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Abstract

We study propositional proof systems with inference rules that formalize restricted versions of the
ability to make assumptions that hold without loss of generality, commonly used informally to
shorten proofs. Each system we study is built on resolution. They are called BC≠, RAT≠, SBC≠,
and GER≠, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked
clauses, and generalized extended resolution – all “without new variables.” They may be viewed as
weak versions of extended resolution (ER) since they are defined by first generalizing the extension
rule and then taking away the ability to introduce new variables. Except for SBC≠, they are known
to be strictly between resolution and extended resolution.

Several separations between these systems were proved earlier by exploiting the fact that they
e�ectively simulate ER. We answer the questions left open: We prove exponential lower bounds for
SBC≠ proofs of a binary encoding of the pigeonhole principle, which separates ER from SBC≠. Using
this new separation, we prove that both RAT≠ and GER≠ are exponentially separated from SBC≠.
This completes the picture of their relative strengths.
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1 Introduction

When writing proofs informally, it is sometimes convenient to make assumptions that hold
“without loss of generality.” For instance, if we are proving a statement about real numbers
x and y, we might assume without loss of generality that x Ø y and continue the proof under
this additional assumption. Such an assumption requires justification, for instance by arguing
that the two variables are interchangeable in the statement being proved. Assumptions of
this kind are not essential to proofs but they simplify or shorten the presentation.

We study propositional proof systems1 with inference rules that allow making such
assumptions. Extended resolution [21] (equivalently, Extended Frege [5]) already simulates
this kind of reasoning; however, it presumably does more, and its strength is poorly understood.
We thus focus on “weak” systems built on top of resolution [1, 20] and lacking the ability to
introduce any new variables, while still being able to reason without loss of generality. Each
system relies on a polynomial-time verifiable syntactic condition to automatically justify
the assumption being made, and the exact form of this condition determines the strength
of the proof system. The systems are defined by first generalizing the extension rule and
then taking away the ability to introduce new variables, so, for lack of a better term, we

1 Throughout the rest of this paper, by “proof” we mean a proof of unsatisfiability (i.e., a refutation).
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will refer to these systems collectively as “weak extended resolution systems” in this section.
Although we are referring to them as weak, some variants are surprisingly strong in that
they admit polynomial-size proofs of the pigeonhole principle, bit pigeonhole principle, parity
principle, clique–coloring principle, and Tseitin tautologies, as well as being able to undo
(with polynomial-size derivations) the e�ects of or-ification, xor-ification, and lifting with
indexing gadgets [2]. In this paper, we study the relative strengths of several variants of
those systems and answer the questions left open in previous work [23, Section 1.4].

1.1 Motivation

Our interest in weak extended resolution systems is rooted in two di�erent areas: proof
complexity and satisfiability (SAT) solving.

1.1.1 Proof complexity

Proof complexity is concerned with the sizes of proofs in propositional proof systems. The
notion of a proof system as accepted in proof complexity is rather general – it covers not only
the “textbook” deductive systems for propositional logic but also several systems that capture
di�erent forms of mathematical reasoning. For instance, the widely studied proof systems of
cutting planes [6] and polynomial calculus [3] utilize simple forms of geometric and algebraic
reasoning, respectively. Weak extended resolution systems are somewhat similar, although
they do not originate from any specific branch of mathematics. Instead, they capture the
pervasive technique of reasoning without loss of generality, often used to shorten proofs. Since
proof complexity is concerned with proof size, the limits of the degree of brevity achievable
by this form of reasoning is a natural question from the perspective of proof complexity.

Moreover, the upper bounds proved by Buss and Thapen [2] show that many of the usual
“hard” combinatorial principles used for proof complexity lower bounds are easy to prove in
certain weak extended resolution systems. In other words, a modest amount of the ability
to reason without loss of generality lends surprising strength to even a system as weak as
resolution, and the full strength of extended resolution is not required for the combinatorial
principles previously mentioned. Thus, many of the existing separations between extended
resolution and the commonly studied proof systems can be attributed to the fact that
extended resolution can reason without loss of generality while the other systems cannot.
Searching for principles that separate extended resolution from the weak extended resolution
systems will help us better understand other facets of the strength of extended resolution.

1.1.2 SAT solving

Another motivation for studying the weak extended resolution systems is their potential
usefulness for improvements in SAT solvers, which are practical implementations of proposi-
tional theorem provers that determine whether a given formula in conjunctive normal form is
satisfiable. When a solver claims unsatisfiability, it is expected to produce a proof that can be
used to verify the claim e�ciently. Modern SAT solvers, which are based on conflict-driven
clause learning (CDCL) [17], essentially search for resolution proofs. Consequently, the
well-known exponential lower bounds against resolution (e.g., [7, 22]) imply exponential
lower bounds against the runtimes of CDCL-based solvers. To overcome the limitations of
resolution, SAT solvers are forced to go beyond CDCL.

Many of the current solvers employ “inprocessing” techniques [11], which support in-
ferences of the kind that we study in this paper. These techniques are useful in practice;
however, they are implemented as ad hoc additions to CDCL. Weak extended resolution
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systems hold the potential for improving SAT solvers in a more principled manner (e.g.,
through the development of a solving paradigm that corresponds to one of those systems in a
manner similar to how CDCL corresponds to resolution). In comparison, proof systems such
as cutting planes, polynomial calculus, DNF resolution [13], or Frege [5] appear more di�cult
to take advantage of, at least in part due to their richer syntax. When dealing only with
clauses, it becomes possible to achieve highly e�cient constraint propagation, which is an
important reason for the speed of CDCL-based solvers. Extended resolution also works only
with clauses; however, there are currently no widely applicable heuristics for introducing new
variables during proof search. Weak extended resolution systems are relatively strong despite
using only clauses without new variables. Thus, those systems are promising for practical
proof search algorithms.

Earlier works [10, 8] showed that solvers based on certain weak extended resolution
systems can automatically discover small proofs of some formulas that are hard for resolution,
such as the pigeonhole principle and the mutilated chessboard principle. Still, those solvers
fall behind CDCL-based solvers on other classes of formulas. Moreover, there appears to be
a tradeo� when choosing a system for proof search: stronger systems enable smaller proofs;
however, proof search in such systems is costlier with respect to proof size. To be able to
choose the ideal system for proof search (e.g., the weakest system that is strong enough
for one’s purposes), it is important to understand the relative strengths of the systems in
question. This paper is a step towards that goal.

1.2 Background

We briefly review some background, deferring formal definitions to Section 2. For compre-
hensive overviews of related work, see Buss and Thapen [2] and Yolcu and Heule [23].

The proof systems we study are based on the notion of “redundancy.” A clause is
redundant with respect to a formula if it can be added to or removed from the formula
without a�ecting satisfiability. Redundancy is a generalization of logical implication: if
� |= C then the clause C is redundant with respect to the set � of clauses;2 however, the
converse is not necessarily true. When proving unsatisfiability, deriving redundant clauses
corresponds to making assumptions that hold without loss of generality.3 To ensure that
proofs can be checked in polynomial time, we work with restricted versions of redundancy
that rely on syntactic conditions.

Possibly the simplest interesting version is blockedness [14, 15]. We say a clause C is
blocked with respect to a set � of clauses if there exists a literal p œ C such that all possible
resolvents of C on p against clauses from � are tautological (i.e., contain a literal and its
negation). Kullmann [16] showed that blocked clauses are special cases of redundant clauses
and thus considered an inference rule that, given a formula �, allows us to extend � with a
clause that is blocked with respect to �. This rule, along with resolution, gives the proof
system called blocked clauses (BC). It is apparent from the definition of a blocked clause
that deleting clauses from � enlarges the set of clauses that are blocked with respect to �.
With this observation, Kullmann defined a strengthening of BC called generalized extended
resolution (GER) that allows temporary deletion of clauses from �. Later works [11, 12]
defined more general classes of redundant clauses and proof systems based on them, called
resolution asymmetric tautologies (RAT) and set-blocked clauses (SBC). Both RAT and SBC

2 We use “set of clauses” and “formula” interchangeably.
3 When refuting a formula �, deriving a redundant clause C may be viewed as stating the following: “If

there exists an assignment satisfying �, then there also exists an assignment satisfying both � and C,
so without loss of generality we can assume that C holds.”

STACS 2024
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use relaxed versions of blocked clauses: RAT changes the word “tautological” in the definition
of a blocked clause, and, in a sense, SBC considers possible resolvents on more than a single
literal.

As defined, BC simulates extended resolution since extension clauses can be added in
sequence as blocked clauses if we are allowed to introduce new variables (see [16, Section 6]).
Thus, we disallow new variables to weaken the systems. A proof of � is without new variables
if it contains only the variables that already occur in �. We denote a proof system variant
that disallows new variables with the superscript “≠” (e.g., BC≠ is BC without new variables).
We are concerned in this paper with the strengths of the systems RAT≠, SBC≠, and GER≠,
each of which generalizes BC≠ in di�erent ways.

As a technical side note, the systems we study are unusual in the following respects: They
are not monotonic, since a clause redundant with respect to � is not necessarily redundant
with respect to �Õ ´ �. This causes deletion (i.e., the ability to delete clauses in the middle
of a proof) to increase the strength of those systems. It also requires one to pay attention
to the order of inferences when proving upper bounds. Additionally, they are not a priori
closed under restrictions, which means that extra care is required when proving lower bounds
against them. More specifically, a proof system P that simulates BC≠ is not closed under
restrictions unless P also simulates extended resolution [2, Theorem 2.4]. It follows from
earlier lower bounds [16, 2] and Section 3 in this paper that BC≠, RAT≠, SBC≠, and GER≠

are not closed under restrictions.

1.3 Results

This work follows up on Yolcu and Heule [23], which proved separations between the di�erent
generalizations of BC≠ by exploiting the fact that, although the systems cannot introduce
new variables, they nevertheless e�ectively simulate [18] extended resolution. Their strategy
uses so-called “guarded extension variables,” where we consider systems P and Q that both
e�ectively simulate a strong system R, and we incorporate extension variables into formulas
in a guarded way that allows P to simulate an R-proof while preventing Q from making
any meaningful use of the extension variables to achieve a speedup. This allows using, as
black-box, a separation of R from Q to separate P from Q. For more details about this
strategy, we refer the reader to Yolcu and Heule [23, Section 1.3].

In this paper, we prove the following results, where each formula indexed by n has
nO(1) variables and nO(1) clauses. Figure 1 summarizes the proof complexity landscape
around BC≠ after these results.

We first show exponential lower bounds for SBC≠ proofs of a binary encoding of the
pigeonhole principle called the “bit pigeonhole principle,” defined in Section 3. (Note that the
usual unary encoding of the pigeonhole principle admits polynomial-size proofs in SBC≠ [23,
Lemma 7.1].)

I Theorem 1. The bit pigeonhole principle BPHPn requires SBC≠ proofs of size 2�(n).

We then show, using constructions that incorporate guarded extension variables
into BPHPn, that RAT≠ and GER≠ are both exponentially separated from SBC≠.

I Theorem 2. There exists an infinite sequence (�n)Œ
n=1

of unsatisfiable formulas such that
�n admits RAT≠ proofs of size nO(1) but requires SBC≠ proofs of size 2�(n).

I Theorem 3. There exists an infinite sequence (�n)Œ
n=1

of unsatisfiable formulas such that
�n admits GER≠ proofs of size nO(1) but requires SBC≠ proofs of size 2�(n).
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Figure 1 In the above diagram, the proof systems are placed in three-dimensional space with
BC≠, the weakest system, at the origin. Moving away from the origin along each axis corresponds
to a particular way of generalizing (i.e., strengthening) a proof system. The systems prefixed
with “D” allow the arbitrary deletion of a clause as a proof step. For systems P and Q, we use
P Q to denote that P simulates Q; (and P Q to indicate an “interesting” simulation,
where P is not simply a generalization of Q); P Q to denote that P is exponentially separated
from Q (i.e., there exists an infinite sequence of formulas admitting polynomial-size proofs in P
while requiring exponential-size proofs in Q); and P Q to denote that P both simulates Q and
is exponentially separated from Q. Arrows in red indicate the relationships that are new in this
paper. To reduce clutter, some relationships that are implied by transitivity are not displayed (e.g.,
DBC≠ simulates RAT≠ and is exponentially separated from it through DRAT≠).

The above results, along with earlier ones, completely describe the relative strengths
of the weakest generalizations of BC≠ along each axis in Figure 1. For lower bounds, this
pushes the frontier to the system called set propagation redundancy (SPR≠) [9]. We do not
define SPR≠ formally in this paper, although it may be thought of intuitively as combining
SBC≠ and RAT≠. The upper bounds proved by Buss and Thapen [2] establish SPR≠ as an
interesting target for proof complexity lower bounds. (Note that the binary encoding of
the pigeonhole principle that we use to prove exponential lower bounds for SBC≠ admits
polynomial-size proofs in SPR≠ [2, Theorem 4.4].)

2 Preliminaries

We assume that the reader is familiar with propositional logic, proof complexity, resolution,
and extended resolution. We review some concepts to describe our notation. For notation
we follow Yolcu and Heule [23] from which this section is adapted.

STACS 2024



59:6 Lower Bounds for Set-Blocked Clauses Proofs

We denote the set of strictly positive integers by N+. For n œ N+, we let [n] := {1, . . . , n}.
For a sequence S = (x1, . . . , xn), its length is n, which we denote by |S|.

2.1 Propositional logic

We use 0 and 1 to denote False and True, respectively. A literal is a propositional variable
or its negation. A set of literals is tautological if it contains a pair of complementary literals
x and x. A clause is the disjunction of a nontautological set of literals. We use ‹ to denote
the empty clause. We denote by V and L respectively the sets of all variables and all literals.
A conjunctive normal form formula (CNF) is a conjunction of clauses. Throughout this
paper, by “formula” we mean a CNF. We identify clauses with sets of literals and formulas
with sets of clauses. In the rest of this section we use C, D to denote clauses and �, � to
denote formulas.

We say D is a weakening of C if C ™ D. We denote by var(�) the set of all the variables
occurring in �.

When we know C fi D to be nontautological, we write it as C ‚ D. We write C ‚̇ D to
indicate a disjoint disjunction, where C and D have no variables in common. We take the
disjunction of a clause and a formula as

C ‚ � := {C ‚ D : D œ � and C fi D is nontautological}.

An assignment – is a partial function – : V Ô {0, 1}, which also acts on literals by
letting –(x) := –(x). We identify – with the set {p œ L : –(p) = 1}, consisting of all the
literals it satisfies. For a set L of literals, we let L := {x : x œ L}. In particular, we use C
to denote the smallest assignment that falsifies all the literals in C. We say – satisfies C,
denoted – |= C, if there exists some p œ C such that –(p) = 1. We say – satisfies � if for
all C œ � we have – |= C. For C that – does not satisfy, the restriction of C under – is
C|– := C \ {p œ C : –(p) = 0}. Extending this to formulas, the restriction of � under – is
�|– := {C|– : C œ � and – ”|= C}.

We say � and � are equisatisfiable, denoted � ©sat �, if they are either both satisfiable or
both unsatisfiable. With respect to �, a clause C is redundant if � \ {C} ©sat � ©sat � fi {C}.
We sometimes write � fi {C} as � · C.

2.2 Proof complexity and resolution

For a proof system P and a formula �, we define

sizeP (�) := min{|�| : � is a P -proof of �}

if � is unsatisfiable and sizeP (�) := Œ otherwise. A proof system P simulates Q if every Q-
proof can be converted in polynomial time into a P -proof of the same formula. Proof systems
P and Q are equivalent if they simulate each other. We say P is exponentially separated
from Q if there exists some sequence (�n)Œ

n=1
of formulas such that sizeP (�n) = nO(1) while

sizeQ(�n) = 2�(n). We call such a sequence of formulas easy for P and hard for Q.
Let C ‚̇ x and D ‚̇ x be clauses, where x is a variable, such that the set C fi D is

nontautological. We call the clause C ‚ D the resolvent of C ‚ x and D ‚ x on x. We define
a resolution proof in a slightly di�erent form than usual: as a sequence of formulas instead
of a sequence of clauses.4

4 The resulting proof system is equivalent to the usual version of resolution.
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I Definition 4. A resolution proof of a formula � is a sequence � = (�1, . . . , �N ) of formulas
such that �1 = �, ‹ œ �N , and for all i œ [N ≠ 1], we have �i+1 = �i fi {C}, where C is
either the resolvent of two clauses in �i or a weakening of some clause in �i. The size of �
is N .

We write Res to denote the resolution proof system. A well known fact is that resolution
is closed under restrictions: if (�1, �2, . . . , �N ) is a resolution proof of �, then for every
assignment –, the sequence (�1|–, �2|–, . . . , �N |–) contains as a subsequence a resolution
proof of �|–. This implies in particular the following.

I Lemma 5. For every formula � and every assignment –, sizeRes(�|–) Æ sizeRes(�).

A unit propagation proof is a resolution proof where each use of the resolution rule has
as at least one of its premises a clause that consists of a single literal. Unit propagation is
not complete. With � a formula and L = {p1, . . . , pk} a set of literals, we write � „1 L to
denote that there exists a unit propagation proof of � · p1 · · · · · pk.

We next define extended resolution (ER), which is a strengthening of resolution.

I Definition 6. Let � be a formula and p, q be arbitrary literals. Consider a new variable x
(i.e., not occurring in any one of �, p, q). We refer to {x ‚ p, x ‚ q, x ‚ p ‚ q} as a set of
extension clauses for �. In this context, we call x the extension variable.

I Definition 7. A formula � is an extension for a formula � if there exists a se-
quence (⁄1, . . . , ⁄t) such that � =

t
t

i=1
⁄i, and for all i œ [t], we have that ⁄i is a set

of extension clauses for � fi
t

i≠1

j=1
⁄j.

I Definition 8. An extended resolution proof of a formula � is a pair (�, �), where � is an
extension for � and � is a resolution proof of � fi �. The size of (�, �) is |�| + |�|.

2.3 Redundancy criteria

We recall the syntactic redundancy criteria that lead to the inference rules we study. The
definitions are taken from Yolcu and Heule [23, Section 3], which in turn adapted them from
previous works [16, 11, 12, 9, 2].

I Definition 9. A clause C = p ‚̇ C Õ is a blocked clause (BC) for the literal p with respect
to a formula � if, for every clause D of the form p ‚̇ DÕ in �, the set C Õ fi DÕ is tautological.

I Definition 10. A clause C = p ‚̇ C Õ is a resolution asymmetric tautology (RAT) for the
literal p with respect to a formula � if, for every clause D of the form p ‚̇ DÕ in �, we have
� „1 C Õ fi DÕ.

I Definition 11. A clause C is a set-blocked clause (SBC) for a nonempty L ™ C with
respect to a formula � if, for every clause D œ � with D fl L ”= ? and D fl L = ?, the
set (C \ L) fi (D \ L) is tautological.

We say C is a BC with respect to � if there exists a literal p œ C for which C is a BC with
respect to �, and similarly for RAT and SBC. It was shown in previous works [16, 11, 12]
that BCs, RATs, and SBCs are redundant, which makes it possible to use them to define
proof systems.

I Definition 12. A blocked clauses proof of a formula � is a sequence � = (�1, . . . , �N )
of formulas such that �1 = �, ‹ œ �N , and for all i œ [N ≠ 1], we have �i+1 = �i fi {C},
where C is either the resolvent of two clauses in �i, a weakening of some clause in �i, or a
blocked clause with respect to �i. The size of � is N .

STACS 2024



59:8 Lower Bounds for Set-Blocked Clauses Proofs

We write BC to denote the blocked clauses proof system. Replacing “blocked clause”
by “resolution asymmetric tautology” in the above definition gives the RAT proof system.
Replacing it by “set-blocked clause” gives the SBC proof system.5 RAT and SBC are two gen-
eralizations of BC, and we now define another, called generalized extended resolution (GER),
which reduces the dependence of the validity of BC inferences on the order of clause addi-
tions (see [16, Section 1.3]). We need to introduce the concept of a blocked extension6 before
we can proceed with the definition of GER.

I Definition 13. A formula � is a blocked extension for a formula � if there exists a
subset �Õ of � and an ordering (C1, . . . , Cr) of all the clauses in � fi (� \ �Õ) such that for
all i œ [r] the clause Ci is blocked with respect to �Õ fi

t
i≠1

j=1
{Cj}.

I Definition 14. A generalized extended resolution proof of a formula � is a pair (�, �),
where � is a blocked extension for � and � is a resolution proof of � fi �. The size of (�, �)
is |�| + |�|.

Note that the definitions in this section do not prohibit BCs, RATs, or SBCs with respect
to � from containing variables not occurring in �. We study the variants of BC, RAT, SBC,
and GER that disallow the use of new variables. A proof of � is without new variables if all
the variables occurring in the proof are in var(�). In the case of GER, this constraint applies
to both the blocked extension and the resolution part: a proof (�, �) of � is without new
variables if all the variables occurring in � or � are in var(�). We use BC≠, RAT≠, SBC≠,
and GER≠ to denote the variants without new variables.

3 Lower bound for the bit pigeonhole principle

Let n = 2k, with k œ N+. For a propositional variable v, let us write v ”= 0 and v ”= 1 to
denote the literals v and v, respectively. The bit pigeonhole principle is the contradiction
stating that each pigeon in [n+1] can be assigned a distinct binary string from {0, 1}k, where
we identify strings with holes. For each pigeon x œ [n + 1], the variables px

1
, . . . , px

k
represent

the bits of the string assigned to x. More formally, we write the bit pigeonhole principle as

BPHPn :=
€

x,yœ[n+1], x”=y

(h1,...,hk)œ{0,1}k

I
kfl

¸=1

px

¸
”= h¸ ‚

kfl

¸=1

py

¸
”= h¸

J
,

which asserts that for all x, y œ [n+1] such that x ”= y, the binary strings px
1

. . . px

k
and py

1
. . . py

k

are di�erent.7 We denote by Px the set {px
1
, . . . , px

k
, px

1
, . . . , px

k
} of all the literals concerning

pigeon x.
For a set L of literals, its pigeon-width is the number of distinct pigeons it mentions,

where a pigeon x œ [n + 1] is mentioned if there exists some ¸ œ [k] such that some literal of
the variable px

¸
is in L. We write L(x) to denote the set L fl Px. In other words, L(x) is the

largest subset of L that mentions only the pigeon x.

5 For an SBC proof to be polynomial-time verifiable, every step in the proof that adds a clause C as
set-blocked is expected to indicate the subset L ™ C for which C is set-blocked. With that said, we
leave this requirement out of our definitions to reduce clutter.

6 Instead of the original definition of a blocked extension [16, Definition 6.3], we use a convenient
characterization [16, Lemma 6.5], which is simpler to state, as the definition.

7 In our asymptotic results that use the bit pigeonhole principle, it is tacitly understood that BPHPn

could be defined for every integer n Ø 2 (as opposed to only powers of two) by letting BPHPn be
identical to BPHPm, where m is the largest power of two not exceeding n.
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Before proceeding with the SBC≠ lower bound for the bit pigeonhole principle, we observe
the result below, which will also be useful later. It is deduced in a straightforward way from
the definition of a set-blocked clause, using the following fact: if a clause C is an SBC with
respect to a formula �, then C is an SBC with respect to every subset of �. (Note that a
similar result does not necessarily hold for RAT≠.)

I Lemma 15. Without loss of generality, all of the set-blocked clause additions in an
SBC≠ proof are performed before any resolution or weakening steps.

Lemma 15 allows us to reduce SBC≠ lower bounds for a formula � to resolution lower
bounds for another formula � fi �, where � is a set of clauses derivable from � by a sequence
of set-blocked clause additions without new variables.

A common strategy for proving resolution lower bounds is to first show that every proof
contains some “complex” clause (in our case, a clause of large pigeon-width), and then argue
that the existence of a small proof implies the existence of another proof where no clause
is complex. The second step typically involves restricting the clauses of the proof under a
suitable assignment. We work with assignments that correspond to partial matchings of
pigeons to holes, as in the case of the RAT≠ lower bound by Buss and Thapen [2, Section 5].

We say an assignment fl that sets some variables of BPHPn is a partial matching if fl sets
all of the bits for the pigeons it mentions in such a way that no two pigeons are in the
same hole, thus representing a matching of pigeons to holes. To prove SBC≠ lower bounds
for BPHPn, we will need the following pigeon-width lower bound for resolution proofs of
restrictions of BPHPn under partial matchings, which is established by a straightforward
Adversary strategy in the Prover–Adversary game [19]. We define the pigeon-width of a
proof as the maximum pigeon-width of any clause in the proof.

I Lemma 16 ([2, Lemma 5.2]). Let fl be a partial matching of m pigeons to holes. Then
every resolution proof of (BPHPn)|fl has pigeon-width at least n ≠ m.

We will additionally need a pigeon-width lower bound for set-blocked clauses (without
new variables) with respect to BPHPn, which follows from a simple inspection.

I Lemma 17. Every set-blocked clause with respect to BPHPn that is without new variables
has pigeon-width n + 1.

Proof. Let C = L ‚̇ C Õ be a set-blocked clause for L with respect to BPHPn that is without
new variables. Let x be a pigeon mentioned in L. Such a pigeon exists since L is nonempty.
Let y be a pigeon di�erent from x. We claim that C mentions y.

Let D œ BPHPn be a clause that contains L(x) fi C Õ(x) and mentions y. Such a clause
exists since L(x) fi C Õ(x) is simply a nontautological subset of Px and, by the definition
of BPHPn, each such subset is contained in some clause in BPHPn that mentions y. Note that
every clause in BPHPn mentions exactly two pigeons; in particular, the clause D mentions
only the pigeons x and y.

Since D is a clause, it is nontautological. As a consequence, D fl L(x) is empty and
C Õ(x) fi (D \ L) is nontautological. Then, since C is set-blocked for L with respect to BPHPn,
either D fl (L \ L(x)) is nonempty or (C Õ \ C Õ(x)) fi (D \ L) is tautological. Now, neither
of L \ L(x) and C Õ \ C Õ(x) mentions x. Since D mentions only the pigeons x and y, the
pigeon y must be mentioned by L in the former case and C Õ in the latter. Either way, C
mentions y. J

I Theorem 18. The formula BPHPn requires exponential-size proofs in SBC≠.
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Proof. Let � be an SBC≠ proof of BPHPn of size N . By Lemma 15, we may view � as a
resolution proof of the formula BPHPn fi�, where � is a set of clauses derivable from BPHPn

by a sequence of set-blocked clause additions without new variables. We will show by the
probabilistic method that if N < 2n/64, then there exists a partial matching fl of n/2 pigeons
to holes such that (BPHPn)|fl has a resolution proof of pigeon-width strictly less than n/2.

Let R be a random partial matching constructed by choosing a random pigeon and
assigning it to a random available hole until n/2 pigeons are matched to holes. We denote by
ri the random assignment performed at the ith step of this process: if pigeon x was assigned
to hole (h1, . . . , hk), then ri(px

¸
) = h¸ for all ¸ œ [k].

We say a clause is wide if it has pigeon-width at least n/2. Let C be a wide clause. Let x
denote the ith pigeon chosen when constructing R, with i Æ n/4. The probability that x is
mentioned by C is at least

n/2 ≠ (n/4 ≠ 1)
n + 1 Ø 1/4.

Suppose that x is mentioned by C through a literal p. When x is about to be assigned to a
hole, there are at least n/2≠(n/4≠1) Ø n/4 available ones that would result in ri satisfying p.
Therefore, the conditional probability that ri satisfies C given that the assignments r1, . . . , ri≠1

do not satisfy C is at least 1/16. As a result,

Pr[R ”|= C] < (1 ≠ 1/16)n/4 Æ 2≠n/64.

Suppose that N < 2n/64. Let � be the set of all the wide clauses appearing in �. By
the union bound, Pr[R ”|= �] < 1. Thus, there exists a partial matching fl of n/2 pigeons to
holes such that fl |= �. Also, observe that fl |= � because we have � ™ � by Lemma 17.

Since resolution is closed under restrictions, when we restrict the proof � under fl we
obtain a resolution proof of (BPHPn fi �)|fl = (BPHPn)|fl without any wide clauses, which
contradicts Lemma 16. J

4 Separations using guarded extension variables

From this point on, given a formula �, we use (�, �) to denote the minimum-size ER proof
of �,8 where � is the union of a sequence of t(�) := |�|/3 sets of extension clauses such that
the ith set ⁄i is of the form {xi ‚ pi, xi ‚ qi, xi ‚ pi ‚ qi}. We thus reserve

)
x1, . . . , xt(�)

*

as the set of extension variables used in �. We assume without loss of generality that the
variables of pi and qi are in var(�) fi {x1, . . . , xi≠1} for all i œ [t(�)].

4.1 Separation of RAT
≠

from SBC
≠

Let � be a formula and (�, �) be the minimum-size ER proof of � as described above.
Consider the transformation

G(�) := � fi
t(�)€

i=1

#
(xi ‚ �) fi (xi ‚ �)

$
, (1)

where x1, . . . , xt(�) are the extension variables used in �.
It becomes possible to prove G(�) in RAT≠ by simulating the ER proof of � using the

extension variables present in the formula, resulting in the following.

8 We refer to the minimum-size proof with the assumption of having fixed some way of choosing a proof
among those with minimum size.
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I Lemma 19 ([23, Lemma 5.1]). For every formula �, sizeRAT≠(G(�)) Æ sizeER(�).

For SBC≠, the formula G(�) is at least as hard as �. We need the following definition
before we prove this fact.

I Definition 20. The projection of a formula � onto a literal p is the formula

projp(�) := {C \ {p} : C œ � and p œ C}.

Our main tool in proving SBC≠ lower bounds against the constructions that incorporate
guarded extension variables is a version of the following characterization of blocked clauses,
which was already observed by Kullmann (see [16, Section 4]).

I Lemma 21 ([23, Lemma 3.15]). A clause C = p ‚̇ C Õ is a BC for p with respect to a
formula � if and only if the assignment C Õ satisfies projp(�).

Lemma 21 su�ces for proving BC≠ lower bounds against G(�) (see [23, Lemma 5.2]);
however, for SBC≠ lower bounds we need the following result.

I Lemma 22. If a clause C = L ‚̇ C Õ is an SBC for L with respect to a formula �, then for
every p œ L, the assignment L fi C Õ satisfies projp(�).

Proof. Suppose that C = L ‚̇ C Õ is an SBC for L with respect to �, let p œ L, and let
DÕ œ projp(�). Then the clause D = p ‚̇ DÕ is in �. Note that D fl L is nonempty. Then,
since C is an SBC for L, either D fl L is nonempty or C Õ fi (D \ L) is tautological.
Case 1: D fl L ”= ?. Since p /œ L, the set DÕ fl L also is nonempty; therefore L |= DÕ.
Case 2: C Õ fi (D \ L) is tautological. Since neither of C Õ and D \ L is tautological, their

union is tautological if and only if C Õ fl (D \ L) is nonempty. This implies in particular
that C Õ fl DÕ is nonempty; therefore C Õ |= DÕ. J

Lemma 22 implies that if the projection of a formula onto a literal p is unsatisfiable, then,
with respect to the formula, no clause is set-blocked for any set that contains p.

The intuition behind the construction of G(�) is as follows. We incorporate the extension
variables into the formula while having � be the projection for each added literal. Thus, if
� is unsatisfiable, we render the extension variables useless in set-blocked clause additions
with respect to G(�) while still allowing RAT≠ to take advantage of them. In particular, it
becomes unnecessary for a set-blocked clause C with respect to G(�) to include any of the
extension variables present in the formula. This is because every such clause C has some
subset C Õ without any of the extension variables that is still set-blocked with respect to G(�).
Moreover, since � ™ G(�), the clause C Õ is set-blocked also with respect to �. The alternative
way to use the extension variables in G(�) is to derive xi from xi ‚ �, but this involves
proving �. When � is hard for SBC≠, we leave no way for SBC≠ to make any meaningful use
of the extension variables to achieve a speedup. In the end, an SBC≠ proof of G(�) might as
well ignore the extension variables present in the formula, falling back to an SBC≠ proof of �.

I Lemma 23. For every formula �, sizeSBC≠(G(�)) Ø sizeSBC≠(�).

Proof. When � is satisfiable, the inequality holds trivially, so suppose that � is unsatisfiable.
Suppose that G(�) has an SBC≠ proof of size N . By Lemma 15, we may view such a proof

as a resolution proof of the formula G(�) fi �, where � is a set of clauses derivable from G(�)
by a sequence of set-blocked clause additions without new variables. Let X =

)
x1, . . . , xt(�)

*

denote the set of extension variables incorporated into G(�), and consider an assignment –
defined as

–(v) =
I

1 if v œ X

undefined otherwise.
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By Lemma 5, there exists a resolution proof of the formula (G(�) fi �)|– = � fi �|– of size
at most N ≠ |�|. We claim that the clauses in �|– can be derived in sequence from � by
set-blocked clause additions, which implies that there exists an SBC≠ proof of � of size at
most N .

Let S = (C1, . . . , Cr) be the ordering in which the clauses of � are derived from G(�). We
will show that if we restrict each clause in S under – and remove the satisfied clauses, then
the remaining sequence of clauses can be derived from � in the same order by set-blocked
clause additions. More specifically, the goal is to prove that for all i œ [r] such that – does
not satisfy Ci, the clause Ci|– is set-blocked with respect to � fi �i≠1|–, where

�i≠1 :=
€

jœ[i≠1]

{Cj}.

Let i œ [r], and consider the clause Ci, which we write as C from this point on. Suppose
that – does not satisfy C, so the variables from X can occur only negatively in C. Let
L ™ C be a subset for which C is set-blocked with respect to G(�) fi �i≠1. We will prove
that C|– is set-blocked for L|– with respect to both � and �i≠1|–, which, by the definition
of a set-blocked clause, implies that C|– is set-blocked with respect to � fi �i≠1|–.

Before proceeding, observe that L cannot contain any variables from X: If some xi is
in L, then the assignment L fi (C \ L) satisfies projxi

(G(�)) = � by Lemma 22. Since � is
unsatisfiable, no such assignment exists. Therefore, L cannot contain xi, which implies that
L|– = L.
C|– is set-blocked for L with respect to �: Since � ™ G(�), the clause C is set-blocked

for L in particular with respect to �. Noting that the variables from X do not occur in �,
we conclude that C|– also is set-blocked for L with respect to �.

C|– is set-blocked for L with respect to �i≠1|–: Consider an arbitrary DÕ œ �i≠1|–,
which is the restriction under – of some clause D œ �i≠1 that – does not satisfy.
Suppose DÕ fl L ”= ? and DÕ fl L = ?. We need to show that (C|– \ L) fi (DÕ \ L) is
tautological.
Since DÕ ™ D, we immediately have D fl L ”= ?. Now, recall that the variables from X
do not occur in L, and observe that DÕ is simply D with the variables from X removed.
We thus have D fl L = ?. Then, because C is set-blocked for L with respect to �i≠1, the
set E = (C \L) fi (D \L) must be tautological. A variable that occurs both positively and
negatively in E cannot be from X, since in that case – would satisfy C or D. Therefore,
the set (C|– \ L) fi (DÕ \ L) also is tautological. J

Invoking Lemmas 19 and 23 with � as the bit pigeonhole principle gives us the separation.

I Theorem 24. The formula G(BPHPn) admits polynomial-size proofs in RAT≠ but requires
exponential-size proofs in SBC≠.

Proof. Buss and Thapen [2, Theorem 4.4] gave polynomial-size proofs of BPHPn in SPR≠,
which ER simulates.9 By Lemma 19, we have sizeRAT≠(G(BPHPn)) = nO(1). Theorem 18
and Lemma 23 give sizeSBC≠(G(BPHPn)) = 2�(n). Thus, the bit pigeonhole principle with
G applied to it exponentially separates RAT≠ from SBC≠. J

9 It is also possible to deduce the existence of polynomial-size ER proofs of BPHPn from the fact that
the pigeonhole principle (PHPn) is easy for ER [4], combined with the observation that PHPn can be
derived from BPHPn in polynomial size in ER.
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4.2 Separation of GER
≠

from SBC
≠

We proceed in a similar way to the previous section. Let � be a formula and (�, �) be the
minimum-size ER proof of �. Let m œ N+, and let

{y1, . . . , ym, z1, . . . , zm} ™ V \ var(� fi �)

be a set of 2m distinct variables. Consider

Vm(�) :=
t(�)€

i=1

m€

j=1

{xi ‚ yj ‚ zj , xi ‚ yj ‚ zj},

Wm(�) :=
m€

j=1

#
{yj ‚ zj} fi (yj ‚ �) fi (zj ‚ �)

$
,

Im(�) := � fi Vm(�) fi Wm(�), (2)

where x1, . . . , xt(�) are the extension variables used in �.
To prove Im(�) in GER≠ by simulating the ER proof of �, we essentially remove the

clauses in Vm(�), derive the extension clauses, and rederive Vm(�) by a sequence of blocked
clause additions.

I Lemma 25. For every formula � and every m œ N+, sizeGER≠(Im(�)) Æ sizeER(�).

Proof. Let (�, �) be the minimum-size ER proof of �. We will show that the clauses
in � fi Vm(�) can be derived from � fi Wm(�) in some sequence by blocked clause additions,
which implies by Definition 13 that � is a blocked extension for Im(�).

Recall that extension clauses can be derived in sequence by blocked clause additions.
The formula � is an extension for � fi Wm(�), so we derive � by such a sequence. Next,
from � fi Wm(�) fi �, we derive the clauses in Vm(�) in any order. Let V Õ be a proper subset
of Vm(�), and let C be a clause in Vm(�) \ V Õ. For some i œ [t(�)] and j œ [m], the clause C
is of the form p ‚ yj ‚ zj , where p is either xi or xi. With respect to � fi Wm(�) fi � fi V Õ,
the clause C is blocked for yj since the only earlier occurrence of yj is the clause yj ‚ zj and
{p, zj , zj} is tautological. It follows by induction that we can derive Vm(�) from �fiWm(�)fi�.
Thus, � is a blocked extension for Im(�).

Noting that � is a resolution proof of � fi � and that Im(�) contains � as a subset, we
conclude that there exists a GER≠ proof of Im(�) of size |�| + |�| = sizeER(�). J

For SBC≠, the formula Im(�) stays at least as hard as � if fewer than 2m set-blocked
clauses are derived. As before, our goal is to render the added variables useless in set-blocked
clause additions.

We will eventually choose � to be hard for SBC≠, which makes the literals yj and zj

useless in set-blocked clause additions. Moreover, the presence of the clause yj ‚ zj ensures
that if a clause is set-blocked for a set containing yj or zj , then the clause is a weakening
of yj ‚ zj . Such clauses are killed by assignments that set yj and zj to the same value.

We also need to consider the clauses that are set-blocked for sets containing the variables xi.
The projection of Im(�) onto xi or xi is the formula

t
m

j=1
{yj ‚ zj}, which has 2m minimal

satisfying assignments. Without deriving clauses that rule out all of those assignments,
SBC≠ proofs cannot use the variables xi in any meaningful way. Since the variables yj and zj

are rendered useless in set-blocked clause additions, the assignments can only be ruled out
one at a time, which forces SBC≠ proofs of Im(�) to either derive at least 2m clauses or
ignore the variables xi.
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I Lemma 26. For every formula � and every m œ N+,

sizeSBC≠(Im(�)) Ø min{2m, sizeSBC≠(�)}.

Proof. Fix some m œ N+. When � is satisfiable, the inequality holds trivially, so suppose
that � is unsatisfiable.

Suppose that Im(�) has an SBC≠ proof of size N . By Lemma 15, we may view such a
proof as a resolution proof of the formula Im(�) fi �, where � is a set of clauses derivable
from Im(�) by a sequence of set-blocked clause additions without new variables. We claim
that if |�| < 2m, then there exists an SBC≠ proof of � of size at most N . This implies the
desired lower bound.

Let X =
)

x1, . . . , xt(�)

*
and U = {y1, . . . , ym, z1, . . . , zm} denote the two sets of variables

incorporated into Im(�). Consider a clause C = L ‚̇ C Õ that is set-blocked for L with respect
to Im(�). We start by inspecting the ways in which the variables from X fi U can occur in L:

We first consider the variables from U . If either yj or zj for some j œ [m] occurs in L, then,
by Lemma 22, the assignment L fi C Õ satisfies � since � is contained in the projections
of Im(�) onto the negations of these literals. Thus, since � is unsatisfiable, neither of
the literals yj and zj for any j œ [m] can occur in L. Moreover, if the literal yj occurs
in L, then, by Lemma 22, the assignment L fi C Õ satisfies zj since the clause yj ‚ zj is
in Im(�). In that case, since zj cannot occur in L, the literal zj must occur in C Õ, which
implies that C contains the literal zj . Thus, if the literal yj occurs in L, then C contains
the literal zj . By a similar argument, if the literal zj occurs in L, then C contains the
literal yj . To summarize, if some variable from U is in L, then C is a weakening of some
clause in

t
m

j=1
{yj ‚ zj}.

Next, we consider the variables from X. For all j œ [m], define Aj := {yj , zj} (intended
to be viewed as an assignment). Let A = A1 ◊ · · · ◊ Am. Suppose that a literal p of
some xi is in L. Then, by Lemma 22, the assignment L fi C Õ satisfies the formula

projp(Im(�)) =
m€

j=1

{yj ‚ zj}.

This implies that if no variable from U occurs in L, then there exists some assignment — œ
A such that — ™ C Õ. We say C is a good clause if some variable from X occurs in L but
no variable from U occurs in L.

From this point on, suppose |�| < 2m. For each good clause E in �, choose a single
subset F ™ E such that F œ A. Let � be the collection of those subsets. Since |�| < 2m,
there exists some — œ A such that — /œ �. Recall that for each j œ [m], the assignment —
sets exactly one of the variables yj and zj . Let —Õ be the smallest assignment extending —
such that —Õ(yj) = —Õ(zj) for all j œ [m].

B Claim 27. Let C be a clause in �, and let L ™ C be a subset for which C is set-blocked
with respect to Im(�). If some variable from X fi U occurs in L, then —Õ satisfies C.

Proof. Let C be a clause in � set-blocked for L ™ C with respect to Im(�). Suppose that
some variable from X fi U occurs in L. Then either var(L) fl U ”= ? or C is a good clause.
Case 1: var(L) fl U ”= ?. Since C is a weakening of some clause in

t
m

j=1
{yj ‚ zj} and

—Õ(yj) = —Õ(zj) for all j œ [m], the assignment —Õ satisfies C.
Case 2: C is a good clause. Let F be a subset of C such that F œ �. Since — /œ �, there

exists some j œ [m] such that either yj œ — and zj œ F or zj œ — and yj œ F . We have
—Õ(zj) = 1 in the former case and —Õ(yj) = 0 in the latter. Either way, —Õ satisfies F and
hence it also satisfies C. C
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Now, let – be the assignment defined as

–(v) =

Y
__]

__[

1 if v œ X

—Õ(v) if v œ U

undefined otherwise.

The point of – is to set all of the variables from X fi U in such a way that kills all of the
clauses in � that are set-blocked for sets containing those variables, leaving behind only the
clauses that could also be derived in an SBC≠ proof of �.

The rest of the argument is similar at a high level to the proof of Lemma 23, so we will be
relatively brief. By Lemma 5, there exists a resolution proof of the formula (Im(�) fi �)|– =
� fi �|– of size at most N ≠ |�|. We claim that the clauses in �|– can be derived in sequence
from � by set-blocked clause additions.

As before, let S = (C1, . . . , Cr) be the ordering in which the clauses of � are derived
from Im(�). We will prove that for all i œ [r] such that – does not satisfy Ci, the clause Ci|–
is set-blocked with respect to � fi �i≠1|–, where

�i≠1 :=
€

jœ[i≠1]

{Cj}.

Let i œ [r], and consider the clause Ci, which we write as C from this point on. Let
L ™ C be a subset for which C is set-blocked with respect to Im(�) fi �i≠1. Suppose that
– does not satisfy C. Noting that – extends —Õ, by Claim 27, no variable from X fi U is
in L. As a result, L|– = L. We will prove that C|– is set-blocked for L with respect to both
� and �i≠1|–.
C|– is set-blocked for L with respect to �: Since � ™ Im(�), the clause C is set-blocked

for L in particular with respect to �. No variable from X fiU occurs in �, so the clause C|–
also is set-blocked for L with respect to �.

C|– is set-blocked for L with respect to �i≠1|–: Consider an arbitrary DÕ œ �i≠1|–,
which is the restriction under – of some clause D œ �i≠1 that – does not satisfy.
Suppose DÕ fl L ”= ? and DÕ fl L = ?. We need to show that (C|– \ L) fi (DÕ \ L) is
tautological.
We have D fl L ”= ? because DÕ ™ D. Recall that no variable from X fi U is in L, and
observe that DÕ is simply D with the variables from XfiU removed. This implies DflL = ?.
Now, because C is set-blocked for L with respect to �i≠1, the set E = (C \ L) fi (D \ L)
must be tautological. A variable that occurs both positively and negatively in E cannot be
from XfiU , since in that case – would satisfy C or D. Therefore, the set (C|–\L)fi(DÕ\L)
also is tautological. J

Invoking Lemmas 25 and 26 with a suitable choice of m and with � as the bit pigeonhole
principle gives us the separation.

I Theorem 28. For every unsatisfiable formula �, let m(�) := Álog(sizeSBC≠(�))Ë and define
K(�) := Im(�)(�). The formula K(BPHPn) admits polynomial-size proofs in GER≠ but
requires exponential-size proofs in SBC≠.

Proof. Buss and Thapen [2, Theorem 4.4] gave polynomial-size proofs of BPHPn in SPR≠,
which ER simulates. By Lemma 25, we have sizeGER≠(K(BPHPn)) = nO(1). Theorem 18
and Lemma 26 give sizeSBC≠(K(BPHPn)) = 2�(n). Thus, the bit pigeonhole principle with
K applied to it exponentially separates GER≠ from SBC≠. J
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