

1 **Advances in ligand-specific biosensing for structurally similar**
2 **molecules**

4 Chenggang Xi¹, Jinjin Diao¹, and Tae Seok Moon^{1,2*}

6 ¹ Department of Energy, Environmental and Chemical Engineering, Washington
7 University in St. Louis, St. Louis, MO, United States

8 ² Division of Biology and Biomedical Sciences, Washington University in St. Louis, St.
9 Louis, MO, United States

11 * To whom correspondence should be addressed.

12 Tae Seok Moon

13 Tel: +1 (314) 935-5026

14 Email: tsmoon7@gmail.com

15 One Brookings Dr., Box 1180

16 St. Louis, MO 63130, USA

18 **Abstract**

19 The specificity of biological systems makes it possible to develop biosensors targeting
20 specific metabolites, toxins, and pollutants in complex medical or environmental samples
21 without interference from structurally similar compounds. For the last two decades, great
22 efforts have been devoted to creating proteins or nucleic acids with novel properties
23 through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding
24 target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an
25 increasing research area is the enhancement of molecular specificity for genetically
26 encoded biosensors. Here, we summarize recent advances in the development of highly
27 specific biosensor systems and their essential applications. First, we describe the rational
28 design principles required to create libraries containing potential mutants with less
29 promiscuity or better specificity. Next, we review the emerging high-throughput screening
30 techniques to engineer biosensing specificity for the desired target. Finally, we examine
31 the computer-aided evaluation and prediction methods to facilitate the construction of
32 ligand-specific biosensors.

33

34 **Keywords:** genetically encoded biosensor; directed evolution; protein
35 engineering; molecular specificity; computational biomolecule design; machine learning;
36 library screening; ligand-receptor interaction

37 **Introduction**

38 Living cells are endowed with a remarkable ability to sense and respond to a diverse array
39 of stimuli, ranging from small molecules and ions to biomacromolecules and physical
40 changes in their intracellular and extracellular environment. Through the integration of
41 distinct genetic elements that enable cells to sense and respond to these stimuli,
42 researchers have devised genetically encoded biosensors (GEBs) that fall into five major
43 categories: allosteric transcription factor (aTF)-based biosensors ¹, fluorescent protein
44 (FP)-based biosensors ², two-component system (TCS)-based biosensors ³, enzymatic
45 biosensors ⁴, and riboswitch-based biosensors ⁵ (**Figure 1 & Table 1**). These biosensors
46 are highly versatile and have been employed for various applications, including metabolic
47 engineering ⁶, environmental monitoring and remediation ⁷, diagnostics ^{8,9}, and living
48 therapeutics ¹⁰. Each type of biosensor exhibits a unique target scope attributable to its
49 inherent cellular function, and biosensors assembled by homologs originated from
50 disparate organisms display distinct sensing preferences due to their respective host
51 environments ¹¹⁻¹³.

52

53 Although GEBs intrinsically offer greater specificity in detecting their targets compared
54 with physicochemical methods, they are often incapable of distinguishing between
55 multiple structurally similar chemicals that may coexist in the application environment,
56 leading to crosstalk and undesired signal transduction, also known as promiscuity ^{12,14,15}.
57 A partial solution is to focus on the most distinct ligands in the application environments
58 ^{13,14}; however, the issue of sensor-target promiscuity persists. This challenge becomes
59 especially pronounced when attempting specific biosensing in environmental and

60 biological samples with structurally similar chemicals, as is the case with soil, body fluids,
61 living tissues, and similar matrices^{7,9,16}. To address this, the integration of rational design
62 and directed evolution methods emerges as a potent strategy to enhance the molecular
63 specificity of GEBs¹⁷.

64

65 Directed evolution represents a widely used approach to enhance the ligand-receptor
66 specificity. Through multiple rounds of mutagenesis and screening the resulting variants
67¹⁸, variants exhibiting heightened substrate specificity are isolated and further optimized
68¹⁹ (**Figure 2**). Structural and computational analysis of the sensor domain can guide the
69 evolution process by identifying critical residues involved in substrate binding and
70 predicting the impact of specific mutations on substrate specificity^{1,20–22}. Recent
71 advances in high-throughput screening and next-generation sequencing (NGS)
72 technologies, combined with improvements in protein structure prediction and protein-
73 ligand interaction modeling, have enabled the development of more refined and efficient
74 strategies for biosensor evolution²³ (**Figure 3 & 4**). In this regard, we summarize state-
75 of-the-art strategies for developing highly specific GEBs that are resistant to interference
76 from structurally similar chemicals, even when the latter constitute the substrate of the
77 wild-type version.

78

79 **1. Knowledge-based design principles for specificity control**

80 In recent years, scientists have established a diverse range of highly specific GEBs by
81 sophisticated design strategies (**Table 2**). These approaches leverage either the innate
82 specificity of genetic components or crafted macromolecular variants and chimeras for

83 the precise detection of specific chemical signals (**Figure 2**). Here, we provide an
84 overview of the rational and semi-rational design principles essential for the development,
85 selection, and validation of specialized GEBs.

86

87 **The innate specificity of different types of biosensing components**

88 **Biosensing components specialized for transmembrane signaling**

89 An effective strategy to develop ligand-specific GEBs entails the assembly of pre-existing,
90 specific genetic components from cell signaling systems. Natural sensing components
91 offer an extensive array of options with varying degrees of molecular specificity for
92 engineering GEBs (**Table 1**). Bacteria predominantly employ TCSs to detect and adapt
93 to fluctuations in their surroundings ³. TCSs consist of a sensor histidine kinase (sHK)
94 that probes a particular environmental cue and a response regulator (RR) that triggers
95 the pertinent cellular response ^{24,25} (**Figure 1A**). They can detect a broad range of inputs
96 integral to bacterial growth, including metal cations, protons, small metabolites, and
97 communication signals indicative of growth pressure, nutrient availability, and hormones
98 ³. While the majority of investigations have concentrated on the interactions between
99 sHKs and RRs, or a RR and its promoter ²⁶⁻²⁸, only a handful of reports have assessed
100 the full spectrum of sensing targets that sHKs are capable of distinguishing.

101

102 Most sHKs exhibit inherent specificity for their wild-type targets; while some can sense a
103 restricted collection of chemically similar inputs, others are specific to a singular input ^{3,25}.
104 For instance, *Escherichia coli* NarX demonstrates specificity for a terminal electron
105 acceptor nitrate (NO₃⁻) without interference from a closely-related compound nitrite (NO₂⁻
106), whereas NarQ exhibits promiscuity ²⁹. Further examples like *Shewanella halifaxensis*

107 ThsS and *Shewanella baltica* TtrS are specifically activated by thiosulfate ($S_2O_3^{2-}$) and
108 tetrathionate ($S_4O_6^{2-}$), respectively ³⁰. *E. coli* TorS-TorR could exclusively detect
109 trimethylamine N-oxide ((CH_3)₃NO) among 117 common metabolites and solvents
110 evaluated in a recent study ³¹. The capacity of TCSs to selectively identify and react to
111 specific stimuli renders them a compelling platform to develop biosensors for
112 environmental signals ³.

113

114 Another class of intrinsically specific ligand-binding proteins (LBPs), G protein-coupled
115 receptors (GPCRs), represents the most extensive category of cell surface receptors in
116 eukaryotes (**Figure 1D**). GPCRs facilitate cellular perception of environmental cues
117 crucial for decision-making processes, such as proliferation, regulation of metabolism,
118 immune functions, and neuronal circuit activities ³². GPCRs transduce extracellular
119 signals across the plasma membrane by activating intracellular G proteins, subsequently
120 amplifying receptor responses through diverse downstream secondary messengers
121 (cyclic adenosine monophosphate, inositol trisphosphate, or Ca^{2+}) that interact with their
122 corresponding transcription factors ³³. Each GPCR type predominantly exhibits specificity
123 for a distinct class of neurotransmitters (NT) or neuromodulators, though it is capable of
124 binding closely related compounds with reduced activity ³⁴. Concurrently, various GPCR
125 subtypes demonstrate differing degrees of ligand specificity and affinity within the same
126 NT category, necessitating careful GPCR candidate selection for sensor development
127 ^{35,36}. For instance, adrenergic receptors, which are GPCR subtypes responsive to both
128 epinephrine and norepinephrine, can be further categorized into α - and β -adrenergic
129 receptors based on their differential ligand sensitivity ^{37,38}. Likewise, dopamine receptors

130 can be subdivided into D1-like receptors (D1 and D5) and D2-like receptors (D2, D3, and
131 D4), each possessing a unique ligand binding profile that ultimately constitutes the
132 diverse specificity and sensitivity of dopamine biosensors ³⁹⁻⁴¹.

133

134 TCSs and GPCRs are pre-existing biosensing components specific for their stimuli, a
135 feature rooted in their fundamental roles in sensing the extracellular environment, which
136 is crucial for cellular growth and cell-cell communication ^{42,43}. Nevertheless, these
137 systems present certain limitations in universal applicability for biosensing purposes.

138 Firstly, most TCSs function primarily in bacteria, while GPCRs predominantly operate in
139 eukaryotes. Secondly, both sensors' target ranges are relatively constrained. TCSs
140 primarily detect growth factors and stressors for cell survival, though they can sense
141 various physical conditions ⁴⁴. The remodeling of sHKs is challenging due to their limited
142 plasticity, thereby constraining the expansion of target compounds for TCS-based GEBs
143 beyond the cognate signals of the specific sensor domain ⁴⁵. Endogenous ligands of
144 GPCRs are restricted to hormones or NTs, and GPCR-based GEBs are often inhibited
145 by synthetic antagonist drugs, complicating accurate NT detection during drug treatment
146 ^{39,37,46,47}. Lastly, both GPCRs and TCSs require multistep signal transduction processes
147 to modulate downstream gene expression, demanding increased effort to tune the
148 biosensing performance ^{33,43}.

149

150 **Biosensing components specialized for intracellular signaling**

151 Widely used biosensors are also based on one-component systems, consisting of an aTF
152 and an output promoter featuring the corresponding transcription factor binding site ¹

153 **(Figure 1B).** In contrast to sHKs, aTFs are more apt to detect chemical signals rather
154 than physical conditions due to their natural roles in regulating metabolic pathways ⁶. As
155 a result, the substrate scope of an aTF is typically broader than that of TCS, and aTFs
156 can detect a wider range of organic compounds and their various analogs ⁴⁸. Additionally,
157 aTFs excel at sensing intracellular metabolite levels, making them suitable tools for
158 metabolic flux engineering and pathway evolution ^{49,50}. Non-cognate binding between
159 ligands and aTFs, or aTFs and promoters, could cause crosstalk in gene regulation ^{13,51}.
160 In terms of ligand specificity, aTFs that regulate the same promoter also display distinct
161 substrate preferences when they originate from different organisms ¹¹. Therefore, a
162 crucial step in developing a specific biosensor based on an aTF involves selecting the
163 appropriate homolog, either with a preference for the target compound or with minimal
164 activity toward the undesired target analogs.

165
166 Genome mining through sequence alignment or transcriptomic analysis has proven to be
167 a highly effective approach to discover desired sensing elements ^{52,53}. The identified
168 homolog possessing the requisite characteristics can then be introduced into the working
169 organism for further optimization. d'Oelsnitz et al. examined six multidrug-resistant
170 regulator candidates in *E. coli*, finding one to be highly active to tetrahydropapaverine
171 (THP), while displaying only slight activity toward four other alkaloids ⁵⁴. They developed
172 six specific alkaloid biosensors by using the responsive RamR regulator as a starting
173 point for directed evolution ^{54,55}. In some rare instances, certain aTFs exhibit natural
174 specificity for structurally similar chemicals, enabling their direct use as specific
175 biosensors. For example, Diao et al. found several specific aTFs in *Rhodococcus opacus*

176 PD630 for aromatic compounds derived from lignin ⁵⁶. Furthermore, LhgR from
177 *Pseudomonas putida* has been shown to recognize L-2-hydroxyglutarate (L-2-HG) as its
178 specific effector molecule, even distinguishing it from its chiral isomer ⁵⁷.

179

180 Enzymatic biosensors constitute the most established category of biosensors, despite
181 enzymes typically being regarded as the most promiscuous building blocks for
182 constructing biosensors ⁵⁸. Conventional output signals for these sensors include
183 products and byproducts of enzymatic reactions, such as hydrogen peroxide (H₂O₂) ⁵⁹,
184 compounds with chromophores ⁶⁰⁻⁶², redox cofactors ⁶³, or electrical signals ^{64,65}, making
185 enzymatic biosensing an indirect measurement method (**Figure 1C**). Luciferase
186 represents one of the most commonly utilized enzymatic biosensors, converting cellular
187 processes such as viability, protein-protein interactions, and gene expression activity into
188 detectable light signals with the assistance of specific luciferin substrates ⁶⁶. Although
189 enzymatic biosensors can exhibit exceptional sensitivity and rapid response, enzymatic
190 reactions alter the target's concentration, causing the output signal to be influenced by
191 reaction thermodynamics and kinetics. Furthermore, certain output signals are
192 ubiquitously present in biomedical and environmental samples, challenging efforts to
193 improve biosensor precision via protein engineering ⁴. On the other hand, enzymes
194 display the broadest substrate range and demonstrate the highest resilience to protein
195 engineering ⁵⁸. Numerous studies have successfully modified substrate-binding
196 specificity while preserving catalytic activities by altering ligand-binding pockets ^{20,67-69}.
197 In addition, enzymatic reactions can transform noncanonical detection targets into

198 detectable compounds when combined with other biosensor types, extending the
199 chemical detection range of a biosensor through a plug-and-play modular approach⁷⁰.

200

201 **Creation of ligand-specific, genetically encoded biosensor chimeras**

202 **Domain swapping for orthogonal signal transduction**

203 For TCS-based GEBs, sensing a new signal is often achieved by replacement of entire
204 functional domains for most orthologous sHKs, owing to the lack of conserved sequence
205 within sensory domains⁴⁵. The first chimeric sHK was constructed by fusing the sensory
206 domain of *E. coli* Tar chemoreceptor with the dimerization and histidine
207 phosphotransferase domain and catalytic and ATP-binding domain of a canonical sHK
208 EnvZ⁷¹. Given the innate ligand specificity, most research has concentrated on
209 enhancing signal transduction fidelity to improve biosensor performance, or on
210 transferring the developed biosensor to another organism^{27,72}. Recently, Schmidl et al.
211 devised a general method for rewiring various TCSs to well-characterized output
212 promoters by modularly swapping RR DNA-binding domains (DBDs)³¹. This technique is
213 also beneficial for investigating the ligand specificity of certain uncharacterized sHKs,
214 facilitating assessments of sHKs' portability between bacterial species. As for GPCR-
215 based biosensors, several studies have crafted chimeric GPCR-G protein α subunit pairs
216 to transmit chemical signals into the downstream mitogen-activated protein kinase
217 cascade, which drives the expression of pheromone-responsive genes in yeast⁷³⁻⁷⁶.
218 Researchers discovered that exogenous GPCRs exhibit orthogonality across their non-
219 cognate ligands when expressed in yeast⁷⁷. This high degree of orthogonality enabled
220 ligand-specific mating of probiotic yeast equipped with corresponding heterogeneous

221 GPCRs and several ligand-specific GEBs^{73,75}. However, the relatively limited dynamic
222 range and slow kinetics have constrained the application of GPCR GEBs.

223

224 **Modular assembly of one-component systems**

225 aTFs, consisting of a ligand-binding domain (LBD) and a DBD, display a high degree of
226 modularity for the development of chimeric biosensors^{78–80}. Several ligand-specific aTF-
227 based GEBs can be constructed by functional domain swapping^{1,49}. For instance, BenR
228 and XylS are AraC-type transcription regulators from *P. putida*, and BenR is specific to
229 benzoic acid (Bz) among benzoate derivatives while XylS is more responsive to 3-methyl
230 benzoic acid (3MBz) with a slightly lower activity to Bz⁸¹. Monteiro et al. developed a
231 3MBz-specific biosensor by replacing the LBD of BenR with that of XylS⁸¹. Similarly,
232 Chang et al. designed aTF-based bile salts biosensors in *E. coli* by fusing LBDs of PBPs
233 (periplasmic substrate-binding proteins) from enteropathogenic bacteria with *E. coli*
234 DBDs, demonstrating that ligand specificity profiles of LBPs were swappable between
235 species⁸². Furthermore, De Paepe et al. transferred the ligand specificity from an *E. coli*-
236 incompatible *Sinorhizobium meliloti* NodD1 system to an *E. coli*-compatible
237 *Herbaspirillum seropedicae* FdeR system⁸³. They eliminated the substrate promiscuity
238 of FdeR in *E. coli* by replacing the DBD or transcription factor binding sites of FdeR with
239 those from the luteolin-specific regulator, NodD1. In addition, Rondon and Wilson found
240 that the monomer–monomer interface and hinge region of the DBD are also crucial
241 positions determining the specificity of a biosensor chimera⁸⁴.

242

243 In addition to protein-based GEBs, riboswitch-based systems also exhibit significant
244 specificity and modularity (**Figure 1E**). These biosensors are capable of detecting a
245 diverse range of biological inputs, including ions, small molecules, proteins, and nucleic
246 acids, by modularly integrating ligand-binding aptamers⁸⁵, protein-binding RNA scaffolds
247⁸⁶, or nucleic acid-mediated toehold switch⁸⁷. Aptamers are short, single-stranded
248 oligonucleotides that perceive chemical entities through the process of binding-induced
249 alternative folding. Researchers have exploited a lot of ligand-binding aptamers, sourced
250 either from genomic RNA pools or from random sequence libraries^{88,89}. The discovery
251 and validation process has been expedited by affinity-based enrichment techniques, such
252 as systematic evolution of ligands by exponential enrichment (SELEX), which ensures
253 molecular specificity for biosensor development⁹⁰ (**Figure 3**). By integrating aptamers
254 with various expression control elements, such as ribozymes⁹¹, small RNA regulators⁹²,
255 cis-regulatory elements^{85,93}, or CRISPR guide RNAs⁹⁴, along with a downstream reporter
256 gene, researchers can construct highly orthogonal biosensing circuits. Moreover,
257 aptamers can be coupled with electrical systems that transduce aptamer conformational
258 changes into electrical signals. Researchers have developed a series of specific aptamer-
259 based electrochemical biosensors using this approach⁹⁵⁻⁹⁷.

260

261 **Fusing reporting proteins with ligand binding proteins**

262 An alternative approach for developing GEBs involves fusing FPs with LBPs such as
263 GPCRs, to probe chemical signals (**Figure 1D**). Upon binding their corresponding
264 ligands, GPCRs undergo rapid conformational changes, inducing alterations in the
265 fluorescence of circularly permuted fluorescent proteins (cpFPs), fluorescence resonance

266 energy transfer (FRET) pairs, split FPs, or bacteriophytochrome-derived near-infrared
267 FPs⁹⁸. FP-based GEBs are more sensitive with superior signal-to-noise ratios compared
268 to transcriptional activation of FP expression mediated by GPCRs⁷². Additionally, FP-
269 based GEBs are fast-acting and straightforward to test, facilitating directed evolution for
270 different functional domains of a LBP³². The first step of the evolution process requires
271 selecting suitable GPCR scaffolds from different subtypes or species depending on the
272 target ligand. Subsequently, a cpFP is inserted into a candidate scaffold, and the
273 performance of these chimeras is assessed. An ideal scaffold should demonstrate
274 efficient membrane trafficking dynamics, a high initial dynamic range after cpFP insertion,
275 appropriate affinity, and high selectivity for the target ligand. cpFP insertion site, linker,
276 and cpFP optimization can be performed sequentially, and further tuning can be achieved
277 by mutating GPCRs to refine affinity and specificity³². To date, this method has been
278 systematically applied to develop selective and sensitive GPCR-based FP sensors for
279 acetylcholine⁹⁹, dopamine^{39,41}, norepinephrine³⁷, adenosine¹⁰⁰, serotonin⁴⁷, ATP/ADP
280¹⁰¹, and endocannabinoid⁴⁶.

281

282 In bacteria, periplasmic substrate-binding protein (PBP) scaffolds which function similarly
283 to GPCRs scaffolds are appealing sensor engineering candidates³². These proteins
284 typically consist of two LBDs connected by a hinge region where ligand binding can
285 induce a conserved and substantial conformational change. Swapping the LBDs of PBPs
286 is one main method for engineering the ligand specificity of a protein scaffold. For
287 example, Scheib et al. changed the ligand specificity profile of a promiscuous PBP PotF
288 by grafting the binding site of a putrescine-selective homologous PotD onto PotF, which

289 could be an ideal scaffold for a ligand-specific biosensor¹⁰². Moreover, PBPs can capture
290 a more diverse range of molecular targets than GPCR, albeit with less specificity,
291 broadening the potential scope of FP-based GEBs. Like GPCR-based GEBs, PBP-based
292 GEBs can detect neuromodulators along with other small molecules such as methadone
293¹⁰³, serotonin¹⁰⁴, acetylcholine¹⁰⁵, glycine¹⁰⁶, trehalose¹⁰⁷, glutamate¹⁰⁸, and maltose
294¹⁰⁹. However, it is important to note that GPCR/PBP-based FP GEBs are not truly specific
295 to a single input but rather exhibit high selectivity. They can detect multiple ligands in
296 addition to the most sensitive signal, with significantly diminished sensitivity outside the
297 realm of physiological concentrations for *in vivo* applications.

298

299 Apart from GPCRs and PBPs, FP-based biosensors could also be constructed utilizing
300 other LBPs such as the LBDs of aTFs or enzymes, plant hormone receptors, and
301 lipocalins^{59,110,111}. Beltrán et al. rapidly developed 21 biosensors specific to their cognate
302 signals by modifying a plant hormone receptor with a malleable ligand-binding pocket¹¹².
303 Herud-Sikimić et al. generated a FRET-based biosensor in plant tissues and reshaped
304 the TrpR binding pocket for real-time auxin-selective biosensing¹¹³. Kang et al. developed
305 a specific FRET-based biosensor based on *P. putida* aTF LhgR to detect L-2-HG, a
306 biomarker for a variety of cancers⁵⁷. Fan et al. developed a cpFP-based biosensor by
307 engineering a redox relay between the active-site cysteines of human thioredoxin
308 peroxidase to specifically sense thioredoxin redox⁵⁹. Moreover, inverse sensing where
309 ligand binding inhibits the fluorescence activity has also been investigated, providing
310 another option for FP-based GEB development from different kinds of LBPs¹¹⁴.

311

312 **Identification of mutation hotspots in the ligand-binding domain**

313 Crosstalk is a pervasive occurrence in biological systems, complicating the optimization
314 of orthogonality for multi-input biosensing applications ^{15,115}. Enhancing the orthogonality
315 of a ligand-receptor pair necessitates the generation of binding cavities that stabilize the
316 target molecule's binding and eliminate the potential binding to structurally similar
317 molecules ²¹. A recent study also revealed that alterations in ligand specificity of the aTF
318 BenM are predominantly governed by mutations in the LBD ¹¹⁶. Therefore, the LBD of a
319 biosensor is typically the region most targeted for manipulation, based on structural
320 analysis and sequence-function relationships, when attempting to discriminate against
321 the binding of undesired ligands ²¹. Potential mutation sites can be identified through
322 conserved residue analysis, protein structural analysis, reported functional studies, and
323 *in silico* predictions (**Table 2**). Techniques such as multiple sequence alignment,
324 homology modeling, and molecular docking are commonly used to identify key residues
325 in the LBD for specificity control ¹¹⁷. Single-alanine-substitution scanning can also roughly
326 pinpoint sensitive ligand-binding sites ¹¹⁸. The subsequent evolutionary process can
327 modify specificity from natural substrates to new ligands or eliminate undesired activity
328 for native substrates ^{119,120}.

329

330 For TCS-based GEBs, the most common LBD of the sHK is the Per-Arnt-Sim (PAS)
331 domain, which is ubiquitous across all kingdoms of life ⁴³. The target signal is perceived
332 by ligand binding to the PAS domain cavity, cofactor-containing PAS domains, and PAS
333 domain-membrane interface, or by modulation of inter-PAS domain disulfide bonds ²⁵.
334 However, there exists only minimal sequence conservation within these PAS domains,
335 impeding the annotation of mutation hotspots and the protein engineering for ligand-

336 binding specificity²⁵. Furthermore, agonists and antagonists can bind to the same domain
337 of a sensor kinase with similar affinities¹²¹, complicating the generation of a truly specific
338 sHK ligand-binding pocket without interference from other molecules. To date, no
339 successful attempt has been made to enhance the ligand specificity of an sHK by
340 remodeling the PAS domain, given the complex multistep signal transduction process.
341 Nevertheless, Landry et al. demonstrated a phosphatase tuning method to adjust the
342 detection thresholds of several TCS pairs by mutating the first variable residue in the
343 conserved transmitter domain GXGXG motif to different hydrophobic residues¹²².

344

345 Bacterial aTFs are often intrinsically promiscuous biosensing generalists^{13,123}. Therefore,
346 the evolution of an aTF from a generalist to a specialist is essential to develop ligand-
347 specific GEBs. Initial efforts to engineer inducible promoters for synthetic biology
348 applications involved structure-guided site-saturation mutagenesis (SSM) or random
349 mutagenesis of aTFs' LBDs¹. Notable examples include engineering TetR¹²⁴⁻¹²⁶, AraC
350^{127,128}, LacI¹²⁹, and LuxR¹⁴. In eukaryotes, ligand-activated TFs can also be evolved by
351 structure-guided SSM to recognize synthetic compounds for conditional gene expression
352^{17,130,131}. For example, Chockalingam et al. engineered the ligand specificity of a human
353 estrogen receptor through a combination of random mutagenesis and SSM within the
354 LBD of the receptor¹³². They successfully altered the receptor's specificity from its natural
355 ligand, 17-β-estradiol, to 4,4'-dihydroxybenzil after five rounds of evolution. Recently, we
356 demonstrated that a single mutation in the vicinity of ligand-binding sites could confer
357 specificity to promiscuous biosensors¹³³. In our work, we substantiated that TyrR, which
358 can bind both phenylalanine and tyrosine via two distinct ligand-binding pockets, can be

359 engineered for specific biosensing by disrupting one of these pockets. We also
360 engineered a TynA-FeaR biosensing system consisting of a monoamine oxidase TynA
361 that converts various neuroactive monoamines into targets detectable by the aTF FeaR
362 ¹³³. Both components were modified via SSM of key residues in the LBD predicted by
363 homology modeling. The introduction of steric hindrance enabled the specific biosensing
364 of phenethylamine, while the incorporation of smaller and hydrophilic residues created
365 tyramine-specific GEBs. Similarly, Herud-Sikimić et al. engineered the binding pocket of
366 TrpR to selectively sense auxin from 23 different indole derivatives, based on structural
367 analysis and iterative SSM of ligand-interacting residues in the vicinity of the amino group
368 of its substrates ¹¹³. Specifically, they discovered that the binding poses of tryptophan and
369 indole-3-acetic acid are distinct, and a single mutation at position 88 from serine to
370 tyrosine (S88Y) could selectively abolish the binding of tryptophan while stabilizing the
371 binding of indole-3-acetic acid.

372

373 In the case of FP-based GEBs, the linker region, FP domain, and receptor sequence are
374 subjected to systematic SSM to optimize detection sensitivity and response dynamic
375 range under varying physiological conditions ³². Most mutations do not alter molecular
376 specificity, except for those within LBDs of receptors ¹³⁴. Recently, Zhang et al. developed
377 a glycine-selective FRET biosensor based on *Agrobacterium tumefaciens* PBP Atu2422
378 which binds to glycine, serine, and γ -aminobutyric acid ¹⁰⁶. They computationally
379 designed 1,000 variants using the FoldX program and assessed them individually through
380 ligand docking with Autodock, followed by isothermal titration calorimetry experiments.
381 By introducing steric obstructions within the Atu2422 binding site, they successively

382 eliminated promiscuous binding to serine and γ -aminobutyric acid, yielding a biosensor
383 specific to glycine. However, leucine, valine, and threonine remained as co-agonists,
384 albeit with 10-fold lower sensitivity than glycine. Similarly, Feng et al. engineered and
385 characterized a norepinephrine sensor based on the adrenergic receptor ³⁷. By
386 introducing a T6.34K mutation, the norepinephrine detection sensitivity of the biosensor
387 increased by 10-fold, which is 300-fold more sensitive compared to dopamine, though the
388 sensor is still responsive to epinephrine. Borden et al. developed an acetylcholine
389 biosensor from a PBP OpuBC of *Thermoanaerobacter sp.* X513, which bound both
390 choline and acetylcholine with a higher affinity for choline ¹⁰⁵. Guided by structure
391 modeling, they modified the binding pocket to increase hydrophobicity and aromaticity
392 through the introduction of F219W, E174F, R178G, and K39I mutations. Consequently,
393 the biosensor's specificity and affinity shifted towards acetylcholine, becoming insensitive
394 to other neurochemicals except serotonin. Using this acetylcholine sensor as the starting
395 point, Unger et al. redesigned the ligand-binding pocket of OpuBC to bind serotonin while
396 eliminating binding to acetylcholine and choline ¹⁰⁴. They experimentally screened a total
397 of 2,576 variants guided by computational design and a machine-learning model, and
398 then combined frequent mutations with higher specificity. Finally, they obtained a variant
399 with 5,000-fold increase in serotonin binding specificity compared to the original version
400 by introducing 19 mutations.

401
402 A recent study by Muthusamy et al. generated a selective real-time cpFP-based
403 biosensor for S-methadone by engineering the nicotine-binding OpuBC variant ¹⁰³. The
404 ligand-binding pocket of OpuBC can accommodate methadone by aromatic residues F12,

405 Y65, Y357, and Y460, so they applied iterative SSM close to those residues and
406 developed a S-methadone-selective variant via three mutations W436F, N11V, and
407 L490A ¹⁰³. In another case, Z. Li et al. intended to develop a uridine diphosphate N-
408 acetylglucosamine (UDP-GlcNAc) sensor but were unable to eliminate the UDP/UTP
409 binding to the UDP-GlcNAc transferase backbone ¹¹⁰. Nevertheless, they have
410 succeeded in abolishing UDP-GlcNAc activity while keeping UDP/uridine triphosphate
411 (UTP) activities by random mutagenesis for UXP biosensing.

412

413 By introducing the steric effects, π interactions, or hydrophobicity changes into the ligand-
414 binding pocket, researchers could effectively discriminate the small ligand from the larger
415 chemicals, while it is still difficult to distinguish large compounds from small molecules ²¹.
416 Besides, long-range effects triggered by mutations in FP linker regions ^{32,113}, crucial
417 allosteric communication sites ^{135,136}, or protein-binding domains (PBDs) such as dimeric
418 interfaces ^{84,129,137} may also induce changes in ligand-binding affinities. Yet, the effects of
419 these distant mutations on molecular specificity are difficult to predict by simple
420 inspection. Additionally, the accurate prediction of aptamer 3D structures is challenging
421 due to their high degree of flexibility, leading most modifications of riboswitch-based
422 biosensors to be performed through high-throughput screening instead of fine-tuning via
423 point mutations ¹³⁸. To overcome these issues, the use of high-throughput screening and
424 computer-aided design approaches, in conjunction with knowledge-based structural
425 analysis, has been considered and will be discussed in subsequent sections of this
426 review.

427

428 **2. High-throughput screening and selection methods**

429 In many instances, structure-guided single-codon mutagenesis may not consistently yield
430 ligand-specific genetic sensors. Consequently, combinatorial libraries created by iterative
431 random mutagenesis or pairwise SSM become the most typical way to thoroughly explore
432 desired residue substitutions in multiple mutation hotspots. To combat issues of
433 redundant genotypes and bias in residue substitutions due to codon redundancy,
434 researchers have employed codon degeneracy to construct mutagenesis libraries of
435 minimal size ¹³⁹. Nevertheless, as the number of potential mutation sites increases, the
436 number of possible mutation combinations expands exponentially, rendering it impractical
437 to examine all variants individually. To this end, efficient screening methods must be
438 implemented to isolate the desired variant with the required properties from extensive
439 libraries (**Figure 3**).

440

441 **Fluorescence-activated cell sorting (FACS)**

442 For most GEBs, FPs, luciferases, or pigment-producing enzymes serve as quantitative
443 reporters of biosensing readout. The conventional method for colorimetric assays
444 involves blue-white colony screening on agar plates, which leverages β -galactosidase
445 activity. With the application of FPs and flow cytometry, automated fluorometric sorting
446 techniques have enabled directed evolution of various biosensors with a higher
447 throughput. The basic workflow of FACS involves categorizing input cells based on
448 fluorescence levels. In the absence of target ligands or the presence of undesired ligands,
449 where biosensor readout is expected to be null, FACS picks the bottom 1-5% of cells with
450 the lowest fluorescence levels. Meanwhile, in the presence of desired ligands where
451 biosensor readout is expected to be robust, FACS selects the top 1-5% of cells with the

452 highest fluorescence levels when induced by desired ligands. Previously, FACS has been
453 utilized as the screening method when evolving AraC to sense multiple unnatural
454 compounds, allowing the engineered variants to function as inducible promoters for
455 metabolic engineering ^{127,128,140}. Additionally, others employed FACS as the negative
456 selection step and then test the cells individually for positive hits when targeting more
457 than two ligands ^{141,142}. Recently, FACS-based screening has been used to engineer
458 additional aTFs to sense non-native ligands or eliminate native targets, including HucR
459 mutants for shikimic acid ¹⁴³, PobR for p-nitrophenol and 3,4-dihydroxy benzoate ¹⁴⁴,
460 PcaV for vanillin ¹⁴⁵, VanR for vanillic acid ¹⁴⁶, and TtgR for resveratrol ¹⁴⁷. Beyond aTF-
461 based GEBs, FACS can also facilitate the screening process for riboswitch-based and
462 GPCR-based GEBs, yielding specific variants with high fold-change activities ^{74,148}.

463

464 FACS not only distinguishes fluorescence in the presence or absence of desired inducers
465 but also discerns variations in color and particle size for affinity-based selection methods,
466 such as aptamer SELEX ¹⁴⁹ and surface display ^{150,151}. Typically, target ligands or
467 sequences are linked to their corresponding fluorescent conjugates in SELEX or surface
468 display experiments. During the affinity-based enrichment step, the ligand-bound
469 population exhibits greater size and higher fluorescence intensity than the unbound
470 population, enabling FACS to sort cells by color, fluorescence intensity, or size, and is
471 iteratively enriched. In addition, advancements in microfluidics have allowed researchers
472 to grow large-size variant libraries individually within a single well or on a chip and test
473 each variant in a droplet, significantly escalating selection capabilities compared to
474 traditional 96-well plate assays. Ma et al. developed a dual-channel microfluidic droplet

475 screening platform and employed dual-color FACS to assess the product
476 enantioselectivity of esterase mutants from *Archaeoglobus fulgidus*⁶¹. This microfluidic
477 high-throughput screening system could evaluate more than 10⁸ droplets (~10⁷ enzyme
478 variants) per day, rapidly identifying enantioselective variants. When further combined
479 with continuous evolution, FACS-based selection could become more powerful,
480 eliminating the need for repetitive DNA extraction and diversification from post-selection
481 populations. Javanpour and Liu integrated a continuous hypermutation system called
482 OrthoRep into FACS-based counter-selection cycles, reprogramming the specificity of
483 BenM from muconic acid to adipic acid¹⁵².

484

485 **Growth-based selection**

486 In instances where the expression platform involves selection markers such as antibiotic
487 resistance genes^{54,133}, toxic protein¹²⁹, or enzymes for essential metabolism^{69,137,153},
488 growth-based selection may isolate top-performing variants. Similar to FACS-based
489 selection, multiple rounds of counter-selection are required to eliminate variants with
490 leaky expression or undesired activities¹⁴. Taylor et al. employed a hybrid selection
491 process, combining growth-based negative selection and FACS-based positive selection
492 for LacI, to avoid the limited resolution of flow cytometry at low fluorescence levels¹²⁹.
493 After identifying initial hits with single-codon substitutions that bind to the desired ligand,
494 they shuffled beneficial mutations from promiscuous variants, enhancing specificity for
495 gentiobiose and sucralose over the wild-type ligand isopropyl-β-D-1-
496 thiogalactopyranoside. Similarly, Ogawa et al. utilized growth-based dual-selection by
497 expressing two antibiotic resistance genes connected by a genetic inverter, successfully
498 obtaining a 4-methylbenzoic acid (4MBz)-specific XylS variant through two mutations¹⁵⁴.

499 Fluorescent proteins or colorimetric markers can also aid in the selection process by
500 identifying the brightest colonies on agar plates, providing an optimal starting point for the
501 subsequent round of directed evolution iterations ^{54,55}. However, due to the toxic
502 environment exerting selection pressure, unexpected mutations may arise from low
503 genetic stability or PCR errors, necessitating careful selection of appropriate expression
504 levels of selection markers or antibiotic concentrations ^{129,133}

505

506 Compartmentalized partnered replication (CPR) represents another high-throughput
507 screening method that can enrich variants with enhanced expression levels during cell
508 growth ¹⁵⁵. Rather than using selection markers, researchers express a thermostable
509 DNA polymerase as the reporter and amplify positive hits via compartmentalized PCR.
510 This process allows variants with higher polymerase levels to produce more DNA
511 templates, preserving beneficial mutations for successive rounds of evolution. Ellefson et
512 al. evolved an aTF TrpR to control the expression of Taq polymerase, utilizing CPR to
513 enrich variants with specific sensing abilities for synthetic tryptophan analogs, 5- or 6-
514 bromo-L-tryptophan ¹⁵⁶. Moreover, Meyer et al. systematically evolved 12 aTF-based
515 GEBs using growth-based negative selection and CPR as a positive selection method to
516 minimize reporter expression leakiness and crosstalk between noncognate promoters ¹¹⁵.
517 Overall, growth-based counter-selection serves as a convenient and cost-effective *in vivo*
518 screening method, despite potentially longer time and lower throughput compared to the
519 FACS method.

520

521 **Deep mutational scanning (DMS)**

522 Most research has employed random mutagenesis or focused library design to evolve
523 promiscuous sensor candidates. However, random mutagenesis often generates
524 synonymous, redundant, or suboptimal mutations, while comprehensive screening of
525 focused-mutagenesis designs proves expensive and labor-intensive. To overcome these
526 limitations, DMS has emerged as a massively parallel method that can walk through a
527 large number of mutants benefiting from deep sequencing technologies and enrich the
528 variants bearing improved function by accessing the fitness of each variant under
529 selection pressure ¹⁵⁷. DMS is a simultaneous selection and measurement process for
530 sensor-target pairs, eliminating the need to isolate individual variants ¹⁵⁸. The workflow of
531 DMS is summarized as follows: 1) Generate a biomacromolecule library through random
532 mutagenesis or unbiased structure-guided SSM and assign a unique barcode for each
533 variant. 2) Subject the library to a selection process, altering the density of each variant
534 in response to selection pressure, known as enrichment. 3) Segregate the library into
535 several subpopulations after the enrichment process according to the selected
536 phenotype. 4) Extract DNA from each population with or without selection and utilize high-
537 throughput sequencing to determine the frequency of each variant across different bins.
538 5) Derive enrichment scores from sequencing results to form a sequence-function fitness
539 landscape, which could indicate beneficial or deleterious mutations.

540

541 When combined with artificial enrichment processes such as SELEX ¹⁵⁹ and protein
542 display technologies ¹⁶⁰ as well as FACS ^{161,162} or growth-based selection ^{137,163}
543 processes previously discussed, DMS can examine evolutionary protein-RNA, protein-
544 DNA, RNA-ligand, or protein-ligand binding capabilities effectively ¹⁵⁷. CPR also has the

545 potential to be integrated with DMS for quantitative assessment of variants' fitness under
546 selection pressures, preventing low sequencing fidelity caused by insufficient samples
547 after selection. DMS has been extensively applied to quantify the epistatic mutation
548 effects on human diseases ¹⁶⁴, protein stability, activity or enantioselectivity ¹⁶⁵⁻¹⁶⁷,
549 protein-protein interactions ^{150,168,169}, and enzyme-substrate specificity ^{137,170}.

550

551 Intriguingly, Wrenbeck et al. discovered that beneficial mutations enhancing enzyme-
552 substrate specificity were distributed globally throughout the sequence and structure, with
553 most residing 9-20 Å away from active sites ¹³⁷. They also observed that beneficial
554 mutations were imbalanced among three different substrates, with a certain correlation of
555 fitness between them. Although the "specificity-determining" mutation described in this
556 study does not necessarily indicate exclusive binding to a single ligand, it emphasizes
557 that advantageous mutations may extend beyond ligand-interacting residues, and DMS
558 has proven to be an effective tool in uncovering those distal mutation hotspots. In a similar
559 vein, Ogawa et al. conducted DMS on XylS and employed an antibiotic growth-based
560 dual screening system to enrich XylS variants with enhanced specificity for structurally-
561 similar 3MBz and 4MBz, respectively ¹⁷¹. They randomized 213 residues within the XylS
562 LBD using single-codon substitutions and calculated each variant's frequency to delineate
563 the mutational fitness landscape under antibiotic selection pressure. They then focused
564 on residue G71, which exhibited the highest fitness scores, and identified 4MBz-specific
565 variants that lacked activity towards its native substrate. More recently, Meier et al.
566 revealed the ligand-binding residues of ATP-binding cassette transporter EfrCD after the
567 DMS process targeting three drugs ¹⁷². They also discovered that a single mutation could

568 transform wild-type EfrCD into a Hoechst-specific importer, which could be repurposed
569 as a biosensor by coupling it to a TCS-based regulatory system. However, a single
570 mutation may not be sufficient to adjust the ligand-bound conformation for most LBPs. To
571 make the method more generalizable, computational models are required to predict
572 combinatorial mutations that enable specificity shifts based on DMS databases.

573

574 **3. Computer-aided evaluation and prediction of biosensor**
575 **specificity**

576 Owing to the limited screening capacity restricted by the transformation efficiency or
577 measurement resolution, it is infeasible to fully explore the sequence space of
578 combinatorial mutagenesis libraries experimentally. As an alternative, computer-aided
579 protein design can assess protein-ligand interactions for mutants of interest more
580 efficiently and predict potentially specific variants exhibiting optimal ligand-binding
581 compatibility¹⁷³. At the atomic level, the objective of the forward protein engineering
582 process is to precisely position amino acid side chains around the ligand to achieve
583 optimal orientations. At the protein level, geometrically compatible ligand-receptor
584 interfaces should be tailored specifically for the target ligand based on first principles
585^{174,175}. Researchers have predominantly depended on ligand-receptor scoring functions
586 to steer the selection of best-performing design candidates while discarding unfavorable
587 ones. To improve their ranking performance, these functions integrated a myriad of
588 factors such as cheminformatics of ligand-binding residues, geometric information in the
589 form of distance matrices, functional group interaction fingerprints, and binding free
590 energy calculations drawn from knowledge-based functions, molecular dynamics, or

591 Monte Carlo simulations ¹⁷⁶. Computational tools like Rosetta can provide precise
592 calculation of interaction energy as well as fast prediction for protein folding and molecular
593 docking simulations, thereby offering a higher throughput for selecting promising variants
594 *in silico* ¹⁷⁷. With the development of machine learning methods, combinatorial position-
595 specific mutations based on ligand-receptor affinity prediction may be increasingly pivotal,
596 especially for sensors that lack accurate structural information ¹⁷⁸.

597

598 **Structure-guided computational protein design and *in silico* selection**

599 In practice, the variant library size could grow exponentially with the increase of mutation
600 positions, quickly exceeding the transformation efficiencies typically observed for yeast
601 (up to 10^6 variants), *E. coli* (up to 10^7 variants), and phage (up to 10^{12} variants).
602 Consequently, the number of sequences to be scrutinized is restricted, necessitating the
603 optimization of the mutational space through computer-guided library design before
604 experimental screening ¹⁷⁹. The typical *in silico* selection pipeline to computationally
605 design a specific LBP is summarized as follows: 1) Obtain the structure of the sensing
606 protein via crystallography, homology modeling, or *de novo* design of the protein
607 backbone with desired geometries. 2) Identify active sites through molecular docking or
608 consensus analysis and reshape the LBD using focused or saturation mutagenesis *in*
609 *silico*. 3) Predict beneficial mutations by comparing ligand-binding affinities calculated via
610 interaction energy function or molecular dynamics simulations. 4) Assess ligand
611 specificity by computationally comparing the complementarity of each ligand and
612 experimentally verify the top-ranking variants. Additionally, steps 3) and 4) could be
613 performed experimentally using DMS, which yields the most stable scaffold variants for

614 further modifications ^{160,161,180}. This hybrid approach enables researchers to explore a
615 more extensive design space than traditional directed evolution methods.

616

617 Computational pre-screening can effectively eliminate a large number of mutants with
618 unfavorable protein scaffolds and identify those with the most complementary ligand-
619 protein interfaces. Looger et al. re-engineered the ligand-binding sites of five PBPs
620 (glucose-binding protein, ribose-binding protein, arabinose-binding protein, glutamine-
621 binding protein, and histidine-binding protein) to alter the ligand specificity for nonnative
622 substrates ¹⁸¹. They generated 10^{45} to 10^{68} mutant structures *in silico* by mutating 12-18
623 amino-acid residues in direct contact with their wild-type ligands and ranked them based
624 on minimized binding energy calculated using dead-end elimination theorems. The
625 energy function considered molecular shape, chirality, hydrogen bonding, molecular
626 surface (polar, aliphatic, aromatic, charged, and cationic), and water solubility. Seventeen
627 top-ranking variants were experimentally examined and exhibited selective molecular
628 recognition for their new targets. Finally, they created a chimeric TCS biosensor based
629 on ribose-binding and glucose-binding proteins responsive to trinitrotoluene and L-
630 lactate. Furthermore, Lippow et al. engineered the substrate specificity of galactose 6-
631 oxidase to respond to glucose by a semi-rational approach, which computationally
632 predicted favorable mutants with better ligand compatibility and synthesized them for
633 experimental selection of positive hits ¹⁸². Similarly, Jha et al. expanded the specificity of
634 an aTF PobR for 3,4-dihydroxy benzoate without interference from structurally-similar 2-
635 hydroxy benzoate using Rosetta-assisted library design ¹⁸³. However, the evolved aTF-
636 based sensor remained active for the native inducer 4-hydroxy benzoate, highlighting the

637 challenge of developing a truly specific biosensor by computational prediction alone.
638 Subsequently, they screened the same library and find a specialist with switched
639 specificity from 4-hydroxy benzoate to p-nitrophenol by four rounds of FACS ¹⁴⁴. Likewise,
640 Unger et al. optimized the serotonin-binding pocket of a PBP-based biosensor using
641 ligand docking and binding efficiency prediction for 250,000 variants through
642 RosettaLigand ¹⁰⁴. They selected 18 top-ranking variants for further diversification by
643 SSM of four crucial residues predicted by random forest modeling and combined the
644 beneficial mutations using a generalized linear model to identify the best-performing
645 sensor variant. However, this technique relies on high-resolution, three-dimensional
646 protein structures for accurate binding energy calculations, which limits its broader
647 applicability in LBP design when high-quality crystal structures are unavailable.

648

649 Alternatively, *de novo* design approaches allow researchers to define geometric positions
650 and orientations of ligand-binding residues and search for a large number of available
651 protein scaffolds to accommodate orchestrated ligand interactions ¹⁸⁴ (**Figure 4A**).
652 Tinberg et al. pre-organized ligand-interacting residues geometrically around the ligand
653 and placed the motif into 401 protein scaffolds ¹⁸⁵. The conformational fitness of each
654 protein-ligand complex was evaluated by RosettaMatch, and top-ranking scaffolds were
655 selected for further modification. Next, they computationally designed surrounding ligand-
656 binding residues by RosettaDesign programs for optimal shape complementarity, ligand
657 interaction energy, and protein stability. Finally, SSM libraries with one to three
658 substitutions on 39 residues were experimentally screened to determine the ideal ligand-
659 binding affinities via yeast display and FACS. Likewise, Glasgow et al. developed a FP-

660 based biosensor for farnesyl pyrophosphate by modeling farnesyl pyrophosphate-binding
661 motifs within 3,463 compatible protein complex scaffolds ¹⁸⁶. With increasingly accurate
662 protein folding simulations from algorithms like RoseTTAFold and AlphaFold2, scientists
663 can efficiently generate artificial protein scaffolds featuring the desired pocket shape and
664 tunable geometries for specific molecular interactions ¹⁸⁷⁻¹⁸⁹. Most recently, Yeh et al.
665 designed artificial luciferases from scratch that specifically bind synthetic luciferin
666 diphenylterazine (DTZ) and 2-deoxycoelenterazine (h-CTZ) ¹⁹⁰. They selected nuclear
667 transport factor 2-like superfamily as the topology from 4,000 small-molecule binding
668 proteins due to their appropriate shape complementarity after ligand docking. Next, they
669 employed a deep-learning-based ‘family-wide hallucination’ approach to create ligand-
670 binding pockets that stabilize the anionic state of DTZ or h-CTZ and predicted the
671 structure by trRosetta. Ultimately, they screened 7,648 designs for DTZ and 46 designs
672 for h-CTZ based on ligand-binding energy, protein-ligand hydrogen bonds, shape
673 complementarity, and contact molecular surface, and they introduced SSM to further
674 improve the luciferases activity. These studies achieved selective biosensing by
675 computational design of the ligand-binding pocket for the desired substrate only,
676 demonstrating the importance of shape complementary for specific biosensing.

677

678 These computer-aided protein design methods allowed researchers to bypass bumpy
679 mutational trajectories and tremendously circumvent laborious experimental iterations.
680 However, few studies considered negative design to exclude structurally similar
681 chemicals during the design process. To better improve the ligand specificity of
682 computationally designed biosensors, researchers could consider negative designs using

683 ultra-large library docking platforms and calculate the target-to-decoy ratio to eliminate
684 promiscuous designs ¹⁹¹⁻¹⁹³.

685

686 **Data-driven ligand specificity prediction using machine learning and**
687 **neural network**

688 Molecular docking simulations can provide reliable predictions for potential ligand-
689 binding; however, their accuracy remains limited ¹⁹⁴. To refine the ranking ability in ligand-
690 docking simulations, machine learning methods have been extensively employed ¹⁹⁵.
691 Nonetheless, the structure-oriented docking process is computationally resource-
692 intensive, especially when dealing with hundreds of thousands of variants with subtle
693 sequence changes. Instead of relying solely on the structure-guided computational
694 design, advancements in NGS techniques and machine learning models enable
695 researchers to explore larger sequence spaces and predict ligand-protein interactions
696 with minimal experimental effort ^{196,197} (**Figure 4B**).

697

698 As the size of available databases continues to grow, accurate prediction of family-wide
699 enzyme-substrate compatibility via high-throughput virtual screening becomes
700 increasingly crucial for industrial biomanufacturing and drug discovery ^{192,198}. Currently,
701 many studies have laid the groundwork for accurately predicting enzyme-substrate
702 promiscuity by integrating sequence and structural information ^{198,199}, enhancing enzyme
703 feature descriptors ²⁰⁰, expanding training databases ¹⁷⁸, and examining various models
704 ^{201,202}. For example, Robinson et al. developed enzyme-substrate regression models for
705 the OleA family of thiolases, considering 153 chemical characteristics of residues within
706 12 Å of the active site ²⁰³. Notably, they identified the cavity size of the ligand-binding

707 pocket as a major determinant for the binding of bulky substrates, corroborating earlier
708 findings by Martínez-Martínez et al. ²⁰⁴. Additionally, Ollikainen et al. applied Rosetta-
709 based computational methods to enhance prediction accuracy for mutations altering
710 enzyme specificity, accounting for the coupled flexibility of protein backbone, ligand, and
711 ligand-binding residues ²⁰⁵.

712

713 Beyond the conventional approaches of empirical energy functions or force field-guided
714 simulations, researchers have devised several machine learning or deep neural network
715 (DNN) models to predict protein-ligand binding affinity ²⁰⁶⁻²¹⁰. These advanced prediction
716 models demonstrate the capability to discern ligand specificity in novel proteins and
717 predict mutations that can alter ligand specificity for new ligands ^{211,212}. Notably,
718 Chatterjee et al. established an artificial intelligence-based pipeline AI-bind that predicts
719 the binding sites and probability of diverse protein-ligand pairs, including 26 SARS-CoV-
720 2 viral proteins and 332 human proteins ²¹³. In addition, Rube et al. developed a machine
721 learning model called ProBound, which predicts TF-DNA binding affinity and quantifies
722 sequence recognition specificity from massively parallel sequencing data ²⁰⁸.
723 Nevertheless, the specificity of other regulatory LBPs was rarely investigated by machine
724 learning models over the past decades, possibly due to the lack of comprehensive and
725 high-quality databases to support analyses in these areas.

726

727 As previously discussed, DMS methods have been extensively applied to map genotype-
728 phenotype relationships and delineate mutational fitness landscapes for a broad array of
729 proteins, thereby providing enormous training datasets ²¹⁴. Fitness scores that quantify

730 the mutation effects can either be determined through DNA enrichment methods following
731 selection pressure or be computed by free energy differences derived from empirical
732 energy functions ¹⁶⁴. Researchers have integrated Monte Carlo-based computational
733 screening and growth-based selection techniques to predict and validate mutation
734 hotspots that enhance enzyme activities by calculating the sequence density of enriched
735 variants ²¹⁵. For the past few years, the increasing availability of massively parallel
736 mutagenesis datasets has enabled the broader application of statistical learning for
737 evolutionary sequence variation, resulting in more efficient predictions of sequence-
738 function relationship ^{214,216,217}.

739

740 Still, most machine-learning models trained on DMS datasets focused on mutation effects
741 on protein stability, enzyme activity, antibiotic resistance, protein-protein interactions, or
742 human diseases ^{164,165,217–221}, rather than biosensing specificity. For example, Wu et al.
743 trained a machine-learning model using hundreds of selected variants and predicted the
744 fitness landscape of a nitric oxide dioxygenase from *Rhodothermus marinus*,
745 encompassing a library with seven substitution positions ¹⁷³. Despite the model
746 considering a mere seven mutation sites, it demonstrated substantial predictability,
747 guiding the evolution of enzyme enantioselectivity and identifying several (S)- and (R)-
748 selective catalysts through prediction. Furthermore, several comprehensive DMS studies
749 have been conducted on full-length aTF sequences, employing machine-learning models
750 to predict their allosteric communications modulated by corresponding ligands ^{222–226}.

751

752 Attributable to advancements in mapping sequence-function relationships, mutational
753 fitness landscapes present a more informative approach to effectively evaluate ligand
754 specificity and predict functional mutations in comparison to conventional affinity-based
755 prediction models. Notably, Tack et al. measured the fitness landscape of 62,472 LacI
756 variants after antibiotic-based growth enrichment and trained a DNN model to predict
757 transfer curves for all possible variants ²²⁵. Their accurate predictions of the EC₅₀ for
758 selected LacI mutants shed light on the potential investigation of aTF ligand specificity by
759 measuring mutational fitness landscapes when induced by multiple ligands. These
760 studies have contributed to an expanding toolbox that can streamline the design-build-
761 test-learn cycle for ligand-specific biosensor development in the future.

762

763 **4. Conclusion**

764 The accurate measurement and precise control of interactions between ligands and
765 macromolecules have been long-standing objectives in the realm of allosteric
766 macromolecule engineering and biosensing. In this review, we have summarized 1)
767 rational design principles for generating suitable starting points, 2) high-throughput
768 screening techniques to enhance biosensing performance, and 3) computational design
769 models that facilitate the design-build-test-learn cycle (**Figure 2**). Additionally, the design
770 and screening methods for generating specific genetic elements could contribute to the
771 creation of superior biosensors and also support the engineering of upstream or
772 downstream enzymes ¹⁴³, transporters ²²⁷, regulators ³³, and related metabolic pathways

773 ^{54,55}.

774

775 Generally, any protein or nucleic-acid switch capable of undergoing allosteric
776 conformational changes can be engineered as a GEB. Numerous studies have already
777 improved protein-protein binding specificity, encompassing antibodies ²²⁸, protein
778 interfaces ²²⁹, proteases ^{151,230}, and protein inhibitors ⁷⁰. Additionally, enzyme specificity
779 for native cofactors can be altered to accommodate synthetic compounds for conditional
780 genetic control ^{63,231}. Thus, the molecular specificity of biosensors can extend to a wider
781 array of chemical or biological targets such as proteins ²³², nucleic acids ²³³, ions ²³⁴,
782 pathogens ^{33,235}, and ones beyond the small molecules discussed herein.

783

784 Still, universal engineering pipelines for specificity control of distinct GEBs remain elusive,
785 but existing technologies have been combined to achieve novel functions that surpass
786 the capabilities of natural evolution spanning millions of years. In the future, such
787 synthetic evolution approaches will expedite the discovery of optimized molecular
788 interactions, paving the way for accurate diagnostics, rapid drug discovery, and large-
789 scale biomanufacturing. The specific genetic components outlined here possess the
790 potential to empower researchers with the ability to control complex biosystems in a more
791 precise and quantitative manner. By detecting a wider range of chemical or biological
792 signals with enhanced specificity, we can tackle the problems posed by complex
793 environments more effectively and accomplish increasingly challenging global tasks in a
794 safer and more sustainable fashion.

795

796 **Acknowledgements**

797 We thank Matthew Lima, Sandra Matteucci, and Allison Creighton for helping revise this
798 manuscript. This work was supported by the National Science Foundation [MCB-2001743
799 to T.S.M.], National Institutes of Health [RO1 AT009741 to T.S.M.], the United States
800 Department of Agriculture [2020-33522032319 to T.S.M.], and the U.S. Environmental
801 Protection Agency [84020501 to T.S.M.]. The content is solely the responsibility of the
802 authors and does not necessarily represent the official views of the funding agencies.

803

804 **Conflict of Interest**

805 The authors declare no conflict of interest.

806

807 **Figure legend**
808

809 **Figure 1. Overview of Five Distinct Types of Biosensors and Their Specificity**
810 **Control Methods.** (A) **TCS-based biosensors:** Domain swapping acts as the
811 predominant method to tune specificity. Components like SD, Dhp-RD pair, and DBD can
812 be interchangeably utilized to facilitate orthogonal signal transduction. (B) **aTF-based**
813 **Biosensors:** Both directed evolution and domain-swapping techniques serve as tools to
814 refine ligand specificity, either by eliminating undesirable molecular interactions or
815 adapting to non-native ligands. (C) **Enzymatic biosensors:** The sensor output could be
816 either the product or a byproduct, and directed evolution emerges as the most effective
817 approach to enhance substrate specificity. (D) **FP-based biosensors:** Mutagenesis
818 within LBDs proves to be the most effective strategy for modifying ligand specificity.
819 Performance can be enhanced by modulating both the linker and cpFP insertion site.
820 Here, GPCR is presented as an example of ligand-binding, and orthogonal signal
821 transduction can be achieved via chimeric $\text{G}\alpha$ through domain swapping. (E) **Riboswitch-based Biosensors:** These biosensors integrate a ligand-binding aptamer with a genetic
822 transducer and a reporter. SELEX remains the most common method to enhance
823 aptamer specificity.
824

825 Key: TCS, two-component system; SD, sensor domain; DHp, dimerization and histidine
826 phosphotransferase; CA, catalytic and ATP-binding; RD, receiver domain; DBD, DNA-
827 binding domain; LBD, ligand-binding domain; PBD, protein-binding domain; aTF,
828 allosteric transcription factor; TFBS, transcription factor binding site; FP, fluorescent
829 protein; GPCR, G protein-coupled receptor; $\text{G}\alpha$, G protein α subunit; TM, transmembrane
830 helices; ICL3, intracellular loop 3; cpFP, circularly permuted fluorescent protein; NIR-FP,
831 near-infrared fluorescent protein; FRET, fluorescence resonance energy transfer;
832 SELEX, systematic evolution of ligands by exponential enrichment.
833
834

835 **Figure 2. The Design-Build-Test-Learn Workflow of Directed Evolution.** Five
836 genetically encoded biosensors undergo similar design-build-test-learn cycles, involving
837 diversification, expression, and selection processes. Specific regions of the genetic
838 elements can be intelligently chosen for subsequent mutagenesis. Techniques such as
839 random mutagenesis, domain swapping, structure-guided site-directed saturation
840 mutagenesis, or computation-driven focused mutation can be introduced to the selected
841 DNA region. The expression and screening process significantly determine the
842 throughput and robustness of the directed evolution process. Variants demonstrating
843 specific ligand-binding will be selected and amplified for further verification or iterative
844 rounds of selection.
845

846 Key: aTF, allosteric transcription factor; DBD, DNA-binding domain; LBD, ligand-binding
847 domain; TCS, two-component system; SD, sensor domain; DHp, dimerization and
848 histidine phosphotransferase; CA, catalytic and ATP-binding; FP(LBP), fluorescent
849 protein fused with ligand-binding protein; PBD, protein-binding domain; cpFP, circularly
850 permuted fluorescent proteins.
851

852 **Figure 3. High-Throughput Screening Techniques.** Following DNA diversification
853 methods such as random mutagenesis, site-directed saturation mutagenesis, or
854 computer-assisted focused mutation, DNA variants are tested in vitro or introduced into
855 microbial hosts, including *E. coli* (supporting up to 10^7 variants), yeast (up to 10^6), or
856 phages (up to 10^{12}). The screening process is dependent on the reporter gene regulated
857 by the biosensor. When the reporter is a fluorescence protein, FACS-based selection can
858 yield specific variants by iteratively sorting cells with desired fluorescence levels in the
859 presence or absence of target ligands. Growth-based dual-selection can be utilized when
860 the reporter is growth-related, such as an antibiotic resistance protein, toxic protein, or
861 enzyme critical to survival. When the reporter is a DNA polymerase, DNA enrichment
862 methodologies like CPR come into play. Active partner variants will trigger the expression
863 of DNA polymerase, allowing the active partner to be amplified through PCR reactions.
864 DMS can be coupled with positive selection via FACS or growth-based selection, followed
865 by NGS to determine the mutational fitness landscape under varying selection pressures.
866 Surface display and SELEX processes can also be paired with FACS or DMS to
867 specifically enrich positive hits with superior ligand affinity. Positive hits are isolated from
868 the screening or selection process for verification and further evolution.
869 Key: SSM, site-directed saturation mutagenesis; FACS, fluorescence-activated cell
870 sorting; CPR, compartmentalized partnered replication; DMS, deep mutational scanning;
871 NGS, next-generation sequencing; SELEX, systematic evolution of ligands by
872 exponential enrichment.

873
874 **Figure 4. Holistic View of Computer-Aided Biosensor Design.** (A) Diagram of
875 structure-based computational protein design. The potential conformational space for a
876 protein-ligand complex could exceed 10^{50} after a series of design processes.
877 Computational algorithms can constrain the mutational space through ligand docking
878 ranking, free energy calculation, or molecular dynamics simulations, and the top-ranked
879 variants are subject to experimental validation for enhanced specificity. (B)
880 Representation of datasets of varying sizes derived from different mutagenesis libraries
881 and screening methods for use in ligand-specificity prediction models. These models can
882 utilize datasets ranging from hundreds to hundreds of thousands of data points to predict
883 ligand specificity. Predictions are based on scoring protocols for ligand-receptor pairs
884 using criteria such as ligand-binding affinity, fitness scores, or evolutionary landscape
885 extracted from DMS data.
886 Key: SSM, site-directed saturation mutagenesis; LBD, ligand-binding domain, DMS, deep
887 mutational scanning.
888

890 **Table 1. Overview of Natural Biosensing Elements Discussed in This Review.**
 891 Key: GPCR, G protein-coupled receptor; TCS, two-component system; PBP, periplasmic
 892 substrate-binding protein; aTF, allosteric transcription factor; LBD, ligand-binding domain;
 893 PBD, protein-binding domain; FP, fluorescent protein; SD, sensor domain; DHp,
 894 dimerization and histidine phosphotransferase; CA, catalytic and ATP-binding; RD,
 895 receiver domain; DBD, DNA-binding domain; ABC transporter, ATP-binding cassette
 896 transporter; TFBS, transcription factor binding site; +, low; ++, medium; +++, high; -, not
 897 shown or almost none.
 898

Signals	Allosteric components	Small molecule substrates	Sensor	Transducer	Output	Inherent specificity	Evolvability
Extracellular	GPCR	Chemical messengers	LBD	PBD → G protein → Second messenger	Transcription / Conformational activation of FP	++	+
	TCS	Growth factors and stressors	SD (PAS)	CA → Dhp → RR	Transcription	++	-
	PBP	Metabolites	LBD	Hinge → ABC transporter	Conformational activation of FP	-	++
Periplasmic	Enzyme	Metabolites	LBD	Substrate + Co-factor → Product + Byproduct	Redox, chromophore, luminescence	-	+++
	aTF	Metabolites	LBD	DBD → TFBS	Transcription / Conformational activation of FP	+	++
Cytoplasmic	Riboswitch	Metabolites	Aptamer	Ribozyme, cis-regulatory elements, small RNAs	Transcription, translation, fluorescence	+	+++

899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920

921 **Table 2. Summary of Rational Design and Directed Evolution Workflow for Ligand-specific Biosensor Development.**
 922 This table outlines the design-build-test-learn cycle used in the cited references. **Mutation hotspots & in**
 923 **silico analysis:** LBD, ligand-binding domain; LBS, ligand-binding sites; PBD, protein-binding domain; CDS, coding
 924 sequence; MSA, multiple sequence alignment; ML, machine learning. **Mutagenesis methods:** CAD, computer-aided
 925 design; Single SSM, single site-directed saturation mutagenesis; Pairwise SSM, pairwise multiple site-directed saturation
 926 mutagenesis; Random, Random mutagenesis. **Screening methods:** MS, mutational scanning; NS, negative selection; PS,
 927 positive selection; DS, dual selection; Deep(F), fluorescence-based deep mutational scanning; Deep(G), Growth-based
 928 deep mutational scanning; A, alanine scanning; FYW, phenylalanine, tyrosine, tryptophan scanning; ITC: isothermal titration
 929 calorimetry. **Mutations & effects:** #, number of mutations; Selective, promiscuous but diminished binding to undesired
 930 ligands; SE, steric effect; EI, electrostatic interaction; PI, polar interactions; HP, hydrophobic interaction; LE, long-range
 931 effect.
 932

Citation	DESIGN				BUILD			TEST				LEARN					USE
	Input				Diversification			Screening				Output					
	Type	Candidate	Ligand	In silico	Hotspot	Mutagenesis	Library size	FACS	Growth	MS	Individual	#	Specificity	Structure-based	Data-driven	Mutation effect	Application
Z. Li et al., 2021	FP (Enzyme)	MurG	11 UDP derivatives	Crystal; MSA	LBS	Random → pairwise SSM → random	10 ³			Fluorescence	1~3	UDP-GlcNAc insensitive	-	MSA	SE		Metabolism monitoring
Zhang et al., 2018	FP (PBP)	Atu2422	19 amino acids	Crystal; FoldX; Docking	LBS, linker	CAD → pairwise SSM	10 ³			ITC	3	Glycine selective	Crystallography, molecular docking	-	SE		In situ glycine sensing
Borden et al. 2020	FP (PBP)	OpuBC	11 choline analogs and NTs	Crystal	LBD	Pairwise SSM	>10 ¹⁰			Fluorescence	21	Acetylcholine selective	Crystallography	-	SE, HP		In situ acetylcholine sensing
Muthusamy et al., 2022	FP (PBP)	OpuBC variant	6 opioid analogs	Crystal	LBS	MS → single SSM	10 ²	FYW		Fluorescence	3	S-methadone selective	Molecular docking	-	SE, HP		In situ drug monitoring

Unger et al., 2020	FP (PBP)	OpuBC variant	42 NTs and small molecules	Rosetta ; ML	LBS	CAD → single, pairwise SSM → ML	10^5		Fluorescence	19	Serotonin	Crystallography	ML	-	<i>In situ</i> serotonin sensing
Herud-Sikimic et al., 2021	FP (TF)	TrpR	23 indole derivatives	Docking	LBS	Single SSM → random	10^3		Fluorescence	5	Indole-3-acetic acid selective	Crystallography, molecular docking	SE, PI, HP	<i>In situ</i> auxin sensing	
Looger et al., 2003	TCS (Chimeric)	5 PBPs	trinitrotoluene, lactate or serotonin analogs	Docking; Energy	LBS	CAD	10^{20}		Fluorescence	5~17	Trinitrotoluene, lactate, serotonin	Molecular docking	-	SE, PI, HP	Pollutant/Metabolite detection
d'Oelsnitz et al., 2022	TF	6 regulators	5 benzylisoquinoline alkaloids (BIAs)		LBS → CDS	Pairwise SSM → random	10^5	PS	NS	9~13	Five BIAs	Crystallography	SE, EI, HP	<i>Enzyme evolution</i>	
Tang and Cirino, 2011	TF	AraC	4 similar compounds		LBS	Pairwise SSM	10^6	DS		4	Mevalonate	-	-	-	<i>Heterologous pathway engineering</i>
Tang et al., 2008	TF	AraC	5 sugars		LBS → LBD	Pairwise SSM → random	10^7	DS		4	D-arabinose	-	-	-	<i>Inducible promoter</i>
Wu et al., 2022	TF	BmoR	5 alcohols	Docking	LBD	Random → single SSM	10^3		Fluorescence	1~2	Ethanol insensitive	Molecular modeling and docking	-	PI, HP	<i>Biosynthetic pathway engineering</i>
Chockalingam et al., 2005	TF	Estrogen receptor	2 estradiol analogs	Docking	LBS	Single SSM → random	10^6		PS	7	Altered specificity	Molecular modeling and docking	SE, HP	<i>Inducible promoter</i>	
Gallinari et al., 2005	TF	Estrogen receptor	11 estradiol analogs	Docking	LBS	Pairwise SSM	10^5		β -Galactosidase	1~5	Estradiol insensitive	Molecular docking	-	SE, HP	<i>Inducible promoter</i>
Li et al., 2017.	TF	HucR	6 aromatic acids		LBS	Pairwise SSM	10^5	DS		4	Shikimic acid	-	-	-	<i>Biosynthetic pathway engineering</i>

	TF	Target	Compounds	Method	SSM	Yield	Screening	Assay	Specificity	Target	Method	MSA	PI, EI, HP	Category		
Taylor et al., 2016	TF	LacI	5 sugars	Rosetta	CDS	CAD, single SSM, random → shuffle	10 ⁴	NS	Deep(F)		3-5	Sucralose, gentiobiose	Crystallography, molecular docking	MSA	PI, EI, HP	Inducible promoter
Collins et al., 2006	TF	LuxR	6 acyl-homoserine lactones (HSLs)		LBD	Random	10 ⁴	PS	DS		2	3OCnHSL insensitive	-	MSA	EI	Engineered cell-cell communication
Ray et al., 2017	TF	MopR	6 phenol derivatives	Crystal; Docking; MS	LBS	CAD	10 ²		A	ITC	2	Catechol, phenol	Crystallography, molecular docking	-	PI, HP	Metabolite detection
Y. Li et al., 2021	TF	MphR	2 macrolides	Crystal	LBS → CDS	Single SSM → random	10 ³	NS	PS		4	Clarithromycin	Crystallography, molecular docking	Epistasis	SE, PI	Biosynthetic pathway engineering
Kasey et al., 2018	TF	MphR	6 macrolides	Crystal	LBS → CDS	Single SSM → pairwise SSM → random	10 ³	NS	PS		4	Erythromycin selective	Crystallography, molecular docking	Epistasis	LE	Biosynthetic pathway engineering
F. M. Machado et al., 2019	TF	PcaV	9 aromatic compounds	Docking	LBS	Pairwise SSM	10 ⁴	DS			3	Altered specificity	Molecular modeling and docking	-	PI	Metabolite detection
Jha et al., 2016	TF	PobR	2 aromatic acids	Crystal; Rosetta	LBS	Pairwise SSM	10 ⁷	DS			8	Altered specificity	Crystallography	MSA	EI, PI, HP	Metabolite detection
Schwimmer et al., 2004	TF	RXR	2 retinoid-like compounds	Crystal	LBD	Pairwise SSM	10 ⁴	PS			3-5	Altered specificity	-	-	SE, HP	Inducible promoter
Scholz et al., 2003	TF	TetR	5 tetracycline (tc) analogs		LBD	Random → pairwise SSM	10 ⁴	Blue-white			1-5	4-De(dimethylamino)-6-deoxy-6-demethyl-tc	Crystallography	-	SE, PI	Inducible promoter
Henssler et al., 2004	TF	TetR	4 tc analogs		LBD	Single SSM	10 ²	Blue-white			1	4-De(dimethylamino)anhydro-tc	Crystallography	-	SE, PI	Inducible promoter

Nishikawa et al., 2021.	TF	TtgR	naringenin, resveratrol	Rosetta	LBS	CAD	10^4	DS	4	Altered specificity	Crystallography	Epistasis	SE, PI, HP	Drug monitoring	
D'Ambrosio et al., 2020	TF	VanR	vanillin and vanillic acid		LBD → LBS	Random → single SSM	10^4	DS	1~5	Vanillic acid insensitive	Molecular modeling and docking	-	PI, HP, LE	Metabolite detection	
Ogawa et al., 2019	TF	XylS	2 aromatic acids		CDS	Random → single SSM	10^3	DS	2	Altered specificity	-	Epistasis	SE, PI	Biosynthetic pathway engineering	
Ogawa et al., 2022	TF	XylS	2 aromatic acids		LBD	Single SSM	10^3	Deep(G)	1	Altered specificity	-	DMS	SE, PI	Biosynthetic pathway engineering	
Monteiro et al., 2019	TF (Chimeric)	BenR + XylS	7 aromatic acids	MSA; Docking	LBS	Domain swapping	10^2		Fluorescence	-	Benzoic acid, 3-methyl benzoic acid	Molecular modeling and docking	MSA	-	Metabolite detection
De Paepe et al., 2019	TF (Chimeric)	FdeR + NodD1	3 flavonoids	MSA	TFBS	Domain swapping	10^2		Fluorescence	-	Luteolin	-	MSA	-	Metabolite detection
Rondon and Wilson, 2021	TF (Chimeric)	PurR	9 adenine derivatives	MSA	PBD, linker	Domain swapping, single SSM → random	10^6	DS	4~7	Caffeine selective	Homology modeling	MSA	SE, LE	Drug monitoring	
Ellefson et al., 2018	TF (Chimeric)	TrpR	3 tryptophan derivatives	Crystal	LBS, PBD, TFBS	Pairwise SSM, domain swapping	10^7	CPR	5	5-Bromotryptophan, 6-bromotryptophan	Crystallography, molecular docking	-	SE, LE	Genetic logic gate	
Rottinghaus et al., 2021	TF, Enzyme	TyrR, TynA, FeaR	10 aromatic compounds	Crystal; Docking	LBS	Single SSM	10^2	DS	Fluorescence	1	Four aromatic compounds	Molecular modeling and docking	-	SE, EI, PI, HP	Metabolite/ NT detection

934

Reference

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

1. De Paepe, B., Peters, G., Coussement, P., Maertens, J., and De Mey, M. (2017). Tailor-made transcriptional biosensors for optimizing microbial cell factories. *J. Ind. Microbiol. Biotechnol.* **44**, 623–645. 10.1007/s10295-016-1862-3.
2. Greenwald, E.C., Mehta, S., and Zhang, J. (2018). Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. *Chem. Rev.* **118**, 11707–11794. 10.1021/acs.chemrev.8b00333.
3. Lazar, J.T., and Tabor, J.J. (2021). Bacterial two-component systems as sensors for synthetic biology applications. *Curr. Opin. Syst. Biol.* **28**, 100398. 10.1016/j.coisb.2021.100398.
4. Zhu, Z., Song, H., Wang, Y., and Zhang, Y.-H.P. (2022). Protein engineering for electrochemical biosensors. *Curr. Opin. Biotechnol.* **76**, 102751. 10.1016/j.copbio.2022.102751.
5. Jang, S., Jang, S., Yang, J., Seo, S.W., and Jung, G.Y. (2018). RNA-based dynamic genetic controllers: development strategies and applications. *Curr. Opin. Biotechnol.* **53**, 1–11. 10.1016/j.copbio.2017.10.005.
6. Zhang, J., Jensen, M.K., and Keasling, J.D. (2015). Development of biosensors and their application in metabolic engineering. *Curr. Opin. Chem. Biol.* **28**, 1–8. 10.1016/j.cbpa.2015.05.013.
7. Wan, X., Saltepe, B., Yu, L., and Wang, B. (2021). Programming living sensors for environment, health and biomanufacturing. *Microb. Biotechnol.* **14**, 2334–2342. 10.1111/1751-7915.13820.
8. Nguyen, P.Q., Soenksen, L.R., Donghia, N.M., Angenent-Mari, N.M., de Puig, H., Huang, A., Lee, R., Slomovic, S., Galbersanini, T., Lansberry, G., et al. (2021). Wearable materials with embedded synthetic biology sensors for biomolecule detection. *Nat. Biotechnol.* 10.1038/s41587-021-00950-3.
9. Rottinghaus, A.G., Amrofelli, M.B., and Moon, T.S. (2020). Biosensing in Smart Engineered Probiotics. *Biotechnol. J.* **15**, 1900319. 10.1002/biot.201900319.
10. Amrofelli, M.B., Rottinghaus, A.G., and Moon, T.S. (2020). Engineering microbial diagnostics and therapeutics with smart control. *Curr. Opin. Biotechnol.* **66**, 11–17. 10.1016/j.copbio.2020.05.006.

958 11. Eick, G.N., Colucci, J.K., Harms, M.J., Ortlund, E.A., and Thornton, J.W. (2012). Evolution of Minimal Specificity and
959 Promiscuity in Steroid Hormone Receptors. *PLOS Genet.* 8, e1003072. 10.1371/journal.pgen.1003072.

960 12. Kiel, C., Yus, E., and Serrano, L. (2010). Engineering Signal Transduction Pathways. *Cell* 140, 33–47.
961 10.1016/j.cell.2009.12.028.

962 13. Kylilis, N., Tuza, Z.A., Stan, G.-B., and Polizzi, K.M. (2018). Tools for engineering coordinated system behaviour in
963 synthetic microbial consortia. *Nat. Commun.* 9, 2677. 10.1038/s41467-018-05046-2.

964 14. Collins, C.H., Leadbetter, J.R., and Arnold, F.H. (2006). Dual selection enhances the signaling specificity of a variant
965 of the quorum-sensing transcriptional activator LuxR. *Nat. Biotechnol.* 24, 708–712. 10.1038/nbt1209.

966 15. Moon, T.S., Lou, C., Tamsir, A., Stanton, B.C., and Voigt, C.A. (2012). Genetic programs constructed from layered
967 logic gates in single cells. *Nature* 491, 249–253. 10.1038/nature11516.

968 16. Moon, T.S. (2022). SynMADE: synthetic microbiota across diverse ecosystems. *Trends Biotechnol.* 40, 1405–1414.
969 10.1016/j.tibtech.2022.08.010.

970 17. Chockalingam, K., and Zhao, H. (2005). Creating new specific ligand–receptor pairs for transgene regulation. *Trends
971 Biotechnol.* 23, 333–335. 10.1016/j.tibtech.2005.05.002.

972 18. Simon, A.J., d’Oelsnitz, S., and Ellington, A.D. (2019). Synthetic evolution. *Nat. Biotechnol.* 37, 730–743.
973 10.1038/s41587-019-0157-4.

974 19. Packer, M.S., and Liu, D.R. (2015). Methods for the directed evolution of proteins. *Nat. Rev. Genet.* 16, 379–394.
975 10.1038/nrg3927.

976 20. Harris, J.L., and Craik, C.S. (1998). Engineering enzyme specificity. *Curr. Opin. Chem. Biol.* 2, 127–132.
977 10.1016/S1367-5931(98)80044-6.

978 21. Koh, J.T. (2002). Engineering Selectivity and Discrimination into Ligand-Receptor Interfaces. *Chem. Biol.* 9, 17–23.
979 10.1016/S1074-5521(02)00087-X.

980 22. Wells, J.A., Powers, D.B., Bott, R.R., Graycar, T.P., and Estell, D.A. (1987). Designing substrate specificity by protein
981 engineering of electrostatic interactions. *Proc. Natl. Acad. Sci.* 84, 1219–1223. 10.1073/pnas.84.5.1219.

982 23. Bepler, T., and Berger, B. (2021). Learning the protein language: Evolution, structure, and function. *Cell Syst.* **12**,
983 654–669.e3. 10.1016/j.cels.2021.05.017.

984 24. Gao, R., Bouillet, S., and Stock, A.M. (2019). Structural Basis of Response Regulator Function. *Annu. Rev. Microbiol.*
985 **73**, 175–197. 10.1146/annurev-micro-020518-115931.

986 25. Krell, T., Lacal, J., Busch, A., Silva-Jiménez, H., Guazzaroni, M.-E., and Ramos, J.L. (2010). Bacterial Sensor
987 Kinases: Diversity in the Recognition of Environmental Signals. *Annu. Rev. Microbiol.* **64**, 539–559.
988 10.1146/annurev.micro.112408.134054.

989 26. Laub, M.T., and Goulian, M. (2007). Specificity in Two-Component Signal Transduction Pathways. *Annu. Rev. Genet.*
990 **41**, 121–145. 10.1146/annurev.genet.41.042007.170548.

991 27. Podgornaia, A.I., and Laub, M.T. (2013). Determinants of specificity in two-component signal transduction. *Curr.*
992 *Opin. Microbiol.* **16**, 156–162. 10.1016/j.mib.2013.01.004.

993 28. Skerker, J.M., Perchuk, B.S., Siryaporn, A., Lubin, E.A., Ashenberg, O., Goulian, M., and Laub, M.T. (2008).
994 Rewiring the Specificity of Two-Component Signal Transduction Systems. *Cell* **133**, 1043–1054.
995 10.1016/j.cell.2008.04.040.

996 29. Rabin, R.S., and Stewart, V. (1993). Dual response regulators (NarL and NarP) interact with dual sensors (NarX and
997 NarQ) to control nitrate- and nitrite-regulated gene expression in *Escherichia coli* K-12. *J. Bacteriol.* **175**, 3259–3268.

998 30. Daeffler, K.N., Galley, J.D., Sheth, R.U., Ortiz-Velez, L.C., Bibb, C.O., Shroyer, N.F., Britton, R.A., and Tabor, J.J.
999 (2017). Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. *Mol. Syst. Biol.* **13**,
1000 923. 10.15252/msb.20167416.

1001 31. Schmidl, S.R., Ekness, F., Sofjan, K., Daeffler, K.N.-M., Brink, K.R., Landry, B.P., Gerhardt, K.P., Dyulgyarov, N.,
1002 Sheth, R.U., and Tabor, J.J. (2019). Rewiring bacterial two-component systems by modular DNA-binding domain
1003 swapping. *Nat. Chem. Biol.* **15**, 690–698. 10.1038/s41589-019-0286-6.

1004 32. Dong, C., Zheng, Y., Long-Iyer, K., Wright, E.C., Li, Y., and Tian, L. (2022). Fluorescence Imaging of Neural Activity,
1005 Neurochemical Dynamics, and Drug-Specific Receptor Conformation with Genetically Encoded Sensors. *Annu. Rev.*
1006 *Neurosci.* **45**, 273–294. 10.1146/annurev-neuro-110520-031137.

1007 33. Shaw, W.M., Yamauchi, H., Mead, J., Gowers, G.-O.F., Bell, D.J., Öling, D., Larsson, N., Wigglesworth, M., Ladds,
1008 G., and Ellis, T. (2019). Engineering a Model Cell for Rational Tuning of GPCR Signaling. *Cell* 177, 782-796.e27.
1009 10.1016/j.cell.2019.02.023.

1010 34. Jing, M., Zhang, Y., Wang, H., and Li, Y. (2019). G-protein-coupled receptor-based sensors for imaging
1011 neurochemicals with high sensitivity and specificity. *J. Neurochem.* 151, 279–288. 10.1111/jnc.14855.

1012 35. Powers, A.S., Pham, V., Burger, W.A.C., Thompson, G., Laloudakis, Y., Sexton, P.M., Paul, S.M., Christopoulos, A.,
1013 Thal, D.M., Felder, C.C., et al. (2023). Structural basis of efficacy-driven ligand selectivity at GPCRs. *Nat. Chem.
1014 Biol.*, 1–10. 10.1038/s41589-022-01247-5.

1015 36. Yang, D., Zhou, Q., Labroska, V., Qin, S., Darbalaei, S., Wu, Y., Yuliantie, E., Xie, L., Tao, H., Cheng, J., et al.
1016 (2021). G protein-coupled receptors: structure- and function-based drug discovery. *Signal Transduct. Target. Ther.* 6,
1017 1–27. 10.1038/s41392-020-00435-w.

1018 37. Feng, J., Zhang, C., Lischinsky, J.E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z., Wu, H., et al. (2019).
1019 A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. *Neuron* 102,
1020 745-761.e8. 10.1016/j.neuron.2019.02.037.

1021 38. Keiser, M.J., Irwin, J.J., and Shoichet, B.K. (2010). The Chemical Basis of Pharmacology. *Biochemistry* 49, 10267–
1022 10276. 10.1021/bi101540g.

1023 39. Patriarchi, T., Cho, J.R., Merten, K., Howe, M.W., Marley, A., Xiong, W.-H., Folk, R.W., Broussard, G.J., Liang, R.,
1024 Jang, M.J., et al. (2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded
1025 sensors. *Science* 360, eaat4422. 10.1126/science.aat4422.

1026 40. Sun, F., Zhou, J., Dai, B., Qian, T., Zeng, J., Li, X., Zhuo, Y., Zhang, Y., Wang, Y., Qian, C., et al. (2020). Next-
1027 generation GRAB sensors for monitoring dopaminergic activity in vivo. *Nat. Methods* 17, 1156–1166.
1028 10.1038/s41592-020-00981-9.

1029 41. Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., Owen, S.F., Luo, Y., Li, F., Wang, H., Yamaguchi, T., et al. (2018). A
1030 Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice.
1031 *Cell* 174, 481-496.e19. 10.1016/j.cell.2018.06.042.

1032 42. Weis, W.I., and Kobilka, B.K. (2018). The Molecular Basis of G Protein–Coupled Receptor Activation. *Annu. Rev. Biochem.* **87**, 897–919. [10.1146/annurev-biochem-060614-033910](https://doi.org/10.1146/annurev-biochem-060614-033910).

1033

1034 43. Zschiedrich, C.P., Keidel, V., and Szurmant, H. (2016). Molecular Mechanisms of Two-Component Signal Transduction. *J. Mol. Biol.* **428**, 3752–3775. [10.1016/j.jmb.2016.08.003](https://doi.org/10.1016/j.jmb.2016.08.003).

1035

1036 44. Laub, M.T. (2010). The Role of Two-Component Signal Transduction Systems in Bacterial Stress Responses. In Bacterial Stress Responses (John Wiley & Sons, Ltd), pp. 45–58. [10.1128/9781555816841.ch4](https://doi.org/10.1128/9781555816841.ch4).

1037

1038 45. Capra, E.J., and Laub, M.T. (2012). Evolution of Two-Component Signal Transduction Systems. *Annu. Rev. Microbiol.* **66**, 325–347. [10.1146/annurev-micro-092611-150039](https://doi.org/10.1146/annurev-micro-092611-150039).

1039

1040 46. Dong, A., He, K., Dudok, B., Farrell, J.S., Guan, W., Liput, D.J., Puhl, H.L., Cai, R., Wang, H., Duan, J., et al. (2022). A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. *Nat. Biotechnol.* **40**, 787–798. [10.1038/s41587-021-01074-4](https://doi.org/10.1038/s41587-021-01074-4).

1041

1042

1043 47. Wan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng, J., Zhang, P., et al. (2021). A genetically encoded sensor for measuring serotonin dynamics. *Nat. Neurosci.* **24**, 746–752. [10.1038/s41593-021-00823-7](https://doi.org/10.1038/s41593-021-00823-7).

1044

1045

1046 48. Wu, T., Chen, Z., Guo, S., Zhang, C., and Huo, Y.-X. (2022). Engineering Transcription Factor BmOR Mutants for Constructing Multifunctional Alcohol Biosensors. *ACS Synth. Biol.* [10.1021/acssynbio.1c00549](https://doi.org/10.1021/acssynbio.1c00549).

1047

1048 49. Koch, M., Pandi, A., Borkowski, O., Batista, A.C., and Faulon, J.-L. (2019). Custom-made transcriptional biosensors for metabolic engineering. *Curr. Opin. Biotechnol.* **59**, 78–84. [10.1016/j.copbio.2019.02.016](https://doi.org/10.1016/j.copbio.2019.02.016).

1049

1050 50. Rogers, J.K., Guzman, C.D., Taylor, N.D., Raman, S., Anderson, K., and Church, G.M. (2015). Synthetic biosensors for precise gene control and real-time monitoring of metabolites. *Nucleic Acids Res.* **43**, 7648–7660. [10.1093/nar/gkv616](https://doi.org/10.1093/nar/gkv616).

1051

1052

1053 51. Baumgart, L.A., Lee, J.E., Salamov, A., Dilworth, D.J., Na, H., Mingay, M., Blow, M.J., Zhang, Y., Yoshinaga, Y., Daum, C.G., et al. (2021). Persistence and plasticity in bacterial gene regulation. *Nat. Methods* **18**, 1499–1505. [10.1038/s41592-021-01312-2](https://doi.org/10.1038/s41592-021-01312-2).

1054

1055

1056 52. Hanko, E.K.R., Paiva, A.C., Jonczyk, M., Abbott, M., Minton, N.P., and Malys, N. (2020). A genome-wide approach
1057 for identification and characterisation of metabolite-inducible systems. *Nat. Commun.* **11**, 1213. 10.1038/s41467-020-
1058 14941-6.

1059 53. Henson, W.R., Campbell, T., DeLorenzo, D.M., Gao, Y., Berla, B., Kim, S.J., Foston, M., Moon, T.S., and Dantas, G.
1060 (2018). Multi-omic elucidation of aromatic catabolism in adaptively evolved *Rhodococcus opacus*. *Metab. Eng.* **49**,
1061 69–83. 10.1016/j.ymben.2018.06.009.

1062 54. d’Oelsnitz, S., Kim, W., Burkholder, N.T., Javanmardi, K., Thyer, R., Zhang, Y., Alper, H.S., and Ellington, A.D.
1063 (2022). Using fungible biosensors to evolve improved alkaloid biosyntheses. *Nat. Chem. Biol.*, 1–9. 10.1038/s41589-
1064 022-01072-w.

1065 55. d’Oelsnitz, S., Diaz, D.J., Acosta, D.J., Schechter, M.W., Minus, M.B., Howard, J.R., Do, H., Loy, J., Alper, H., and
1066 Ellington, A.D. (2023). Synthetic microbial sensing and biosynthesis of amaryllidaceae alkaloids. 2023.04.05.535710.
1067 10.1101/2023.04.05.535710.

1068 56. Diao, J., Carr, R., and Moon, T.S. (2022). Deciphering the transcriptional regulation of the catabolism of lignin-
1069 derived aromatics in *Rhodococcus opacus* PD630. *Commun. Biol.* **5**, 1–17. 10.1038/s42003-022-04069-2.

1070 57. Kang, Z., Zhang, M., Gao, K., Zhang, W., Meng, W., Liu, Y., Xiao, D., Guo, S., Ma, C., Gao, C., et al. (2021). An L-2-
1071 hydroxyglutarate biosensor based on specific transcriptional regulator LhgR. *Nat. Commun.* **12**, 3619.
1072 10.1038/s41467-021-23723-7.

1073 58. Trudeau, D.L., and Tawfik, D.S. (2019). Protein engineers turned evolutionists—the quest for the optimal starting
1074 point. *Curr. Opin. Biotechnol.* **60**, 46–52. 10.1016/j.copbio.2018.12.002.

1075 59. Fan, Y., Makar, M., Wang, M.X., and Ai, H. (2017). Monitoring thioredoxin redox with a genetically encoded red
1076 fluorescent biosensor. *Nat. Chem. Biol.* **13**, 1045–1052. 10.1038/nchembio.2417.

1077 60. DeLoache, W.C., Russ, Z.N., Narciss, L., Gonzales, A.M., Martin, V.J.J., and Dueber, J.E. (2015). An enzyme-
1078 coupled biosensor enables (S)-reticuline production in yeast from glucose. *Nat. Chem. Biol.* **11**, 465–471.
1079 10.1038/nchembio.1816.

1080 61. Ma, F., Chung, M.T., Yao, Y., Nidetz, R., Lee, L.M., Liu, A.P., Feng, Y., Kurabayashi, K., and Yang, G.-Y. (2018).
1081 Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet
1082 screening platform. *Nat. Commun.* **9**, 1030. 10.1038/s41467-018-03492-6.

1083 62. Romero, P.A., Tran, T.M., and Abate, A.R. (2015). Dissecting enzyme function with microfluidic-based deep
1084 mutational scanning. *Proc. Natl. Acad. Sci.* **112**, 7159–7164. 10.1073/pnas.1422285112.

1085 63. Meng, D., Liu, M., Su, H., Song, H., Chen, L., Li, Q., Liu, Y., Zhu, Z., Liu, W., Sheng, X., et al. (2023). Coenzyme
1086 Engineering of Glucose-6-phosphate Dehydrogenase on a Nicotinamide-Based Biomimic and Its Application as a
1087 Glucose Biosensor. *ACS Catal.*, 1983–1998. 10.1021/acscatal.2c04707.

1088 64. Bollella, P., and Katz, E. (2020). Enzyme-Based Biosensors: Tackling Electron Transfer Issues. *Sensors* **20**, 3517.
1089 10.3390/s20123517.

1090 65. Li, Z., Zheng, Y., Gao, T., Liu, Z., Zhang, J., and Zhou, G. (2018). Fabrication of biosensor based on core–shell and
1091 large void structured magnetic mesoporous microspheres immobilized with laccase for dopamine detection. *J. Mater.*
1092 *Sci.* **53**, 7996–8008. 10.1007/s10853-018-2165-z.

1093 66. Azad, T., Janse van Rensburg, H.J., Morgan, J., Rezaei, R., Crupi, M.J.F., Chen, R., Ghahremani, M., Jamalkhah,
1094 M., Forbes, N., Ilkow, C., et al. (2021). Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. *ACS*
1095 *Nanosci. Au* **1**, 15–37. 10.1021/acsnanoscienceau.1c00009.

1096 67. Lu, J., Wang, Z., Jiang, Y., Sun, Z., and Luo, W. (2022). Modification of the substrate specificity of leucine
1097 dehydrogenase by site-directed mutagenesis based on biocomputing strategies. *Syst. Microbiol. Biomanufacturing*.
1098 10.1007/s43393-022-00116-5.

1099 68. Murphy, P.M., Bolduc, J.M., Gallaher, J.L., Stoddard, B.L., and Baker, D. (2009). Alteration of enzyme specificity by
1100 computational loop remodeling and design. *Proc. Natl. Acad. Sci.* **106**, 9215–9220. 10.1073/pnas.0811070106.

1101 69. Rix, G., Watkins-Dulaney, E.J., Almhjell, P.J., Boville, C.E., Arnold, F.H., and Liu, C.C. (2020). Scalable continuous
1102 evolution for the generation of diverse enzyme variants encompassing promiscuous activities. *Nat. Commun.* **11**,
1103 5644. 10.1038/s41467-020-19539-6.

1104 70. Voyvodic, P.L., Pandi, A., Koch, M., Conejero, I., Valjent, E., Courtet, P., Renard, E., Faulon, J.-L., and Bonnet, J.
1105 (2019). Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors. *Nat.*
1106 *Commun.* 10, 1697. 10.1038/s41467-019-09722-9.

1107 71. Utsumi, R., Brissette, R.E., Rampersaud, A., Forst, S.A., Oosawa, K., and Inouye, M. (1989). Activation of Bacterial
1108 Porin Gene Expression by a Chimeric Signal Transducer in Response to Aspartate. *Science* 245, 1246–1249.
1109 10.1126/science.2476847.

1110 72. Wu, Z., Lin, D., and Li, Y. (2022). Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators.
1111 *Nat. Rev. Neurosci.* 23, 257–274. 10.1038/s41583-022-00577-6.

1112 73. Jensen, E.D., Deichmann, M., Ma, X., Vilandt, R.U., Schiesaro, G., Rojek, M.B., Lengger, B., Eliasson, L., Vento,
1113 J.M., Durmusoglu, D., et al. (2022). Engineered cell differentiation and sexual reproduction in probiotic and mating
1114 yeasts. *Nat. Commun.* 13, 6201. 10.1038/s41467-022-33961-y.

1115 74. Kapolka, N.J., Taghon, G.J., Rowe, J.B., Morgan, W.M., Enten, J.F., Lambert, N.A., and Isom, D.G. (2020). DCyFIR:
1116 a high-throughput CRISPR platform for multiplexed G protein-coupled receptor profiling and ligand discovery. *Proc.*
1117 *Natl. Acad. Sci.* 117, 13117–13126. 10.1073/pnas.2000430117.

1118 75. Lengger, B., Hoch-Schneider, E.E., Jensen, C.N., Jakočiūnas, T., Petersen, A.A., Frimurer, T.M., Jensen, E.D., and
1119 Jensen, M.K. (2022). Serotonin G Protein-Coupled Receptor-Based Biosensing Modalities in Yeast. *ACS Sens.* 7,
1120 1323–1335. 10.1021/acssensors.1c02061.

1121 76. Scott, B.M., Gutiérrez-Vázquez, C., Sanmarco, L.M., da Silva Pereira, J.A., Li, Z., Plasencia, A., Hewson, P., Cox,
1122 L.M., O'Brien, M., Chen, S.K., et al. (2021). Self-tunable engineered yeast probiotics for the treatment of
1123 inflammatory bowel disease. *Nat. Med.* 27, 1212–1222. 10.1038/s41591-021-01390-x.

1124 77. Billerbeck, S., Brisbois, J., Agmon, N., Jimenez, M., Temple, J., Shen, M., Boeke, J.D., and Cornish, V.W. (2018). A
1125 scalable peptide-GPCR language for engineering multicellular communication. *Nat. Commun.* 9, 5057.
1126 10.1038/s41467-018-07610-2.

1127 78. Juárez, J.F., Lecube-Azpeitia, B., Brown, S.L., Johnston, C.D., and Church, G.M. (2018). Biosensor libraries harness
1128 large classes of binding domains for construction of allosteric transcriptional regulators. *Nat. Commun.* 9, 3101.
1129 10.1038/s41467-018-05525-6.

1130 79. Rondon, R.E., Groseclose, T.M., Short, A.E., and Wilson, C.J. (2019). Transcriptional programming using engineered
1131 systems of transcription factors and genetic architectures. *Nat. Commun.* **10**, 4784. 10.1038/s41467-019-12706-4.

1132 80. Shis, D.L., Hussain, F., Meinhardt, S., Swint-Kruse, L., and Bennett, M.R. (2014). Modular, Multi-Input Transcriptional
1133 Logic Gating with Orthogonal LacI/GalR Family Chimeras. *ACS Synth. Biol.* **3**, 645–651. 10.1021/sb500262f.

1134 81. Monteiro, L.M.O., Arruda, L.M., Sanches-Medeiros, A., Martins-Santana, L., Alves, L. de F., Defelipe, L., Turjanski,
1135 A.G., Guazzaroni, M.-E., de Lorenzo, V., and Silva-Rocha, R. (2019). Reverse Engineering of an Aspirin-Responsive
1136 Transcriptional Regulator in *Escherichia coli*. *ACS Synth. Biol.* **8**, 1890–1900. 10.1021/acssynbio.9b00191.

1137 82. Chang, H.-J., Zúñiga, A., Conejero, I., Voyvodic, P.L., Gracy, J., Fajardo-Ruiz, E., Cohen-Gonsaud, M., Cambray, G.,
1138 Pageaux, G.-P., Meszaros, M., et al. (2021). Programmable receptors enable bacterial biosensors to detect
1139 pathological biomarkers in clinical samples. *Nat. Commun.* **12**, 5216. 10.1038/s41467-021-25538-y.

1140 83. De Paepe, B., Maertens, J., Vanholme, B., and De Mey, M. (2019). Chimeric LysR-Type Transcriptional Biosensors
1141 for Customizing Ligand Specificity Profiles toward Flavonoids. *ACS Synth. Biol.* **8**, 318–331.
1142 10.1021/acssynbio.8b00326.

1143 84. Rondon, R., and Wilson, C.J. (2021). Engineering Alternate Ligand Recognition in the PurR Topology: A System of
1144 Novel Caffeine Biosensing Transcriptional Antirepressors. *ACS Synth. Biol.* **10**, 552–565.
1145 10.1021/acssynbio.0c00582.

1146 85. Harbaugh, S.V., Silverman, A.D., Chushak, Y.G., Zimlich, K., Wolfe, M., Thavarajah, W., Jewett, M.C., Lucks, J.B.,
1147 and Chávez, J.L. (2022). Engineering a Synthetic Dopamine-Responsive Riboswitch for *In Vitro* Biosensing. *ACS
1148 Synth. Biol.*, acssynbio.1c00560. 10.1021/acssynbio.1c00560.

1149 86. Vezeau, G.E., Gadila, L.R., and Salis, H.M. (2023). Automated design of protein-binding riboswitches for sensing
1150 human biomarkers in a cell-free expression system. *Nat. Commun.* **14**, 2416. 10.1038/s41467-023-38098-0.

1151 87. Hong, F., Ma, D., Wu, K., Mina, L.A., Luiten, R.C., Liu, Y., Yan, H., and Green, A.A. (2020). Precise and
1152 Programmable Detection of Mutations Using Ultraspecific Riboregulators. *Cell* **180**, 1018-1032.e16.
1153 10.1016/j.cell.2020.02.011.

1154 88. Dykstra, P.B., Kaplan, M., and Smolke, C.D. (2022). Engineering synthetic RNA devices for cell control. *Nat. Rev.
1155 Genet.* 10.1038/s41576-021-00436-7.

1156 89. Kavita, K., and Breaker, R.R. (2023). Discovering riboswitches: the past and the future. *Trends Biochem. Sci.* **48**,
1157 119–141. 10.1016/j.tibs.2022.08.009.

1158 90. Townshend, B., Xiang, J.S., Manzanarez, G., Hayden, E.J., and Smolke, C.D. (2021). A multiplexed, automated
1159 evolution pipeline enables scalable discovery and characterization of biosensors. *Nat. Commun.* **12**, 1437.
1160 10.1038/s41467-021-21716-0.

1161 91. Yokobayashi, Y. (2020). High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by
1162 Sequencing. *Acc. Chem. Res.* **53**, 2903–2912. 10.1021/acs.accounts.0c00546.

1163 92. Su, Y., and Hammond, M.C. (2020). RNA-based fluorescent biosensors for live cell imaging of small molecules and
1164 RNAs. *Curr. Opin. Biotechnol.* **63**, 157–166. 10.1016/j.copbio.2020.01.001.

1165 93. Thavarajah, W., Silverman, A.D., Verosloff, M.S., Kelley-Loughnane, N., Jewett, M.C., and Lucks, J.B. (2020). Point-
1166 of-Use Detection of Environmental Fluoride via a Cell-Free Riboswitch-Based Biosensor. *ACS Synth. Biol.* **9**, 10–18.
1167 10.1021/acssynbio.9b00347.

1168 94. Iwasaki, R.S., Ozdilek, B.A., Garst, A.D., Choudhury, A., and Batey, R.T. (2020). Small molecule regulated sgRNAs
1169 enable control of genome editing in *E. coli* by Cas9. *Nat. Commun.* **11**, 1394. 10.1038/s41467-020-15226-8.

1170 95. Nakatsuka, N., Yang, K.-A., Abendroth, J.M., Cheung, K.M., Xu, X., Yang, H., Zhao, C., Zhu, B., Rim, Y.S., Yang, Y.,
1171 et al. (2018). Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. *Science*
1172 **362**, 319–324. 10.1126/science.aa06750.

1173 96. Wang, B., Zhao, C., Wang, Z., Yang, K.-A., Cheng, X., Liu, W., Yu, W., Lin, S., Zhao, Y., Cheung, K.M., et al. (2022).
1174 Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. *Sci. Adv.* **8**, eabk0967.
1175 10.1126/sciadv.abk0967.

1176 97. Zhao, C., Cheung, K.M., Huang, I.-W., Yang, H., Nakatsuka, N., Liu, W., Cao, Y., Man, T., Weiss, P.S.,
1177 Monbouquette, H.G., et al. (2021). Implantable aptamer–field-effect transistor neuroprobes for in vivo
1178 neurotransmitter monitoring. *Sci. Adv.* **10**.1126/sciadv.abj7422.

1179 98. Zhou, X., Mehta, S., and Zhang, J. (2020). Genetically Encodable Fluorescent and Bioluminescent Biosensors Light
1180 Up Signaling Networks. *Trends Biochem. Sci.* **45**, 889–905. 10.1016/j.tibs.2020.06.001.

1181 99. Jing, M., Zhang, P., Wang, G., Feng, J., Mesik, L., Zeng, J., Jiang, H., Wang, S., Looby, J.C., Guagliardo, N.A., et al.
1182 (2018). A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. *Nat. Biotechnol.* **36**,
1183 726–737. 10.1038/nbt.4184.

1184 100. Peng, W., Wu, Z., Song, K., Zhang, S., Li, Y., and Xu, M. (2020). Regulation of sleep homeostasis mediator
1185 adenosine by basal forebrain glutamatergic neurons. *Science* **369**, eabb0556. 10.1126/science.abb0556.

1186 101. Wu, Z., He, K., Chen, Y., Li, H., Pan, S., Li, B., Liu, T., Xi, F., Deng, F., Wang, H., et al. (2022). A sensitive GRAB
1187 sensor for detecting extracellular ATP in vitro and in vivo. *Neuron* **110**, 770-782.e5. 10.1016/j.neuron.2021.11.027.

1188 102. Scheib, U., Shanmugaratnam, S., Farías-Rico, J.A., and Höcker, B. (2014). Change in protein-ligand specificity
1189 through binding pocket grafting. *J. Struct. Biol.* **185**, 186–192. 10.1016/j.jsb.2013.06.002.

1190 103. Muthusamy, A.K., Kim, C.H., Virgil, S.C., Knox, H.J., Marvin, J.S., Nichols, A.L., Cohen, B.N., Dougherty, D.A.,
1191 Looger, L.L., and Lester, H.A. (2022). Three Mutations Convert the Selectivity of a Protein Sensor from Nicotinic
1192 Agonists to S-Methadone for Use in Cells, Organelles, and Biofluids. *J. Am. Chem. Soc.* **144**, 8480–8486.
1193 10.1021/jacs.2c02323.

1194 104. Unger, E.K., Keller, J.P., Altermatt, M., Liang, R., Matsui, A., Dong, C., Hon, O.J., Yao, Z., Sun, J., Banala, S., et al.
1195 (2020). Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. *Cell* **183**, 1986-
1196 2002.e26. 10.1016/j.cell.2020.11.040.

1197 105. Borden, P.M., Zhang, P., Shivange, A.V., Marvin, J.S., Cichon, J., Dan, C., Podgorski, K., Figueiredo, A., Novak, O.,
1198 Tanimoto, M., et al. (2020). A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in
1199 mice, fish, worms and flies. 2020.02.07.939504. 10.1101/2020.02.07.939504.

1200 106. Zhang, W.H., Herde, M.K., Mitchell, J.A., Whitfield, J.H., Wulff, A.B., Vongsouthi, V., Sanchez-Romero, I., Gulakova,
1201 P.E., Minge, D., Breithausen, B., et al. (2018). Monitoring hippocampal glycine with the computationally designed
1202 optical sensor GlyFS. *Nat. Chem. Biol.* **14**, 861–869. 10.1038/s41589-018-0108-2.

1203 107. Nadler, D.C., Morgan, S.-A., Flamholz, A., Kortright, K.E., and Savage, D.F. (2016). Rapid construction of metabolite
1204 biosensors using domain-insertion profiling. *Nat. Commun.* **7**, 12266. 10.1038/ncomms12266.

1205 108. Marvin, J.S., Borghuis, B.G., Tian, L., Cichon, J., Harnett, M.T., Akerboom, J., Gordus, A., Renninger, S.L., Chen, T.-
1206 W., Bargmann, C.I., et al. (2013). An optimized fluorescent probe for visualizing glutamate neurotransmission. *Nat.*
1207 *Methods* 10, 162–170. 10.1038/nmeth.2333.

1208 109. Marvin, J.S., Schreiter, E.R., Echevarría, I.M., and Looger, L.L. (2011). A genetically encoded, high-signal-to-noise
1209 maltose sensor. *Proteins Struct. Funct. Bioinforma.* 79, 3025–3036. 10.1002/prot.23118.

1210 110. Li, Z., Zhang, J., and Ai, H. (2021). Genetically Encoded Green Fluorescent Biosensors for Monitoring UDP-GlcNAc
1211 in Live Cells. *ACS Cent. Sci.* 7, 1763–1770. 10.1021/acscentsci.1c00745.

1212 111. Nasu, Y., Shen, Y., Kramer, L., and Campbell, R.E. (2021). Structure- and mechanism-guided design of single
1213 fluorescent protein-based biosensors. *Nat. Chem. Biol.* 10.1038/s41589-020-00718-x.

1214 112. Beltrán, J., Steiner, P.J., Bedewitz, M., Wei, S., Peterson, F.C., Li, Z., Hughes, B.E., Hartley, Z., Robertson, N.R.,
1215 Medina-Cucurella, A.V., et al. (2022). Rapid biosensor development using plant hormone receptors as
1216 reprogrammable scaffolds. *Nat. Biotechnol.* 10.1038/s41587-022-01364-5.

1217 113. Herud-Sikimić, O., Stiel, A.C., Kolb, M., Shanmugaratnam, S., Berendzen, K.W., Feldhaus, C., Höcker, B., and
1218 Jürgens, G. (2021). A biosensor for the direct visualization of auxin. *Nature* 592, 768–772. 10.1038/s41586-021-
1219 03425-2.

1220 114. Zhao, Y., Shen, Y., Wen, Y., and Campbell, R.E. (2020). High-Performance Intensiometric Direct- and Inverse-
1221 Response Genetically Encoded Biosensors for Citrate. *ACS Cent. Sci.* 6, 1441–1450. 10.1021/acscentsci.0c00518.

1222 115. Meyer, A.J., Segall-Shapiro, T.H., Glassey, E., Zhang, J., and Voigt, C.A. (2019). *Escherichia coli* “Marionette” strains
1223 with 12 highly optimized small-molecule sensors. *Nat. Chem. Biol.* 15, 196–204. 10.1038/s41589-018-0168-3.

1224 116. Snoek, T., Chaberski, E.K., Ambri, F., Kol, S., Bjørn, S.P., Pang, B., Barajas, J.F., Welner, D.H., Jensen, M.K., and
1225 Keasling, J.D. (2020). Evolution-guided engineering of small-molecule biosensors. *Nucleic Acids Res.* 48, e3.
1226 10.1093/nar/gkz954.

1227 117. Pham, C., Stogios, P.J., Savchenko, A., and Mahadevan, R. (2022). Advances in engineering and optimization of
1228 transcription factor-based biosensors for plug-and-play small molecule detection. *Curr. Opin. Biotechnol.* 76, 102753.
1229 10.1016/j.copbio.2022.102753.

1230 118. Ray, S., Panjikar, S., and Anand, R. (2017). Structure Guided Design of Protein Biosensors for Phenolic Pollutants.
1231 ACS Sens. 2, 411–418. 10.1021/acssensors.6b00843.

1232 119. Galvão, T.C., and de Lorenzo, V. (2006). Transcriptional regulators à la carte: engineering new effector specificities
1233 in bacterial regulatory proteins. Curr. Opin. Biotechnol. 17, 34–42. 10.1016/j.copbio.2005.12.002.

1234 120. Libis, V., Delépine, B., and Faulon, J.-L. (2016). Sensing new chemicals with bacterial transcription factors. Curr.
1235 Opin. Microbiol. 33, 105–112. 10.1016/j.mib.2016.07.006.

1236 121. Busch, A., Lacal, J., Martos, A., Ramos, J.L., and Krell, T. (2007). Bacterial sensor kinase TodS interacts with
1237 agonistic and antagonistic signals. Proc. Natl. Acad. Sci. 104, 13774–13779. 10.1073/pnas.0701547104.

1238 122. Landry, B.P., Palanki, R., Dyulgyarov, N., Hartsough, L.A., and Tabor, J.J. (2018). Phosphatase activity tunes two-
1239 component system sensor detection threshold. Nat. Commun. 9, 1433. 10.1038/s41467-018-03929-y.

1240 123. Machado, L.F.M., and Dixon, N. (2016). Development and substrate specificity screening of an in vivo biosensor for
1241 the detection of biomass derived aromatic chemical building blocks. Chem. Commun. 52, 11402–11405.
1242 10.1039/C6CC04559F.

1243 124. Henssler, E.-M., Scholz, O., Lochner, S., Gmeiner, P., and Hillen, W. (2004). Structure-Based Design of Tet
1244 Repressor To Optimize a New Inducer Specificity. Biochemistry 43, 9512–9518. 10.1021/bi049682j.

1245 125. Henßler, E.-M., Bertram, R., Wissak, S., and Hillen, W. (2005). Tet repressor mutants with altered effector binding
1246 and allostery. FEBS J. 272, 4487–4496. 10.1111/j.1742-4658.2005.04868.x.

1247 126. Scholz, O., Köstner, M., Reich, M., Gastiger, S., and Hillen, W. (2003). Teaching TetR to Recognize a New Inducer.
1248 J. Mol. Biol. 329, 217–227. 10.1016/S0022-2836(03)00427-3.

1249 127. Tang, S.-Y., Fazelinia, H., and Cirino, P.C. (2008). AraC Regulatory Protein Mutants with Altered Effector Specificity.
1250 J. Am. Chem. Soc. 130, 5267–5271. 10.1021/ja7109053.

1251 128. Tang, S.-Y., and Cirino, P.C. (2011). Design and Application of a Mevalonate-Responsive Regulatory Protein.
1252 Angew. Chem. Int. Ed. 50, 1084–1086. 10.1002/anie.201006083.

1253 129. Taylor, N.D., Garruss, A.S., Moretti, R., Chan, S., Arbing, M.A., Cascio, D., Rogers, J.K., Isaacs, F.J., Kosuri, S.,
1254 Baker, D., et al. (2016). Engineering an allosteric transcription factor to respond to new ligands. *Nat. Methods* 13,
1255 177–183. 10.1038/nmeth.3696.

1256 130. Gallinari, P., Lahm, A., Koch, U., Paolini, C., Nardi, M.C., Roscilli, G., Kinzel, O., Fattori, D., Muraglia, E., Toniatti, C.,
1257 et al. (2005). A Functionally Orthogonal Estrogen Receptor-Based Transcription Switch Specifically Induced by a
1258 Nonsteroid Synthetic Ligand. *Chem. Biol.* 12, 883–893. 10.1016/j.chembiol.2005.05.018.

1259 131. Schwimmer, L.J., Rohatgi, P., Azizi, B., Seley, K.L., and Doyle, D.F. (2004). Creation and discovery of ligand–
1260 receptor pairs for transcriptional control with small molecules. *Proc. Natl. Acad. Sci.* 101, 14707–14712.
1261 10.1073/pnas.0400884101.

1262 132. Chockalingam, K., Chen, Z., Katzenellenbogen, J.A., and Zhao, H. (2005). Directed evolution of specific receptor–
1263 ligand pairs for use in the creation of gene switches. *Proc. Natl. Acad. Sci.* 102, 5691–5696.
1264 10.1073/pnas.0409206102.

1265 133. Rottinghaus, A.G., Xi, C., Amrofelli, M.B., Yi, H., and Moon, T.S. (2021). Engineering ligand-specific biosensors for
1266 aromatic amino acids and neurochemicals. *Cell Syst.* 0. 10.1016/j.cels.2021.10.006.

1267 134. Sarkar, C.A., Dodevski, I., Kenig, M., Dudli, S., Mohr, A., Hermans, E., and Plückthun, A. (2008). Directed evolution
1268 of a G protein-coupled receptor for expression, stability, and binding selectivity. *Proc. Natl. Acad. Sci.* 105, 14808–
1269 14813. 10.1073/pnas.0803103105.

1270 135. Chen, K.-Y.M., Keri, D., and Barth, P. (2020). Computational design of G Protein-Coupled Receptor allosteric signal
1271 transductions. *Nat. Chem. Biol.* 16, 77–86. 10.1038/s41589-019-0407-2.

1272 136. Glasgow, A., Hobbs, H.T., Perry, Z.R., Wells, M.L., Marqusee, S., and Kortemme, T. (2023). Ligand-specific changes
1273 in conformational flexibility mediate long-range allostery in the lac repressor. *Nat. Commun.* 14, 1179.
1274 10.1038/s41467-023-36798-1.

1275 137. Wrenbeck, E.E., Azouz, L.R., and Whitehead, T.A. (2017). Single-mutation fitness landscapes for an enzyme on
1276 multiple substrates reveal specificity is globally encoded. *Nat. Commun.* 8, 15695. 10.1038/ncomms15695.

1277 138. Sun, D., Sun, M., Zhang, J., Lin, X., Zhang, Y., Lin, F., Zhang, P., Yang, C., and Song, J. (2022). Computational tools
1278 for aptamer identification and optimization. *TrAC Trends Anal. Chem.* 157, 116767. 10.1016/j.trac.2022.116767.

1279 139. Mena, M.A., and Daugherty, P.S. (2005). Automated design of degenerate codon libraries. *Protein Eng. Des. Sel.* 18,
1280 559–561. 10.1093/protein/gzi061.

1281 140. Tang, S.-Y., Qian, S., Akinterinwa, O., Frei, C.S., Gredell, J.A., and Cirino, P.C. (2013). Screening for Enhanced
1282 Triacetic Acid Lactone Production by Recombinant *Escherichia coli* Expressing a Designed Triacetic Acid Lactone
1283 Reporter. *J. Am. Chem. Soc.* 135, 10099–10103. 10.1021/ja402654z.

1284 141. Kasey, C.M., Zerrad, M., Li, Y., Cropp, T.A., and Williams, G.J. (2018). Development of Transcription Factor-Based
1285 Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology. *ACS Synth. Biol.* 7, 227–239.
1286 10.1021/acssynbio.7b00287.

1287 142. Li, Y., Reed, M., Wright, H.T., Cropp, T.A., and Williams, G.J. (2021). Development of Genetically Encoded
1288 Biosensors for Reporting the Methyltransferase-Dependent Biosynthesis of Semisynthetic Macrolide Antibiotics. *ACS*
1289 *Synth. Biol.* 10, 2520–2531. 10.1021/acssynbio.1c00151.

1290 143. Li, H., Liang, C., Chen, W., Jin, J.-M., Tang, S.-Y., and Tao, Y. (2017). Monitoring *in vivo* metabolic flux with a
1291 designed whole-cell metabolite biosensor of shikimic acid. *Biosens. Bioelectron.* 98, 457–465.
1292 10.1016/j.bios.2017.07.022.

1293 144. Jha, R.K., Kern, T.L., Kim, Y., Tesar, C., Jedrzejczak, R., Joachimiak, A., and Strauss, C.E.M. (2016). A microbial
1294 sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor. *Nucleic*
1295 *Acids Res.* 44, 8490–8500. 10.1093/nar/gkw687.

1296 145. F. M. Machado, L., Currin, A., and Dixon, N. (2019). Directed evolution of the PcaV allosteric transcription factor to
1297 generate a biosensor for aromatic aldehydes. *J. Biol. Eng.* 13, 91. 10.1186/s13036-019-0214-z.

1298 146. D'Ambrosio, V., Pramanik, S., Goroncy, K., Jakočiūnas, T., Schönauer, D., Davari, M.D., Schwaneberg, U., Keasling,
1299 J.D., and Jensen, M.K. (2020). Directed evolution of VanR biosensor specificity in yeast. *Biotechnol. Notes* 1, 9–15.
1300 10.1016/j.biotechno.2020.01.002.

1301 147. Nishikawa, K.K., Hoppe, N., Smith, R., Bingman, C., and Raman, S. (2021). Epistasis shapes the fitness landscape
1302 of an allosteric specificity switch. *Nat. Commun.* 12, 5562. 10.1038/s41467-021-25826-7.

1303 148. Townshend, B., Kennedy, A.B., Xiang, J.S., and Smolke, C.D. (2015). High-throughput cellular RNA device
1304 engineering. *Nat. Methods* 12, 989–994. 10.1038/nmeth.3486.

1305 149. Mayer, G., Ahmed, M.-S.L., Dolf, A., Endl, E., Knolle, P.A., and Famulok, M. (2010). Fluorescence-activated cell
1306 sorting for aptamer SELEX with cell mixtures. *Nat. Protoc.* 5, 1993–2004. 10.1038/nprot.2010.163.

1307 150. Naftaly, S., Cohen, I., Shahar, A., Hockla, A., Radisky, E.S., and Papo, N. (2018). Mapping protein selectivity
1308 landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries. *Nat.*
1309 *Commun.* 9, 3935. 10.1038/s41467-018-06403-x.

1310 151. Pethe, M.A., Rubenstein, A.B., and Khare, S.D. (2019). Data-driven supervised learning of a viral protease specificity
1311 landscape from deep sequencing and molecular simulations. *Proc. Natl. Acad. Sci.* 116, 168–176.
1312 10.1073/pnas.1805256116.

1313 152. Javanpour, A.A., and Liu, C.C. (2021). Evolving Small-Molecule Biosensors with Improved Performance and
1314 Reprogrammed Ligand Preference Using OrthoRep. *ACS Synth. Biol.* 10, 2705–2714. 10.1021/acssynbio.1c00316.

1315 153. Wu, S., Xiang, C., Zhou, Y., Khan, M.S.H., Liu, W., Feiler, C.G., Wei, R., Weber, G., Höhne, M., and Bornscheuer,
1316 U.T. (2022). A growth selection system for the directed evolution of amine-forming or converting enzymes. *Nat.*
1317 *Commun.* 13, 7458. 10.1038/s41467-022-35228-y.

1318 154. Ogawa, Y., Katsuyama, Y., Ueno, K., and Ohnishi, Y. (2019). Switching the Ligand Specificity of the Biosensor XylS
1319 from meta to para-Toluic Acid through Directed Evolution Exploiting a Dual Selection System. *ACS Synth. Biol.* 8,
1320 2679–2689. 10.1021/acssynbio.9b00237.

1321 155. Ellefson, J.W., Meyer, A.J., Hughes, R.A., Cannon, J.R., Brodbelt, J.S., and Ellington, A.D. (2014). Directed evolution
1322 of genetic parts and circuits by compartmentalized partnered replication. *Nat. Biotechnol.* 32, 97–101.
1323 10.1038/nbt.2714.

1324 156. Ellefson, J.W., Ledbetter, M.P., and Ellington, A.D. (2018). Directed evolution of a synthetic phylogeny of
1325 programmable Trp repressors. *Nat. Chem. Biol.* 14, 361–367. 10.1038/s41589-018-0006-7.

1326 157. Araya, C.L., and Fowler, D.M. (2011). Deep mutational scanning: assessing protein function on a massive scale.
1327 *Trends Biotechnol.* 29, 435–442. 10.1016/j.tibtech.2011.04.003.

1328 158. Wrenbeck, E.E., Faber, M.S., and Whitehead, T.A. (2017). Deep sequencing methods for protein engineering and
1329 design. *Curr. Opin. Struct. Biol.* 45, 36–44. 10.1016/j.sbi.2016.11.001.

1330 159. Jolma, A., Kivioja, T., Toivonen, J., Cheng, L., Wei, G., Enge, M., Taipale, M., Vaquerizas, J.M., Yan, J., Sillanpää, M.J., et al. (2010). Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. *Genome Res.* 20, 861–873. 10.1101/gr.100552.109.

1333 160. Bick, M.J., Greisen, P.J., Morey, K.J., Antunes, M.S., La, D., Sankaran, B., Reymond, L., Johnsson, K., Medford, J.I., and Baker, D. (2017). Computational design of environmental sensors for the potent opioid fentanyl. *eLife* 6, e28909. 10.7554/eLife.28909.

1336 161. Dou, J., Doyle, L., Jr. Greisen, P., Schena, A., Park, H., Johnsson, K., Stoddard, B.L., and Baker, D. (2017). Sampling and energy evaluation challenges in ligand binding protein design. *Protein Sci.* 26, 2426–2437. 10.1002/pro.3317.

1339 162. Schlinkmann, K.M., Honegger, A., Türeci, E., Robison, K.E., Lipovšek, D., and Plückthun, A. (2012). Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations. *Proc. Natl. Acad. Sci.* 109, 9810–9815. 10.1073/pnas.1202107109.

1342 163. Jacquier, H., Birgy, A., Le Nagard, H., Mechulam, Y., Schmitt, E., Glodt, J., Bercot, B., Petit, E., Poulain, J., Barnaud, G., et al. (2013). Capturing the mutational landscape of the beta-lactamase TEM-1. *Proc. Natl. Acad. Sci.* 110, 13067–13072. 10.1073/pnas.1215206110.

1345 164. Hopf, T.A., Ingraham, J.B., Poelwijk, F.J., Schärfe, C.P.I., Springer, M., Sander, C., and Marks, D.S. (2017). Mutation effects predicted from sequence co-variation. *Nat. Biotechnol.* 35, 128–135. 10.1038/nbt.3769.

1347 165. Gray, V.E., Hause, R.J., Luebeck, J., Shendure, J., and Fowler, D.M. (2018). Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data. *Cell Syst.* 6, 116-124.e3. 10.1016/j.cels.2017.11.003.

1349 166. Pokusaeva, V.O., Usmanova, D.R., Putintseva, E.V., Espinar, L., Sarkisyan, K.S., Mishin, A.S., Bogatyreva, N.S., Ivankov, D.N., Akopyan, A.V., Avvakumov, S.Y., et al. (2019). An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. *PLOS Genet.* 15, e1008079. 10.1371/journal.pgen.1008079.

1353 167. van der Meer, J.-Y., Poddar, H., Baas, B.-J., Miao, Y., Rahimi, M., Kunzendorf, A., van Merkerk, R., Tepper, P.G., Geertsema, E.M., Thunnissen, A.-M.W.H., et al. (2016). Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases. *Nat. Commun.* 7, 10911. 10.1038/ncomms10911.

1356 168. Diss, G., and Lehner, B. (2018). The genetic landscape of a physical interaction. *eLife* 7, e32472.
1357 10.7554/eLife.32472.

1358 169. Fowler, D.M., Araya, C.L., Fleishman, S.J., Kellogg, E.H., Stephany, J.J., Baker, D., and Fields, S. (2010). High-
1359 resolution mapping of protein sequence-function relationships. *Nat. Methods* 7, 741–746. 10.1038/nmeth.1492.

1360 170. Melnikov, A., Rogov, P., Wang, L., Gnrke, A., and Mikkelsen, T.S. (2014). Comprehensive mutational scanning of a
1361 kinase in vivo reveals substrate-dependent fitness landscapes. *Nucleic Acids Res.* 42, e112. 10.1093/nar/gku511.

1362 171. Ogawa, Y., Katsuyama, Y., and Ohnishi, Y. (2022). Engineering of the Ligand Specificity of Transcriptional Regulator
1363 XylS by Deep Mutational Scanning. *ACS Synth. Biol.* 11, 473–485. 10.1021/acssynbio.1c00564.

1364 172. Meier, G., Thavarasah, S., Ehrenbolger, K., Hutter, C.A.J., Hürlimann, L.M., Barandun, J., and Seeger, M.A. (2022).
1365 Deep mutational scan of a drug efflux pump reveals its structure–function landscape. *Nat. Chem. Biol.*, 1–11.
1366 10.1038/s41589-022-01205-1.

1367 173. Wu, Z., Kan, S.B.J., Lewis, R.D., Wittmann, B.J., and Arnold, F.H. (2019). Machine learning-assisted directed protein
1368 evolution with combinatorial libraries. *Proc. Natl. Acad. Sci.* 116, 8852–8858. 10.1073/pnas.1901979116.

1369 174. Havranek, J.J. (2010). Specificity in Computational Protein Design*. *J. Biol. Chem.* 285, 31095–31099.
1370 10.1074/jbc.R110.157685.

1371 175. Lovelock, S.L., Crawshaw, R., Basler, S., Levy, C., Baker, D., Hilvert, D., and Green, A.P. (2022). The road to fully
1372 programmable protein catalysis. *Nature* 606, 49–58. 10.1038/s41586-022-04456-z.

1373 176. Wang, D.D., Zhu, M., and Yan, H. (2021). Computationally predicting binding affinity in protein–ligand complexes:
1374 free energy-based simulations and machine learning-based scoring functions. *Brief. Bioinform.* 22, bbaa107.
1375 10.1093/bib/bbaa107.

1376 177. Leman, J.K., Weitzner, B.D., Lewis, S.M., Adolf-Bryfogle, J., Alam, N., Alford, R.F., Aprahamian, M., Baker, D.,
1377 Barlow, K.A., Barth, P., et al. (2020). Macromolecular modeling and design in Rosetta: recent methods and
1378 frameworks. *Nat. Methods* 17, 665–680. 10.1038/s41592-020-0848-2.

1379 178. Pertusi, D.A., Moura, M.E., Jeffryes, J.G., Prabhu, S., Walters Biggs, B., and Tyo, K.E.J. (2017). Predicting novel
1380 substrates for enzymes with minimal experimental effort with active learning. *Metab. Eng.* **44**, 171–181.
1381 10.1016/j.ymben.2017.09.016.

1382 179. Voigt, C.A., Mayo, S.L., Arnold, F.H., and Wang, Z.-G. (2001). Computational method to reduce the search space for
1383 directed protein evolution. *Proc. Natl. Acad. Sci.* **98**, 3778–3783. 10.1073/pnas.051614498.

1384 180. Dou, J., Vorobieva, A.A., Sheffler, W., Doyle, L.A., Park, H., Bick, M.J., Mao, B., Foight, G.W., Lee, M.Y., Gagnon,
1385 L.A., et al. (2018). De novo design of a fluorescence-activating β -barrel. *Nature* **561**, 485–491. 10.1038/s41586-018-
1386 0509-0.

1387 181. Looger, L.L., Dwyer, M.A., Smith, J.J., and Hellinga, H.W. (2003). Computational design of receptor and sensor
1388 proteins with novel functions. *Nature* **423**, 185–190. 10.1038/nature01556.

1389 182. Lippow, S.M., Moon, T.S., Basu, S., Yoon, S.-H., Li, X., Chapman, B.A., Robison, K., Lipovšek, D., and Prather,
1390 K.L.J. (2010). Engineering Enzyme Specificity Using Computational Design of a Defined-Sequence Library. *Chem.*
1391 *Biol.* **17**, 1306–1315. 10.1016/j.chembiol.2010.10.012.

1392 183. Jha, R.K., Chakraborti, S., Kern, T.L., Fox, D.T., and Strauss, C.E.M. (2015). Rosetta comparative modeling for
1393 library design: Engineering alternative inducer specificity in a transcription factor. *Proteins Struct. Funct. Bioinforma.*
1394 **83**, 1327–1340. 10.1002/prot.24828.

1395 184. Lucas, J.E., and Kortemme, T. (2020). New computational protein design methods for de novo small molecule
1396 binding sites. *PLOS Comput. Biol.* **16**, e1008178. 10.1371/journal.pcbi.1008178.

1397 185. Tinberg, C.E., Khare, S.D., Dou, J., Doyle, L., Nelson, J.W., Schena, A., Jankowski, W., Kalodimos, C.G., Johnsson,
1398 K., Stoddard, B.L., et al. (2013). Computational design of ligand-binding proteins with high affinity and selectivity.
1399 *Nature* **501**, 212–216. 10.1038/nature12443.

1400 186. Glasgow, A.A., Huang, Y.-M., Mandell, D.J., Thompson, M., Ritterson, R., Loshbaugh, A.L., Pellegrino, J., Krivacic,
1401 C., Pache, R.A., Barlow, K.A., et al. (2019). Computational design of a modular protein sense-response system.
1402 *Science* **366**, 1024–1028. 10.1126/science.aax8780.

1403 187. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., Wang, J., Cong, Q., Kinch, L.N.,
1404 Schaeffer, R.D., et al. (2021). Accurate prediction of protein structures and interactions using a three-track neural
1405 network. *Science* **373**, 871–876. 10.1126/science.abj8754.

1406 188. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek,
1407 A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589.
1408 10.1038/s41586-021-03819-2.

1409 189. Pan, X., Thompson, M.C., Zhang, Y., Liu, L., Fraser, J.S., Kelly, M.J.S., and Kortemme, T. (2020). Expanding the
1410 space of protein geometries by computational design of de novo fold families. *Science* **369**, 1132–1136.
1411 10.1126/science.abc0881.

1412 190. Yeh, A.H.-W., Norn, C., Kipnis, Y., Tischer, D., Pellock, S.J., Evans, D., Ma, P., Lee, G.R., Zhang, J.Z., Anishchenko,
1413 I., et al. (2023). De novo design of luciferases using deep learning. *Nature* **614**, 774–780. 10.1038/s41586-023-
1414 05696-3.

1415 191. Cavasotto, C.N., and Di Filippo, J.I. (2023). The Impact of Supervised Learning Methods in Ultralarge High-
1416 Throughput Docking. *J. Chem. Inf. Model.* **63**, 2267–2280. 10.1021/acs.jcim.2c01471.

1417 192. Gorgulla, C., Boeszoermenyi, A., Wang, Z.-F., Fischer, P.D., Coote, P.W., Padmanabha Das, K.M., Malets, Y.S.,
1418 Radchenko, D.S., Moroz, Y.S., Scott, D.A., et al. (2020). An open-source drug discovery platform enables ultra-large
1419 virtual screens. *Nature* **580**, 663–668. 10.1038/s41586-020-2117-z.

1420 193. Lyu, J., Wang, S., Balias, T.E., Singh, I., Levit, A., Moroz, Y.S., O'Meara, M.J., Che, T., Algaa, E., Tolmachova, K., et
1421 al. (2019). Ultra-large library docking for discovering new chemotypes. *Nature* **566**, 224–229. 10.1038/s41586-019-
1422 0917-9.

1423 194. Borgo, B., and Havranek, J.J. (2014). Motif-directed redesign of enzyme specificity. *Protein Sci.* **23**, 312–320.
1424 10.1002/pro.2417.

1425 195. Crampon, K., Giorkallos, A., Deldossi, M., Baud, S., and Steffenel, L.A. (2022). Machine-learning methods for ligand–
1426 protein molecular docking. *Drug Discov. Today* **27**, 151–164. 10.1016/j.drudis.2021.09.007.

1427 196. Feehan, R., Montezano, D., and Slusky, J.S.G. (2021). Machine learning for enzyme engineering, selection and
1428 design. *Protein Eng. Des. Sel.* **34**, gzab019. 10.1093/protein/gzab019.

1429 197. Mazurenko, S., Prokop, Z., and Damborsky, J. (2020). Machine Learning in Enzyme Engineering. *ACS Catal.* **10**,
1430 1210–1223. 10.1021/acscatal.9b04321.

1431 198. Goldman, S., Das, R., Yang, K.K., and Coley, C.W. (2022). Machine learning modeling of family wide enzyme-
1432 substrate specificity screens. *PLOS Comput. Biol.* **18**, e1009853. 10.1371/journal.pcbi.1009853.

1433 199. Röttig, M., Rausch, C., and Kohlbacher, O. (2010). Combining Structure and Sequence Information Allows
1434 Automated Prediction of Substrate Specificities within Enzyme Families. *PLOS Comput. Biol.* **6**, e1000636.
1435 10.1371/journal.pcbi.1000636.

1436 200. Ferrario, V., Siragusa, L., Ebert, C., Baroni, M., Foscato, M., Cruciani, G., and Gardossi, L. (2014). BioGPS
1437 Descriptors for Rational Engineering of Enzyme Promiscuity and Structure Based Bioinformatic Analysis. *PLOS ONE*
1438 **9**, e109354. 10.1371/journal.pone.0109354.

1439 201. Holderbach, S., Adam, L., Jayaram, B., Wade, R.C., and Mukherjee, G. (2020). RASPD+: Fast Protein-Ligand
1440 Binding Free Energy Prediction Using Simplified Physicochemical Features. *Front. Mol. Biosci.* **7**.

1441 202. Kroll, A., Ranjan, S., Engqvist, M.K.M., and Lercher, M.J. (2023). A general model to predict small molecule
1442 substrates of enzymes based on machine and deep learning. *Nat. Commun.* **14**, 2787. 10.1038/s41467-023-38347-
1443 2.

1444 203. Robinson, S.L., Smith, M.D., Richman, J.E., Aukema, K.G., and Wackett, L.P. (2020). Machine learning-based
1445 prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. *Synth. Biol.* **5**, ysaa004.
1446 10.1093/synbio/ysaa004.

1447 204. Martínez-Martínez, M., Coscolín, C., Santiago, G., Chow, J., Stogios, P.J., Bargiela, R., Gertler, C., Navarro-
1448 Fernández, J., Bollinger, A., Thies, S., et al. (2018). Determinants and Prediction of Esterase Substrate Promiscuity
1449 Patterns. *ACS Chem. Biol.* **13**, 225–234. 10.1021/acschembio.7b00996.

1450 205. Ollikainen, N., Jong, R.M. de, and Kortemme, T. (2015). Coupling Protein Side-Chain and Backbone Flexibility
1451 Improves the Re-design of Protein-Ligand Specificity. *PLOS Comput. Biol.* **11**, e1004335.
1452 10.1371/journal.pcbi.1004335.

1453 206. Dong, L., Qu, X., and Wang, B. (2022). XLPFE: A Simple and Effective Machine Learning Scoring Function for
1454 Protein–Ligand Scoring and Ranking. *ACS Omega* **7**, 21727–21735. 10.1021/acsomega.2c01723.

1455 207. Jiménez, J., Škalič, M., Martínez-Rosell, G., and De Fabritiis, G. (2018). KDEEP: Protein–Ligand Absolute Binding
1456 Affinity Prediction via 3D-Convolutional Neural Networks. *J. Chem. Inf. Model.* **58**, 287–296.
1457 10.1021/acs.jcim.7b00650.

1458 208. Rube, H.T., Rastogi, C., Feng, S., Kribelbauer, J.F., Li, A., Becerra, B., Melo, L.A.N., Do, B.V., Li, X., Adam, H.H., et
1459 al. (2022). Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning. *Nat.*
1460 *Biotechnol.*, 1–8. 10.1038/s41587-022-01307-0.

1461 209. Volkov, M., Turk, J.-A., Drizard, N., Martin, N., Hoffmann, B., Gaston-Mathé, Y., and Rognan, D. (2022). On the
1462 Frustration to Predict Binding Affinities from Protein–Ligand Structures with Deep Neural Networks. *J. Med. Chem.*
1463 **65**, 7946–7958. 10.1021/acs.jmedchem.2c00487.

1464 210. Zheng, L., Fan, J., and Mu, Y. (2019). OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional
1465 Neural Network for Protein–Ligand Binding Affinity Prediction. *ACS Omega* **4**, 15956–15965.
1466 10.1021/acsomega.9b01997.

1467 211. Aldeghi, M., Gapsys, V., and de Groot, B.L. (2018). Accurate Estimation of Ligand Binding Affinity Changes upon
1468 Protein Mutation. *ACS Cent. Sci.* **4**, 1708–1718. 10.1021/acscentsci.8b00717.

1469 212. Wang, D.D., Ou-Yang, L., Xie, H., Zhu, M., and Yan, H. (2020). Predicting the impacts of mutations on protein-ligand
1470 binding affinity based on molecular dynamics simulations and machine learning methods. *Comput. Struct. Biotechnol.*
1471 *J.* **18**, 439–454. 10.1016/j.csbj.2020.02.007.

1472 213. Chatterjee, A., Walters, R., Shafi, Z., Ahmed, O.S., Sebek, M., Gysi, D., Yu, R., Eliassi-Rad, T., Barabási, A.-L., and
1473 Menichetti, G. (2023). Improving the generalizability of protein-ligand binding predictions with AI-Bind. *Nat. Commun.*
1474 **14**, 1989. 10.1038/s41467-023-37572-z.

1475 214. Kinney, J.B., and McCandlish, D.M. (2019). Massively Parallel Assays and Quantitative Sequence–Function
1476 Relationships. *Annu. Rev. Genomics Hum. Genet.* **20**, 99–127. 10.1146/annurev-genom-083118-014845.

1477 215. Hayes, R.J., Bentzien, J., Ary, M.L., Hwang, M.Y., Jacinto, J.M., Vielmetter, J., Kundu, A., and Dahiyat, B.I. (2002).
1478 Combining computational and experimental screening for rapid optimization of protein properties. *Proc. Natl. Acad.*
1479 *Sci.* **99**, 15926–15931. 10.1073/pnas.212627499.

1480 216. Diaz, D.J., Kulikova, A.V., Ellington, A.D., and Wilke, C.O. (2023). Using machine learning to predict the effects and
1481 consequences of mutations in proteins. *Curr. Opin. Struct. Biol.* **78**, 102518. 10.1016/j.sbi.2022.102518.

1482 217. Wittmann, B.J., Johnston, K.E., Almhjell, P.J., and Arnold, F.H. (2022). evSeq: Cost-Effective Amplicon Sequencing
1483 of Every Variant in a Protein Library. *ACS Synth. Biol.* 10.1021/acssynbio.1c00592.

1484 218. Gelman, S., Fahlberg, S.A., Heinzelman, P., Romero, P.A., and Gitter, A. (2021). Neural networks to learn protein
1485 sequence–function relationships from deep mutational scanning data. *Proc. Natl. Acad. Sci.* **118**, e2104878118.
1486 10.1073/pnas.2104878118.

1487 219. Khersonsky, O., Lipsh, R., Avizemer, Z., Ashani, Y., Goldsmith, M., Leader, H., Dym, O., Rogotner, S., Trudeau,
1488 D.L., Prilusky, J., et al. (2018). Automated Design of Efficient and Functionally Diverse Enzyme Repertoires. *Mol. Cell*
1489 **72**, 178–186.e5. 10.1016/j.molcel.2018.08.033.

1490 220. Luo, Y., Jiang, G., Yu, T., Liu, Y., Vo, L., Ding, H., Su, Y., Qian, W.W., Zhao, H., and Peng, J. (2021). ECNet is an
1491 evolutionary context-integrated deep learning framework for protein engineering. *Nat. Commun.* **12**, 5743.
1492 10.1038/s41467-021-25976-8.

1493 221. Riesselman, A.J., Ingraham, J.B., and Marks, D.S. (2018). Deep generative models of genetic variation capture the
1494 effects of mutations. *Nat. Methods* **15**, 816–822. 10.1038/s41592-018-0138-4.

1495 222. Garruss, A.S., Collins, K.M., and Church, G.M. (2021). Deep representation learning improves prediction of LacI-
1496 mediated transcriptional repression. *Proc. Natl. Acad. Sci.* **118**, e2022838118. 10.1073/pnas.2022838118.

1497 223. Leander, M., Yuan, Y., Meger, A., Cui, Q., and Raman, S. (2020). Functional plasticity and evolutionary adaptation of
1498 allosteric regulation. *Proc. Natl. Acad. Sci.* **117**, 25445–25454. 10.1073/pnas.2002613117.

1499 224. Mathy, C.J.P., Mishra, P., Flynn, J.M., Perica, T., Mavor, D., Bolon, D.N.A., and Kortemme, T. (2023). A complete
1500 allosteric map of a GTPase switch in its native cellular network. *Cell Syst.* **14**, 237–246.e7.
1501 10.1016/j.cels.2023.01.003.

1502 225. Tack, D.S., Tonner, P.D., Pressman, A., Olson, N.D., Levy, S.F., Romantseva, E.F., Alperovich, N., Vasilyeva, O.,
1503 and Ross, D. (2021). The genotype-phenotype landscape of an allosteric protein. *Mol. Syst. Biol.* **17**, e10179.
1504 10.15252/msb.202010179.

1505 226. Tonner, P.D., Pressman, A., and Ross, D. (2022). Interpretable modeling of genotype–phenotype landscapes with
1506 state-of-the-art predictive power. *Proc. Natl. Acad. Sci.* **119**, e2114021119. 10.1073/pnas.2114021119.

1507 227. Srikant, S., Gaudet, R., and Murray, A.W. (2020). Selecting for Altered Substrate Specificity Reveals the Evolutionary
1508 Flexibility of ATP-Binding Cassette Transporters. *Curr. Biol.* **30**, 1689–1702.e6. 10.1016/j.cub.2020.02.077.

1509 228. Makowski, E.K., Kinnunen, P.C., Huang, J., Wu, L., Smith, M.D., Wang, T., Desai, A.A., Streu, C.N., Zhang, Y.,
1510 Zupancic, J.M., et al. (2022). Co-optimization of therapeutic antibody affinity and specificity using machine learning
1511 models that generalize to novel mutational space. *Nat. Commun.* **13**, 3788. 10.1038/s41467-022-31457-3.

1512 229. Gainza, P., Wehrle, S., Van Hall-Beauvais, A., Marchand, A., Scheck, A., Harteveld, Z., Buckley, S., Ni, D., Tan, S.,
1513 Sverrisson, F., et al. (2023). De novo design of protein interactions with learned surface fingerprints. *Nature*, 1–9.
1514 10.1038/s41586-023-05993-x.

1515 230. Lu, C., Lubin, J.H., Sarma, V.V., Stentz, S.Z., Wang, G., Wang, S., and Khare, S.D. (2023). Prediction and Design of
1516 Protease Enzyme Specificity Using a Structure-Aware Graph Convolutional Network. 2023.02.16.528728.
1517 10.1101/2023.02.16.528728.

1518 231. Sellés Vidal, L., Murray, J.W., and Heap, J.T. (2021). Versatile selective evolutionary pressure using synthetic defect
1519 in universal metabolism. *Nat. Commun.* **12**, 6859. 10.1038/s41467-021-27266-9.

1520 232. Quijano-Rubio, A., Yeh, H.-W., Park, J., Lee, H., Langan, R.A., Boyken, S.E., Lajoie, M.J., Cao, L., Chow, C.M.,
1521 Miranda, M.C., et al. (2021). De novo design of modular and tunable protein biosensors. *Nature* **591**, 482–487.
1522 10.1038/s41586-021-03258-z.

1523 233. Collins, S.P., Rostain, W., Liao, C., and Beisel, C.L. (2021). Sequence-independent RNA sensing and DNA targeting
1524 by a split domain CRISPR–Cas12a gRNA switch. *Nucleic Acids Res.* **49**, 2985–2999. 10.1093/nar/gkab100.

1525 234. Kim, H.J., Lim, J.W., Jeong, H., Lee, S.-J., Lee, D.-W., Kim, T., and Lee, S.J. (2016). Development of a highly
1526 specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. *Biosens.*
1527 *Bioelectron.* **79**, 701–708. 10.1016/j.bios.2015.12.101.

1528 235. Ostrov, N., Jimenez, M., Billerbeck, S., Brisbois, J., Matragrano, J., Ager, A., and Cornish, V.W. (2017). A modular
1529 yeast biosensor for low-cost point-of-care pathogen detection. *Sci. Adv.* **3**, e1603221. 10.1126/sciadv.1603221.