o N oo o B~ WON -

B N N G U G
N OO o AW N~ O ©

Advances in ligand-specific biosensing for structurally similar
molecules

Chenggang Xi', Jinjin Diao’, and Tae Seok Moon"-?*

' Department of Energy, Environmental and Chemical Engineering, Washington
University in St. Louis, St. Louis, MO, United States

2 Division of Biology and Biomedical Sciences, Washington University in St. Louis, St.
Louis, MO, United States

* To whom correspondence should be addressed.
Tae Seok Moon

Tel: +1 (314) 935-5026

Email: tsmoon7@gmail.com

One Brookings Dr., Box 1180

St. Louis, MO 63130, USA



18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Abstract
The specificity of biological systems makes it possible to develop biosensors targeting
specific metabolites, toxins, and pollutants in complex medical or environmental samples
without interference from structurally similar compounds. For the last two decades, great
efforts have been devoted to creating proteins or nucleic acids with novel properties
through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding
target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an
increasing research area is the enhancement of molecular specificity for genetically
encoded biosensors. Here, we summarize recent advances in the development of highly
specific biosensor systems and their essential applications. First, we describe the rational
design principles required to create libraries containing potential mutants with less
promiscuity or better specificity. Next, we review the emerging high-throughput screening
techniques to engineer biosensing specificity for the desired target. Finally, we examine
the computer-aided evaluation and prediction methods to facilitate the construction of

ligand-specific biosensors.

Keywords: genetically encoded biosensor; directed evolution; protein
engineering; molecular specificity; computational biomolecule design; machine learning;

library screening; ligand-receptor interaction
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Introduction
Living cells are endowed with a remarkable ability to sense and respond to a diverse array
of stimuli, ranging from small molecules and ions to biomacromolecules and physical
changes in their intracellular and extracellular environment. Through the integration of
distinct genetic elements that enable cells to sense and respond to these stimuli,
researchers have devised genetically encoded biosensors (GEBs) that fall into five major
categories: allosteric transcription factor (aTF)-based biosensors ', fluorescent protein
(FP)-based biosensors 2, two-component system (TCS)-based biosensors 3, enzymatic
biosensors 4, and riboswitch-based biosensors ° (Figure 1 & Table 1). These biosensors
are highly versatile and have been employed for various applications, including metabolic
engineering ©, environmental monitoring and remediation 7, diagnostics &9, and living
therapeutics °. Each type of biosensor exhibits a unique target scope attributable to its
inherent cellular function, and biosensors assembled by homologs originated from
disparate organisms display distinct sensing preferences due to their respective host

environments 11-13,

Although GEBs intrinsically offer greater specificity in detecting their targets compared
with physicochemical methods, they are often incapable of distinguishing between
multiple structurally similar chemicals that may coexist in the application environment,
leading to crosstalk and undesired signal transduction, also known as promiscuity 121415,
A partial solution is to focus on the most distinct ligands in the application environments
13.14: however, the issue of sensor-target promiscuity persists. This challenge becomes

especially pronounced when attempting specific biosensing in environmental and
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biological samples with structurally similar chemicals, as is the case with soil, body fluids,
living tissues, and similar matrices 7%16. To address this, the integration of rational design
and directed evolution methods emerges as a potent strategy to enhance the molecular

specificity of GEBs .

Directed evolution represents a widely used approach to enhance the ligand-receptor
specificity. Through multiple rounds of mutagenesis and screening the resulting variants
18 variants exhibiting heightened substrate specificity are isolated and further optimized
19 (Figure 2). Structural and computational analysis of the sensor domain can guide the
evolution process by identifying critical residues involved in substrate binding and
predicting the impact of specific mutations on substrate specificity '2°22. Recent
advances in high-throughput screening and next-generation sequencing (NGS)
technologies, combined with improvements in protein structure prediction and protein-
ligand interaction modeling, have enabled the development of more refined and efficient
strategies for biosensor evolution 23 (Figure 3 & 4). In this regard, we summarize state-
of-the-art strategies for developing highly specific GEBs that are resistant to interference
from structurally similar chemicals, even when the latter constitute the substrate of the

wild-type version.

1. Knowledge-based design principles for specificity control
In recent years, scientists have established a diverse range of highly specific GEBs by
sophisticated design strategies (Table 2). These approaches leverage either the innate
specificity of genetic components or crafted macromolecular variants and chimeras for

4
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the precise detection of specific chemical signals (Figure 2). Here, we provide an
overview of the rational and semi-rational design principles essential for the development,

selection, and validation of specialized GEBs.

The innate specificity of different types of biosensing components

Biosensing components specialized for transmembrane signaling

An effective strategy to develop ligand-specific GEBs entails the assembly of pre-existing,
specific genetic components from cell signaling systems. Natural sensing components
offer an extensive array of options with varying degrees of molecular specificity for
engineering GEBs (Table 1). Bacteria predominantly employ TCSs to detect and adapt
to fluctuations in their surroundings 3. TCSs consist of a sensor histidine kinase (sHK)
that probes a particular environmental cue and a response regulator (RR) that triggers
the pertinent cellular response 2425 (Figure 1A). They can detect a broad range of inputs
integral to bacterial growth, including metal cations, protons, small metabolites, and
communication signals indicative of growth pressure, nutrient availability, and hormones
3, While the majority of investigations have concentrated on the interactions between
sHKs and RRs, or a RR and its promoter 2628, only a handful of reports have assessed

the full spectrum of sensing targets that sHKs are capable of distinguishing.

Most sHKs exhibit inherent specificity for their wild-type targets; while some can sense a
restricted collection of chemically similar inputs, others are specific to a singular input 325,
For instance, Escherichia coli NarX demonstrates specificity for a terminal electron
acceptor nitrate (NOs") without interference from a closely-related compound nitrite (NO2

), whereas NarQ exhibits promiscuity 2°. Further examples like Shewanella halifaxensis

5
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ThsS and Shewanella baltica TtrS are specifically activated by thiosulfate (S203%) and
tetrathionate (S40e%), respectively 0. E. coli TorS-TorR could exclusively detect
trimethylamine N-oxide ((CHs)sNO) among 117 common metabolites and solvents
evaluated in a recent study 3'. The capacity of TCSs to selectively identify and react to
specific stimuli renders them a compelling platform to develop biosensors for

environmental signals 3.

Another class of intrinsically specific ligand-binding proteins (LBPs), G protein-coupled
receptors (GPCRs), represents the most extensive category of cell surface receptors in
eukaryotes (Figure 1D). GPCRs facilitate cellular perception of environmental cues
crucial for decision-making processes, such as proliferation, regulation of metabolism,
immune functions, and neuronal circuit activities 32. GPCRs transduce extracellular
signals across the plasma membrane by activating intracellular G proteins, subsequently
amplifying receptor responses through diverse downstream secondary messengers
(cyclic adenosine monophosphate, inositol trisphosphate, or Ca?*) that interact with their
corresponding transcription factors 33. Each GPCR type predominantly exhibits specificity
for a distinct class of neurotransmitters (NT) or neuromodulators, though it is capable of
binding closely related compounds with reduced activity 34. Concurrently, various GPCR
subtypes demonstrate differing degrees of ligand specificity and affinity within the same
NT category, necessitating careful GPCR candidate selection for sensor development
35,36 For instance, adrenergic receptors, which are GPCR subtypes responsive to both
epinephrine and norepinephrine, can be further categorized into a- and B-adrenergic

receptors based on their differential ligand sensitivity 37-38. Likewise, dopamine receptors
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can be subdivided into D1-like receptors (D1 and D5) and D2-like receptors (D2, D3, and
D4), each possessing a unique ligand binding profile that ultimately constitutes the

diverse specificity and sensitivity of dopamine biosensors 3%-41.

TCSs and GPCRs are pre-existing biosensing components specific for their stimuli, a
feature rooted in their fundamental roles in sensing the extracellular environment, which
is crucial for cellular growth and cell-cell communication 4?43, Nevertheless, these
systems present certain limitations in universal applicability for biosensing purposes.
Firstly, most TCSs function primarily in bacteria, while GPCRs predominantly operate in
eukaryotes. Secondly, both sensors’ target ranges are relatively constrained. TCSs
primarily detect growth factors and stressors for cell survival, though they can sense
various physical conditions 44. The remodeling of sHKs is challenging due to their limited
plasticity, thereby constraining the expansion of target compounds for TCS-based GEBs
beyond the cognate signals of the specific sensor domain 4°. Endogenous ligands of
GPCRs are restricted to hormones or NTs, and GPCR-based GEBs are often inhibited
by synthetic antagonist drugs, complicating accurate NT detection during drug treatment
39,37.46,47 | astly, both GPCRs and TCSs require multistep signal transduction processes
to modulate downstream gene expression, demanding increased effort to tune the

biosensing performance 3343,

Biosensing components specialized for intracellular signaling
Widely used biosensors are also based on one-component systems, consisting of an aTF

and an output promoter featuring the corresponding transcription factor binding site
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(Figure 1B). In contrast to sHKs, aTFs are more apt to detect chemical signals rather
than physical conditions due to their natural roles in regulating metabolic pathways 6. As
a result, the substrate scope of an aTF is typically broader than that of TCS, and aTFs
can detect a wider range of organic compounds and their various analogs “8. Additionally,
aTFs excel at sensing intracellular metabolite levels, making them suitable tools for
metabolic flux engineering and pathway evolution 4%5. Non-cognate binding between
ligands and aTFs, or aTFs and promoters, could cause crosstalk in gene regulation 351,
In terms of ligand specificity, aTFs that regulate the same promoter also display distinct
substrate preferences when they originate from different organisms ''. Therefore, a
crucial step in developing a specific biosensor based on an aTF involves selecting the
appropriate homolog, either with a preference for the target compound or with minimal

activity toward the undesired target analogs.

Genome mining through sequence alignment or transcriptomic analysis has proven to be
a highly effective approach to discover desired sensing elements %253, The identified
homolog possessing the requisite characteristics can then be introduced into the working
organism for further optimization. d'Oelsnitz et al. examined six multidrug-resistant
regulator candidates in E. coli, finding one to be highly active to tetrahydropapaverine
(THP), while displaying only slight activity toward four other alkaloids %¢. They developed
six specific alkaloid biosensors by using the responsive RamR regulator as a starting
point for directed evolution 5*%%. In some rare instances, certain aTFs exhibit natural
specificity for structurally similar chemicals, enabling their direct use as specific

biosensors. For example, Diao et al. found several specific aTFs in Rhodococcus opacus
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PD630 for aromatic compounds derived from lignin 6. Furthermore, LhgR from
Pseudomonas putida has been shown to recognize L-2-hydroxyglutarate (L-2-HG) as its

specific effector molecule, even distinguishing it from its chiral isomer °7.

Enzymatic biosensors constitute the most established category of biosensors, despite
enzymes typically being regarded as the most promiscuous building blocks for
constructing biosensors °8. Conventional output signals for these sensors include
products and byproducts of enzymatic reactions, such as hydrogen peroxide (H202) °°,
compounds with chromophores °-62 redox cofactors 3, or electrical signals 645°, making
enzymatic biosensing an indirect measurement method (Figure 1C). Luciferase
represents one of the most commonly utilized enzymatic biosensors, converting cellular
processes such as viability, protein-protein interactions, and gene expression activity into
detectable light signals with the assistance of specific luciferin substrates 6. Although
enzymatic biosensors can exhibit exceptional sensitivity and rapid response, enzymatic
reactions alter the target's concentration, causing the output signal to be influenced by
reaction thermodynamics and Kkinetics. Furthermore, certain output signals are
ubiquitously present in biomedical and environmental samples, challenging efforts to
improve biosensor precision via protein engineering 4. On the other hand, enzymes
display the broadest substrate range and demonstrate the highest resilience to protein
engineering %8. Numerous studies have successfully modified substrate-binding
specificity while preserving catalytic activities by altering ligand-binding pockets 20:67-69,

In addition, enzymatic reactions can transform noncanonical detection targets into
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detectable compounds when combined with other biosensor types, extending the

chemical detection range of a biosensor through a plug-and-play modular approach 7°.

Creation of ligand-specific, genetically encoded biosensor chimeras

Domain swapping for orthogonal signal transduction

For TCS-based GEBs, sensing a new signal is often achieved by replacement of entire
functional domains for most orthologous sHKs, owing to the lack of conserved sequence
within sensory domains #°. The first chimeric sHK was constructed by fusing the sensory
domain of E. coli Tar chemoreceptor with the dimerization and histidine
phosphotransferase domain and catalytic and ATP-binding domain of a canonical sHK
EnvZ 7. Given the innate ligand specificity, most research has concentrated on
enhancing signal transduction fidelity to improve biosensor performance, or on
transferring the developed biosensor to another organism 2772, Recently, Schmidl et al.
devised a general method for rewiring various TCSs to well-characterized output
promoters by modularly swapping RR DNA-binding domains (DBDs) 3. This technique is
also beneficial for investigating the ligand specificity of certain uncharacterized sHKs,
facilitating assessments of sHKs’ portability between bacterial species. As for GPCR-
based biosensors, several studies have crafted chimeric GPCR-G protein a subunit pairs
to transmit chemical signals into the downstream mitogen-activated protein kinase
cascade, which drives the expression of pheromone-responsive genes in yeast 7376
Researchers discovered that exogenous GPCRs exhibit orthogonality across their non-
cognate ligands when expressed in yeast ’’. This high degree of orthogonality enabled

ligand-specific mating of probiotic yeast equipped with corresponding heterogeneous
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GPCRs and several ligand-specific GEBs 7375. However, the relatively limited dynamic

range and slow kinetics have constrained the application of GPCR GEBs.

Modular assembly of one-component systems

aTFs, consisting of a ligand-binding domain (LBD) and a DBD, display a high degree of
modularity for the development of chimeric biosensors 7889, Several ligand-specific aTF-
based GEBs can be constructed by functional domain swapping '#°. For instance, BenR
and XylS are AraC-type transcription regulators from P. putida, and BenR is specific to
benzoic acid (Bz) among benzoate derivatives while XylIS is more responsive to 3-methyl
benzoic acid (3MBz) with a slightly lower activity to Bz 8'. Monteiro et al. developed a
3MBz-specific biosensor by replacing the LBD of BenR with that of XyIS &1, Similarly,
Chang et al. designed aTF-based bile salts biosensors in E. coli by fusing LBDs of PBPs
(periplasmic substrate-binding proteins) from enteropathogenic bacteria with E. coli
DBDs, demonstrating that ligand specificity profiles of LBPs were swappable between
species 82. Furthermore, De Paepe et al. transferred the ligand specificity from an E. coli-
incompatible Sinorhizobium meliloti NodD1 system to an E. coli-compatible
Herbaspirillum seropedicae FdeR system 83, They eliminated the substrate promiscuity
of FdeR in E. coli by replacing the DBD or transcription factor binding sites of FdeR with
those from the luteolin-specific regulator, NodD1. In addition, Rondon and Wilson found
that the monomer-monomer interface and hinge region of the DBD are also crucial

positions determining the specificity of a biosensor chimera 8.

11
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In addition to protein-based GEBs, riboswitch-based systems also exhibit significant
specificity and modularity (Figure 1E). These biosensors are capable of detecting a
diverse range of biological inputs, including ions, small molecules, proteins, and nucleic
acids, by modularly integrating ligand-binding aptamers 5, protein-binding RNA scaffolds
8 or nucleic acid-mediated toehold switch 8. Aptamers are short, single-stranded
oligonucleotides that perceive chemical entities through the process of binding-induced
alternative folding. Researchers have exploited a lot of ligand-binding aptamers, sourced
either from genomic RNA pools or from random sequence libraries 888, The discovery
and validation process has been expedited by affinity-based enrichment techniques, such
as systematic evolution of ligands by exponential enrichment (SELEX), which ensures
molecular specificity for biosensor development ® (Figure 3). By integrating aptamers
with various expression control elements, such as ribozymes °', small RNA regulators %2,
cis-regulatory elements 893 or CRISPR guide RNAs %, along with a downstream reporter
gene, researchers can construct highly orthogonal biosensing circuits. Moreover,
aptamers can be coupled with electrical systems that transduce aptamer conformational
changes into electrical signals. Researchers have developed a series of specific aptamer-

based electrochemical biosensors using this approach %97,

Fusing reporting proteins with ligand binding proteins

An alternative approach for developing GEBs involves fusing FPs with LBPs such as
GPCRs, to probe chemical signals (Figure 1D). Upon binding their corresponding
ligands, GPCRs undergo rapid conformational changes, inducing alterations in the

fluorescence of circularly permuted fluorescent proteins (cpFPs), fluorescence resonance

12
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energy transfer (FRET) pairs, split FPs, or bacteriophytochrome-derived near-infrared
FPs %. FP-based GEBs are more sensitive with superior signal-to-noise ratios compared
to transcriptional activation of FP expression mediated by GPCRs 2. Additionally, FP-
based GEBs are fast-acting and straightforward to test, facilitating directed evolution for
different functional domains of a LBP 32. The first step of the evolution process requires
selecting suitable GPCR scaffolds from different subtypes or species depending on the
target ligand. Subsequently, a cpFP is inserted into a candidate scaffold, and the
performance of these chimeras is assessed. An ideal scaffold should demonstrate
efficient membrane trafficking dynamics, a high initial dynamic range after cpFP insertion,
appropriate affinity, and high selectivity for the target ligand. cpFP insertion site, linker,
and cpFP optimization can be performed sequentially, and further tuning can be achieved
by mutating GPCRs to refine affinity and specificity 3°. To date, this method has been
systematically applied to develop selective and sensitive GPCR-based FP sensors for
acetylcholine %°, dopamine %41, norepinephrine 37, adenosine 1%, serotonin 47, ATP/ADP

101 and endocannabinoid 6.

In bacteria, periplasmic substrate-binding protein (PBP) scaffolds which function similarly
to GPCRs scaffolds are appealing sensor engineering candidates 32. These proteins
typically consist of two LBDs connected by a hinge region where ligand binding can
induce a conserved and substantial conformational change. Swapping the LBDs of PBPs
is one main method for engineering the ligand specificity of a protein scaffold. For
example, Scheib et al. changed the ligand specificity profile of a promiscuous PBP PotF

by grafting the binding site of a putrescine-selective homologous PotD onto PotF, which
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could be an ideal scaffold for a ligand-specific biosensor '°2. Moreover, PBPs can capture
a more diverse range of molecular targets than GPCR, albeit with less specificity,
broadening the potential scope of FP-based GEBs. Like GPCR-based GEBs, PBP-based
GEBs can detect neuromodulators along with other small molecules such as methadone
103 serotonin 194, acetylcholine 195, glycine 1%, trehalose %7, glutamate '%8, and maltose
199 However, it is important to note that GPCR/PBP-based FP GEBs are not truly specific
to a single input but rather exhibit high selectivity. They can detect multiple ligands in
addition to the most sensitive signal, with significantly diminished sensitivity outside the

realm of physiological concentrations for in vivo applications.

Apart from GPCRs and PBPs, FP-based biosensors could also be constructed utilizing
other LBPs such as the LBDs of aTFs or enzymes, plant hormone receptors, and
lipocalins 59110111 Beltran et al. rapidly developed 21 biosensors specific to their cognate
signals by modifying a plant hormone receptor with a malleable ligand-binding pocket 12,
Herud-Sikimic€ et al. generated a FRET-based biosensor in plant tissues and reshaped
the TrpR binding pocket for real-time auxin-selective biosensing 3. Kang et al. developed
a specific FRET-based biosensor based on P. putida aTF LhgR to detect L-2-HG, a
biomarker for a variety of cancers %’. Fan et al. developed a cpFP-based biosensor by
engineering a redox relay between the active-site cysteines of human thioredoxin
peroxidase to specifically sense thioredoxin redox %°. Moreover, inverse sensing where
ligand binding inhibits the fluorescence activity has also been investigated, providing

another option for FP-based GEB development from different kinds of LBPs 14,
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Identification of mutation hotspots in the ligand-binding domain

Crosstalk is a pervasive occurrence in biological systems, complicating the optimization
of orthogonality for multi-input biosensing applications '>115. Enhancing the orthogonality
of a ligand-receptor pair necessitates the generation of binding cavities that stabilize the
target molecule’s binding and eliminate the potential binding to structurally similar
molecules 2'. A recent study also revealed that alterations in ligand specificity of the aTF
BenM are predominantly governed by mutations in the LBD ''6. Therefore, the LBD of a
biosensor is typically the region most targeted for manipulation, based on structural
analysis and sequence-function relationships, when attempting to discriminate against
the binding of undesired ligands 2'. Potential mutation sites can be identified through
conserved residue analysis, protein structural analysis, reported functional studies, and
in silico predictions (Table 2). Techniques such as multiple sequence alignment,
homology modeling, and molecular docking are commonly used to identify key residues
in the LBD for specificity control 7. Single-alanine-substitution scanning can also roughly
pinpoint sensitive ligand-binding sites 8. The subsequent evolutionary process can
modify specificity from natural substrates to new ligands or eliminate undesired activity

for native substrates 119.120,

For TCS-based GEBs, the most common LBD of the sHK is the Per-Arnt-Sim (PAS)
domain, which is ubiquitous across all kingdoms of life 43. The target signal is perceived
by ligand binding to the PAS domain cavity, cofactor-containing PAS domains, and PAS
domain-membrane interface, or by modulation of inter-PAS domain disulfide bonds 5.
However, there exists only minimal sequence conservation within these PAS domains,

impeding the annotation of mutation hotspots and the protein engineering for ligand-
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binding specificity 2°. Furthermore, agonists and antagonists can bind to the same domain
of a sensor kinase with similar affinities 2!, complicating the generation of a truly specific
sHK ligand-binding pocket without interference from other molecules. To date, no
successful attempt has been made to enhance the ligand specificity of an sHK by
remodeling the PAS domain, given the complex multistep signal transduction process.
Nevertheless, Landry et al. demonstrated a phosphatase tuning method to adjust the
detection thresholds of several TCS pairs by mutating the first variable residue in the

conserved transmitter domain GXGXG motif to different hydrophobic residues 122,

Bacterial aTFs are often intrinsically promiscuous biosensing generalists 3123, Therefore,
the evolution of an aTF from a generalist to a specialist is essential to develop ligand-
specific GEBs. Initial efforts to engineer inducible promoters for synthetic biology
applications involved structure-guided site-saturation mutagenesis (SSM) or random
mutagenesis of aTFs' LBDs '. Notable examples include engineering TetR 24126 AraC
127128 ' |acl 129, and LuxR 4. In eukaryotes, ligand-activated TFs can also be evolved by
structure-guided SSM to recognize synthetic compounds for conditional gene expression
17,130,131 " For example, Chockalingam et al. engineered the ligand specificity of a human
estrogen receptor through a combination of random mutagenesis and SSM within the
LBD of the receptor '32. They successfully altered the receptor's specificity from its natural
ligand, 17-B-estradiol, to 4,4'-dihydroxybenzil after five rounds of evolution. Recently, we
demonstrated that a single mutation in the vicinity of ligand-binding sites could confer
specificity to promiscuous biosensors 33, In our work, we substantiated that TyrR, which

can bind both phenylalanine and tyrosine via two distinct ligand-binding pockets, can be
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engineered for specific biosensing by disrupting one of these pockets. We also
engineered a TynA-FeaR biosensing system consisting of a monoamine oxidase TynA
that converts various neuroactive monoamines into targets detectable by the aTF FeaR
133, Both components were modified via SSM of key residues in the LBD predicted by
homology modeling. The introduction of steric hindrance enabled the specific biosensing
of phenethylamine, while the incorporation of smaller and hydrophilic residues created
tyramine-specific GEBs. Similarly, Herud-Sikimi¢ et al. engineered the binding pocket of
TrpR to selectively sense auxin from 23 different indole derivatives, based on structural
analysis and iterative SSM of ligand-interacting residues in the vicinity of the amino group
of its substrates 3. Specifically, they discovered that the binding poses of tryptophan and
indole-3-acetic acid are distinct, and a single mutation at position 88 from serine to
tyrosine (S88Y) could selectively abolish the binding of tryptophan while stabilizing the

binding of indole-3-acetic acid.

In the case of FP-based GEBs, the linker region, FP domain, and receptor sequence are
subjected to systematic SSM to optimize detection sensitivity and response dynamic
range under varying physiological conditions 2. Most mutations do not alter molecular
specificity, except for those within LBDs of receptors '3*. Recently, Zhang et al. developed
a glycine-selective FRET biosensor based on Agrobacterium tumefaciens PBP Atu2422
which binds to glycine, serine, and y-aminobutyric acid . They computationally
designed 1,000 variants using the FoldX program and assessed them individually through
ligand docking with Autodock, followed by isothermal titration calorimetry experiments.

By introducing steric obstructions within the Atu2422 binding site, they successively

17
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eliminated promiscuous binding to serine and y-aminobutyric acid, yielding a biosensor
specific to glycine. However, leucine, valine, and threonine remained as co-agonists,
albeit with 10-fold lower sensitivity than glycine. Similarly, Feng et al. engineered and
characterized a norepinephrine sensor based on the adrenergic receptor 7. By
introducing a T6.34K mutation, the norepinephrine detection sensitivity of the biosensor
increased by 10-fold, which is 300-fold more sensitive compared to dopamine, though the
sensor is still responsive to epinephrine. Borden et al. developed an acetylcholine
biosensor from a PBP OpuBC of Thermoanaerobacter sp. X513, which bound both
choline and acetylcholine with a higher affinity for choline . Guided by structure
modeling, they modified the binding pocket to increase hydrophobicity and aromaticity
through the introduction of F219W, E174F, R178G, and K39l mutations. Consequently,
the biosensor's specificity and affinity shifted towards acetylcholine, becoming insensitive
to other neurochemicals except serotonin. Using this acetylcholine sensor as the starting
point, Unger et al. redesigned the ligand-binding pocket of OpuBC to bind serotonin while
eliminating binding to acetylcholine and choline '%4. They experimentally screened a total
of 2,576 variants guided by computational design and a machine-learning model, and
then combined frequent mutations with higher specificity. Finally, they obtained a variant
with 5,000-fold increase in serotonin binding specificity compared to the original version

by introducing 19 mutations.

A recent study by Muthusamy et al. generated a selective real-time cpFP-based
biosensor for S-methadone by engineering the nicotine-binding OpuBC variant 193, The

ligand-binding pocket of OpuBC can accommodate methadone by aromatic residues F12,
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Y65, Y357, and Y460, so they applied iterative SSM close to those residues and
developed a S-methadone-selective variant via three mutations W436F, N11V, and
L490A 193, In another case, Z. Li et al. intended to develop a uridine diphosphate N-
acetylglucosamine (UDP-GIcNAc) sensor but were unable to eliminate the UDP/UTP
binding to the UDP-GIcNAc transferase backbone ''°. Nevertheless, they have
succeeded in abolishing UDP-GIcNAc activity while keeping UDP/uridine triphosphate

(UTP) activities by random mutagenesis for UXP biosensing.

By introducing the steric effects, 1 interactions, or hydrophobicity changes into the ligand-
binding pocket, researchers could effectively discriminate the small ligand from the larger
chemicals, while it is still difficult to distinguish large compounds from small molecules 2.
Besides, long-range effects triggered by mutations in FP linker regions 32113, crucial
allosteric communication sites 35136, or protein-binding domains (PBDs) such as dimeric
interfaces 8+12%.13” may also induce changes in ligand-binding affinities. Yet, the effects of
these distant mutations on molecular specificity are difficult to predict by simple
inspection. Additionally, the accurate prediction of aptamer 3D structures is challenging
due to their high degree of flexibility, leading most modifications of riboswitch-based
biosensors to be performed through high-throughput screening instead of fine-tuning via
point mutations 138, To overcome these issues, the use of high-throughput screening and
computer-aided design approaches, in conjunction with knowledge-based structural
analysis, has been considered and will be discussed in subsequent sections of this

review.
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2. High-throughput screening and selection methods
In many instances, structure-guided single-codon mutagenesis may not consistently yield
ligand-specific genetic sensors. Consequently, combinatorial libraries created by iterative
random mutagenesis or pairwise SSM become the most typical way to thoroughly explore
desired residue substitutions in multiple mutation hotspots. To combat issues of
redundant genotypes and bias in residue substitutions due to codon redundancy,
researchers have employed codon degeneracy to construct mutagenesis libraries of
minimal size '3°. Nevertheless, as the number of potential mutation sites increases, the
number of possible mutation combinations expands exponentially, rendering it impractical
to examine all variants individually. To this end, efficient screening methods must be
implemented to isolate the desired variant with the required properties from extensive

libraries (Figure 3).

Fluorescence-activated cell sorting (FACS)

For most GEBs, FPs, luciferases, or pigment-producing enzymes serve as quantitative
reporters of biosensing readout. The conventional method for colorimetric assays
involves blue-white colony screening on agar plates, which leverages [(3-galactosidase
activity. With the application of FPs and flow cytometry, automated fluorometric sorting
techniques have enabled directed evolution of various biosensors with a higher
throughput. The basic workflow of FACS involves categorizing input cells based on
fluorescence levels. In the absence of target ligands or the presence of undesired ligands,
where biosensor readout is expected to be null, FACS picks the bottom 1-5% of cells with
the lowest fluorescence levels. Meanwhile, in the presence of desired ligands where

biosensor readout is expected to be robust, FACS selects the top 1-5% of cells with the
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highest fluorescence levels when induced by desired ligands. Previously, FACS has been
utilized as the screening method when evolving AraC to sense multiple unnatural
compounds, allowing the engineered variants to function as inducible promoters for
metabolic engineering 27128140 Additionally, others employed FACS as the negative
selection step and then test the cells individually for positive hits when targeting more
than two ligands #1142, Recently, FACS-based screening has been used to engineer
additional aTFs to sense non-native ligands or eliminate native targets, including HucR
mutants for shikimic acid 43, PobR for p-nitrophenol and 3,4-dihydroxy benzoate 44,
PcaV for vanillin '°, VanR for vanillic acid %6, and TtgR for resveratrol '4’. Beyond aTF-
based GEBs, FACS can also facilitate the screening process for riboswitch-based and

GPCR-based GEBs, yielding specific variants with high fold-change activities 74148,

FACS not only distinguishes fluorescence in the presence or absence of desired inducers
but also discerns variations in color and particle size for affinity-based selection methods,
such as aptamer SELEX '9 and surface display 1951, Typically, target ligands or
sequences are linked to their corresponding fluorescent conjugates in SELEX or surface
display experiments. During the affinity-based enrichment step, the ligand-bound
population exhibits greater size and higher fluorescence intensity than the unbound
population, enabling FACS to sort cells by color, fluorescence intensity, or size, and is
iteratively enriched. In addition, advancements in microfluidics have allowed researchers
to grow large-size variant libraries individually within a single well or on a chip and test
each variant in a droplet, significantly escalating selection capabilities compared to

traditional 96-well plate assays. Ma et al. developed a dual-channel microfluidic droplet
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screening platform and employed dual-color FACS to assess the product
enantioselectivity of esterase mutants from Archaeoglobus fulgidus ¢'. This microfluidic
high-throughput screening system could evaluate more than 108 droplets (~107 enzyme
variants) per day, rapidly identifying enantioselective variants. When further combined
with continuous evolution, FACS-based selection could become more powerful,
eliminating the need for repetitive DNA extraction and diversification from post-selection
populations. Javanpour and Liu integrated a continuous hypermutation system called
OrthoRep into FACS-based counter-selection cycles, reprogramming the specificity of

BenM from muconic acid to adipic acid 2.

Growth-based selection

In instances where the expression platform involves selection markers such as antibiotic
resistance genes %*133  toxic protein '2°, or enzymes for essential metabolism 69.137.153,
growth-based selection may isolate top-performing variants. Similar to FACS-based
selection, multiple rounds of counter-selection are required to eliminate variants with
leaky expression or undesired activities 4. Taylor et al. employed a hybrid selection
process, combining growth-based negative selection and FACS-based positive selection
for Lacl, to avoid the limited resolution of flow cytometry at low fluorescence levels '%°.
After identifying initial hits with single-codon substitutions that bind to the desired ligand,
they shuffled beneficial mutations from promiscuous variants, enhancing specificity for
gentiobiose and sucralose over the wild-type ligand isopropyl-3-D-1-
thiogalactopyranoside. Similarly, Ogawa et al. utilized growth-based dual-selection by
expressing two antibiotic resistance genes connected by a genetic inverter, successfully

obtaining a 4-methylbenzoic acid (4MBz)-specific XyIS variant through two mutations %4,
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Fluorescent proteins or colorimetric markers can also aid in the selection process by
identifying the brightest colonies on agar plates, providing an optimal starting point for the
subsequent round of directed evolution iterations °4%5. However, due to the toxic
environment exerting selection pressure, unexpected mutations may arise from low
genetic stability or PCR errors, necessitating careful selection of appropriate expression

levels of selection markers or antibiotic concentrations 129133

Compartmentalized partnered replication (CPR) represents another high-throughput
screening method that can enrich variants with enhanced expression levels during cell
growth %5 Rather than using selection markers, researchers express a thermostable
DNA polymerase as the reporter and amplify positive hits via compartmentalized PCR.
This process allows variants with higher polymerase levels to produce more DNA
templates, preserving beneficial mutations for successive rounds of evolution. Ellefson et
al. evolved an aTF TrpR to control the expression of Taq polymerase, utilizing CPR to
enrich variants with specific sensing abilities for synthetic tryptophan analogs, 5- or 6-
bromo-L-tryptophan %6, Moreover, Meyer et al. systematically evolved 12 aTF-based
GEBs using growth-based negative selection and CPR as a positive selection method to
minimize reporter expression leakiness and crosstalk between noncognate promoters 11°.
Overall, growth-based counter-selection serves as a convenient and cost-effective in vivo
screening method, despite potentially longer time and lower throughput compared to the

FACS method.
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Deep mutational scanning (DMS)

Most research has employed random mutagenesis or focused library design to evolve
promiscuous sensor candidates. However, random mutagenesis often generates
synonymous, redundant, or suboptimal mutations, while comprehensive screening of
focused-mutagenesis designs proves expensive and labor-intensive. To overcome these
limitations, DMS has emerged as a massively parallel method that can walk through a
large number of mutants benefiting from deep sequencing technologies and enrich the
variants bearing improved function by accessing the fithess of each variant under
selection pressure . DMS is a simultaneous selection and measurement process for
sensor-target pairs, eliminating the need to isolate individual variants '8, The workflow of
DMS is summarized as follows: 1) Generate a biomacromolecule library through random
mutagenesis or unbiased structure-guided SSM and assign a unique barcode for each
variant. 2) Subject the library to a selection process, altering the density of each variant
in response to selection pressure, known as enrichment. 3) Segregate the library into
several subpopulations after the enrichment process according to the selected
phenotype. 4) Extract DNA from each population with or without selection and utilize high-
throughput sequencing to determine the frequency of each variant across different bins.
5) Derive enrichment scores from sequencing results to form a sequence-function fitness

landscape, which could indicate beneficial or deleterious mutations.

When combined with artificial enrichment processes such as SELEX '%° and protein
display technologies '%° as well as FACS 6162 or growth-based selection 137,163
processes previously discussed, DMS can examine evolutionary protein-RNA, protein-
DNA, RNA-ligand, or protein-ligand binding capabilities effectively '*’. CPR also has the
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potential to be integrated with DMS for quantitative assessment of variants’ fitness under
selection pressures, preventing low sequencing fidelity caused by insufficient samples
after selection. DMS has been extensively applied to quantify the epistatic mutation
effects on human diseases %4, protein stability, activity or enantioselectivity 165-167,

protein-protein interactions 90168169 and enzyme-substrate specificity 137170,

Intriguingly, Wrenbeck et al. discovered that beneficial mutations enhancing enzyme-
substrate specificity were distributed globally throughout the sequence and structure, with
most residing 9-20 A away from active sites 137. They also observed that beneficial
mutations were imbalanced among three different substrates, with a certain correlation of
fithess between them. Although the "specificity-determining" mutation described in this
study does not necessarily indicate exclusive binding to a single ligand, it emphasizes
that advantageous mutations may extend beyond ligand-interacting residues, and DMS
has proven to be an effective tool in uncovering those distal mutation hotspots. In a similar
vein, Ogawa et al. conducted DMS on XyIS and employed an antibiotic growth-based
dual screening system to enrich XyIS variants with enhanced specificity for structurally-
similar 3MBz and 4MBz, respectively '"'. They randomized 213 residues within the XylS
LBD using single-codon substitutions and calculated each variant's frequency to delineate
the mutational fitness landscape under antibiotic selection pressure. They then focused
on residue G71, which exhibited the highest fitness scores, and identified 4MBz-specific
variants that lacked activity towards its native substrate. More recently, Meier et al.
revealed the ligand-binding residues of ATP-binding cassette transporter EfrCD after the

DMS process targeting three drugs '"2. They also discovered that a single mutation could
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transform wild-type EfrCD into a Hoechst-specific importer, which could be repurposed
as a biosensor by coupling it to a TCS-based regulatory system. However, a single
mutation may not be sufficient to adjust the ligand-bound conformation for most LBPs. To
make the method more generalizable, computational models are required to predict

combinatorial mutations that enable specificity shifts based on DMS databases.

3. Computer-aided evaluation and prediction of biosensor
specificity

Owing to the limited screening capacity restricted by the transformation efficiency or
measurement resolution, it is infeasible to fully explore the sequence space of
combinatorial mutagenesis libraries experimentally. As an alternative, computer-aided
protein design can assess protein-ligand interactions for mutants of interest more
efficiently and predict potentially specific variants exhibiting optimal ligand-binding
compatibility 73. At the atomic level, the objective of the forward protein engineering
process is to precisely position amino acid side chains around the ligand to achieve
optimal orientations. At the protein level, geometrically compatible ligand-receptor
interfaces should be tailored specifically for the target ligand based on first principles
174175 Researchers have predominantly depended on ligand-receptor scoring functions
to steer the selection of best-performing design candidates while discarding unfavorable
ones. To improve their ranking performance, these functions integrated a myriad of
factors such as cheminformatics of ligand-binding residues, geometric information in the
form of distance matrices, functional group interaction fingerprints, and binding free

energy calculations drawn from knowledge-based functions, molecular dynamics, or
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Monte Carlo simulations '76. Computational tools like Rosetta can provide precise
calculation of interaction energy as well as fast prediction for protein folding and molecular
docking simulations, thereby offering a higher throughput for selecting promising variants
in silico '"7. With the development of machine learning methods, combinatorial position-
specific mutations based on ligand-receptor affinity prediction may be increasingly pivotal,

especially for sensors that lack accurate structural information 178,

Structure-guided computational protein design and in silico selection

In practice, the variant library size could grow exponentially with the increase of mutation
positions, quickly exceeding the transformation efficiencies typically observed for yeast
(up to 108 variants), E. coli (up to 107 variants), and phage (up to 10'? variants).
Consequently, the number of sequences to be scrutinized is restricted, necessitating the
optimization of the mutational space through computer-guided library design before
experimental screening '°. The typical in silico selection pipeline to computationally
design a specific LBP is summarized as follows: 1) Obtain the structure of the sensing
protein via crystallography, homology modeling, or de novo design of the protein
backbone with desired geometries. 2) Identify active sites through molecular docking or
consensus analysis and reshape the LBD using focused or saturation mutagenesis in
silico. 3) Predict beneficial mutations by comparing ligand-binding affinities calculated via
interaction energy function or molecular dynamics simulations. 4) Assess ligand
specificity by computationally comparing the complementarity of each ligand and
experimentally verify the top-ranking variants. Additionally, steps 3) and 4) could be

performed experimentally using DMS, which yields the most stable scaffold variants for
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further modifications 160.161.180 Thijs hybrid approach enables researchers to explore a

more extensive design space than traditional directed evolution methods.

Computational pre-screening can effectively eliminate a large number of mutants with
unfavorable protein scaffolds and identify those with the most complementary ligand-
protein interfaces. Looger et al. re-engineered the ligand-binding sites of five PBPs
(glucose-binding protein, ribose-binding protein, arabinose-binding protein, glutamine-
binding protein, and histidine-binding protein) to alter the ligand specificity for nonnative
substrates '8'. They generated 10%° to 1058 mutant structures in silico by mutating 12-18
amino-acid residues in direct contact with their wild-type ligands and ranked them based
on minimized binding energy calculated using dead-end elimination theorems. The
energy function considered molecular shape, chirality, hydrogen bonding, molecular
surface (polar, aliphatic, aromatic, charged, and cationic), and water solubility. Seventeen
top-ranking variants were experimentally examined and exhibited selective molecular
recognition for their new targets. Finally, they created a chimeric TCS biosensor based
on ribose-binding and glucose-binding proteins responsive to trinitrotoluene and L-
lactate. Furthermore, Lippow et al. engineered the substrate specificity of galactose 6-
oxidase to respond to glucose by a semi-rational approach, which computationally
predicted favorable mutants with better ligand compatibility and synthesized them for
experimental selection of positive hits '82. Similarly, Jha et al. expanded the specificity of
an aTF PobR for 3,4-dihydroxy benzoate without interference from structurally-similar 2-
hydroxy benzoate using Rosetta-assisted library design 8. However, the evolved aTF-

based sensor remained active for the native inducer 4-hydroxy benzoate, highlighting the
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challenge of developing a truly specific biosensor by computational prediction alone.
Subsequently, they screened the same library and find a specialist with switched
specificity from 4-hydroxy benzoate to p-nitrophenol by four rounds of FACS '#4. Likewise,
Unger et al. optimized the serotonin-binding pocket of a PBP-based biosensor using
ligand docking and binding efficiency prediction for 250,000 variants through
RosettalLigand '%4. They selected 18 top-ranking variants for further diversification by
SSM of four crucial residues predicted by random forest modeling and combined the
beneficial mutations using a generalized linear model to identify the best-performing
sensor variant. However, this technique relies on high-resolution, three-dimensional
protein structures for accurate binding energy calculations, which limits its broader

applicability in LBP design when high-quality crystal structures are unavailable.

Alternatively, de novo design approaches allow researchers to define geometric positions
and orientations of ligand-binding residues and search for a large number of available
protein scaffolds to accommodate orchestrated ligand interactions '8 (Figure 4A).
Tinberg et al. pre-organized ligand-interacting residues geometrically around the ligand
and placed the motif into 401 protein scaffolds 185, The conformational fitness of each
protein-ligand complex was evaluated by RosettaMatch, and top-ranking scaffolds were
selected for further modification. Next, they computationally designed surrounding ligand-
binding residues by RosettaDesign programs for optimal shape complementarity, ligand
interaction energy, and protein stability. Finally, SSM libraries with one to three
substitutions on 39 residues were experimentally screened to determine the ideal ligand-

binding affinities via yeast display and FACS. Likewise, Glasgow et al. developed a FP-
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based biosensor for farnesyl pyrophosphate by modeling farnesyl pyrophosphate-binding
motifs within 3,463 compatible protein complex scaffolds 8. With increasingly accurate
protein folding simulations from algorithms like RoseTTAFold and AlphaFold2, scientists
can efficiently generate artificial protein scaffolds featuring the desired pocket shape and
tunable geometries for specific molecular interactions '87-18. Most recently, Yeh et al.
designed artificial luciferases from scratch that specifically bind synthetic luciferin
diphenylterazine (DTZ) and 2-deoxycoelenterazine (h-CTZ) '%°, They selected nuclear
transport factor 2-like superfamily as the topology from 4,000 small-molecule binding
proteins due to their appropriate shape complementarity after ligand docking. Next, they
employed a deep-learning-based ‘family-wide hallucination’ approach to create ligand-
binding pockets that stabilize the anionic state of DTZ or h-CTZ and predicted the
structure by trRosetta. Ultimately, they screened 7,648 designs for DTZ and 46 designs
for h-CTZ based on ligand-binding energy, protein-ligand hydrogen bonds, shape
complementarity, and contact molecular surface, and they introduced SSM to further
improve the luciferases activity. These studies achieved selective biosensing by
computational design of the ligand-binding pocket for the desired substrate only,

demonstrating the importance of shape complementary for specific biosensing.

These computer-aided protein design methods allowed researchers to bypass bumpy
mutational trajectories and tremendously circumvent laborious experimental iterations.
However, few studies considered negative design to exclude structurally similar
chemicals during the design process. To better improve the ligand specificity of

computationally designed biosensors, researchers could consider negative designs using
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ultra-large library docking platforms and calculate the target-to-decoy ratio to eliminate

promiscuous designs 191-193,

Data-driven ligand specificity prediction using machine learning and
neural network

Molecular docking simulations can provide reliable predictions for potential ligand-
binding; however, their accuracy remains limited '®4. To refine the ranking ability in ligand
docking simulations, machine learning methods have been extensively employed .
Nonetheless, the structure-oriented docking process is computationally resource-
intensive, especially when dealing with hundreds of thousands of variants with subtle
sequence changes. Instead of relying solely on the structure-guided computational
design, advancements in NGS techniques and machine learning models enable
researchers to explore larger sequence spaces and predict ligand-protein interactions

with minimal experimental effort 196197 (Figure 4B).

As the size of available databases continues to grow, accurate prediction of family-wide
enzyme-substrate compatibility via high-throughput virtual screening becomes
increasingly crucial for industrial biomanufacturing and drug discovery 192198 Currently,
many studies have laid the groundwork for accurately predicting enzyme-substrate
promiscuity by integrating sequence and structural information 19819 enhancing enzyme
feature descriptors 2%, expanding training databases 78, and examining various models
201,202 For example, Robinson et al. developed enzyme-substrate regression models for
the OleA family of thiolases, considering 153 chemical characteristics of residues within

12 A of the active site 23. Notably, they identified the cavity size of the ligand-binding
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pocket as a major determinant for the binding of bulky substrates, corroborating earlier
findings by Martinez-Martinez et al. 294, Additionally, Ollikainen et al. applied Rosetta-
based computational methods to enhance prediction accuracy for mutations altering
enzyme specificity, accounting for the coupled flexibility of protein backbone, ligand, and

ligand-binding residues 2%.

Beyond the conventional approaches of empirical energy functions or force field-guided
simulations, researchers have devised several machine learning or deep neural network
(DNN) models to predict protein-ligand binding affinity 2°6-219, These advanced prediction
models demonstrate the capability to discern ligand specificity in novel proteins and
predict mutations that can alter ligand specificity for new ligands 21212, Notably,
Chatterjee et al. established an artificial intelligence-based pipeline Al-bind that predicts
the binding sites and probability of diverse protein-ligand pairs, including 26 SARS-CoV-
2 viral proteins and 332 human proteins 2'3. In addition, Rube et al. developed a machine
learning model called ProBound, which predicts TF-DNA binding affinity and quantifies
sequence recognition specificity from massively parallel sequencing data 208
Nevertheless, the specificity of other regulatory LBPs was rarely investigated by machine
learning models over the past decades, possibly due to the lack of comprehensive and

high-quality databases to support analyses in these areas.

As previously discussed, DMS methods have been extensively applied to map genotype-
phenotype relationships and delineate mutational fitness landscapes for a broad array of

proteins, thereby providing enormous training datasets 2'4. Fitness scores that quantify
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the mutation effects can either be determined through DNA enrichment methods following
selection pressure or be computed by free energy differences derived from empirical
energy functions 4. Researchers have integrated Monte Carlo-based computational
screening and growth-based selection techniques to predict and validate mutation
hotspots that enhance enzyme activities by calculating the sequence density of enriched
variants 2'5, For the past few years, the increasing availability of massively parallel
mutagenesis datasets has enabled the broader application of statistical learning for
evolutionary sequence variation, resulting in more efficient predictions of sequence-

function relationship 214216217,

Still, most machine-learning models trained on DMS datasets focused on mutation effects
on protein stability, enzyme activity, antibiotic resistance, protein-protein interactions, or
human diseases '64.165217-221 " rather than biosensing specificity. For example, Wu et al.
trained a machine-learning model using hundreds of selected variants and predicted the
fithness landscape of a nitric oxide dioxygenase from Rhodothermus marinus,
encompassing a library with seven substitution positions '73. Despite the model
considering a mere seven mutation sites, it demonstrated substantial predictability,
guiding the evolution of enzyme enantioselectivity and identifying several (S)- and (R)-
selective catalysts through prediction. Furthermore, several comprehensive DMS studies
have been conducted on full-length aTF sequences, employing machine-learning models

to predict their allosteric communications modulated by corresponding ligands 2227226,

33



752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

Attributable to advancements in mapping sequence-function relationships, mutational
fithess landscapes present a more informative approach to effectively evaluate ligand
specificity and predict functional mutations in comparison to conventional affinity-based
prediction models. Notably, Tack et al. measured the fitness landscape of 62,472 Lacl
variants after antibiotic-based growth enrichment and trained a DNN model to predict
transfer curves for all possible variants 22°. Their accurate predictions of the ECso for
selected Lacl mutants shed light on the potential investigation of aTF ligand specificity by
measuring mutational fitness landscapes when induced by multiple ligands. These
studies have contributed to an expanding toolbox that can streamline the design-build-

test-learn cycle for ligand-specific biosensor development in the future.

4. Conclusion
The accurate measurement and precise control of interactions between ligands and
macromolecules have been long-standing objectives in the realm of allosteric
macromolecule engineering and biosensing. In this review, we have summarized 1)
rational design principles for generating suitable starting points, 2) high-throughput
screening techniques to enhance biosensing performance, and 3) computational design
models that facilitate the design-build-test-learn cycle (Figure 2). Additionally, the design
and screening methods for generating specific genetic elements could contribute to the
creation of superior biosensors and also support the engineering of upstream or

downstream enzymes '3, transporters 227, regulators 33, and related metabolic pathways

54,55
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Generally, any protein or nucleic-acid switch capable of undergoing allosteric
conformational changes can be engineered as a GEB. Numerous studies have already
improved protein-protein binding specificity, encompassing antibodies 228, protein
interfaces 22°, proteases 15230, and protein inhibitors 7°. Additionally, enzyme specificity
for native cofactors can be altered to accommodate synthetic compounds for conditional
genetic control 83231, Thus, the molecular specificity of biosensors can extend to a wider
array of chemical or biological targets such as proteins 232, nucleic acids 233, ions 234,

pathogens 33235 and ones beyond the small molecules discussed herein.

Still, universal engineering pipelines for specificity control of distinct GEBs remain elusive,
but existing technologies have been combined to achieve novel functions that surpass
the capabilities of natural evolution spanning millions of years. In the future, such
synthetic evolution approaches will expedite the discovery of optimized molecular
interactions, paving the way for accurate diagnostics, rapid drug discovery, and large-
scale biomanufacturing. The specific genetic components outlined here possess the
potential to empower researchers with the ability to control complex biosystems in a more
precise and quantitative manner. By detecting a wider range of chemical or biological
signals with enhanced specificity, we can tackle the problems posed by complex
environments more effectively and accomplish increasingly challenging global tasks in a

safer and more sustainable fashion.
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Figure legend

Figure 1. Overview of Five Distinct Types of Biosensors and Their Specificity
Control Methods. (A) TCS-based biosensors: Domain swapping acts as the
predominant method to tune specificity. Components like SD, Dhp-RD pair, and DBD can
be interchangeably utilized to facilitate orthogonal signal transduction. (B) aTF-based
Biosensors: Both directed evolution and domain-swapping techniques serve as tools to
refine ligand specificity, either by eliminating undesirable molecular interactions or
adapting to non-native ligands. (C) Enzymatic biosensors: The sensor output could be
either the product or a byproduct, and directed evolution emerges as the most effective
approach to enhance substrate specificity. (D) FP-based biosensors: Mutagenesis
within LBDs proves to be the most effective strategy for modifying ligand specificity.
Performance can be enhanced by modulating both the linker and cpFP insertion site.
Here, GPCR is presented as an example of ligand-binding, and orthogonal signal
transduction can be achieved via chimeric Ga through domain swapping. (E) Riboswitch-
based Biosensors: These biosensors integrate a ligand-binding aptamer with a genetic
transducer and a reporter. SELEX remains the most common method to enhance
aptamer specificity.

Key: TCS, two-component system; SD, sensor domain; DHp, dimerization and histidine
phosphotransferase; CA, catalytic and ATP-binding; RD, receiver domain; DBD, DNA-
binding domain; LBD, ligand-binding domain; PBD, protein-binding domain; aTF,
allosteric transcription factor; TFBS, transcription factor binding site; FP, fluorescent
protein; GPCR, G protein-coupled receptor; Ga, G protein a subunit; TM, transmembrane
helices; ICL3, intracellular loop 3; cpFP, circularly permuted fluorescent protein; NIR-FP,
near-infrared fluorescent protein; FRET, fluorescence resonance energy transfer;
SELEX, systematic evolution of ligands by exponential enrichment.

Figure 2. The Design-Build-Test-Learn Workflow of Directed Evolution. Five
genetically encoded biosensors undergo similar design-build-test-learn cycles, involving
diversification, expression, and selection processes. Specific regions of the genetic
elements can be intelligently chosen for subsequent mutagenesis. Techniques such as
random mutagenesis, domain swapping, structure-guided site-directed saturation
mutagenesis, or computation-driven focused mutation can be introduced to the selected
DNA region. The expression and screening process significantly determine the
throughput and robustness of the directed evolution process. Variants demonstrating
specific ligand-binding will be selected and amplified for further verification or iterative
rounds of selection.

Key: aTF, allosteric transcription factor; DBD, DNA-binding domain; LBD, ligand-binding
domain; TCS, two-component system; SD, sensor domain; DHp, dimerization and
histidine phosphotransferase; CA, catalytic and ATP-binding; FP(LBP), fluorescent
protein fused with ligand-binding protein; PBD, protein-binding domain; cpFP, circularly
permuted fluorescent proteins.
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Figure 3. High-Throughput Screening Techniques. Following DNA diversification
methods such as random mutagenesis, site-directed saturation mutagenesis, or
computer-assisted focused mutation, DNA variants are tested in vitro or introduced into
microbial hosts, including E. coli (supporting up to 107 variants), yeast (up to 10°), or
phages (up to 10'2). The screening process is dependent on the reporter gene regulated
by the biosensor. When the reporter is a fluorescence protein, FACS-based selection can
yield specific variants by iteratively sorting cells with desired fluorescence levels in the
presence or absence of target ligands. Growth-based dual-selection can be utilized when
the reporter is growth-related, such as an antibiotic resistance protein, toxic protein, or
enzyme critical to survival. When the reporter is a DNA polymerase, DNA enrichment
methodologies like CPR come into play. Active partner variants will trigger the expression
of DNA polymerase, allowing the active partner to be amplified through PCR reactions.
DMS can be coupled with positive selection via FACS or growth-based selection, followed
by NGS to determine the mutational fitness landscape under varying selection pressures.
Surface display and SELEX processes can also be paired with FACS or DMS to
specifically enrich positive hits with superior ligand affinity. Positive hits are isolated from
the screening or selection process for verification and further evolution.

Key: SSM, site-directed saturation mutagenesis; FACS, fluorescence-activated cell
sorting; CPR, compartmentalized partnered replication; DMS, deep mutational scanning;
NGS, next-generation sequencing; SELEX, systematic evolution of ligands by
exponential enrichment.

Figure 4. Holistic View of Computer-Aided Biosensor Design. (A) Diagram of
structure-based computational protein design. The potential conformational space for a
protein-ligand complex could exceed 10°° after a series of design processes.
Computational algorithms can constrain the mutational space through ligand docking
ranking, free energy calculation, or molecular dynamics simulations, and the top-ranked
variants are subject to experimental validation for enhanced specificity. (B)
Representation of datasets of varying sizes derived from different mutagenesis libraries
and screening methods for use in ligand-specificity prediction models. These models can
utilize datasets ranging from hundreds to hundreds of thousands of data points to predict
ligand specificity. Predictions are based on scoring protocols for ligand-receptor pairs
using criteria such as ligand-binding affinity, fithess scores, or evolutionary landscape
extracted from DMS data.

Key: SSM, site-directed saturation mutagenesis; LBD, ligand-binding domain, DMS, deep
mutational scanning.
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Table 1. Overview of Natural Biosensing Elements Discussed in This Review.
Key: GPCR, G protein-coupled receptor; TCS, two-component system; PBP, periplasmic
substrate-binding protein; aTF, allosteric transcription factor; LBD, ligand-binding domain;
PBD, protein-binding domain; FP, fluorescent protein; SD, sensor domain; DHp,
dimerization and histidine phosphotransferase; CA, catalytic and ATP-binding; RD,
receiver domain; DBD, DNA-binding domain; ABC transporter, ATP-binding cassette
transporter; TFBS, transcription factor binding site; +, low; ++, medium; +++, high; -, not
shown or almost none.

. Small
. Allosteric Inherent -
Signals molecule Sensor Transducer Output g Evolvability
components specificity
substrates
. . Transcription /
GPCR Chemical LBD ';BD 9dG protein > & ynformational . +
Extracellular 9 econad messenger activation of FP
Growth factors SD -
TCS and stressors (PAS) CA — Dhp - RR Transcription ++
PBP Metabolites LBD Hinge - ABC Co_nfor_matlonal o
transporter activation of FP
Periplasmic Substrate + Co- Redox,
Enzyme Metabolites LBD factor — Product + chromophore, +++
Byproduct luminescence
Transcription /
aTF Metabolites LBD DBD - TFBS Conformational + ++
activation of FP
Cytoplasmic th:g;zgtedr}(jls- Transcription,
Riboswitch Metabolites Aptamer elements, small ftranslatlon, + +++
RNAs luorescence

39



921

Table 2. Summary of Rational Design and Directed Evolution Workflow for Ligand-specific Biosensor Development.

922 This table outlines the design-build-test-learn cycle used in the cited references. Mutation hotspots & in
923 silico analysis: LBD, ligand-binding domain; LBS, ligand-binding sites; PBD, protein-binding domain; CDS, coding
924 sequence; MSA, multiple sequence alignment; ML, machine learning. Mutagenesis methods: CAD, computer-aided
925 design; Single SSM, single site-directed saturation mutagenesis; Pairwise SSM, pairwise multiple site-directed saturation
926 mutagenesis; Random, Random mutagenesis. Screening methods: MS, mutational scanning; NS, negative selection; PS,
927 positive selection; DS, dual selection; Deep(F), fluorescence-based deep mutational scanning; Deep(G), Growth-based
928 deep mutational scanning; A, alanine scanning; FYW, phenylalanine, tyrosine, tryptophan scanning; ITC: isothermal titration
929 calorimetry. Mutations & effects: #, number of mutations; Selective, promiscuous but diminished binding to undesired
930 ligands; SE, steric effect; El, electrostatic interaction; PI, polar interactions; HP, hydrophobic interaction; LE, long-range
931 effect.
932
DESIGN BUILD TEST LEARN USE
Citation Input Diversification Screening Output
Type Candidate Ligand Insilico | Hotspot Mutagenesis "isbi;‘:“’ FACS Growth Ms Individual # Specificity S‘L‘;‘;‘;‘Je' (Rf‘f:n M:f‘fa::t’“ Application
. Ran_dor_n—» .
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Docking SSM docking 9
Borden et al. 11 choline Pairwise 10 . . In situ .
2020 FP (PBP) OpuBC analogs and NTs Crystal LBD SSM >10 Fluorescence 21 Acetylcholine selective Crystallography SE, HP aciteyrl]csr;rc])gl;ne
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