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Abstract 18 

The specificity of biological systems makes it possible to develop biosensors targeting 19 

specific metabolites, toxins, and pollutants in complex medical or environmental samples 20 

without interference from structurally similar compounds. For the last two decades, great 21 

efforts have been devoted to creating proteins or nucleic acids with novel properties 22 

through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding 23 

target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an 24 

increasing research area is the enhancement of molecular specificity for genetically 25 

encoded biosensors. Here, we summarize recent advances in the development of highly 26 

specific biosensor systems and their essential applications. First, we describe the rational 27 

design principles required to create libraries containing potential mutants with less 28 

promiscuity or better specificity. Next, we review the emerging high-throughput screening 29 

techniques to engineer biosensing specificity for the desired target. Finally, we examine 30 

the computer-aided evaluation and prediction methods to facilitate the construction of 31 

ligand-specific biosensors. 32 

 33 

Keywords: genetically encoded biosensor; directed evolution; protein 34 
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Introduction 37 

Living cells are endowed with a remarkable ability to sense and respond to a diverse array 38 

of stimuli, ranging from small molecules and ions to biomacromolecules and physical 39 

changes in their intracellular and extracellular environment. Through the integration of 40 

distinct genetic elements that enable cells to sense and respond to these stimuli, 41 

researchers have devised genetically encoded biosensors (GEBs) that fall into five major 42 

categories: allosteric transcription factor (aTF)-based biosensors 1, fluorescent protein 43 

(FP)-based biosensors 2, two-component system (TCS)-based biosensors 3, enzymatic 44 

biosensors 4, and riboswitch-based biosensors 5 (Figure 1 & Table 1). These biosensors 45 

are highly versatile and have been employed for various applications, including metabolic 46 

engineering 6, environmental monitoring and remediation 7, diagnostics 8,9, and living 47 

therapeutics 10. Each type of biosensor exhibits a unique target scope attributable to its 48 

inherent cellular function, and biosensors assembled by homologs originated from 49 

disparate organisms display distinct sensing preferences due to their respective host 50 

environments 11–13.  51 

 52 

Although GEBs intrinsically offer greater specificity in detecting their targets compared 53 

with physicochemical methods, they are often incapable of distinguishing between 54 

multiple structurally similar chemicals that may coexist in the application environment, 55 

leading to crosstalk and undesired signal transduction, also known as promiscuity 12,14,15. 56 

A partial solution is to focus on the most distinct ligands in the application environments 57 

13,14; however, the issue of sensor-target promiscuity persists. This challenge becomes 58 

especially pronounced when attempting specific biosensing in environmental and 59 
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biological samples with structurally similar chemicals, as is the case with soil, body fluids, 60 

living tissues, and similar matrices 7,9,16. To address this, the integration of rational design 61 

and directed evolution methods emerges as a potent strategy to enhance the molecular 62 

specificity of GEBs 17.  63 

 64 

Directed evolution represents a widely used approach to enhance the ligand-receptor 65 

specificity. Through multiple rounds of mutagenesis and screening the resulting variants 66 

18, variants exhibiting heightened substrate specificity are isolated and further optimized 67 

19 (Figure 2). Structural and computational analysis of the sensor domain can guide the 68 

evolution process by identifying critical residues involved in substrate binding and 69 

predicting the impact of specific mutations on substrate specificity 1,20–22. Recent 70 

advances in high-throughput screening and next-generation sequencing (NGS) 71 

technologies, combined with improvements in protein structure prediction and protein-72 

ligand interaction modeling, have enabled the development of more refined and efficient 73 

strategies for biosensor evolution 23 (Figure 3 & 4). In this regard, we summarize state-74 

of-the-art strategies for developing highly specific GEBs that are resistant to interference 75 

from structurally similar chemicals, even when the latter constitute the substrate of the 76 

wild-type version. 77 

 78 

1. Knowledge-based design principles for specificity control  79 

In recent years, scientists have established a diverse range of highly specific GEBs by 80 

sophisticated design strategies (Table 2). These approaches leverage either the innate 81 

specificity of genetic components or crafted macromolecular variants and chimeras for 82 
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the precise detection of specific chemical signals (Figure 2). Here, we provide an 83 

overview of the rational and semi-rational design principles essential for the development, 84 

selection, and validation of specialized GEBs. 85 

 86 

The innate specificity of different types of biosensing components 87 

Biosensing components specialized for transmembrane signaling  88 

An effective strategy to develop ligand-specific GEBs entails the assembly of pre-existing, 89 

specific genetic components from cell signaling systems. Natural sensing components 90 

offer an extensive array of options with varying degrees of molecular specificity for 91 

engineering GEBs (Table 1). Bacteria predominantly employ TCSs to detect and adapt 92 

to fluctuations in their surroundings 3. TCSs consist of a sensor histidine kinase (sHK) 93 

that probes a particular environmental cue and a response regulator (RR) that triggers 94 

the pertinent cellular response 24,25 (Figure 1A). They can detect a broad range of inputs 95 

integral to bacterial growth, including metal cations, protons, small metabolites, and 96 

communication signals indicative of growth pressure, nutrient availability, and hormones 97 

3. While the majority of investigations have concentrated on the interactions between 98 

sHKs and RRs, or a RR and its promoter 26–28, only a handful of reports have assessed 99 

the full spectrum of sensing targets that sHKs are capable of distinguishing.  100 

 101 

Most sHKs exhibit inherent specificity for their wild-type targets; while some can sense a 102 

restricted collection of chemically similar inputs, others are specific to a singular input 3,25. 103 

For instance, Escherichia coli NarX demonstrates specificity for a terminal electron 104 

acceptor nitrate (NO3
-) without interference from a closely-related compound nitrite (NO2

-105 

), whereas NarQ exhibits promiscuity 29. Further examples like Shewanella halifaxensis 106 
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ThsS and Shewanella baltica TtrS are specifically activated by thiosulfate (S2O3
2-) and 107 

tetrathionate (S4O6
2-), respectively 30. E. coli TorS-TorR could exclusively detect 108 

trimethylamine N-oxide ((CH3)3NO) among 117 common metabolites and solvents 109 

evaluated in a recent study 31. The capacity of TCSs to selectively identify and react to 110 

specific stimuli renders them a compelling platform to develop biosensors for 111 

environmental signals 3. 112 

 113 

Another class of intrinsically specific ligand-binding proteins (LBPs), G protein-coupled 114 

receptors (GPCRs), represents the most extensive category of cell surface receptors in 115 

eukaryotes (Figure 1D). GPCRs facilitate cellular perception of environmental cues 116 

crucial for decision-making processes, such as proliferation, regulation of metabolism, 117 

immune functions, and neuronal circuit activities 32. GPCRs transduce extracellular 118 

signals across the plasma membrane by activating intracellular G proteins, subsequently 119 

amplifying receptor responses through diverse downstream secondary messengers 120 

(cyclic adenosine monophosphate, inositol trisphosphate, or Ca2+) that interact with their 121 

corresponding transcription factors 33. Each GPCR type predominantly exhibits specificity 122 

for a distinct class of neurotransmitters (NT) or neuromodulators, though it is capable of 123 

binding closely related compounds with reduced activity 34. Concurrently, various GPCR 124 

subtypes demonstrate differing degrees of ligand specificity and affinity within the same 125 

NT category, necessitating careful GPCR candidate selection for sensor development 126 

35,36. For instance, adrenergic receptors, which are GPCR subtypes responsive to both 127 

epinephrine and norepinephrine, can be further categorized into α- and β-adrenergic 128 

receptors based on their differential ligand sensitivity 37,38. Likewise, dopamine receptors 129 
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can be subdivided into D1-like receptors (D1 and D5) and D2-like receptors (D2, D3, and 130 

D4), each possessing a unique ligand binding profile that ultimately constitutes the 131 

diverse specificity and sensitivity of dopamine biosensors 39–41.  132 

 133 

TCSs and GPCRs are pre-existing biosensing components specific for their stimuli, a 134 

feature rooted in their fundamental roles in sensing the extracellular environment, which 135 

is crucial for cellular growth and cell-cell communication 42,43. Nevertheless, these 136 

systems present certain limitations in universal applicability for biosensing purposes. 137 

Firstly, most TCSs function primarily in bacteria, while GPCRs predominantly operate in 138 

eukaryotes. Secondly, both sensors’ target ranges are relatively constrained. TCSs 139 

primarily detect growth factors and stressors for cell survival, though they can sense 140 

various physical conditions 44. The remodeling of sHKs is challenging due to their limited 141 

plasticity, thereby constraining the expansion of target compounds for TCS-based GEBs 142 

beyond the cognate signals of the specific sensor domain 45. Endogenous ligands of 143 

GPCRs are restricted to hormones or NTs, and GPCR-based GEBs are often inhibited 144 

by synthetic antagonist drugs, complicating accurate NT detection during drug treatment 145 

39,37,46,47. Lastly, both GPCRs and TCSs require multistep signal transduction processes 146 

to modulate downstream gene expression, demanding increased effort to tune the 147 

biosensing performance 33,43. 148 

 149 

Biosensing components specialized for intracellular signaling 150 

Widely used biosensors are also based on one-component systems, consisting of an aTF 151 

and an output promoter featuring the corresponding transcription factor binding site 1 152 
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(Figure 1B). In contrast to sHKs, aTFs are more apt to detect chemical signals rather 153 

than physical conditions due to their natural roles in regulating metabolic pathways 6. As 154 

a result, the substrate scope of an aTF is typically broader than that of TCS, and aTFs 155 

can detect a wider range of organic compounds and their various analogs 48. Additionally, 156 

aTFs excel at sensing intracellular metabolite levels, making them suitable tools for 157 

metabolic flux engineering and pathway evolution 49,50. Non-cognate binding between 158 

ligands and aTFs, or aTFs and promoters, could cause crosstalk in gene regulation 13,51. 159 

In terms of ligand specificity, aTFs that regulate the same promoter also display distinct 160 

substrate preferences when they originate from different organisms 11. Therefore, a 161 

crucial step in developing a specific biosensor based on an aTF involves selecting the 162 

appropriate homolog, either with a preference for the target compound or with minimal 163 

activity toward the undesired target analogs.  164 

 165 

Genome mining through sequence alignment or transcriptomic analysis has proven to be 166 

a highly effective approach to discover desired sensing elements 52,53. The identified 167 

homolog possessing the requisite characteristics can then be introduced into the working 168 

organism for further optimization. d'Oelsnitz et al. examined six multidrug-resistant 169 

regulator candidates in E. coli, finding one to be highly active to tetrahydropapaverine 170 

(THP), while displaying only slight activity toward four other alkaloids 54. They developed 171 

six specific alkaloid biosensors by using the responsive RamR regulator as a starting 172 

point for directed evolution 54,55.  In some rare instances, certain aTFs exhibit natural 173 

specificity for structurally similar chemicals, enabling their direct use as specific 174 

biosensors. For example, Diao et al. found several specific aTFs in Rhodococcus opacus 175 
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PD630 for aromatic compounds derived from lignin 56. Furthermore, LhgR from 176 

Pseudomonas putida has been shown to recognize L-2-hydroxyglutarate (L-2-HG) as its 177 

specific effector molecule, even distinguishing it from its chiral isomer 57. 178 

 179 

Enzymatic biosensors constitute the most established category of biosensors, despite 180 

enzymes typically being regarded as the most promiscuous building blocks for 181 

constructing biosensors 58. Conventional output signals for these sensors include 182 

products and byproducts of enzymatic reactions, such as hydrogen peroxide (H2O2) 59, 183 

compounds with chromophores 60–62, redox cofactors 63, or electrical signals 64,65, making 184 

enzymatic biosensing an indirect measurement method (Figure 1C). Luciferase 185 

represents one of the most commonly utilized enzymatic biosensors, converting cellular 186 

processes such as viability, protein-protein interactions, and gene expression activity into 187 

detectable light signals with the assistance of specific luciferin substrates 66. Although 188 

enzymatic biosensors can exhibit exceptional sensitivity and rapid response, enzymatic 189 

reactions alter the target's concentration, causing the output signal to be influenced by 190 

reaction thermodynamics and kinetics. Furthermore, certain output signals are 191 

ubiquitously present in biomedical and environmental samples, challenging efforts to 192 

improve biosensor precision via protein engineering 4. On the other hand, enzymes 193 

display the broadest substrate range and demonstrate the highest resilience to protein 194 

engineering 58. Numerous studies have successfully modified substrate-binding 195 

specificity while preserving catalytic activities by altering ligand-binding pockets 20,67–69. 196 

In addition, enzymatic reactions can transform noncanonical detection targets into 197 
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detectable compounds when combined with other biosensor types, extending the 198 

chemical detection range of a biosensor through a plug-and-play modular approach 70.  199 

 200 

Creation of ligand-specific, genetically encoded biosensor chimeras  201 

Domain swapping for orthogonal signal transduction 202 

For TCS-based GEBs, sensing a new signal is often achieved by replacement of entire 203 

functional domains for most orthologous sHKs, owing to the lack of conserved sequence 204 

within sensory domains 45. The first chimeric sHK was constructed by fusing the sensory 205 

domain of E. coli Tar chemoreceptor with the dimerization and histidine 206 

phosphotransferase domain and catalytic and ATP-binding domain of a canonical sHK 207 

EnvZ 71. Given the innate ligand specificity, most research has concentrated on 208 

enhancing signal transduction fidelity to improve biosensor performance, or on 209 

transferring the developed biosensor to another organism 27,72. Recently, Schmidl et al. 210 

devised a general method for rewiring various TCSs to well-characterized output 211 

promoters by modularly swapping RR DNA-binding domains (DBDs) 31. This technique is 212 

also beneficial for investigating the ligand specificity of certain uncharacterized sHKs, 213 

facilitating assessments of sHKs’ portability between bacterial species. As for GPCR-214 

based biosensors, several studies have crafted chimeric GPCR-G protein α subunit pairs 215 

to transmit chemical signals into the downstream mitogen-activated protein kinase 216 

cascade, which drives the expression of pheromone-responsive genes in yeast 73–76. 217 

Researchers discovered that exogenous GPCRs exhibit orthogonality across their non-218 

cognate ligands when expressed in yeast 77. This high degree of orthogonality enabled 219 

ligand-specific mating of probiotic yeast equipped with corresponding heterogeneous 220 
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GPCRs and several ligand-specific GEBs  73,75. However, the relatively limited dynamic 221 

range and slow kinetics have constrained the application of GPCR GEBs. 222 

 223 

Modular assembly of one-component systems 224 

aTFs, consisting of a ligand-binding domain (LBD) and a DBD, display a high degree of 225 

modularity for the development of chimeric biosensors 78–80. Several ligand-specific aTF-226 

based GEBs can be constructed by functional domain swapping 1,49. For instance, BenR 227 

and XylS are AraC-type transcription regulators from P. putida, and BenR is specific to 228 

benzoic acid (Bz) among benzoate derivatives while XylS is more responsive to 3-methyl 229 

benzoic acid (3MBz) with a slightly lower activity to Bz 81. Monteiro et al. developed a 230 

3MBz-specific biosensor by replacing the LBD of BenR with that of XylS  81. Similarly, 231 

Chang et al. designed aTF-based bile salts biosensors in E. coli by fusing LBDs of PBPs 232 

(periplasmic substrate-binding proteins) from enteropathogenic bacteria with E. coli 233 

DBDs, demonstrating that ligand specificity profiles of LBPs were swappable between 234 

species 82. Furthermore, De Paepe et al. transferred the ligand specificity from an E. coli-235 

incompatible Sinorhizobium meliloti NodD1 system to an E. coli-compatible 236 

Herbaspirillum seropedicae FdeR system 83. They eliminated the substrate promiscuity 237 

of FdeR in E. coli by replacing the DBD or transcription factor binding sites of FdeR with 238 

those from the luteolin-specific regulator, NodD1. In addition, Rondon and Wilson found 239 

that the monomer−monomer interface and hinge region of the DBD are also crucial 240 

positions determining the specificity of a biosensor chimera 84.  241 

 242 
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In addition to protein-based GEBs, riboswitch-based systems also exhibit significant 243 

specificity and modularity (Figure 1E). These biosensors are capable of detecting a 244 

diverse range of biological inputs, including ions, small molecules, proteins, and nucleic 245 

acids, by modularly integrating ligand-binding aptamers 85, protein-binding RNA scaffolds 246 

86, or nucleic acid-mediated toehold switch 87. Aptamers are short, single-stranded 247 

oligonucleotides that perceive chemical entities through the process of binding-induced 248 

alternative folding.  Researchers have exploited a lot of ligand-binding aptamers, sourced 249 

either from genomic RNA pools or from random sequence libraries 88,89. The discovery 250 

and validation process has been expedited by affinity-based enrichment techniques, such 251 

as systematic evolution of ligands by exponential enrichment (SELEX), which ensures 252 

molecular specificity for biosensor development 90 (Figure 3). By integrating aptamers 253 

with various expression control elements, such as ribozymes 91, small RNA regulators 92, 254 

cis-regulatory elements 85,93, or CRISPR guide RNAs 94, along with a downstream reporter 255 

gene, researchers can construct highly orthogonal biosensing circuits. Moreover, 256 

aptamers can be coupled with electrical systems that transduce aptamer conformational 257 

changes into electrical signals. Researchers have developed a series of specific aptamer-258 

based electrochemical biosensors using this approach 95–97.  259 

 260 

Fusing reporting proteins with ligand binding proteins 261 

An alternative approach for developing GEBs involves fusing FPs with LBPs such as 262 

GPCRs, to probe chemical signals (Figure 1D). Upon binding their corresponding 263 

ligands, GPCRs undergo rapid conformational changes, inducing alterations in the 264 

fluorescence of circularly permuted fluorescent proteins (cpFPs), fluorescence resonance 265 
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energy transfer (FRET) pairs, split FPs, or bacteriophytochrome-derived near-infrared 266 

FPs 98. FP-based GEBs are more sensitive with superior signal-to-noise ratios compared 267 

to transcriptional activation of FP expression mediated by GPCRs 72. Additionally, FP-268 

based GEBs are fast-acting and straightforward to test, facilitating directed evolution for 269 

different functional domains of a LBP 32. The first step of the evolution process requires 270 

selecting suitable GPCR scaffolds from different subtypes or species depending on the 271 

target ligand. Subsequently, a cpFP is inserted into a candidate scaffold, and the 272 

performance of these chimeras is assessed. An ideal scaffold should demonstrate 273 

efficient membrane trafficking dynamics, a high initial dynamic range after cpFP insertion, 274 

appropriate affinity, and high selectivity for the target ligand. cpFP insertion site, linker, 275 

and cpFP optimization can be performed sequentially, and further tuning can be achieved 276 

by mutating GPCRs to refine affinity and specificity 32. To date, this method has been 277 

systematically applied to develop selective and sensitive GPCR-based FP sensors for 278 

acetylcholine 99, dopamine 39,41, norepinephrine 37, adenosine 100, serotonin 47, ATP/ADP 279 

101, and endocannabinoid 46. 280 

 281 

In bacteria, periplasmic substrate-binding protein (PBP) scaffolds which function similarly 282 

to GPCRs scaffolds are appealing sensor engineering candidates 32. These proteins 283 

typically consist of two LBDs connected by a hinge region where ligand binding can 284 

induce a conserved and substantial conformational change. Swapping the LBDs of PBPs 285 

is one main method for engineering the ligand specificity of a protein scaffold. For 286 

example, Scheib et al. changed the ligand specificity profile of a promiscuous PBP PotF 287 

by grafting the binding site of a putrescine-selective homologous PotD onto PotF, which 288 
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could be an ideal scaffold for a ligand-specific biosensor 102. Moreover, PBPs can capture 289 

a more diverse range of molecular targets than GPCR, albeit with less specificity, 290 

broadening the potential scope of FP-based GEBs. Like GPCR-based GEBs, PBP-based 291 

GEBs can detect neuromodulators along with other small molecules such as methadone 292 

103, serotonin 104, acetylcholine 105, glycine 106, trehalose 107, glutamate 108, and maltose 293 

109. However, it is important to note that GPCR/PBP-based FP GEBs are not truly specific 294 

to a single input but rather exhibit high selectivity. They can detect multiple ligands in 295 

addition to the most sensitive signal, with significantly diminished sensitivity outside the 296 

realm of physiological concentrations for in vivo applications.  297 

 298 

Apart from GPCRs and PBPs, FP-based biosensors could also be constructed utilizing 299 

other LBPs such as the LBDs of aTFs or enzymes, plant hormone receptors, and 300 

lipocalins 59,110,111. Beltrán et al. rapidly developed 21 biosensors specific to their cognate 301 

signals by modifying a plant hormone receptor with a malleable ligand-binding pocket 112. 302 

Herud-Sikimić et al. generated a FRET-based biosensor in plant tissues and reshaped 303 

the TrpR binding pocket for real-time auxin-selective biosensing 113. Kang et al. developed 304 

a specific FRET-based biosensor based on P. putida aTF LhgR to detect L-2-HG, a 305 

biomarker for a variety of cancers 57. Fan et al. developed a cpFP-based biosensor by 306 

engineering a redox relay between the active-site cysteines of human thioredoxin 307 

peroxidase to specifically sense thioredoxin redox 59. Moreover, inverse sensing where 308 

ligand binding inhibits the fluorescence activity has also been investigated, providing 309 

another option for FP-based GEB development from different kinds of LBPs 114.  310 

 311 
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Identification of mutation hotspots in the ligand-binding domain 312 

Crosstalk is a pervasive occurrence in biological systems, complicating the optimization 313 

of orthogonality for multi-input biosensing applications 15,115. Enhancing the orthogonality 314 

of a ligand-receptor pair necessitates the generation of binding cavities that stabilize the 315 

target molecule’s binding and eliminate the potential binding to structurally similar 316 

molecules 21. A recent study also revealed that alterations in ligand specificity of the aTF 317 

BenM are predominantly governed by mutations in the LBD 116. Therefore, the LBD of a 318 

biosensor is typically the region most targeted for manipulation, based on structural 319 

analysis and sequence-function relationships, when attempting to discriminate against 320 

the binding of undesired ligands 21. Potential mutation sites can be identified through 321 

conserved residue analysis, protein structural analysis, reported functional studies, and 322 

in silico predictions (Table 2). Techniques such as multiple sequence alignment, 323 

homology modeling, and molecular docking are commonly used to identify key residues 324 

in the LBD for specificity control 117. Single-alanine-substitution scanning can also roughly 325 

pinpoint sensitive ligand-binding sites 118. The subsequent evolutionary process can 326 

modify specificity from natural substrates to new ligands or eliminate undesired activity 327 

for native substrates 119,120. 328 

 329 

For TCS-based GEBs, the most common LBD of the sHK is the Per-Arnt-Sim (PAS) 330 

domain, which is ubiquitous across all kingdoms of life 43. The target signal is perceived 331 

by ligand binding to the PAS domain cavity, cofactor-containing PAS domains, and PAS 332 

domain-membrane interface, or by modulation of inter-PAS domain disulfide bonds 25. 333 

However, there exists only minimal sequence conservation within these PAS domains, 334 

impeding the annotation of mutation hotspots and the protein engineering for ligand-335 
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binding specificity 25. Furthermore, agonists and antagonists can bind to the same domain 336 

of a sensor kinase with similar affinities 121, complicating the generation of a truly specific 337 

sHK ligand-binding pocket without interference from other molecules. To date, no 338 

successful attempt has been made to enhance the ligand specificity of an sHK by 339 

remodeling the PAS domain, given the complex multistep signal transduction process. 340 

Nevertheless, Landry et al. demonstrated a phosphatase tuning method to adjust the 341 

detection thresholds of several TCS pairs by mutating the first variable residue in the 342 

conserved transmitter domain GXGXG motif to different hydrophobic residues 122. 343 

 344 

Bacterial aTFs are often intrinsically promiscuous biosensing generalists 13,123. Therefore, 345 

the evolution of an aTF from a generalist to a specialist is essential to develop ligand-346 

specific GEBs. Initial efforts to engineer inducible promoters for synthetic biology 347 

applications involved structure-guided site-saturation mutagenesis (SSM) or random 348 

mutagenesis of aTFs' LBDs 1.  Notable examples include engineering TetR 124–126, AraC 349 

127,128, LacI 129, and LuxR 14. In eukaryotes, ligand-activated TFs can also be evolved by 350 

structure-guided SSM to recognize synthetic compounds for conditional gene expression 351 

17,130,131. For example, Chockalingam et al. engineered the ligand specificity of a human 352 

estrogen receptor through a combination of random mutagenesis and SSM within the 353 

LBD of the receptor 132. They successfully altered the receptor's specificity from its natural 354 

ligand, 17-β-estradiol, to 4,4'-dihydroxybenzil after five rounds of evolution. Recently, we 355 

demonstrated that a single mutation in the vicinity of ligand-binding sites could confer 356 

specificity to promiscuous biosensors 133. In our work, we substantiated that TyrR, which 357 

can bind both phenylalanine and tyrosine via two distinct ligand-binding pockets, can be 358 
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engineered for specific biosensing by disrupting one of these pockets. We also 359 

engineered a TynA-FeaR biosensing system consisting of a monoamine oxidase TynA 360 

that converts various neuroactive monoamines into targets detectable by the aTF FeaR 361 

133. Both components were modified via SSM of key residues in the LBD predicted by 362 

homology modeling. The introduction of steric hindrance enabled the specific biosensing 363 

of phenethylamine, while the incorporation of smaller and hydrophilic residues created 364 

tyramine-specific GEBs. Similarly, Herud-Sikimić et al. engineered the binding pocket of 365 

TrpR to selectively sense auxin from 23 different indole derivatives, based on structural 366 

analysis and iterative SSM of ligand-interacting residues in the vicinity of the amino group 367 

of its substrates 113. Specifically, they discovered that the binding poses of tryptophan and 368 

indole-3-acetic acid are distinct, and a single mutation at position 88 from serine to 369 

tyrosine (S88Y) could selectively abolish the binding of tryptophan while stabilizing the 370 

binding of indole-3-acetic acid.  371 

 372 

In the case of FP-based GEBs, the linker region, FP domain, and receptor sequence are 373 

subjected to systematic SSM to optimize detection sensitivity and response dynamic 374 

range under varying physiological conditions 32. Most mutations do not alter molecular 375 

specificity, except for those within LBDs of receptors 134. Recently, Zhang et al. developed 376 

a glycine-selective FRET biosensor based on Agrobacterium tumefaciens PBP Atu2422 377 

which binds to glycine, serine, and γ-aminobutyric acid 106. They computationally 378 

designed 1,000 variants using the FoldX program and assessed them individually through 379 

ligand docking with Autodock, followed by isothermal titration calorimetry experiments. 380 

By introducing steric obstructions within the Atu2422 binding site, they successively 381 
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eliminated promiscuous binding to serine and γ-aminobutyric acid, yielding a biosensor 382 

specific to glycine. However, leucine, valine, and threonine remained as co-agonists, 383 

albeit with 10-fold lower sensitivity than glycine. Similarly, Feng et al. engineered and 384 

characterized a norepinephrine sensor based on the adrenergic receptor 37. By 385 

introducing a T6.34K mutation, the norepinephrine detection sensitivity of the biosensor 386 

increased by 10-fold, which is 300-fold more sensitive compared to dopamine, though the 387 

sensor is still responsive to epinephrine. Borden et al. developed an acetylcholine 388 

biosensor from a PBP OpuBC of Thermoanaerobacter sp. X513, which bound both 389 

choline and acetylcholine with a higher affinity for choline 105. Guided by structure 390 

modeling, they modified the binding pocket to increase hydrophobicity and aromaticity 391 

through the introduction of F219W, E174F, R178G, and K39I mutations. Consequently, 392 

the biosensor's specificity and affinity shifted towards acetylcholine, becoming insensitive 393 

to other neurochemicals except serotonin. Using this acetylcholine sensor as the starting 394 

point, Unger et al. redesigned the ligand-binding pocket of OpuBC to bind serotonin while 395 

eliminating binding to acetylcholine and choline 104. They experimentally screened a total 396 

of 2,576 variants guided by computational design and a machine-learning model, and 397 

then combined frequent mutations with higher specificity. Finally, they obtained a variant 398 

with 5,000-fold increase in serotonin binding specificity compared to the original version 399 

by introducing 19 mutations.  400 

 401 

A recent study by Muthusamy et al. generated a selective real-time cpFP-based 402 

biosensor for S-methadone by engineering the nicotine-binding OpuBC variant 103. The 403 

ligand-binding pocket of OpuBC can accommodate methadone by aromatic residues F12, 404 
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Y65, Y357, and Y460, so they applied iterative SSM close to those residues and 405 

developed a S-methadone-selective variant via three mutations W436F, N11V, and 406 

L490A 103. In another case, Z. Li et al. intended to develop a uridine diphosphate N-407 

acetylglucosamine (UDP-GlcNAc) sensor but were unable to eliminate the UDP/UTP 408 

binding to the UDP-GlcNAc transferase backbone 110. Nevertheless, they have 409 

succeeded in abolishing UDP-GlcNAc activity while keeping UDP/uridine triphosphate 410 

(UTP) activities by random mutagenesis for UXP biosensing.  411 

 412 

By introducing the steric effects, π interactions, or hydrophobicity changes into the ligand-413 

binding pocket, researchers could effectively discriminate the small ligand from the larger 414 

chemicals, while it is still difficult to distinguish large compounds from small molecules 21. 415 

Besides, long-range effects triggered by mutations in FP linker regions 32,113, crucial 416 

allosteric communication sites 135,136, or protein-binding domains (PBDs) such as dimeric 417 

interfaces 84,129,137 may also induce changes in ligand-binding affinities. Yet, the effects of 418 

these distant mutations on molecular specificity are difficult to predict by simple 419 

inspection. Additionally, the accurate prediction of aptamer 3D structures is challenging 420 

due to their high degree of flexibility, leading most modifications of riboswitch-based 421 

biosensors to be performed through high-throughput screening instead of fine-tuning via 422 

point mutations 138. To overcome these issues, the use of high-throughput screening and 423 

computer-aided design approaches, in conjunction with knowledge-based structural 424 

analysis, has been considered and will be discussed in subsequent sections of this 425 

review. 426 

 427 
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2. High-throughput screening and selection methods 428 

In many instances, structure-guided single-codon mutagenesis may not consistently yield 429 

ligand-specific genetic sensors. Consequently, combinatorial libraries created by iterative 430 

random mutagenesis or pairwise SSM become the most typical way to thoroughly explore 431 

desired residue substitutions in multiple mutation hotspots. To combat issues of 432 

redundant genotypes and bias in residue substitutions due to codon redundancy, 433 

researchers have employed codon degeneracy to construct mutagenesis libraries of 434 

minimal size 139. Nevertheless, as the number of potential mutation sites increases, the 435 

number of possible mutation combinations expands exponentially, rendering it impractical 436 

to examine all variants individually. To this end, efficient screening methods must be 437 

implemented to isolate the desired variant with the required properties from extensive 438 

libraries (Figure 3).  439 

 440 

Fluorescence-activated cell sorting (FACS) 441 

For most GEBs, FPs, luciferases, or pigment-producing enzymes serve as quantitative 442 

reporters of biosensing readout. The conventional method for colorimetric assays 443 

involves blue-white colony screening on agar plates, which leverages β-galactosidase 444 

activity. With the application of FPs and flow cytometry, automated fluorometric sorting 445 

techniques have enabled directed evolution of various biosensors with a higher 446 

throughput. The basic workflow of FACS involves categorizing input cells based on 447 

fluorescence levels. In the absence of target ligands or the presence of undesired ligands, 448 

where biosensor readout is expected to be null, FACS picks the bottom 1-5% of cells with 449 

the lowest fluorescence levels. Meanwhile, in the presence of desired ligands where 450 

biosensor readout is expected to be robust, FACS selects the top 1-5% of cells with the 451 
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highest fluorescence levels when induced by desired ligands. Previously, FACS has been 452 

utilized as the screening method when evolving AraC to sense multiple unnatural 453 

compounds, allowing the engineered variants to function as inducible promoters for 454 

metabolic engineering 127,128,140. Additionally, others employed FACS as the negative 455 

selection step and then test the cells individually for positive hits when targeting more 456 

than two ligands 141,142. Recently, FACS-based screening has been used to engineer 457 

additional aTFs to sense non-native ligands or eliminate native targets, including HucR 458 

mutants for shikimic acid 143, PobR for p-nitrophenol and 3,4-dihydroxy benzoate 144, 459 

PcaV for vanillin 145, VanR for vanillic acid 146, and TtgR for resveratrol 147. Beyond aTF-460 

based GEBs, FACS can also facilitate the screening process for riboswitch-based and 461 

GPCR-based GEBs, yielding specific variants with high fold-change activities 74,148. 462 

 463 

FACS not only distinguishes fluorescence in the presence or absence of desired inducers 464 

but also discerns variations in color and particle size for affinity-based selection methods, 465 

such as aptamer SELEX 149 and surface display 150,151. Typically, target ligands or 466 

sequences are linked to their corresponding fluorescent conjugates in SELEX or surface 467 

display experiments. During the affinity-based enrichment step, the ligand-bound 468 

population exhibits greater size and higher fluorescence intensity than the unbound 469 

population, enabling FACS to sort cells by color, fluorescence intensity, or size, and is 470 

iteratively enriched. In addition, advancements in microfluidics have allowed researchers 471 

to grow large-size variant libraries individually within a single well or on a chip and test 472 

each variant in a droplet, significantly escalating selection capabilities compared to 473 

traditional 96-well plate assays. Ma et al. developed a dual-channel microfluidic droplet 474 
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screening platform and employed dual-color FACS to assess the product 475 

enantioselectivity of esterase mutants from Archaeoglobus fulgidus 61. This microfluidic 476 

high-throughput screening system could evaluate more than 108 droplets (~107 enzyme 477 

variants) per day, rapidly identifying enantioselective variants. When further combined 478 

with continuous evolution, FACS-based selection could become more powerful, 479 

eliminating the need for repetitive DNA extraction and diversification from post-selection 480 

populations. Javanpour and Liu integrated a continuous hypermutation system called 481 

OrthoRep into FACS-based counter-selection cycles, reprogramming the specificity of 482 

BenM from muconic acid to adipic acid 152.  483 

 484 

Growth-based selection 485 

In instances where the expression platform involves selection markers such as antibiotic 486 

resistance genes 54,133, toxic protein 129, or enzymes for essential metabolism 69,137,153, 487 

growth-based selection may isolate top-performing variants. Similar to FACS-based 488 

selection, multiple rounds of counter-selection are required to eliminate variants with 489 

leaky expression or undesired activities  14. Taylor et al. employed a hybrid selection 490 

process, combining growth-based negative selection and FACS-based positive selection 491 

for LacI, to avoid the limited resolution of flow cytometry at low fluorescence levels 129. 492 

After identifying initial hits with single-codon substitutions that bind to the desired ligand, 493 

they shuffled beneficial mutations from promiscuous variants, enhancing specificity for 494 

gentiobiose and sucralose over the wild-type ligand isopropyl-β-D-1-495 

thiogalactopyranoside. Similarly, Ogawa et al. utilized growth-based dual-selection by 496 

expressing two antibiotic resistance genes connected by a genetic inverter, successfully 497 

obtaining a 4-methylbenzoic acid (4MBz)-specific XylS variant through two mutations 154. 498 
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Fluorescent proteins or colorimetric markers can also aid in the selection process by 499 

identifying the brightest colonies on agar plates, providing an optimal starting point for the 500 

subsequent round of directed evolution iterations 54,55. However, due to the toxic 501 

environment exerting selection pressure, unexpected mutations may arise from low 502 

genetic stability or PCR errors, necessitating careful selection of appropriate expression 503 

levels of selection markers or antibiotic concentrations 129,133 504 

 505 

Compartmentalized partnered replication (CPR) represents another high-throughput 506 

screening method that can enrich variants with enhanced expression levels during cell 507 

growth 155. Rather than using selection markers, researchers express a thermostable 508 

DNA polymerase as the reporter and amplify positive hits via compartmentalized PCR. 509 

This process allows variants with higher polymerase levels to produce more DNA 510 

templates, preserving beneficial mutations for successive rounds of evolution. Ellefson et 511 

al. evolved an aTF TrpR to control the expression of Taq polymerase, utilizing CPR to 512 

enrich variants with specific sensing abilities for synthetic tryptophan analogs, 5- or 6-513 

bromo-L-tryptophan 156. Moreover, Meyer et al. systematically evolved 12 aTF-based 514 

GEBs using growth-based negative selection and CPR as a positive selection method to 515 

minimize reporter expression leakiness and crosstalk between noncognate promoters 115. 516 

Overall, growth-based counter-selection serves as a convenient and cost-effective in vivo 517 

screening method, despite potentially longer time and lower throughput compared to the 518 

FACS method. 519 

 520 
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Deep mutational scanning (DMS)  521 

Most research has employed random mutagenesis or focused library design to evolve 522 

promiscuous sensor candidates. However, random mutagenesis often generates 523 

synonymous, redundant, or suboptimal mutations, while comprehensive screening of 524 

focused-mutagenesis designs proves expensive and labor-intensive. To overcome these 525 

limitations, DMS has emerged as a massively parallel method that can walk through a 526 

large number of mutants benefiting from deep sequencing technologies and enrich the 527 

variants bearing improved function by accessing the fitness of each variant under 528 

selection pressure 157. DMS is a simultaneous selection and measurement process for 529 

sensor-target pairs, eliminating the need to isolate individual variants 158. The workflow of 530 

DMS is summarized as follows: 1) Generate a biomacromolecule library through random 531 

mutagenesis or unbiased structure-guided SSM and assign a unique barcode for each 532 

variant. 2) Subject the library to a selection process, altering the density of each variant 533 

in response to selection pressure, known as enrichment. 3) Segregate the library into 534 

several subpopulations after the enrichment process according to the selected 535 

phenotype. 4) Extract DNA from each population with or without selection and utilize high-536 

throughput sequencing to determine the frequency of each variant across different bins. 537 

5) Derive enrichment scores from sequencing results to form a sequence-function fitness 538 

landscape, which could indicate beneficial or deleterious mutations.  539 

 540 

When combined with artificial enrichment processes such as SELEX 159 and protein 541 

display technologies 160 as well as FACS 161,162 or growth-based selection 137,163 542 

processes previously discussed, DMS can examine evolutionary protein-RNA, protein-543 

DNA, RNA-ligand, or protein-ligand binding capabilities effectively 157. CPR also has the 544 
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potential to be integrated with DMS for quantitative assessment of variants’ fitness under 545 

selection pressures, preventing low sequencing fidelity caused by insufficient samples 546 

after selection. DMS has been extensively applied to quantify the epistatic mutation 547 

effects on human diseases 164, protein stability, activity or enantioselectivity 165–167, 548 

protein-protein interactions 150,168,169, and enzyme-substrate specificity 137,170.  549 

 550 

Intriguingly, Wrenbeck et al. discovered that beneficial mutations enhancing enzyme-551 

substrate specificity were distributed globally throughout the sequence and structure, with 552 

most residing 9-20 Å away from active sites 137. They also observed that beneficial 553 

mutations were imbalanced among three different substrates, with a certain correlation of 554 

fitness between them. Although the "specificity-determining" mutation described in this 555 

study does not necessarily indicate exclusive binding to a single ligand, it emphasizes 556 

that advantageous mutations may extend beyond ligand-interacting residues, and DMS 557 

has proven to be an effective tool in uncovering those distal mutation hotspots. In a similar 558 

vein, Ogawa et al. conducted DMS on XylS and employed an antibiotic growth-based 559 

dual screening system to enrich XylS variants with enhanced specificity for structurally-560 

similar 3MBz and 4MBz, respectively 171. They randomized 213 residues within the XylS 561 

LBD using single-codon substitutions and calculated each variant's frequency to delineate 562 

the mutational fitness landscape under antibiotic selection pressure. They then focused 563 

on residue G71, which exhibited the highest fitness scores, and identified 4MBz-specific 564 

variants that lacked activity towards its native substrate. More recently, Meier et al. 565 

revealed the ligand-binding residues of ATP-binding cassette transporter EfrCD after the 566 

DMS process targeting three drugs 172. They also discovered that a single mutation could 567 
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transform wild-type EfrCD into a Hoechst-specific importer, which could be repurposed 568 

as a biosensor by coupling it to a TCS-based regulatory system. However, a single 569 

mutation may not be sufficient to adjust the ligand-bound conformation for most LBPs. To 570 

make the method more generalizable, computational models are required to predict 571 

combinatorial mutations that enable specificity shifts based on DMS databases.  572 

 573 

3. Computer-aided evaluation and prediction of biosensor 574 

specificity 575 

Owing to the limited screening capacity restricted by the transformation efficiency or 576 

measurement resolution, it is infeasible to fully explore the sequence space of 577 

combinatorial mutagenesis libraries experimentally. As an alternative, computer-aided 578 

protein design can assess protein-ligand interactions for mutants of interest more 579 

efficiently and predict potentially specific variants exhibiting optimal ligand-binding 580 

compatibility 173. At the atomic level, the objective of the forward protein engineering 581 

process is to precisely position amino acid side chains around the ligand to achieve 582 

optimal orientations. At the protein level, geometrically compatible ligand-receptor 583 

interfaces should be tailored specifically for the target ligand based on first principles 584 

174,175. Researchers have predominantly depended on ligand-receptor scoring functions 585 

to steer the selection of best-performing design candidates while discarding unfavorable 586 

ones. To improve their ranking performance, these functions integrated a myriad of 587 

factors such as cheminformatics of ligand-binding residues, geometric information in the 588 

form of distance matrices, functional group interaction fingerprints, and binding free 589 

energy calculations drawn from knowledge-based functions, molecular dynamics, or 590 
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Monte Carlo simulations 176. Computational tools like Rosetta can provide precise 591 

calculation of interaction energy as well as fast prediction for protein folding and molecular 592 

docking simulations, thereby offering a higher throughput for selecting promising variants 593 

in silico 177. With the development of machine learning methods, combinatorial position-594 

specific mutations based on ligand-receptor affinity prediction may be increasingly pivotal, 595 

especially for sensors that lack accurate structural information 178. 596 

 597 

Structure-guided computational protein design and in silico selection  598 

In practice, the variant library size could grow exponentially with the increase of mutation 599 

positions, quickly exceeding the transformation efficiencies typically observed for yeast 600 

(up to 106 variants), E. coli (up to 107 variants), and phage (up to 1012 variants). 601 

Consequently, the number of sequences to be scrutinized is restricted, necessitating the 602 

optimization of the mutational space through computer-guided library design before 603 

experimental screening 179. The typical in silico selection pipeline to computationally 604 

design a specific LBP is summarized as follows: 1) Obtain the structure of the sensing 605 

protein via crystallography, homology modeling, or de novo design of the protein 606 

backbone with desired geometries. 2) Identify active sites through molecular docking or 607 

consensus analysis and reshape the LBD using focused or saturation mutagenesis in 608 

silico. 3) Predict beneficial mutations by comparing ligand-binding affinities calculated via 609 

interaction energy function or molecular dynamics simulations. 4) Assess ligand 610 

specificity by computationally comparing the complementarity of each ligand and 611 

experimentally verify the top-ranking variants. Additionally, steps 3) and 4) could be 612 

performed experimentally using DMS, which yields the most stable scaffold variants for 613 



28 
 

further modifications 160,161,180. This hybrid approach enables researchers to explore a 614 

more extensive design space than traditional directed evolution methods. 615 

 616 

Computational pre-screening can effectively eliminate a large number of mutants with 617 

unfavorable protein scaffolds and identify those with the most complementary ligand-618 

protein interfaces. Looger et al. re-engineered the ligand-binding sites of five PBPs 619 

(glucose-binding protein, ribose-binding protein, arabinose-binding protein, glutamine-620 

binding protein, and histidine-binding protein) to alter the ligand specificity for nonnative 621 

substrates 181. They generated 1045 to 1068 mutant structures in silico by mutating 12-18 622 

amino-acid residues in direct contact with their wild-type ligands and ranked them based 623 

on minimized binding energy calculated using dead-end elimination theorems. The 624 

energy function considered molecular shape, chirality, hydrogen bonding, molecular 625 

surface (polar, aliphatic, aromatic, charged, and cationic), and water solubility. Seventeen 626 

top-ranking variants were experimentally examined and exhibited selective molecular 627 

recognition for their new targets. Finally, they created a chimeric TCS biosensor based 628 

on ribose-binding and glucose-binding proteins responsive to trinitrotoluene and L-629 

lactate. Furthermore, Lippow et al. engineered the substrate specificity of galactose 6-630 

oxidase to respond to glucose by a semi-rational approach, which computationally 631 

predicted favorable mutants with better ligand compatibility and synthesized them for 632 

experimental selection of positive hits 182. Similarly, Jha et al. expanded the specificity of 633 

an aTF PobR for 3,4-dihydroxy benzoate without interference from structurally-similar 2-634 

hydroxy benzoate using Rosetta-assisted library design 183. However, the evolved aTF-635 

based sensor remained active for the native inducer 4-hydroxy benzoate, highlighting the 636 
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challenge of developing a truly specific biosensor by computational prediction alone. 637 

Subsequently, they screened the same library and find a specialist with switched 638 

specificity from 4-hydroxy benzoate to p-nitrophenol by four rounds of FACS 144. Likewise, 639 

Unger et al. optimized the serotonin-binding pocket of a PBP-based biosensor using 640 

ligand docking and binding efficiency prediction for 250,000 variants through 641 

RosettaLigand 104. They selected 18 top-ranking variants for further diversification by 642 

SSM of four crucial residues predicted by random forest modeling and combined the 643 

beneficial mutations using a generalized linear model to identify the best-performing 644 

sensor variant. However, this technique relies on high-resolution, three-dimensional 645 

protein structures for accurate binding energy calculations, which limits its broader 646 

applicability in LBP design when high-quality crystal structures are unavailable. 647 

 648 

Alternatively, de novo design approaches allow researchers to define geometric positions 649 

and orientations of ligand-binding residues and search for a large number of available 650 

protein scaffolds to accommodate orchestrated ligand interactions 184 (Figure 4A). 651 

Tinberg et al. pre-organized ligand-interacting residues geometrically around the ligand 652 

and placed the motif into 401 protein scaffolds 185.  The conformational fitness of each 653 

protein-ligand complex was evaluated by RosettaMatch, and top-ranking scaffolds were 654 

selected for further modification. Next, they computationally designed surrounding ligand-655 

binding residues by RosettaDesign programs for optimal shape complementarity, ligand 656 

interaction energy, and protein stability. Finally, SSM libraries with one to three 657 

substitutions on 39 residues were experimentally screened to determine the ideal ligand-658 

binding affinities via yeast display and FACS. Likewise, Glasgow et al. developed a FP-659 
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based biosensor for farnesyl pyrophosphate by modeling farnesyl pyrophosphate-binding 660 

motifs within 3,463 compatible protein complex scaffolds  186. With increasingly accurate 661 

protein folding simulations from algorithms like RoseTTAFold and AlphaFold2, scientists 662 

can efficiently generate artificial protein scaffolds featuring the desired pocket shape and 663 

tunable geometries for specific molecular interactions 187–189. Most recently, Yeh et al. 664 

designed artificial luciferases from scratch that specifically bind synthetic luciferin 665 

diphenylterazine (DTZ) and 2-deoxycoelenterazine (h-CTZ) 190. They selected nuclear 666 

transport factor 2-like superfamily as the topology from 4,000 small-molecule binding 667 

proteins due to their appropriate shape complementarity after ligand docking. Next, they 668 

employed a deep-learning-based ‘family-wide hallucination’ approach to create ligand-669 

binding pockets that stabilize the anionic state of DTZ or h-CTZ and predicted the 670 

structure by trRosetta. Ultimately, they screened 7,648 designs for DTZ and 46 designs 671 

for h-CTZ based on ligand-binding energy, protein-ligand hydrogen bonds, shape 672 

complementarity, and contact molecular surface, and they introduced SSM to further 673 

improve the luciferases activity. These studies achieved selective biosensing by 674 

computational design of the ligand-binding pocket for the desired substrate only, 675 

demonstrating the importance of shape complementary for specific biosensing.  676 

 677 

These computer-aided protein design methods allowed researchers to bypass bumpy 678 

mutational trajectories and tremendously circumvent laborious experimental iterations. 679 

However, few studies considered negative design to exclude structurally similar 680 

chemicals during the design process. To better improve the ligand specificity of 681 

computationally designed biosensors, researchers could consider negative designs using 682 
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ultra-large library docking platforms and calculate the target-to-decoy ratio to eliminate 683 

promiscuous designs 191–193.  684 

 685 

Data-driven ligand specificity prediction using machine learning and 686 

neural network  687 

Molecular docking simulations can provide reliable predictions for potential ligand-688 

binding; however, their accuracy remains limited 194. To refine the ranking ability in ligand 689 

docking simulations, machine learning methods have been extensively employed 195. 690 

Nonetheless, the structure-oriented docking process is computationally resource-691 

intensive, especially when dealing with hundreds of thousands of variants with subtle 692 

sequence changes. Instead of relying solely on the structure-guided computational 693 

design, advancements in NGS techniques and machine learning models enable 694 

researchers to explore larger sequence spaces and predict ligand-protein interactions 695 

with minimal experimental effort 196,197 (Figure 4B).  696 

 697 

As the size of available databases continues to grow, accurate prediction of family-wide 698 

enzyme-substrate compatibility via high-throughput virtual screening becomes 699 

increasingly crucial for industrial biomanufacturing and drug discovery 192,198. Currently, 700 

many studies have laid the groundwork for accurately predicting enzyme-substrate 701 

promiscuity by integrating sequence and structural information 198,199, enhancing enzyme 702 

feature descriptors 200, expanding training databases 178, and examining various models 703 

201,202. For example, Robinson et al. developed enzyme-substrate regression models for 704 

the OleA family of thiolases, considering 153 chemical characteristics of residues within 705 

12 Å of the active site 203. Notably, they identified the cavity size of the ligand-binding 706 
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pocket as a major determinant for the binding of bulky substrates, corroborating earlier 707 

findings by Martínez-Martínez et al.  204. Additionally, Ollikainen et al. applied Rosetta-708 

based computational methods to enhance prediction accuracy for mutations altering 709 

enzyme specificity, accounting for the coupled flexibility of protein backbone, ligand, and 710 

ligand-binding residues 205.  711 

 712 

Beyond the conventional approaches of empirical energy functions or force field-guided 713 

simulations, researchers have devised several machine learning or deep neural network 714 

(DNN) models to predict  protein-ligand binding affinity 206–210. These advanced prediction 715 

models demonstrate the capability to discern ligand specificity in novel proteins and 716 

predict mutations that can alter ligand specificity for new ligands 211,212. Notably, 717 

Chatterjee et al. established an artificial intelligence-based pipeline AI-bind that predicts 718 

the binding sites and probability of diverse protein-ligand pairs, including 26 SARS-CoV-719 

2 viral proteins and 332 human proteins 213. In addition, Rube et al. developed a machine 720 

learning model called ProBound, which predicts TF-DNA binding affinity and quantifies 721 

sequence recognition specificity from massively parallel sequencing data 208. 722 

Nevertheless, the specificity of other regulatory LBPs was rarely investigated by machine 723 

learning models over the past decades, possibly due to the lack of comprehensive and 724 

high-quality databases to support analyses in these areas. 725 

 726 

As previously discussed, DMS methods have been extensively applied to map genotype-727 

phenotype relationships and delineate mutational fitness landscapes for a broad array of 728 

proteins, thereby providing enormous training datasets 214. Fitness scores that quantify 729 
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the mutation effects can either be determined through DNA enrichment methods following 730 

selection pressure or be computed by free energy differences derived from empirical 731 

energy functions 164. Researchers have integrated Monte Carlo-based computational 732 

screening and growth-based selection techniques to predict and validate mutation 733 

hotspots that enhance enzyme activities by calculating the sequence density of enriched 734 

variants 215. For the past few years, the increasing availability of massively parallel 735 

mutagenesis datasets has enabled the broader application of statistical learning for 736 

evolutionary sequence variation, resulting in more efficient predictions of sequence-737 

function relationship 214,216,217.  738 

 739 

Still, most machine-learning models trained on DMS datasets focused on mutation effects 740 

on protein stability, enzyme activity, antibiotic resistance, protein-protein interactions, or 741 

human diseases 164,165,217–221, rather than biosensing specificity. For example, Wu et al. 742 

trained a machine-learning model using hundreds of selected variants and predicted the 743 

fitness landscape of a nitric oxide dioxygenase from Rhodothermus marinus, 744 

encompassing a library with seven substitution positions 173. Despite the model 745 

considering a mere seven mutation sites, it demonstrated substantial predictability, 746 

guiding the evolution of enzyme enantioselectivity and identifying several (S)- and (R)-747 

selective catalysts through prediction.  Furthermore, several comprehensive DMS studies 748 

have been conducted on full-length aTF sequences, employing machine-learning models 749 

to predict their allosteric communications modulated by corresponding ligands 222–226.  750 

 751 
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Attributable to advancements in mapping sequence-function relationships, mutational 752 

fitness landscapes present a more informative approach to effectively evaluate ligand 753 

specificity and predict functional mutations in comparison to conventional affinity-based 754 

prediction models. Notably, Tack et al. measured the fitness landscape of 62,472 LacI 755 

variants after antibiotic-based growth enrichment and trained a DNN model to predict 756 

transfer curves for all possible variants 225. Their accurate predictions of the EC50 for 757 

selected LacI mutants shed light on the potential investigation of aTF ligand specificity by 758 

measuring mutational fitness landscapes when induced by multiple ligands. These 759 

studies have contributed to an expanding toolbox that can streamline the design-build-760 

test-learn cycle for ligand-specific biosensor development in the future. 761 

 762 

4.  Conclusion 763 

The accurate measurement and precise control of interactions between ligands and 764 

macromolecules have been long-standing objectives in the realm of allosteric 765 

macromolecule engineering and biosensing. In this review, we have summarized 1) 766 

rational design principles for generating suitable starting points, 2) high-throughput 767 

screening techniques to enhance biosensing performance, and 3) computational design 768 

models that facilitate the design-build-test-learn cycle (Figure 2). Additionally, the design 769 

and screening methods for generating specific genetic elements could contribute to the 770 

creation of superior biosensors and also support the engineering of upstream or 771 

downstream enzymes 143, transporters 227, regulators 33, and related metabolic pathways 772 

54,55.  773 

 774 
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Generally, any protein or nucleic-acid switch capable of undergoing allosteric 775 

conformational changes can be engineered as a GEB. Numerous studies have already 776 

improved protein-protein binding specificity, encompassing antibodies 228, protein 777 

interfaces 229, proteases 151,230, and protein inhibitors 70. Additionally, enzyme specificity 778 

for native cofactors can be altered to accommodate synthetic compounds for conditional 779 

genetic control 63,231. Thus, the molecular specificity of biosensors can extend to a wider 780 

array of chemical or biological targets such as proteins 232, nucleic acids 233, ions 234, 781 

pathogens 33,235, and ones beyond the small molecules discussed herein.  782 

 783 

Still, universal engineering pipelines for specificity control of distinct GEBs remain elusive, 784 

but existing technologies have been combined to achieve novel functions that surpass 785 

the capabilities of natural evolution spanning millions of years. In the future, such 786 

synthetic evolution approaches will expedite the discovery of optimized molecular 787 

interactions, paving the way for accurate diagnostics, rapid drug discovery, and large-788 

scale biomanufacturing. The specific genetic components outlined here possess the 789 

potential to empower researchers with the ability to control complex biosystems in a more 790 

precise and quantitative manner. By detecting a wider range of chemical or biological 791 

signals with enhanced specificity, we can tackle the problems posed by complex 792 

environments more effectively and accomplish increasingly challenging global tasks in a 793 

safer and more sustainable fashion. 794 

 795 
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Figure legend 807 
 808 
Figure 1. Overview of Five Distinct Types of Biosensors and Their Specificity 809 
Control Methods. (A) TCS-based biosensors: Domain swapping acts as the 810 
predominant method to tune specificity. Components like SD, Dhp-RD pair, and DBD can 811 
be interchangeably utilized to facilitate orthogonal signal transduction. (B) aTF-based 812 
Biosensors: Both directed evolution and domain-swapping techniques serve as tools to 813 
refine ligand specificity, either by eliminating undesirable molecular interactions or 814 
adapting to non-native ligands. (C) Enzymatic biosensors: The sensor output could be 815 
either the product or a byproduct, and directed evolution emerges as the most effective 816 
approach to enhance substrate specificity. (D) FP-based biosensors: Mutagenesis 817 
within LBDs proves to be the most effective strategy for modifying ligand specificity. 818 
Performance can be enhanced by modulating both the linker and cpFP insertion site. 819 
Here, GPCR is presented as an example of ligand-binding, and orthogonal signal 820 
transduction can be achieved via chimeric Gα through domain swapping. (E) Riboswitch-821 
based Biosensors: These biosensors integrate a ligand-binding aptamer with a genetic 822 
transducer and a reporter. SELEX remains the most common method to enhance 823 
aptamer specificity.  824 
Key: TCS, two-component system; SD, sensor domain; DHp, dimerization and histidine 825 
phosphotransferase; CA, catalytic and ATP-binding; RD, receiver domain; DBD, DNA-826 
binding domain; LBD, ligand-binding domain; PBD, protein-binding domain; aTF, 827 
allosteric transcription factor; TFBS, transcription factor binding site; FP, fluorescent 828 
protein; GPCR, G protein-coupled receptor; Gα, G protein α subunit; TM, transmembrane 829 
helices; ICL3, intracellular loop 3; cpFP, circularly permuted fluorescent protein; NIR-FP, 830 
near-infrared fluorescent protein; FRET, fluorescence resonance energy transfer; 831 
SELEX, systematic evolution of ligands by exponential enrichment. 832 
 833 
 834 
Figure 2. The Design-Build-Test-Learn Workflow of Directed Evolution. Five 835 
genetically encoded biosensors undergo similar design-build-test-learn cycles, involving 836 
diversification, expression, and selection processes. Specific regions of the genetic 837 
elements can be intelligently chosen for subsequent mutagenesis. Techniques such as 838 
random mutagenesis, domain swapping, structure-guided site-directed saturation 839 
mutagenesis, or computation-driven focused mutation can be introduced to the selected 840 
DNA region. The expression and screening process significantly determine the 841 
throughput and robustness of the directed evolution process. Variants demonstrating 842 
specific ligand-binding will be selected and amplified for further verification or iterative 843 
rounds of selection.  844 
Key: aTF, allosteric transcription factor; DBD, DNA-binding domain; LBD, ligand-binding 845 
domain; TCS, two-component system; SD, sensor domain; DHp, dimerization and 846 
histidine phosphotransferase; CA, catalytic and ATP-binding; FP(LBP), fluorescent 847 
protein fused with ligand-binding protein; PBD, protein-binding domain; cpFP, circularly 848 
permuted fluorescent proteins. 849 
 850 
 851 
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Figure 3. High-Throughput Screening Techniques. Following DNA diversification 852 
methods such as random mutagenesis, site-directed saturation mutagenesis, or 853 
computer-assisted focused mutation, DNA variants are tested in vitro or introduced into 854 
microbial hosts, including E. coli (supporting up to 107 variants), yeast (up to 106), or 855 
phages (up to 1012). The screening process is dependent on the reporter gene regulated 856 
by the biosensor. When the reporter is a fluorescence protein, FACS-based selection can 857 
yield specific variants by iteratively sorting cells with desired fluorescence levels in the 858 
presence or absence of target ligands. Growth-based dual-selection can be utilized when 859 
the reporter is growth-related, such as an antibiotic resistance protein, toxic protein, or 860 
enzyme critical to survival. When the reporter is a DNA polymerase, DNA enrichment 861 
methodologies like CPR come into play. Active partner variants will trigger the expression 862 
of DNA polymerase, allowing the active partner to be amplified through PCR reactions. 863 
DMS can be coupled with positive selection via FACS or growth-based selection, followed 864 
by NGS to determine the mutational fitness landscape under varying selection pressures. 865 
Surface display and SELEX processes can also be paired with FACS or DMS to 866 
specifically enrich positive hits with superior ligand affinity. Positive hits are isolated from 867 
the screening or selection process for verification and further evolution. 868 
Key: SSM, site-directed saturation mutagenesis; FACS, fluorescence-activated cell 869 
sorting; CPR, compartmentalized partnered replication; DMS, deep mutational scanning; 870 
NGS, next-generation sequencing; SELEX, systematic evolution of ligands by 871 
exponential enrichment.  872 
 873 
 874 
Figure 4. Holistic View of Computer-Aided Biosensor Design. (A) Diagram of 875 
structure-based computational protein design. The potential conformational space for a 876 
protein-ligand complex could exceed 1050 after a series of design processes. 877 
Computational algorithms can constrain the mutational space through ligand docking 878 
ranking, free energy calculation, or molecular dynamics simulations, and the top-ranked 879 
variants are subject to experimental validation for enhanced specificity. (B) 880 
Representation of datasets of varying sizes derived from different mutagenesis libraries 881 
and screening methods for use in ligand-specificity prediction models. These models can 882 
utilize datasets ranging from hundreds to hundreds of thousands of data points to predict 883 
ligand specificity. Predictions are based on scoring protocols for ligand-receptor pairs 884 
using criteria such as ligand-binding affinity, fitness scores, or evolutionary landscape 885 
extracted from DMS data. 886 
Key: SSM, site-directed saturation mutagenesis; LBD, ligand-binding domain, DMS, deep 887 
mutational scanning. 888 
  889 
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Table 1. Overview of Natural Biosensing Elements Discussed in This Review.  890 
Key: GPCR, G protein-coupled receptor; TCS, two-component system; PBP, periplasmic 891 
substrate-binding protein; aTF, allosteric transcription factor; LBD, ligand-binding domain; 892 
PBD, protein-binding domain; FP, fluorescent protein; SD, sensor domain; DHp, 893 
dimerization and histidine phosphotransferase; CA, catalytic and ATP-binding; RD, 894 
receiver domain; DBD, DNA-binding domain; ABC transporter, ATP-binding cassette 895 
transporter; TFBS, transcription factor binding site; +, low; ++, medium; +++, high; -, not 896 
shown or almost none. 897 
 898 

Signals 
Allosteric 

components 

Small 
molecule 

substrates 
Sensor Transducer Output 

Inherent 
specificity 

Evolvability 

Extracellular 

GPCR 
Chemical 

messengers 
LBD 

PBD → G protein → 
Second messenger  

Transcription / 
Conformational 
activation of FP 

++ + 

TCS 
Growth factors 
and stressors 

SD 
(PAS) 

CA → Dhp → RR Transcription ++ - 

Periplasmic 

PBP Metabolites LBD 
Hinge → ABC 

transporter 

Conformational 
activation of FP 

- ++ 

Enzyme Metabolites LBD 
Substrate + Co-

factor → Product + 
Byproduct 

Redox, 
chromophore, 
luminescence 

- +++ 

Cytoplasmic 

aTF  Metabolites LBD DBD → TFBS 
Transcription / 
Conformational 
activation of FP 

+ ++ 

Riboswitch Metabolites Aptamer 

Ribozyme, cis-
regulatory 

elements, small 
RNAs  

Transcription, 
translation, 

fluorescence  
+ +++ 

 899 
 900 
 901 
 902 
 903 
 904 
 905 
 906 
 907 
 908 
 909 
 910 
 911 
 912 
 913 
 914 
 915 
 916 
 917 
 918 
 919 
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Table 2. Summary of Rational Design and Directed Evolution Workflow for Ligand-specific Biosensor Development. 921 
This table outlines the design-build-test-learn cycle used in the cited references. Mutation hotspots & in 922 
silico analysis: LBD, ligand-binding domain; LBS, ligand-binding sites; PBD, protein-binding domain; CDS, coding 923 
sequence; MSA, multiple sequence alignment; ML, machine learning. Mutagenesis methods: CAD, computer-aided 924 
design; Single SSM, single site-directed saturation mutagenesis; Pairwise SSM, pairwise multiple site-directed saturation 925 
mutagenesis; Random, Random mutagenesis. Screening methods: MS, mutational scanning; NS, negative selection; PS, 926 
positive selection; DS, dual selection; Deep(F), fluorescence-based deep mutational scanning; Deep(G), Growth-based 927 
deep mutational scanning; A, alanine scanning; FYW, phenylalanine, tyrosine, tryptophan scanning; ITC: isothermal titration 928 
calorimetry. Mutations & effects: #, number of mutations; Selective, promiscuous but diminished binding to undesired 929 
ligands; SE, steric effect; EI, electrostatic interaction; PI, polar interactions; HP, hydrophobic interaction; LE, long-range 930 
effect. 931 
 932 

Citation 

DESIGN BUILD TEST LEARN USE 

Input Diversification Screening Output 

Type Candidate Ligand In silico Hotspot  Mutagenesis 
Library 

size 
FACS Growth MS Individual #  Specificity 

Structure-
based 

Data-
driven 

Mutation 
effect 

Application 

Z. Li et al., 
2021 

FP 
(Enzyme) 

MurG 
11 UDP 

derivatives  
Crystal; 

MSA 
LBS 

Random → 
pairwise 
SSM → 
random 

103       Fluorescence 1~3 UDP-GlcNAc insensitive - MSA SE 
 Metabolism 
monitoring 

Zhang et al., 
2018 

FP (PBP) Atu2422  19 amino acids 
Crystal; 
FoldX; 

Docking 

LBS, 
linker 

CAD → 
pairwise 

SSM  
103       ITC 3 Glycine selective  

Crystallography, 
molecular 
docking 

- SE 
In situ glycine 

sensing 

Borden et al. 
2020 

FP (PBP) OpuBC 
11 choline 

analogs and NTs 
Crystal LBD 

Pairwise 
SSM  

>1010       Fluorescence 21 Acetylcholine selective Crystallography - SE, HP 
In situ 

acetylcholine 
sensing 

Muthusamy et 
al., 2022 

FP (PBP) 
OpuBC 
variant 

6 opioid analogs Crystal LBS 
MS →  single 

SSM 
102     FYW Fluorescence 3 S-methadone selective 

Molecular 
docking 

- SE, HP 
In situ drug 
monitoring 
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Unger et al., 
2020 

FP (PBP) 
OpuBC 
variant 

42 NTs and small 
molecules  

Rosetta ; 
ML 

LBS  

CAD → 
single, 

pairwise 
SSM → ML 

105     

  

Fluorescence 19 Serotonin Crystallography ML - 
In situ serotonin 

sensing 

Herud-Sikimić 
et al., 2021 

FP (TF) TrpR 
23 indole 

derivatives 
Docking LBS 

 Single SSM 
→ random 

103       Fluorescence 5 
Indole-3-acetic acid 

selective 

Crystallography, 
molecular 
docking 

  
SE, PI, 

HP 
In situ auxin 

sensing 

Looger et al., 
2003 

TCS 
(Chimeric) 

5 PBPs 
 trinitrotoluene, 

lactate or 
serotonin analogs  

Docking; 
Energy 

LBS CAD 1020       Fluorescence 5~17 
Trinitrotoluene, lactate, 

serotonin 
Molecular 
docking 

- 
SE, PI, 

HP 
Pollutant/Metab
olite detection 

d’Oelsnitz et 
al., 2022 

TF 
6 

regulators 

5 
benzylisoquinoline 

alkaloids (BIAs) 
  

LBS → 
CDS 

Pairwise 
SSM → 
random 

105 PS NS     9~13 Five BIAs Crystallography   
SE, EI, 

HP 
Enzyme 
evolution 

Tang and 
Cirino, 2011 

TF AraC 
4 similar 

compounds 
  LBS  

Pairwise 
SSM 

106 DS       4 Mevalonate - - - 
Heterologous 

pathway 
engineering 

Tang et al., 
2008 

TF AraC 5 sugars   
LBS → 

LBD 

Pairwise 
SSM → 
random 

107 DS       4 D-arabinose - - - 
Inducible 
promoter 

Wu et al., 
2022 

TF BmoR 5 alcohols Docking LBD 
Random → 
single SSM 

103       Fluorescence 1~2 Ethanol insensitive 
Molecular 

modeling and 
docking 

- PI, HP 
Biosynthetic 

pathway 
engineering 

Chockalingam 
et al., 2005 

TF 
Estrogen 
receptor 

2  estradiol 
analogs 

Docking LBS 
Single SSM 
→ random 

106   PS     7 Altered specificity 
Molecular 

modeling and 
docking 

  SE, HP 
Inducible 
promoter 

Gallinari et 
al., 2005 

TF 
Estrogen 
receptor 

11 estradiol 
analogs 

Docking LBS 
Pairwise 

SSM 
105       β-Galactosidase 1~5 Estradiol insensitive 

Molecular 
docking 

- SE, HP 
Inducible 
promoter 

Li et al., 2017. TF HucR 6 aromatic acids   LBS 
Pairwise 

SSM 
105 DS       4 Shikimic acid - - - 

Biosynthetic 
pathway 

engineering 
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Taylor et al., 
2016 

TF LacI 5 sugars Rosetta  CDS 

CAD, single 
SSM, 

random → 
shuffle 

104 

PS 

NS Deep(F)   3~5 Sucralose, gentiobiose 
Crystallography, 

molecular 
docking 

MSA 
PI, EI, 

HP 
Inducible 
promoter 

Collins et al., 
2006 

TF LuxR 
6 acyl-homoserine 
lactones (HSLs) 

  LBD Random 104   DS     2 3OCnHSL insensitive - MSA EI 
Engineered cell-

cell 
communication 

Ray et al., 
2017 

TF MopR 
6 phenol 

derivatives 

Crystal; 
Docking; 

MS 
LBS  CAD 102     A ITC 2 Catechol, phenol 

Crystallography, 
molecular 
docking 

- PI, HP 
Metabolite 
detection 

 Y. Li et al., 
2021 

TF MphR 2 macrolides Crystal 
LBS → 
CDS 

Single SSM 
→ random 

103 NS PS     4 Clarithromycin  
Crystallography, 

molecular 
docking 

Epistasis SE, PI 
Biosynthetic 

pathway 
engineering 

Kasey et al., 
2018 

TF MphR 6 macrolides Crystal 
LBS → 
CDS 

Single SSM 
→ pairwise 

SSM → 
random 

103 NS PS     4 Erythromycin selective 
Crystallography, 

molecular 
docking 

Epistasis LE 
Biosynthetic 

pathway 
engineering 

F. M. 
Machado et 
al., 2019 

TF PcaV 
9 aromatic 
compounds 

Docking LBS  
Pairwise 

SSM 
104 DS       3 Altered specificity 

Molecular 
modeling and 

docking 
- PI 

Metabolite 
detection 

Jha et al., 
2016 

TF PobR 2 aromatic acids 
Crystal; 
Rosetta 

LBS  
Pairwise 

SSM  
107 DS       8 Altered specificity Crystallography MSA 

EI, PI, 
HP 

Metabolite 
detection 

Schwimmer et 
al., 2004 

TF RXR 
2 retinoid-like 
compounds 

Crystal LBD 
Pairwise 

SSM 
104   PS     3~5 Altered specificity - - SE, HP 

Inducible 
promoter 

Scholz et al., 
2003 

TF TetR 
5 tetracycline (tc) 

analogs 
  LBD 

Random  → 
pairwise 

SSM  
104 Blue-white     1~5 

4-De(dimethylamino)-6-
deoxy-6-demethyl-tc 

Crystallography - SE, PI 
Inducible 
promoter 

Henssler et 
al., 2004 

TF TetR 4 tc analogs   LBD Single SSM 102 Blue-white     1 
4-

De(dimethylamino)anhydro-
tc 

Crystallography - SE, PI 
Inducible 
promoter 
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Nishikawa et 
al., 2021.  

TF TtgR 
naringenin, 
resveratrol 

Rosetta  LBS CAD 104 DS       4 Altered specificity Crystallography Epistasis 
SE, PI, 

HP 
Drug monitoring 

D’Ambrosio et 
al., 2020 

TF VanR 
vanillin and 
vanillic acid 

  
LBD → 
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Metabolite 
detection 

Ogawa et al., 
2019 
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Ogawa et al., 
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Benzoic acid, 3-methyl 
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De Paepe et 
al., 2019 
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(Chimeric) 

FdeR + 
NodD1 

3 flavonoids MSA TFBS 
Domain 

swapping 
102       Fluorescence  - Luteolin - MSA - 

Metabolite 
detection 

Rondon and 
Wilson, 2021 
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9 adenine 
derivatives 

MSA 
PBD, 
linker 

Domain 
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single SSM 
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106 DS       4~7 Caffeine selective 
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MSA SE, LE Drug monitoring 

Ellefson et al., 
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TF 
(Chimeric) 
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3 tryptophan 
derivatives 

Crystal 
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PBD, 
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bromotryptophan 
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gate 

Rottinghaus 
et al., 2021 
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10 aromatic 
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Crystal; 
Docking 
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Molecular 
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PI, HP 

Metabolite/ NT 
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  933 
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