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Abstract

A gradient estimate for complex Monge-Ampere equations which improves in some re-
spects on known estimates is proved using the ABP maximum principle.

1 Introduction

Gradient estimates occupy a special position in the theory of complex Monge-Ampere
equations. In Yau’s original proof of the Calabi conjecture for compact manifolds [12],
they can be bypassed, as C? estimates can be obtained directly once C° estimates are
known. But this is no longer the case for subsequent extensions of the theory. The first
gradient bounds appear to be due to Hanani [7], but this paper did not seem to be widely
known. More recent approaches are due to Blocki [1], P. Guan [3], B. Guan-Q. Li [4], and
Phong-Sturm [10]. The sharpest result to date may be [10], which builds on the approach
of [1], gives a pointwise estimate, and requires only a lower bound for the solution ¢ of
the equation, and not an upper bound. These features are essential for applications to
boundary value problems or the case of degenerating background metrics [10, 9].

In [5], the authors developed a new method for establishing the classical L™ estimates
for the complex Monge-Ampere equation without recourse to pluripotential theory. This
method builds on works of Wang, Wang, Zhou [11] and particular of Chen and Cheng
2], who introduced the idea of using an auxiliary Monge-Ampere equation. The methods
of [5] turn out not just to recover the classical L> estimates, but to improve and widen
them in many significant ways. Thus it is natural to examine their possibilities for other
estimates. In this paper, we examine the case of gradient estimates. We shall show below
that the methods of [5] can recapture the sharp gradient estimate of [10, 9], in fact with
a weaker assumption on the right hand side which may be of geometric significance.

Let (X,wp) be a compact Kéhler manifold with or without boundary and ¢ be a w-
plurisubharmonic function solving the following complex Monge-Ampere equation

(wo +i00¢)" = eFwy, (1.1)

where F' € C*°. When X has no boundary, we assume that F' satisfies the compatibility
condition [y ef'wd = [y wi. When X has a smooth non-empty boundary 90X, we impose
the boundary condition ¢ = ¢ on 9X for some ¢ € C?(X) with wy = wy + i0d¢ a smooth
Kéhler metric on X.
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Theorem 1 Under the above conditions, we have the gradient estimate
2 A(p—inf

where X > 0 and C' are positive constants, depending respectively only on a lower bound
for the bisectional curvature of wo, and on n,wo,supy F, [|[VF| ren(c2rymy, Vi@l ze@ox)

and ||¢||02(Y)-

We observe that previous results had required control of the full L*° norm of the
gradient of the right-hand side. With our method, we can relax this to an L?"-control. We
illustrate later an application of this improvement.

2 Proof of the Theorem

By replacing ¢ and ¢ respectively by ¢ —inf x ¢ and ¢ —inf x ¢, we may assume infx ¢ = 0.
Let w = wy + i00¢ be the Kéahler metric associated with the complex Monge-Ampere
equation (1.1).

Lemma 1 The following equation holds
NL|VlZ, = 2Re(VF, Vo), + 97 g (prisi + orgei0) + 97 R(90)ijraerPado’sh  (2.1)

where w = (g;3), Wo = ((90)i7), ki = (Vo Vue@)ri are the second covariant derivatives
with respect to wy, and R(go)xr is the bisectional curvature of wy.

The proof of Lemma 1 is a standard calculation, so we omit the details. Let —K be a
lower bound of the bisectional curvature R(go). From the equation (2.1) we have

Au|Vel2, > 2Re(VE, V), + g7 gt (origs + oripa) — 2K trowo| V|2,

Denote H = e *|Vyp|2 for A = 2K + 10. We calculate at an arbitrary point 2 € X, and
choose a normal coordinates system for wy such that w is diagonal at x.

AH = A(e™|Vyl2)
AT, + [V, Ale9) — 22 Re(Vip, VIVl
> ¢ (2Re(VE, Vi)uy + 9708 (puist + pigon) — 2K truenl VolZ, )
+|Vg0|f,oe_w( — An + Atrywo + )\2|Vg0|f,) —2Xe M Re(Vp, V|V|2 ).
The last term on the right hand side is
—2Xe ™ Re(Vop, v|v¢‘io>w
= 22 MRe(g"0i(0ror);)
= =2\ M Re(g"piprici + 9" piorp) 7
> —2)\6_’\“0giigoig0k590;;—>\26_wgii<ﬂi<ﬂﬂVSOL%O - e_wgmﬂkz'%@la
= =20 g pip05(g7 — 1)—Ne g 0ioi|Vol2, — e g7 orini
= =20 M|Vl 4+ 20 V2 =N | Vol2 [Vel?, — e g oripr-
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where we applied the Cauchy-Schwarz inequality. We thus obtain
A H >2eRe(VE, V), + (A —2K)Htr,wo — A(n + 2)H.

Note that this inequality holds at any point of X, since it is independent of the choice of
normal coordinates. Let o > 1 be a positive constant. We calculate

ALH® = aH*'AH + a(a—1)H* 2| VH]?
> aH (e Re(VF, Vip)y, + (A — 2K) Htrywo — A(n + 2)H)
+ala — 1) H A VH. (2.2)

Since X is compact, we can assume H attains its maximum at a point zg, with H(zg) =:
M > 0. We may suppose xq lies in the interior of X, otherwise we are done. Since wy is
smooth up to X, we may assume (X, wy) isometrically embeds to another Kihler manifold
(X ,Wp) as a compact subset!.Let r > 0 be the injectivity radius of the Riemannian manifold
(X, ). Without loss of generality we may identify the metric ball By, (1o, ) with an open
domain in the Euclidean space C", where we denote B, (xo,7) = {x € X|d,(z,20) < 1}.
We will apply a trick of Chen-Cheng [2]. Let # = min{ m ” _1 be a given constant

» 10nCo
(where Cy > 1 depends only on wy) and choose an auxiliary function 7 such that n = 1 on

By, (xg,7/2) and n = 1 — 6 on By, (xg, )\ By, (20, 37/4), and n € [1 — 0, 1] in the annulus
between. We also have (this  may be chosen as 77(6[05—“;")2) where dg is a smoothing of the
go-distance to xy and 7 is some appropriate function on R)

C,02 Cy0
V2, < =%, [V, < —2

r2 = 2
We calculate as follows
A,(nH®) = nAH® + 2aH* 'Re(Vn, VH), + H*An.
Note that the last term satisfies
HYA,n > —C’O%H“trwwo,
and the middle term is

Q0 H  \Re(V), VH), > —2aH"'|VH|,|Vn|.
_ala-1)
2

A%

a— 2a «
H*|VHI; - 18 IVl

-1
_CY(OZ )Ha_z‘VH‘i -
2 «Q

controlled by the last term in nAH®

2 2
« He 009
—1 ,,a2

vV

tr,wo

'We can alternatively cover 9X by finitely many Euclidean half balls, and apply similar calculations.

3



Combining the above inequalities we get

_ 2 2
AMH®) > anH e (VF, V), + (an(h - 2K) - 6;029 - _O‘ - C;jf ) H trowo

—da(n+2)H®. (2.3)

Note that n > 9/10. We can choose a = 2. Together with the choice of 6§ and A, the
middle term of the right hand side of the above inequality is nonnegative, so

A, (nH®) > —anH* 2 2|V F|,, — Aa(n + 2)H* (2.4)

We may assume (1 — 0)M* > supyy |[Vi|s,, otherwise we are done. Applying the
ABP maximum principle to the function nH® on the ball B, (zo,7), we obtain (with
By = Byy(20,7))

Me = sup(nH®)

Bo
1
“ anH® 2 22|V F|,, + Aa(n +2)H>  \1/2n
< sup(nH )+C(n,w0)r(/ o | _';F (n+2)H" wp)
0By Bo e
1/2n
< supnH® + Clnwo)r[( [ How) ™ e[ BT
aBo BO BO
1/2n
< suana+C(n,w0)r{M°‘(1_%)(/ Hwé‘)/ +MO‘_1/2(/ 2F|VF|2" ")1/2"}
0By By By

< (1—9)M“+C(n,w0,F)r[M°‘(l__)—I—MO‘ 1/2}

where the last constant C'(n,wo, F') depends on [[[VF|y,[p2n(x e2rup) and supy F. Note
that 6 > ¢o > 0 for some constant ¢y depending only on wy. We conclude that

coM® < OM™ < C(n,wo, F)r(M°~/2 4 Mo0=30)),

from which we derive M < C(n,wy, F'), since the RHS are powers of M with degree
smaller than «. Finally in the estimate above we implicitly use the uniform bound on
Jx Hw{, which follows from the lemma below. It is because of this lemma that we need
the C2-bound of the boundary value ¢.

Lemma 2 We have [y Huf = [y e |Vp|2 wi < C(n, wo,ws)-

Proof. From the equation w” = ef’

w(, we obtain
erg—w¢ =w" wz:iﬁg(gp—gb)/\(w"_1+---+wg_1),

Multiplying both sides by e *¥*¢ —1 and applying integration by parts, we can write the
right hand side as

(€75 —1)i0d(p = ) A (W 4o+

4



= [ A D0(p— ) A B(e = §) AW -+
[ 2000 — 9) A Bl — ¢) Ay

> C\/)<(€_A¢|V80|iowg - C(¢aw0)a

v

since wy is equivalent to wy by assumption. On the other hand the left hand side can be
bounded as follows,

/X(e_’\(@_‘b) —1)(efwy — wy) < /X e (eFwp + wy) < C(n,wo, ¢, 51)1{p F).

This proves the lemma, and the proof of the theorem is complete.

3 Application

We can give now an application of the improved gradient estimates:

Corollary 1 Let X be a compact Kdahler manifold, f > 0 be a smooth function with
Ix fwi = [x Wi, and assume that f satisfies
VAP

My wy < 00 (3.1)

Then the solution of the complex Monge-Ampére equation
(wo + i00p)™ = fuwy (3.2)
18 Lipschitz continuous.

Proof. Let f; be a regularization of f chosen with the following properties: [y frw( =
Jx fwi, fr > 0 for k> 0, fi converges to f smoothly as k — oo, and moreover in a small
neighborhood of the vanishing locus of f, we require that f, = f + % It’s not hard to see
that such a regularization can be arranged.

Then by our choice of f, we observe that in a neighborhood of the vanishing locus of
f, we have

|ka|2n B |vf|2n < |vf|2n

2n—2 2n—2 — —
kn fkn f2n 2

(3.3)

and hence [ |¥2]22‘22n wy is uniformly bounded. By Theorem 1, we know that the sequence

of solutions of the Monge-Ampere equations
(wo +100pp)" = frw" (3.4)
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has uniform C! bounds independent of k. By the stability of complex Monge-Ampere
equations [8, 6], the solutions ¢y, converge uniformly to ¢, hence ¢ must be Lipschitz.

Our theorem applies for example, when f has isolated zeroes, near which f is asymp-
totically f(z) ~ |

W r f(z) ~ |z|® for g > 0. Observe that ||V fY"|~ is not
og |z

finite, so the usual gradient estimate in [1, 10] do not apply. However we still have
Ix |1V log f|*"wh < oo, hence our result applies.
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