
Regular resolution effectively simulates resolution

Sam Buss∗ Emre Yolcu†

February 24, 2024

Abstract

Regular resolution is a refinement of the resolution proof system requiring that
no variable be resolved on more than once along any path in the proof. It is known
that there exist sequences of formulas that require exponential-size proofs in regular
resolution while admitting polynomial-size proofs in resolution. Thus, with respect
to the usual notion of simulation, regular resolution is separated from resolution. An
alternative, and weaker, notion for comparing proof systems is that of an “effective
simulation,” which allows the translation of the formula along with the proof when
moving between proof systems. We prove that regular resolution is equivalent to
resolution under effective simulations. As a corollary, we recover in a black-box
fashion a recent result on the hardness of automating regular resolution.

Keywords: resolution, regular resolution, effective simulation, automatability, proof complexity

1 Introduction
Proof complexity studies the sizes of proofs1 in propositional proof systems. A common
question in proof complexity is that of the relative strengths of different systems. The
comparison is performed typically with respect to the notion of a “simulation” [CR79,
Definition 1.5]. A system P simulates another system Q if every Q-proof can be converted,
with at most a polynomial increase in size, into a P -proof of the same formula. An
alternative, and weaker, notion of simulation is the following, which is arguably more
natural from an algorithmic point of view. (See Pitassi and Santhanam [PS10, Section 1]
for a discussion.)

Definition 1.1 ([PS10, Definition 2.5]). Let P and Q be two proof systems for a
class C of propositional formulas. The size, |�|, of a formula � is defined to equal the
number of symbols in the formula. We say P effectively simulates Q if there exists a
function f : C ⇥ N ! C such that the following hold.

∗
Department of Mathematics, University of California, San Diego. Email: sbuss@ucsd.edu.

†
Computer Science Department, Carnegie Mellon University. Email: eyolcu@cs.cmu.edu.

1
Throughout this work, by “proof” we mean a refutation of satisfiability.

1

• The formula f(�, s) can be computed in time polynomial in |�| + s, and it is
satisfiable if and only if � is.

• When s is at least the size of the smallest Q-proof of �, the formula f(�, s) has
a P -proof of size polynomial in |�|+ s.

Remark 1.2. As remarked by Pitassi and Santhanam [PS10], the role of the size
parameter s in the above definition might not be clear at first glance. It would be simpler
to define a notion of strict effective simulation by omitting s and requiring that f(�) be
computable in time polynomial in |�| and that f(�) have a P -proof of size polynomial in
the size of the smallest Q-proof of �. A major motivation behind Definition 1.1 is its
relationship to “weak automatability” [AB04, Definition 4], which we define in Section 4.2,
and the relaxed definition suffices for the relationship to hold.

Effective simulations exist in several instances where either no simulation is known
or a separation exists. Examples include the following,2 where P � Q denotes that P
effectively simulates Q:

• linear resolution � resolution [BP07, BJ16]
• clause learning � resolution [HBPV08, BHJ08]
• resolution � k-DNF resolution [AB04]
• blocked clauses without new variables � extended resolution [BT21]
• G0 (“quantified Frege”) � any quantified propositional proof system [PS10]
• CP (cutting planes) � CP with quadratic terms [Pud03]
• constant-depth polynomial calculus � CP, Positivstellensatz calculus [IMP20]

In this work we prove that although regular resolution and resolution are separated
with respect to the usual notion of simulation [Goe93, AJPU07, Urq11], the two systems
are equivalent under effective simulations. As a technical side note, although in most
of the known effective simulations the size parameter s is not needed (i.e., they are
strict effective simulations), in our simulation it is necessary that f have access to the
parameter. It is an open question whether regular resolution strictly effectively simulates
resolution.

2 Preliminaries
We assume that the reader is familiar with propositional logic, proof complexity, and
resolution. We review some concepts to describe our notation. For all n 2 N, we let
[n] := {1, . . . , n}. For X a nonempty list of variables, we write poly(X) to denote a
quantity bounded by some polynomial in X.

2
Some results use a version of Definition 1.1 that allows comparing proof systems over different

languages [HHU07, Definition 4].

2

A literal is a propositional variable x or its negation x. Overline denotes negation,
and if p is the literal x, then p is x. A clause is a disjunction of literals. We use ? to
denote the empty clause. A formula in conjunctive normal form (CNF) is a conjunction
of clauses. Throughout this work, by “formula” we mean a formula in CNF. We identify
clauses with sets of literals and formulas with sets of clauses. For a formula �, we denote
by var(�) the set of all the variables occurring in �. In particular, for a literal p of a
variable x, we have var(p) = x.

Definition 2.1. The resolution rule is
A _ x B _ x

A _ B
,

where A, B are clauses and x is a variable not occurring in A or B. We call A _B the
resolvent of A _ x and B _ x on x.

Definition 2.2. A resolution derivation from a formula � is a sequence ⇧ = C1, . . . , Cs

of distinct clauses such that for all i 2 [s], the clause Ci either occurs in � or is a resolvent
of two earlier clauses in the sequence. If Cs = ?, then ⇧ is a resolution refutation of �.
The size of ⇧ is s.

Remark 2.3. A resolution derivation ⇧ from � can be viewed as a directed acyclic graph:
The nodes of the graph are the clauses in ⇧; every initial clause (i.e., a clause in �) has
in-degree zero, and every other clause D has two incoming edges from the premises of
the resolution inference that derives D. Thus, every node has in-degree zero or two. The
height of a resolution derivation is the number of edges in the longest directed path in
the graph.

Definition 2.4. A resolution derivation ⇧ is regular if no variable is resolved on more
than once along any directed path in ⇧.

In the rest of this paper, by “path” we mean a directed path.

3 Main result
Theorem 3.1. Regular resolution effectively simulates resolution.

Proof. Let � be a formula with n variables, and let h be a size parameter. We will define
a new formula f(�, h) such that if � has a resolution refutation of size s and height h,
then f(�, h) has a regular resolution refutation of size poly(s, n) and height poly(h, n).

The formula f(�, h) is defined by introducing new variables and adding several 2-
clauses to �. For each variable x of � and each j 2 [h�1], there is a new variable W [x, j].
We refer to j as the level of W [x, j]. We identify W [x, h] with x. Thus, f(�, h) has a
total of hn variables, with (h�1)n of them new. We extend the notation to define W [p, j]
for p a literal by letting W [x, j] denote the literal W [x, j].

3

We form f(�, h) by adding to � the 2-clauses expressing for all j 2 [h � 1] the
equivalence W [x, j] $ W [x, j + 1]. That is,

f(�, h) := � ^
^

x2var(�)

^

j2[h�1]

h⇣
W [x, j] _W [x, j + 1]

⌘
^
⇣
W [x, j] _W [x, j + 1]

⌘i
. (1)

The formula f(�, h) is satisfiable if and only if � is satisfiable since the added clauses
simply define new names for each variable of �.

Let ⇧ = C1, . . . , Cs be a size-s, height-h resolution refutation of �, viewed as a
directed graph as described in Remark 2.3. To prove the theorem, we will describe how
to turn ⇧ into a regular resolution refutation ⇧0 of f(�, h) of size at most 6hns and
height at most hn. The intuition for forming the regular refutation is that the new
variables W [x, j] are equivalent to x, and the general refutation ⇧ can be turned into a
regular refutation by replacing literals p with W [p, j], letting j decrease as the refutation
progresses. In this way, multiple resolutions on a variable x are replaced by resolutions
on variables W [x, j], with j decreasing along paths in the refutation so that no W [x, j]
is resolved on twice on any path.

Let D be a clause in ⇧. Without loss of generality, there is at least one path in ⇧
from D to ?. For a variable x, the irregularity height of x at D in ⇧, denoted LD(x), is
defined to be the maximum number of inferences that use x as the resolution variable
along any path in ⇧ from D to ?. For p a literal, we allow LD to act on p by letting
LD(p) := LD(var(p)). The value of LD(x) depends on ⇧ of course, but this is suppressed
in the notation. Note that LD(x)  h.

For each clause D in ⇧, let

g(D) :=
_

p2D

W [p, LD(p)].

The regular resolution refutation ⇧0 will have the form P0, P1, . . . , Ps, where each Pi is
a finite sequence of clauses. The sequence P0 contains the initial clauses from � that
appear in ⇧ and the newly added 2-clauses in f(�, h). For all i 2 [s], the sequence Pi

will end with the clause g(Ci). Since g(?) = ?, the final clause of ⇧0 will be ?, so ⇧0

will be a regular resolution refutation of f(�, h).
The principal tool in forming each Pi will be “lowering” the levels of literals. Specifically,

suppose that E and F are clauses of the forms

E = W [p1, j1] _ · · · _W [pt, jt] and F = W [p1, k1] _ · · · _W [pt, kt]

with j` � k` for all ` 2 [t]. When this holds, we say E dominates F . Then F can be
derived from E by resolving it with the new f(�, h) clauses

W [p`,m] _W [p`,m+ 1] for ` 2 [t] and m = j` � 1, j` � 2, . . . , k`.

This is called lowering E to F .
We now describe how to inductively form the subderivations Pi of ⇧0. Consider the

clause Ci, which we will write simply as C from this point on. The subderivation Pi

needs to end with g(C). There are two cases to consider.

4

g(A)

A0

g(B)

B0

g(C)

Figure 1: Lowering the premises for a resolution inference in Case 2. The unlabeled
leaves correspond to initial clauses from f(�, h) \ �, included earlier in P0.

Case 1: C is an initial clause in ⇧. Since C 2 �, it already appears in P0. Furthermore,
C dominates g(C), so we can lower C to obtain g(C). The subderivation consists
of (zero or more) resolutions with 2-clauses to perform the lowering.

Case 2: C is the resolvent of A and B on y in ⇧. The subderivation Pi will lower
the earlier-derived clauses g(A) and g(B) to form clauses A0 and B0 that can be
resolved to give the clause g(C). For each literal p, define

�(p) :=

(
LC(p) + 1 if var(p) = y

LC(p) otherwise.

Then A0 and B0 are defined as

A0 =
_

p2A

W [p,�(p)] and B0 =
_

p2B

W [p,�(p)].

Since ⇧ contains paths from A and from B that resolve on y and then pass
through C, we have �(p)  j for all W [p, j] in g(A) or g(B). Therefore, A0 and B0

are indeed dominated by g(A) and g(B), and thus can be derived in Pi. After
that, Pi resolves A0 and B0 on W [y,�(y)] to derive g(C). Figure 1 summarizes the
derivation of g(C) from g(A) and g(B).

The refutation ⇧0 is completed once Ps is formed, as it derives g(Cs) = ?. By
construction, for every x, the levels j of the resolution variables W [x, j] are decreasing
along all paths in the refutation ⇧0. Therefore, ⇧0 is a regular resolution refutation.

It is straightforward to see that ⇧0 has size at most s + 2hn + (2hn + 1)s  6hns.
This bound is calculated as follows: ⇧0 has at most s clauses from �. It also has the
 2hn many 2-clauses added in the definition (1) of f(�, h). The term (2hn + 1)s
is justified by noting that for each of the  s resolution inferences in the original
refutation ⇧, lowering is performed in Case 2 as needed on the literals in the clauses (at
most h times on each of the  2n literals in the clauses being resolved) and then one
resolution inference is performed by resolving on the lowered version of y.

5

The bound hn on the height of ⇧0 follows from the fact that it is a regular resolution
refutation of a formula with hn variables, since each variable can be resolved on at most
once along any path in the refutation ⇧0.

The proof of Theorem 3.1 establishes a statement stronger than necessary for the
effective simulation to hold. Definition 1.1 allows f to depend on proof size; in our case
it suffices for f to depend on height. This dependence is needed in our simulation to
ensure that there are sufficiently many variables W [x, j]. We leave open whether the
dependence can be eliminated:

Question 3.2. Does regular resolution strictly effectively simulate resolution?

4 Corollaries
Theorem 3.1 has some interesting consequences, given in Corollaries 4.2, 4.5, and 4.6.
We need a few definitions before we can state the corollaries.

4.1 Closure under substitutions
Let V and L denote the sets of all variables and all literals, respectively. A substitution
is a partial function � : V ! L [{False,True}. We allow � to act on literals by letting
�(x) := �(x). We call a set tautological if it contains True or a pair of complementary
literals. For a clause C, we define �(C) := {�(p) : p 2 C} and

C|� :=

(
True if �(C) is tautological
�(C) \ {False} otherwise.

For a formula �, we define �|� := {C|� : C 2 � and C|� 6= True}.

Definition 4.1. A proof system P is closed under substitutions if for every formula �
and every substitution �, the formula �|� has a P -proof of size polynomial in the size
of the smallest P -proof of �. We say P is p-closed under substitutions if there exists
an algorithm that, given a size-s P -proof of � and a substitution �, outputs a P -proof
of �|� in time polynomial in s.

Most of the natural proof systems are closed under substitutions. Theorem 3.1 can
be used to prove that this is not the case for regular resolution; in fact, due to the
exponential separation between regular resolution and resolution [AJPU07], applying
substitutions to formulas can increase their regular resolution refutation complexity
exponentially.

Corollary 4.2. Regular resolution is not closed under substitutions.

6

Proof. Let {�n}1n=1 be a family of formulas admitting polynomial-size refutations in
resolution while requiring exponential-size refutations in regular resolution. For all n, let
hn denote the height of the smallest resolution refutation of �n.

Let f be the formula transformation defined in the proof of Theorem 3.1, and
consider a substitution �n that maps W [x, j] to x for all x 2 var(�n) and j 2 [hn � 1].
The formula f(�n, hn) can be refuted in polynomial size in regular resolution, whereas
f(�n, hn)|�n = �n requires exponential size.

4.2 Automatability
Definition 4.3. A proof system P is automatable if there exists an algorithm A that,
given an unsatisfiable formula �, outputs a P -proof of � in time polynomial in |�|+ s,
where s is the size of the smallest P -proof of �. We say P is weakly automatable if the
algorithm A is allowed to output a proof in some other system.

Effective simulations give reductions between weak automatability of proof systems:

Proposition 4.4 ([PS10, Proposition 2.7]). Let P and Q be proof systems. If P effectively
simulates Q and P is weakly automatable, then Q is weakly automatable.

Thus, the following is an immediate corollary of Theorem 3.1.

Corollary 4.5. If regular resolution is weakly automatable, then so is resolution.

Although effective simulations do not necessarily give reductions between (strong)
automatability, in our case Corollary 4.5 can be extended:

Corollary 4.6. If regular resolution is automatable, then so is resolution.

Proof. Let A be an algorithm that automates regular resolution in time bounded by a
polynomial t. Let f be the formula transformation defined in the proof of Theorem 3.1,
and let u be a polynomial such that when s is at least the size of the smallest resolution
refutation of �, the formula f(�, s) has a regular resolution refutation of size u(|�|+ s).

Resolution can be automated as follows: Given an unsatisfiable formula �, for each
r = 0, 1, . . . , simulate A on f(�, r) for t(u(|�| + r)) steps until, for some r, it outputs
a regular resolution refutation ⇧ of f(�, r). Let � be a substitution that maps W [x, j]
to x for all x 2 var(�) and j 2 [r � 1]. Resolution is p-closed under substitutions and we
have f(�, r)|� = �, so convert ⇧ into a resolution refutation ⇧0 of � and output ⇧0.

An analogous result is already known: Atserias and Müller [AM20] proved that
resolution is not automatable unless P = NP, and it was observed afterwards that their
result can be extended to regular resolution. However, this extension is a nontrivial
step and requires at least an inspection of their proof. (See for instance the preprint
by Bell [Bel20] for a detailed writeup.) In contrast, Corollary 4.6 recovers the same
extension in a black-box fashion.

7

Acknowledgments
This work was done in part while the authors were visiting the Simons Institute for the
Theory of Computing. Sam Buss’s research is supported in part by Simons Foundation
grant 578919. Emre Yolcu’s research is supported in part by the National Science
Foundation under grant CCF-2015445.

References
[AB04] Albert Atserias and María Luisa Bonet. On the automatizability of resolution

and related propositional proof systems. Information and Computation,
189(2):182–201, 2004.

[AJPU07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart.
An exponential separation between regular and general resolution. Theory of
Computing, 3:81–102, 2007.

[AM20] Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal
of the ACM, 67(5):31:1–31:17, 2020.

[Bel20] Zoë Bell. Automating regular or ordered resolution is NP-hard. Technical
Report 105, Electronic Colloquium on Computational Complexity (ECCC),
2020.

[BHJ08] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with
lemmas: Resolution refinements that characterize DLL algorithms with clause
learning. Logical Methods in Computer Science, 4(4:13):1–28, 2008.

[BJ16] Sam Buss and Jan Johannsen. On linear resolution. Journal on Satisfiability,
Boolean Modeling and Computation, 10(1):23–35, 2016.

[BP07] Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution
refinements. The Journal of Symbolic Logic, 72(4):1336–1352, 2007.

[BT21] Sam Buss and Neil Thapen. DRAT and propagation redundancy proofs
without new variables. Logical Methods in Computer Science, 17(2):12:1–
12:31, 2021.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of proposi-
tional proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[Goe93] Andreas Goerdt. Regular resolution versus unrestricted resolution. SIAM
Journal on Computing, 22(4):661–683, 1993.

8

[HBPV08] Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder.
Clause learning can effectively p-simulate general propositional resolution. In
Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI),
pages 283–290. AAAI Press, 2008.

[HHU07] Alexander Hertel, Philipp Hertel, and Alasdair Urquhart. Formalizing dan-
gerous SAT encodings. In Proceedings of the 10th International Conference
on Theory and Applications of Satisfiability Testing (SAT), number 4501 in
Lecture Notes in Computer Science, pages 159–172. Springer, 2007.

[IMP20] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. The surprising power
of constant depth algebraic proofs. In Proceedings of the 35th Symposium on
Logic in Computer Science (LICS), pages 591–603. Association for Computing
Machinery, 2020.

[PS10] Toniann Pitassi and Rahul Santhanam. Effectively polynomial simulations. In
Proceedings of the 1st Innovations in Computer Science (ICS), pages 370–382.
Tsinghua University Press, 2010.

[Pud03] Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical
Computer Science, 295(1–3):323–339, 2003.

[Urq11] Alasdair Urquhart. A near-optimal separation of regular and general resolution.
SIAM Journal on Computing, 40(1):107–121, 2011.

9

	Introduction
	Preliminaries
	Main result
	Corollaries
	Closure under substitutions
	Automatability

