | #trains | Avg. wp, | Std. | Avg. %p?
6/30/18 0 7456 8292 11 5.7 3.5 22.3 12 33 2.8 1.2
7/15/18 25 8773 8097 11 7.2 4.3 39.2 12 4 3.8 12
9/22/18 0 7693 6765 11 3.8 2.8 8 10 4 34 53
10/21/18 10 6431 7787 9 6.5 4.7 20.2 12 2.8 2 0
5/12/19 0 7790 6949 11 6.1 3.7 28.4 11 4.2 3.1 13.5
7/7/19 25 7356 7333 10 4.7 32 13.6 11 3.6 2.9 3.3
8/3/19 0 6517 7250 10 4.4 3.4 4.8 11 3.3 2.5 0.2
9/14/19 0 6631 5909 9 5.3 3.9 15.7 9 4.3 3.1 8
TABLE VIII

ROBUSTNESS ANALYSIS FOR EACH OF THE EIGHT ATLANTA UNITED GAMES USING VARIOUS PERCENTS OF ACTUAL
TOTAL RIDERSHIP AS THE FORECASTED TOTAL RIDERSHIP WITH NO ADDITIONAL BUFFER

Game Data 90% of True Ridership True Ridership 110% of True ridership
Date # trains | Avg. wp [ Std. | Avg. %p? | #trains | Avg. wp [ Std. | Avg. %p? [ #trains | Avg. wp [ Std. | Avg. %op?
6/30/18 9 7.1 42 29.7 10 4.1 2.8 8.0 11 3.3 2.4 1.9
7/15/18 11 6.1 4.9 25.5 12 3.5 2.9 10.7 13 2.6 2.0 2.0
9/22/18 9 4.9 3.5 17.0 10 33 2.5 1.2 11 3.0 2.4 0.0
10/21/18 8 6.5 3.8 24.7 9 4.0 2.6 5.3 9 3.5 2.3 1.5
5/12/19 9 7.1 6.1 29.7 11 3.9 3.1 11.9 12 3.0 2.3 3.4
07/07/19 9 5.3 4.3 14.5 10 3.8 3.0 4.8 11 3.3 2.5 2.6
8/03/19 8 6.3 43 19.8 9 42 32 3.9 10 3.8 2.8 1.6
9/14/19 8 6.0 4.2 19.6 9 4.0 2.8 6.0 10 3.3 2.4 1.8

schedule, less than half the people at the station are able to
board the train. This could lead to potential crowding and
decreased customer experience as passengers have to wait
multiple trains before boarding in some cases.

The robustness of the methods outlined in this paper
are validated by a set of experiments that can be seen in
Table VIII. For these experiments, various proportions of true
ridership were used as the forecasted value when generating
the proposed schedule. One can see that improvements on
the performance of the actual schedule from Table VII are
achieved by using the true ridership value and 110% of the
true ridership. With 100% accurate predictions, the wait time
and average proportion left behind are improved across the
scenarios with further improvements when an additional 10%
is added to the forecasted input in the rightmost columns.
In the 90% case, where ridership is underpredicted by 10%, the
wait times and overcrowding are still sometimes better than the
simulated performance of the actual schedule, but overall leads
to a significantly poorer performance than the 100% and 110%
cases. For transit operators there is significant concern with
mitigating the potential negative impact of special events on
wait time, congestion, and safety for both event and non-event
riders. Therefore, it is justified to slightly overprepare during
the tactical planning stages by adding a buffer to forecasted
ridership to account to account for the average prediction error.
Overall, the proposed methods are fairly robust to forecasts
that are slightly off and result in feasible schedules that can
achieve reasonable performance even if slightly more people
use transit than expected.

VI. DISCUSSION

This paper studies the impact of forecasting and scheduling
methods on transit congestion and wait times after large

sporting events. The high density of post-game ridership can
have negative impacts on congestion and wait times for both
event and non-event riders. Transit agencies often have to
use additional trains compared to their normal weeknight
or weekend schedules. This paper provides key tools for
transit operators to use for tactical planning for this disruptive
post-game periods to ensure that the system runs smoothly and
efficiently.

This paper presents a case study on MARTA, focusing on
the large sporting events at the Mercedes-Benz Stadium in
downtown Atlanta, GA. The results show that post-game spe-
cial event ridership can effectively be forecasted by combining
total ridership predictions with historical passenger arrival
curves. Additionally, the case study highlights how transit
operators can significantly improve passenger wait times and
congestion following large events by estimating the required
train frequencies to serve the forecasted demand with mini-
mal passengers left behind and then generating a post-game
schedule. For further improvements, transit agencies can also
consider using other existing real-time optimization techniques
such as short-turning, skip-stop patterns, or adding buffer
time to their schedules. Even though the proposed methods
were designed to create a schedule days or weeks in advance
for tactical planning purposes, they are very computationally
efficient, taking only seconds to run, and could be modified
in the future for real-time, operational planning problems.

The analysis and methods are expected to be generalizable
to other cities that are both more decentralized and polycentric
than Atlanta, since the main focus of the analysis starts with
identifying specific line and direction where special events
cause a surge in demand beyond the capacity of the normal
weekday or weekend schedule. For many transit agencies,
special events often occur during normal off-peak hours.
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Fig. 18. The MARTA Rail lines and stations [35].

Weeknight and weekend schedules often do not have enough
capacity to handle the crowds that swarm to the to the rail
lines after a large event. Therefore, advance coordination and
tactical planning to increase the total number of trains or cars
per train is often possible and will help to alleviate wait times,
congestion, and potential safety concerns. In some cases,
transit agencies may have system capacity that is insufficient
to serve the post-game arrival rate. In these cases, the transit
agencies are limited to running their service at maximum
frequency and looking at ways to mode shift passengers to
buses or other forms of transit.

Future work could include a longitudinal study over more
years to further improve the accuracy with larger sample sizes.
Mercedes-Benz Stadium and Atlanta United did not exist
before 2018, thus, no additional historical data is available.
Similarly, Atlanta in 2020 was affected by the COVID-19

pandemic, thus restricting the data set to less than two full
years. Another direction would be additional case studies on
other transit agencies and types of events, including events
with lower sample sizes compared to more the more frequent
professional sporting events. It would also be interesting to
perform related analysis to evaluate potential impacts of any
future infrastructure projects such as line extensions on special
event riders for transit agencies.

APPENDIX A
MARTA RAIL STATION MAP
See Fig. 18.
APPENDIX B
MEAN RIDERSHIP FLOWS
See Fig. 19.
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Fig. 19. Passenger Flow (non-event days) graphs for three stations showing the weekday (red) and weekend (blue) Passenger flow for entries (left) and exits

(right). The shaded region represents the 10th-90th percentile range for each bin.
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