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A NEW GRADIENT ESTIMATE FOR THE
COMPLEX MONGE-AMPÈRE EQUATION 1

Bin Guo, Duong H. Phong, and Freid Tong

Abstract

A gradient estimate for complex Monge-Ampère equations which improves in some re-

spects on known estimates is proved using the ABP maximum principle.

1 Introduction

Gradient estimates occupy a special position in the theory of complex Monge-Ampère

equations. In Yau’s original proof of the Calabi conjecture for compact manifolds [12],
they can be bypassed, as C2 estimates can be obtained directly once C0 estimates are

known. But this is no longer the case for subsequent extensions of the theory. The first
gradient bounds appear to be due to Hanani [7], but this paper did not seem to be widely

known. More recent approaches are due to Blocki [1], P. Guan [3], B. Guan-Q. Li [4], and
Phong-Sturm [10]. The sharpest result to date may be [10], which builds on the approach

of [1], gives a pointwise estimate, and requires only a lower bound for the solution ϕ of

the equation, and not an upper bound. These features are essential for applications to
boundary value problems or the case of degenerating background metrics [10, 9].

In [5], the authors developed a new method for establishing the classical L∞ estimates
for the complex Monge-Ampère equation without recourse to pluripotential theory. This

method builds on works of Wang, Wang, Zhou [11] and particular of Chen and Cheng
[2], who introduced the idea of using an auxiliary Monge-Ampère equation. The methods

of [5] turn out not just to recover the classical L∞ estimates, but to improve and widen
them in many significant ways. Thus it is natural to examine their possibilities for other

estimates. In this paper, we examine the case of gradient estimates. We shall show below
that the methods of [5] can recapture the sharp gradient estimate of [10, 9], in fact with

a weaker assumption on the right hand side which may be of geometric significance.

Let (X,ω0) be a compact Kähler manifold with or without boundary and ϕ be a ω-

plurisubharmonic function solving the following complex Monge-Ampère equation

(ω0 + i∂∂̄ϕ)n = eFωn
0 , (1.1)

where F ∈ C∞. When X has no boundary, we assume that F satisfies the compatibility

condition
∫

X eFωn
0 =

∫

X ωn
0 . When X has a smooth non-empty boundary ∂X , we impose

the boundary condition ϕ = φ on ∂X for some φ ∈ C2(X) with ωφ = ω0 + i∂∂̄φ a smooth

Kähler metric on X.
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Theorem 1 Under the above conditions, we have the gradient estimate

|∇ϕ|2ω0
≤ Ceλ(ϕ−infX ϕ),

where λ > 0 and C are positive constants, depending respectively only on a lower bound

for the bisectional curvature of ω0, and on n, ω0, supX F , ‖∇F‖L2n(e2Fωn

0
), ‖∇ω0

ϕ‖L∞(∂X)

and ‖φ‖C2(X).

We observe that previous results had required control of the full L∞ norm of the

gradient of the right-hand side. With our method, we can relax this to an L2n-control. We
illustrate later an application of this improvement.

2 Proof of the Theorem

By replacing ϕ and φ respectively by ϕ−infX ϕ and φ−infX φ, we may assume infX ϕ = 0.

Let ω = ω0 + i∂∂̄ϕ be the Kähler metric associated with the complex Monge-Ampère
equation (1.1).

Lemma 1 The following equation holds

∆ω|∇ϕ|2ω0
= 2Re〈∇F, ∇̄ϕ〉ω0

+ gij̄gkl̄0 (ϕkiϕj̄l̄ + ϕkj̄ϕil̄) + gij̄R(g0)ij̄kl̄ϕpϕq̄g
kq̄
0 gpl̄0 (2.1)

where ω = (gij̄), ω0 = ((g0)ij̄), ϕki = (∇ω0
∇ω0

ϕ)ki are the second covariant derivatives

with respect to ω0, and R(g0)ij̄kl̄ is the bisectional curvature of ω0.

The proof of Lemma 1 is a standard calculation, so we omit the details. Let −K be a

lower bound of the bisectional curvature R(g0). From the equation (2.1) we have

∆ω|∇ϕ|2ω0
≥ 2Re〈∇F, ∇̄ϕ〉ω0

+ gij̄gkl̄0 (ϕkiϕj̄l̄ + ϕkj̄ϕil̄)− 2Ktrωω0|∇ϕ|2ω0

Denote H = e−λϕ|∇ϕ|2ω0
for λ = 2K + 10. We calculate at an arbitrary point x ∈ X , and

choose a normal coordinates system for ω0 such that ω is diagonal at x.

∆ωH = ∆(e−λϕ|∇ϕ|2ω0
)

= e−λϕ∆|∇ϕ|2ω0
+ |∇ϕ|2ω0

∆(e−λϕ)− 2λe−λϕRe〈∇ϕ, ∇̄|∇ϕ|2ω0
〉ω

≥ e−λϕ
(

2Re〈∇F, ∇̄ϕ〉ω0
+ gij̄gkl̄0 (ϕkiϕj̄l̄ + ϕkj̄ϕil̄)− 2Ktrωω0|∇ϕ|2ω0

)

+|∇ϕ|2ω0
e−λϕ

(

− λn+ λtrωω0 + λ2|∇ϕ|2ω
)

− 2λe−λϕRe〈∇ϕ, ∇̄|∇ϕ|2ω0
〉ω

The last term on the right hand side is

−2λe−λϕRe〈∇ϕ, ∇̄|∇ϕ|2ω0
〉ω

= −2λe−λϕRe(g īiϕi(ϕkϕk̄)̄i)

= −2λe−λϕRe(g īiϕiϕkīϕk̄ + g īiϕiϕkϕk̄ī)

≥ −2λe−λϕg īiϕiϕkīϕk̄−λ2e−λϕg īiϕiϕī|∇ϕ|2ω0
− e−λϕg īiϕkiϕk̄ī

= −2λe−λϕg īiϕiϕī(gīi − 1)−λ2e−λϕg īiϕiϕī|∇ϕ|2ω0
− e−λϕg īiϕkiϕk̄ī

= −2λe−λϕ|∇ϕ|2ω0
+ 2λe−λϕ|∇ϕ|2ω−λ2e−λϕ|∇ϕ|2ω|∇ϕ|2ω0

− e−λϕg īiϕkiϕk̄ī.
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where we applied the Cauchy-Schwarz inequality. We thus obtain

∆ωH ≥ 2e−λϕRe〈∇F, ∇̄ϕ〉ω0
+ (λ− 2K)Htrωω0 − λ(n+ 2)H.

Note that this inequality holds at any point of X , since it is independent of the choice of

normal coordinates. Let α > 1 be a positive constant. We calculate

∆ωH
α = αHα−1∆H + α(α− 1)Hα−2|∇H|2ω

≥ αHα−1
(

e−λϕRe〈∇F, ∇̄ϕ〉ω0
+ (λ− 2K)Htrωω0 − λ(n+ 2)H

)

+α(α− 1)Hα−2|∇H|2ω. (2.2)

Since X is compact, we can assume H attains its maximum at a point x0, with H(x0) =:
M > 0. We may suppose x0 lies in the interior of X , otherwise we are done. Since ω0 is

smooth up to ∂X , we may assume (X,ω0) isometrically embeds to another Kähler manifold

(X̂, ω̂0) as a compact subset1.Let r > 0 be the injectivity radius of the Riemannian manifold
(X̂, ω̂0). Without loss of generality we may identify the metric ball Bg0(x0, r) with an open

domain in the Euclidean space Cn, where we denote Bg0(x0, r) = {x ∈ X|dg0(x, x0) < r}.
We will apply a trick of Chen-Cheng [2]. Let θ = min{ 1

10nC0

, r2

10nC0

} be a given constant

(where C0 > 1 depends only on ω0) and choose an auxiliary function η such that η = 1 on
Bg0(x0, r/2) and η = 1 − θ on Bg0(x0, r)\Bg0(x0, 3r/4), and η ∈ [1 − θ, 1] in the annulus

between. We also have (this η may be chosen as η̂(d0(x)
2

r2
) where d0 is a smoothing of the

g0-distance to x0 and η̂ is some appropriate function on R)

|∇η|2g0 ≤
C0θ

2

r2
, |∇2η|g0 ≤

C0θ

r2

We calculate as follows

∆ω(ηH
α) = η∆Hα + 2αHα−1Re〈∇η, ∇̄H〉ω +Hα∆ωη.

Note that the last term satisfies

Hα∆ωη ≥ −C0
θ

r2
Hαtrωω0,

and the middle term is

2αHα−1Re〈∇η, ∇̄H〉ω ≥ −2αHα−1|∇H|ω|∇η|ω

≥ −
α(α− 1)

2
Hα−2|∇H|2ω −

2α

α− 1
Hα|∇η|2ω

≥ −
α(α− 1)

2
Hα−2|∇H|2ω

︸ ︷︷ ︸

controlled by the last term in η∆Hα

−
2α

α − 1
HαC0θ

2

r2
trωω0

1We can alternatively cover ∂X by finitely many Euclidean half balls, and apply similar calculations.
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Combining the above inequalities we get

∆(ηHα) ≥ αηHα−1e−λϕ〈∇F, ∇̄ϕ〉ω0
+

(

αη(λ− 2K)−
C0θ

r2
−

2α

α− 1

C0θ
2

r2

)

Hαtrωω0

−λα(n + 2)Hα. (2.3)

Note that η ≥ 9/10. We can choose α = 2. Together with the choice of θ and λ, the

middle term of the right hand side of the above inequality is nonnegative, so

∆ω(ηH
α) ≥ −αηHα− 1

2 e−λϕ/2|∇F |ω0
− λα(n+ 2)Hα (2.4)

We may assume (1 − θ)Mα ≥ sup∂X |∇ϕ|αω0
, otherwise we are done. Applying the

ABP maximum principle to the function ηHα on the ball Bg0(x0, r), we obtain (with

B0 = Bg0(x0, r))

Mα = sup
B0

(ηHα)

≤ sup
∂B0

(ηHα) + C(n, ω0)r
( ∫

B0

[αηHα− 1

2 e−λϕ/2|∇F |ω0
+ λα(n+ 2)Hα]2n

e−2F
ωn
0

)1/2n

≤ sup
∂B0

ηHα + C(n, ω0)r
[( ∫

B0

H2nαωn
0

)1/2n
+Mα−1/2(

∫

B0

e2F |∇F |2nω0
ωn
0 )

1/2n
]

≤ sup
∂B0

ηHα + C(n, ω0)r
[

Mα(1− 1

2n
)
( ∫

B0

Hωn
0

)1/2n
+Mα−1/2(

∫

B0

e2F |∇F |2nω0
ωn
0 )

1/2n
]

≤ (1− θ)Mα + C(n, ω0, F )r
[

Mα(1− 1

2n
) +Mα−1/2

]

,

where the last constant C(n, ω0, F ) depends on ‖|∇F |ω0
‖L2n(X,e2Fωn

0
) and supX F . Note

that θ > c0 > 0 for some constant c0 depending only on ω0. We conclude that

c0M
α ≤ θMα ≤ C(n, ω0, F )r(Mα−1/2 +Mα(1− 1

2n
)),

from which we derive M ≤ C(n, ω0, F ), since the RHS are powers of M with degree

smaller than α. Finally in the estimate above we implicitly use the uniform bound on
∫

X Hωn
0 , which follows from the lemma below. It is because of this lemma that we need

the C2-bound of the boundary value φ.

Lemma 2 We have
∫

X Hωn
0 =

∫

X e−λϕ|∇ϕ|2ω0
ωn
0 ≤ C(n, ω0, ωφ).

Proof. From the equation ωn = eFωn
0 , we obtain

eFωn
0 − ωn

φ = ωn − ωn
φ = i∂∂̄(ϕ− φ) ∧ (ωn−1 + · · ·+ ωn−1

φ ),

Multiplying both sides by e−λϕ+λφ−1 and applying integration by parts, we can write the

right hand side as
∫

X
(e−λϕ+λφ − 1)i∂∂̄(ϕ− φ) ∧ (ωn−1 + · · ·+ ωn−1

0 )
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=
∫

X
λe−λ(ϕ−φ)∂(ϕ− φ) ∧ ∂̄(ϕ− φ) ∧ (ωn−1 + · · ·+ ωn−1

φ )

≥
∫

X
λe−λ(ϕ−φ)∂(ϕ− φ) ∧ ∂̄(ϕ− φ) ∧ ωn−1

φ

≥ C
∫

X
e−λϕ|∇ϕ|2ω0

ωn
0 − C(φ, ω0),

since ωφ is equivalent to ω0 by assumption. On the other hand the left hand side can be
bounded as follows,

∫

X
(e−λ(ϕ−φ) − 1)(eFωn

0 − ωn
φ) ≤

∫

X
eλφ(eFωn

0 + ωn
φ) ≤ C(n, ω0, φ, sup

X
F ).

This proves the lemma, and the proof of the theorem is complete.

3 Application

We can give now an application of the improved gradient estimates:

Corollary 1 Let X be a compact Kähler manifold, f ≥ 0 be a smooth function with
∫

X fωn
0 =

∫

X ωn
0 , and assume that f satisfies

∫

X

|∇f |2n

f 2n−2
ωn
0 < ∞ (3.1)

Then the solution of the complex Monge-Ampère equation

(ω0 + i∂∂̄ϕ)n = fωn
0 (3.2)

is Lipschitz continuous.

Proof. Let fk be a regularization of f chosen with the following properties:
∫

X fkω
n
0 =

∫

X fωn
0 , fk > 0 for k > 0, fk converges to f smoothly as k → ∞, and moreover in a small

neighborhood of the vanishing locus of f , we require that fk = f + 1
k
. It’s not hard to see

that such a regularization can be arranged.

Then by our choice of fk, we observe that in a neighborhood of the vanishing locus of
f , we have

|∇fk|
2n

f 2n−2
k

=
|∇f |2n

f 2n−2
k

≤
|∇f |2n

f 2n−2
(3.3)

and hence
∫

X
|∇fk|

2n

f2n−2

k

ωn
0 is uniformly bounded. By Theorem 1, we know that the sequence

of solutions of the Monge-Ampère equations

(ω0 + i∂∂̄ϕk)
n = fkω

n (3.4)
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has uniform C1 bounds independent of k. By the stability of complex Monge-Ampère
equations [8, 6], the solutions ϕk converge uniformly to ϕ, hence ϕ must be Lipschitz.

Our theorem applies for example, when f has isolated zeroes, near which f is asymp-

totically f(z) ∼ 1

| log |z|2|
or f(z) ∼ |z|ε0 for ε0 > 0. Observe that ‖∇f 1/n‖L∞ is not

finite, so the usual gradient estimate in [1, 10] do not apply. However we still have
∫

X |f |2|∇ log f |2nωn
0 < ∞, hence our result applies.
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