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ABSTRACT 

We numerically estimate the superposition of the HOMFLY-PT polynomial of an 
open two-component link, define its spread, and describe how this quantity may be 
employed to quantify the degree of entanglement of confined two component open links. 
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1. Introduction 

Many physical materials are composed of filamentous structures, such as macro- 
molecules, and are mathematically modeled as collections of open simple curves in 
space. The entanglement of these molecules, reflected in the entanglement of the 
modeled curves, has a significant influence on the mechanical properties and func- 
tion of such materials [3, 4, 27]. However, it has been a challenge to rigorously define 
a mathematical measure of entanglement in such systems. Panagiotou [20, 22, 23] 
employed the Gauss linking integral to create measures of entanglement in peri- 
odic boundary condition models of such systems. For the case of a single curve, 
i.e. an open knot, Millett et al. [14, 16] used the HOMFLY-PT [5] knot polynomial 
to define the probability distribution of knot types on the ensemble of closures of 
the endpoints of the curve over the 2-sphere of directions in space giving spec- 
trum of the open knot and its dominate knot types. The superposition of this 
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spectrum defines the average of the HOMFLY-PT polynomials of the ensemble of 
closures. Panagiotou and Kauffman [10] provide a rigorous definition of the Jones 
[8] polynomial of open chains via averaging the Jones polynomial of projections of 
an open curve (thereby defining a knotoid) over all possible projection directions. 
The Jones polynomial of open curves is a polynomial with real coefficients that 
are continuous functions of the chain coordinates. As the endpoints of the chain 
tend to coincidence they converge to those of the Jones polynomial of the result- 
ing closed curve. Recently, the Jones polynomial of collections of open curves in 
3-space was defined in [2]. Note that the definition of the HOMFLY-PT polynomial 
of open arc diagrams (knotoids) is not yet defined. As a consequence, we employ 
an extension of the MDS method [14] for knots to the case of open links. Thus, 
whereas the superposition of the HOMFLY-PT 52 pdf of MDS gave the average 
closure HOMFLY-PT polynomial of the knot, the superposition of the HOMFLY- 
PT 52 x 52 pdfof closures of the two-component open link gives the average closure 
HOMFLY-PT polynomial of the link. 
We compare our results to those provided by an application of the Gauss linking 

number employed in the study of entanglement of polymer gels [20]. 
Our estimation of the average HOMFLY-PT is achieved by determining the 

HOMFLY-PT polynomial and, therefore, the associated oriented link type at each 
pair of points in an independent uniformly distributed collection of 49 closure direc- 
tions on each of the two spheres thereby giving a collection of 2401 samples. One 
can understand this procedure as providing an estimation of the integration of the 
HOMFLY-PT on the 52 x 52 space of pairs of closure directions divided by the 
four-dimensional volume of 52 x 52. Oneof the fundamental properties of this 
method is that the proportion of link types of pairs of open chains converges to 
that of the closed chains as the distance between the two termini of each chain, 
respectively, goes to zero. We will explore this convergence in the case of a Hopf 
link. 
As was observed in the study of protein structures, the linking spectrum depends 

on the specific geometry of the chain [16, 24, 28]. To examine the effect of the 
local geometry, we will consider the influence of the location of the gap in a 
closed chain as well as the effect of the spatial geometry of the chain. We will 
also study HOMFLY-PT  polynomial of random pair of disjoint random walks, 
i.e. a random pair of disjoint equilateral polygons, in the 3-ball as their length 
increases. 
This paper is organized as follows: In Sec. 2, by way of introduction to the study 

of complex two component open links, we study the link spectrum of an open Hopf 
link and its dependence on the location of the endpoints of the open link. In Sec. 3, 
we describe the foundation of our analysis starting with the definition of the average 
closure HOMFLY-PT polynomial of an open two component links in 3-space. In 
Sec. 4, we present results on the HOMFLY-PT polynomial of confined open two 
component links. 
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2. The HOMFLY-PT Polynomial of Open Hopf Links 

The HOMFLY-PT polynomial of a closed negative Hopf link, Fig. 1, is 

(£+£3)m-1-£m. 

The polynomial of the mirror reflection, the closed positive Hopf link, is given 
by replacing£ by £-1 giving 

(£-3+ £-1) m-1 _ £-1 m. 

To illustrate the properties of the average HOMFLY-PT polynomial, we apply 
our method to the case of open Hopf links for a small collection of gap openings 
in the closed link. The collection of 2401 closures can contain links of different 
topological types, see Fig. 2. For a fixed gap size, the character of the entanglement, 
as reflected in the average HOMFLY-PT of open Hopf links can vary, depending 
on the location of the gap, see Fig. 3 and Table 1. In these instances one observes 

 

Fig. 1.  For a closed negative Hopf link, the HOMFLY-PT polynomial is (l +£3) m-1 - l m. 
 

l' 

01 00 (-r1-()m-1 

2• G) ((+f"').a!-1 - '"' 

• l 9 (- (3 - (')111-1 +(3/'1+t5)m -An3 

• lg <-,-11_,-.J>.,,-'+v•-J-r')ni 

5f c& (-r1-(}m-1+(r1+2.f+t')PN-/,r/J  

 
 6f ,........., ( +/7)111-1+(-6i4-lt"1)m+(.Sf$+/')flr 

 
(- a11- ci')r: 1+a• +(6aJ + 4a1 - aD... 11):1 + (- 31l• - 2ill111 

 
 
10 1 )r 

 
 11 - 4.a

7 •.a1):a:3 
 - »ii +ca•+o1)x4 +(oJ +a7)r + a +(-5a 

68 (r1"'-,-11)m-1+(-r11+ra_,-,,"' 
 

(r'-+r11)111-I +(-r'1-2r11+2.r3)m 
+(f'"11-rJ)m3 

 

6f  1:> (-fl- )m•L+(i/3-f5-(7)"' 
+(- .+-/11),wl 

 
eJ c-r11-r3),,.-1+ rJ.+r1+1}111:-r1...r- 

 
(-a 1-a 11)r 1+a-11+(6a-1+◄a-11-o-3+a 1)x+(-3a •-20 4+a t)rt 

+(- .sa-7 -4rl-.J "'-a--3):s:3 + (it-0 +  a-•)x• + (a-1 + tt-5).r.i. 
 
(- a-1 - a-3)x-1+a-•+(- 2,i-9 + 3n-:+la-3 - 2,a-l)x+ (-a-.s- ia-• - o-•)..-2 

+(a-• - ia_,. - 2a-5 +a-.s)r3 + (o-3 + 20-•+ a-•)x4 + (0-1 + a-:i)rs. 

 
{,rJ+o )x-1 - n• + (-2aJ - ,r3 - o:r')x• (- 3a' -3a&)r1 +(al+ a"}x:, 

+(a + 3a• + i"')r" +(o5+ ""),s 
 
(a '+-a-l),-1 - a-•+(-to-,- a-:.i_o)x + (- 311-2.-3)r1 + (a·5 +a).1:) 

+(a-•+ 3a-a +2)x• + (a-3 +tt-1)r3 
 

 

 
Fig. 2.  The HOMFLY-PT and Kauffman polynomials of the simplest closed links [13]. 
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Fig. 3. (a) A partial open negative Hopf link A: 49 x 49 closures give Oi, ±2i, ±4i, andstlink 
types, Table A.l in the appendix. (b) The partial open positive Hopf link B: closures give 01 and 
±2i, link types. The gap is 1.66294, Table A.2. (c) The partial open positive Hopf link C: closures 
give  ±2i, and 4i link types. The gap is 1.17286, Table A.3. (d) The partial open positive 
Hopf link D: closures give oy, ±2f, and 4f link types. The gap is 0.390177, Table A.4. (e) The 
partial open positive Hopf link E: closures give Of, ±2i, and 4f link types. The gap is 0.196034, 
Table A.5. 

 
that the dominate terms are those of the Hopf link and the secondary terms reflect 
the varying position of the gap. 

 
2.1. Convergence as gap length goes to zero 

AB the gap, the segment connecting the termini, lengths of an open two-component 
link go to zero we know the link type converges to the closed link type, i.e. the 
proportion of closures having the link type as the closed link goes to 1. What is 
the nature of this convergence, for example, how is this reflected in the evolution of 
the average HOMFLY-PT polynomial? Suppose one considers a polygonal positive 
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Table 1.  The average HOMFLY-PT polynomials and Gauss linking numbers for the open 
Hopf links shown in Fig. 3. 

Open Hopf 
link 

Average HOMFLY-PT polynomial Gauss linking 

A (0.001666£-3 - 0.088432l-1 + 0.824656l + 0.909204€3) m-1 
+ (0.001249f-1 - 0.905873l) m - 0.001666£-1 m3 

B (0.158251£-3 - 0.4679854€-1 - 0.406038£ + 0.218636l3) m-1 
+(-0.156689f-1-0.218636f) m 

C (0.079966e-3 - 0.392753e-1 - 0.0320699l + 0.439400f3) m-1 
+ (-0.0787112e-1 - 0.439400f) m 

0.930618 

 
0.013390 

 
0.444706 

D (0.027072l-3

 0.252395e-1   + 0.403582f + 0.681799l3 m-1 0.729073 
+ (-0.258226f-l - 0.6817993f) m 

E (0.001666e-3 - 0.09745939e-1 + 0.78842149l + 0.8875468£3) m-1 
+ (-0.001666£-1 - 0.8875468£) m 

 
 

proportion 

 
0.86317 

 
 
 
 
 
 
 
 
 
 

0.5 
.....................,... 

1.0 
- -------- gap 
1.5 

Fig. 4.  The proportion of link types for the closures as a function of the gap size: 0i; dashed, z'f; 
solid, -21; dash--<lot, 4i; dotted and 4i; large dashed. 

 
 

Hopf link, see Fig. 3 and associated data tables. We show what happens to the 
proportion of 01's, ±2i's, and 4i's as the gap length decreases in Fig. 4. Curiously, 
the limiting +21 is less likely than - 21 when this particular gap becomes large. 

 
3. Measures of Linking and Entanglement 

In this section, we will review the classical Gauss linking number, and we will 
explore how the average HOMFLY-PT polynomial can be used to quantify the 
entanglement present in two component links. 

 
3.1. The Gauss linking number 

The Gauss linking integral defines a linking number for a pair of disjoint oriented 
chains, closed or open, L1 and L2, described by piecewise C1 parameterizations, 

1.0 
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Fig. 5. The proportion of positive Hopf links, solid, and the Gauss linking number, dashed, versus 
the gap. 

 
1'1(t) and ')'2( s), 0 :S t, s :S 1, is defined by the double integral: 

Lk(L1 L2)= { { b1(t),i'2(s),1'1(t) -1'2(s))dtd (1) 
' 41r J[o,11J[o,11 ll1'1(t) -1'2(s)ll3 s, 

where (i'1(t),i'2(s),1'1(t) -')'2(s)) is the triple product of the derivatives, i'1(t) and 
i'2(s), and of the difference ')'1(t) - 1'2(s). 
While this is an integer for closed chains, it is a real number that captures 

the linking of a pair of oriented open chains finding application in many scientifi- 
cally important context such as polymer melt models employing periodic boundary 
conditions; Panagiotou [15, 20, 22, 23]; complex systems such as Olympic gels [7]; 
protein structures [18, 19, 25, 26]. In Graph 5, we compare the proportion of positive 
Hopf links and the Gauss linking number. 
For example, the Gauss linking number of the oriented open link shown in Fig. 15 

is 1.12954. 

 
3.2.  The average HOMFLY-PT polynomial 

as a measure of entanglement 

We propose to define the average HOMFLY-PT of a pair of oriented open curves 
in 3-space as the superposition HOMFLY-PT polynomial over the pdf of S2 x S2 
independent closures for pairs of chains thereby providing a new quantification of 
the degree of entanglement present in the link. In the following we will examine 
the relationship between the Gauss linking integral and the average HOMFLY-PT 
polynomial. 

 
3.2.l. The presence of the Gauss linking number in the HOMFLY-PT 

polynomial of a closed link 

Suppose that L = {Li, L2,... ,Le}isanoriented closed link of c components and 
A is the  total Gauss linking number of L, i.e. the sum of the c(c - 1)/2 pairs of 
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linking numbers between distinct components of L. Collecting the powers of m, we 
may express the HOMFLY-PT polynomial of L by 

PL(£,m) =j=l-c Pj(f) mi 
and of any component L; by, 

PL,(£, m) = j=O P](f) mi 
The following proposition is proved in [12]: 

Proposition 3.1 ([12,Proposition 22]). For an oriented link L, the powers of 
<2 £ and m which appear in PL are all even or all odd, depending upon whether the 

number of components of L, c, is odd or even, respectively. The exponent of the 
lowest power of m which appears is precisely 1 - c. It has the coefficient 

P1-c(£) = (-£2)-A(-(£-l +£))c-lllf=1Ph(£), 
where>. is the total Gauss linking number of L, i.e. the sum of the c(c - 1)/2 pairs 
of linking numbers between distinct components of L. 

For example, for the negative Hopf link, Fig. 1, one has 
 

Due to the simplicity of the open Hopf links conformations analyzed here, one can 
detect the HOMFLY-PT polynomial of the closures by inspection of Table 1. One 
observes that the dominant terms in the average HOMFLY-PT polynomial over 
the 2401 closures correspond to these powers of £ and the proportion of closures 
that give the negative Hopf link. We observe that this relationship to the closed 
negative Hopf link is equally reflected in the coefficient of the £m term, again due 
to the simplicity of these links. 
We have seen how to extend the Gauss linking number to collections of oriented 

open chains. Here, we consider if this proposition can be extended to oriented open 
links. Consider the oriented open two-component polygonal link, RL6 = {L1, L2} 
in Fig. 15, where we can estimate PRL6, PRL6u and PRL62• 
In the case of open chains, the estimates of P-1 (£), p6(£), and p5(£) are, individ- 

ually, the superposition of a complex collection of terms each of which come from 
the closures of these open chains. While the term (- (£-1 +£)) is common to all and, 
therefore, would appear in the left side of the expression, the resulting total expres- 
sion reflects the superposition of a collection of terms in which the linking number 
depends on the closures as do each of the polynomials of the individual components. 
As a consequence, due to the complexity of the links, one can only propose that 
the coefficient, P1-c(£), is average of Eq. (3.2.1) applied to the 52 x 52 closures of 
the two component open oriented links. Consider the case of RL6, Fig. 15. 

P-1(£) = (0.000416£-9 -  0.011291£-7 -  0.284465£-5 + 0.319034£-3 
+ 0.449396£-1 - 0.155352£- 0.005831£3), 
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P6(f) = (-0.000781£-4

 0.014531£-2  + 0.964219 - 0.032656£2

 0.0090625£4), 

p (f) = (0.000313£-6 - 0.00875£-4 - 0.0185937P-2 + 0.989219 
-0.02046875£2 - 0.00109375£4), 

(-£2)-1(-(£-1 +f))pB(f)pi(f) (0.00044574£-9 -  0.00850606£-7 

- 0.0409534£-5 + 0.922805£-3 + 0.902953£-1 - 0.0612069£ 
- 0.00912977£3 + 0.000231128£5). 

In the final product expression, the unknotted character of the two components 
is strongly reflected in thep-3 andp-l coefficients whilst, it seems, this is lost in 
P-1 of the link, at least is so far as one might anticipate a relationship of the type 
expressed in the proposition manifested in coefficients. This divergence illustrates 
the strong entanglement complexity mixing the Gauss linking and the superposition 
of the HOMFLY-PT polynomials of the two component link closures. 

 
3.2.2. The HOMFLY-PT polynomial 

In the previous section we discussed the relationship between the m-1 term of a 
two-component chain, the two m0 terms of the two individual components, and the 
Gauss linking number of the two components [12, Proposition 22]. While we do 
not know of an analogous relationship reflected in the higher order components of 
the HOMFLY-PT polynomial examples show that they reflect the complexity of 
the entanglement of the two components, see Fig. 2 and, for example, the White-- 
head link 5r Note that these classical link examples illustrate the conclusions of 
Proposition 22, e.g. compare the initial terms of the trivial link and the Whitehead 
link. Furthermore, in reversing the orientation of the Solomon link 4?, one does 
not merely change £ to ½ but there are higher order term consequences illustrat- 
ing the HOMFLY-PT polynomial sensitivity to linking beyond the linking number, 
even for unknotted components or homologically unlinked cases such as the trivial 
link and the Whitehead link. As a consequence, one anticipates reflections of these 
complexities in the spectrum of closures of open two component links. 

 
3.2.3. An open link example 

As discussed earlier, we have found that, foropen links, the relationship for classical 
closed links described in Proposition 22 holds for open links in the sense that it 
is a convolution of Gauss linking terms and those coming from the HOMFLY-PT 
polynomials of the individual chains of the closure spectrum. Consider the average 
HOMFLY-PT polynomial for RL6, an open oriented two-component case discussed 
earlier, 

PnLsi = (-0.000781£-4

 0.014531£-2  + 0.964219 - 0.032656£2

 0.0090625£4) 

+ (0.0007813P-2 + 0.0129687 + 0.0090625£2)m2

 

- - 

- - 

, 
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L 

 
PRL62 = (0.000313£-6 - 0.00875£-4 - 0.0185937£-2 + 0.989219 - 0.02046875£2 

-  0.00109375£4) + (0.00906245£-2 + 0.00015625 + 0.00109375£2)m2, 
PRL612 = (0.000416£-9 - 0.011291£-7 - 0.284465£-5 + 0.319034£-3 

+ 0.449396£-1 -  0.155352£- 0.005831£3) m-1 +(-0.001249£-7 
+0.231570£-5 + 0.694711£-3 - 0.626405£-1 + 0.029155£ 
+ 0.010412£3)m + (0.000833£-5 - 0.209913£-3 + 0.020824£-1 

<2 - 0.002082£)m3 -  0.009996£-1m5. 

In RL61 and RL62, we observe a demonstration of the dominant unknotting 
character of the chains and, in RL61,2 the strongly entangled character of the two 
chain conformation. In order to quantify the extent of complexity of the HOMFLY- 
PT we propose to employ the spread of the polynomial. This new measure of the 
complexity of a finite integral Laurent polynomial, such as the HOMFLY-PT, 

 
 
 

 
isdefined as follows: 

 
P(f!, m) = 

 
i=k,j=n 

I:  
i=-k j=-n 

Each point with coordinates (i, j) of the 2k x 2n 2-dimensional integral lattice 
given the value Ja;,J J. In analogy with a physical system, we determine the total 
mass, M, and the "center of mass", (µ1,, µm) of this system: 

i=k,j=n 

M= Jai,JI, 
i=-k,j=-n 

 
 

l i=k,j=n 

(µ1.,µm) =M Jai,Jl(i,j). 
i=-k,j=-n 

 
Wethen define the spread of P(R, m) in analogy with squared radius of gyration of 
a physical system: 

l i=k,j=n 

sp(P(R,m)) =M Jai,Jl((i - µ1,)2 + (j - 
i=-k,j=-n 

 

µm)2). 

Inthepresent case the spread of PRL6i,,(£, m) is 44.2135 which one may com- 
pare with that of the positive Hopf link polynomial having spread 15.7292. Recall 
that the positive Hopf link has Gauss linking number 1 while RL6 has a compa- 
rable Gauss linking number of 1.12954 thereby illustrating the interest in this new 
measure of entanglement. 
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4. Random Confined Open Two Component Links 

The HOMFLY-PT polynomial of open two component links provides a new method 
to quantify the extent of entanglement of polymer chains in a melt. This has long 
been an objective of researchers concerned with the nature of material systems in 
engineering, chemistry, biology, and physics. Model conformations of polymers of 
polymers can be obtained using computer simulations. From a historical perspec- 
tive, one strategy has been to "tighten" the system of open chains, without moving 
termini, so as to localize physical obstructions at isolated points, called "entangle- 
ments", that are then used to characterize the system [27]. The topology of knots 
and links in systems composed of closed chains have been used to assess the pres- 
ence of entanglement using the algebraic topology of the Gauss linking number [18]. 
The linking number has been extended to systems of oriented open chains using 
the Gauss linking integral [21]. Scaling characteristics of polymer chains can be 
obtained by studying random walks. In particular, the behavior of random walks 
in confined spaces can provide information about similarly confined polymer chains 
such as biopolymers in a cell. Here, we apply this thinking to pairs of random walks 
whose initial termini lie within a ball of fixed radius, with a uniform distribution, 
and are confined to lie in this ball. For example, consider the case of walks with 15, 
20, 25, 30, and 40 steps, see Figs. 7, 9, 11, 13, and 15, respectively. In Fig. 6, we 
show the growth of the average absolute value of the Gauss linking number of such 
chains as a function of the length of the chains. 

 
4.1.  Discussion of the HOMFLY-PT polynomials of two 

component link examples 

For single open chains, such as these, the classical knot theory has been extended to 
open arcs whereby one considers the distribution of knot types, the knot spectrum, 

 

 
 

Fig. 6.  The average absolute value of the Gauss linking number of two random walks confined 
to a ball of radius 4, as a function of the length of the walks, n. The linear growth is -0.00834 + 
0.118216n with R2 = 0.9994 [21]. 
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defined by collection of closures of the arc termini over the two sphere of direc- 
tions [14]. As mentioned earlier, Kauffman and Panagioutou [10] describe a theory 
that defines an average of the Jones polynomial of an open chain over all projection 
directions. In this paper we propose to associate a HOMFLY-PT polynomial to an 
open arc by taking the average of the HOMFLY-PT polynomial over all closure 
directions of an open arc, i.e. the superposition of the knotting spectrum of [14]. 
Moreover, we propose to associate a HOMFLY-PT polynomial to a pair of oriented 
open arcs by taking the superposition of the HOMFLY-PT polynomials over all the 
independent closure directions of the open arcs, thereby taking a superposition of 
their linking spectrum. This method extends to collections of oriented open chains. 

<2 Here, we apply this thinking to pairs of random walks whose initial termini lie 
within a ball of a fixed radius, with a uniform distribution, and are confined to lie 
within this ball. For example, in the case of a pair of 15 step random walks, Fig. 7, 
the Gauss linking number is 1.0892, and the spectrum is given in Table B.1. The 
average HOMFLY-PT polynomial is 

(-0.130362£-5 + 0.583507£-3 + 0.576426£-1 - 0.132028£ + 0.004165£3) m-1 
+(0.075385£-5 + 0.284465£-3 -  0.761000£-1 + 0.0008330£) m 
+ (-0.075385r3 -  0.003319C1 -  0.000833£)m3 

whose spread is 28.87. The spectrum of this link is illustrated in Fig. 8. 
In order to illustrate this new approach to quantifying the growth in entangle- 

ment complexity as the length of the chains grows, we first share examples with 
increasing chain length. In the case of a pair of 20 step random walks, Fig. 9. The 
Gauss linking number is -0.0456613, and the spectrum is given Table B.2. The 

 
 
 
 
 

 
 
 
 
 

 
Fig. 7. A confined pair of random walks of length 15. The Gauss linking number is 1.0892. The 
average HOMFLY-PT polynomial is (-0.130362f-5 + 0.583507£-3 + 0.576426£-1 - 0.132028£ + 
0.004165£ 3   m-1  +(0.075385e- 5  +0.284465£- 3   -0.761000£- 1  +0.0008330£) m+ (-0.075385£- 3

 

0.003319£-1 - 0.000833£)m3. 
) - 
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Fig. 8.  The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length 15. 

 

 

 
 
 
 
 
 
 
 

Fig. 9.  A confined pair of random walks of length 20. The average HOMFLY-PT polynomial is 
(-0.007189f-5 +0.100000£-3 - 0.633333£-1 - 0.6000000f + 0.138562f3) m-1 +(0.0071895f-5 + 
o.022222e- 3  

-  0.103922f- 1  

-  0.137908£) m + (-0.0071895£- 3 0.0006536£- )m 
1 3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

average HOMFLY-PT polynomial is 

 
(-0.007189£-5 + 0.100000£-3 - 0.633333£-1 - 0.6000000£ + 0.138562£3) m-1 
+(0.0071895£-5 + 0.022222£-3 - 0.103922£-1 - 0.137908£) m 
+ (-0.0071895£-3 -  0.0006536f-1)m3 

 
whose spread is 5.28712. The spectrum of this link is illustrated in Fig. 10. 

I - I 0 
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Fig. 10.  The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length 20. 

 
 
 

 

 

 
Fig. 11. A confined pair of random walks of length 25. The average HOMFLY-PT polyno- 
mial is (-0.00249895e-5 + 0.0270721£-3 - 0.482716£-1 - 0.2082466l + 0.3027905l3) m-1 + 
(0.00083299e-5 + 0.47938359e-3 + 0.9204498e-1 + 0.1724281£) m + (-0.000832986£-3 - 
0.4752187£-1)m3. 

 
 

In the case of a pair of 25 step random walks, Fig. 11, The Gauss linking 
number is -1.85846, and the spectrum is given Table B.3. The average HOMFLY- 
PT polynomial is 

(-0.00249895t~5 + 0.0270721£-3 - 0.482716£-1 - 0.2082466£ 
+ 0.3027905£3) m-1 +(0.00083299£-5 + 0.47938359£-3 + 0.9204498£-1 
+ 0.1724281£) m + (-0.000832986£-3 -  0.4752187£-1)m3 

whose spread is 23.02798. The spectrum of this link is illustrated in Fig. 12. 
In the case of a pair of 30 step random walks, Fig. 13. The Gauss linking number 

is 0.00715655, and the spectrum is given Table B.4. The average HOMFLY-PT 
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Fig. 12.  The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length 25. 

 

 
 
 

Fig. 13. A confined pair of random walks of length 30. The average HOMFLY-PT polyno- 
mial is (-0.00249895£-5 + 0.0270721£-3 - 0.482716£-1 - 0.2082466£ + 0.3027905£3) m-1 + 
(0.00083299e-5 + 0.47938359e-3 + 0.9204498e-1 + 0.172428lf) m + (-0.000832986e-3 - 
0.4752187£-1 )m3. 

 
 

polynomial is 

(-0.00249895£-5 + 0.0270721£-3 - 0.482716£-1 - 0.2082466£ 

+ 0.3027905£3) m-1 +(0.00083299£-5 + 0.47938359£-3 + 0.9204498£-1 
+ 0.1724281£) m + (-0.000832986£-3 -  0.4752187f-1)m3 

whose spread is 3.94706. The spectrum of this link is illustrated in Fig. 14. 
The estimated HOMFLY-PT polynomial of the link RL6 is 

PnL6(f,m) = (-0.002082466£-5 + 0.489796£-3 + 0.0414493£-1 -  0.450229£ 
- 0.0012495£3 - 0.0012495£5)m-1 + (0.002082466r5 
+0.006247397£-3 - 0.4918783£-1 + 0.00374844£3 + 0.001249479£5)m 
+ (-0.002082466£-3 - 0.00124948t'3)m3. 
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Fig. 14.  The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length 30. 
 
 
 
 

 
 
 
 

Fig. 15.  A confined pair of random walks, RL6, of length 40. The average HOMFLY-PT 
polynomial is (-0.002082466£-5 + 0.489796e-3 + 0.0414493£-1 - 0.450229£ - 0.0012495£3 - 
0.0012495£5)m-1 + (0.002082466£-5 + 0.00624739U-3 -  0.4918783£-1 + 0.00374844£3 + 
0.001249479£5 )m + (-0.002082466£-3

 

 
 

0.00124948£3)m 3

 

 
RL6 Spectrum 
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Fig. 16.  The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length 
40, RL6. 

- . 



K. C. Millett & E. Panagiotou 

2340017-16 

 

 

 
Roughly half of closures of RL6 are negative Hopf links and the other half trivial 

links, the complexity of the remaining closures expresses a greater degree of linking 
complexity present in this link. 
The spread of PRL6(f, m) is 13.8730 while the negative Hopf link polynomial 

has spread 15.7292. The Gauss linking number ofRL6 is -1.12954 compared to -1 
for the negative Hopf link. 

 
4.2.  A study of the HOMFLY-PT polynomials of random open 

confined two component links 

In this section, we apply the HOMFLY-PT polynomial to the study of open two 
component links confined to balls of varying radii. Each edge in each chain is of 
unit length, the chains have an initial point randomly selected from the confining 
ball with radii 1, 2, 3, or 4 and have lengths 5, 10, 15, 20, 25, or 30. Each case has 
a sample size of 10,000. 
To set the stage, traditionally one might determine the absolute value of the 

Gauss linking number for a pair of chains as a measure of their entanglement. The 
averages of these values as a function of the radius of the ball and the length of 
the chains of the samples are shown in Fig. 17. We observe that the absolute Gauss 
linking number depends linearly on the length of the chain in a manner depend- 
ing on the character of confinement, as expected [21]. Considering the absolute 
Gauss linking number for pairs of chains of link 5, we see that the values decrease 
monotonically with increasing radius of the confining ball, Fig. 18. 
While the Gauss linking number provides a traditional measure of link entan- 

glement, the HOMFLY-PT provides a much richer assessment of entanglement for 
both open and closed two component links due to its capacity for distinguishing 
topological knot and link types. To quantify the level of entanglement we will first 
consider two component links of chains with lengths 5 and 10 confined to a ball of 

 
 
 

 

 
10 15 20 25 30 

 

Fig. 17. The absolute Gauss linking numbers as a function of length when confined to balls of 
radius 4 (dot---<lashed), 3 (dotted), 2 (dashed) and 1 (solid). 
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Fig. 18. The average absolute Gauss linking numbers of pairs of chains of length 5 confined to 
balls of radii 1 through 10. 

 
radius one. The first question we ask is "How large a sample must one have in order 
to give a reasonable estimate of the average degree of entanglement of a collection 
open polygonal chains?" 
While it is possible for two equilateral triangles to be Gauss linked, we are 

interested in more complex entanglement. The closure of a chain of three edges will 
have five edges, still too few to achieve a trefoil knot as this requires at least six 
edges. As a consequence, we consider the closure of a chain of five edges which will 
have a total of seven edges. A chain with seven edges can be one of only of four 
topological knot types: 01, ±31, and 41. To make a crude estimate of the complexity 
of the task of assessing the entanglement of collections of open polygonal chains 
of five edges, one first estimates the number of distinct presentations of closures of 

3 t>( 
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{X 
 

Fig. 19.  The polygonal Imotoids of three and four edge polygons. 
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Fig. 20. The 37polygonal knotoids of five edge polygons. 

 

 
five edge polygonal chains. To give an estimate of the complexity of the problem, 
we can look at the diagrams generated by open curves in 3-space, which can be 
seen as knotoids (Turaev [l, 301). For three and four edges, see Fig. 19, there are 
very few polygonal knotoids though more than one expects for small numbers of 
crossings. This changes for five edges, see Fig. 20 for 37 instances. If one adds the 
mirror reflections, one estimates rough 74 polygonal knotoids with five edges. The 
closure to a large 2-sphere adds two additional edges joined to the termini from a 
point on the 2-sphere. This adds a potential total of eight crossings of the five edge 
knotoid for a total of 14 possible crossings and, therefore, 16,384 crossing choices. 
This gives an estimate of a total of 1212416 diagrams, so that 105 would be a very 
cautious estimate of the number of cases. 
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If one uses this rough estimate of 105 presentations, without taking inter- 

crossings into consideration, there are roughly the square this number for the pos- 
sible cases for two component links. Each edge of one component can over or under 
cross an edge of the other component once, without taking order into consideration, 
so one has an additional factor of 16384 = 27 giving a very crude estimate of 
1.6 x 1014 different presentations. Using such arguments one can show that the 
number of distinct link types in each instance is finite and is certainly quite large. 

Recall that, for each pair of chains, we consider 2401 closures. We show the 
growth in the number of distinct HOMFLY-PT polynomials for lQk samples of size 
2401 of two component links of length 5 for k = 2, 3, 4, and 5 in Fig. 21. While 
the number of distinct conformations steadily increases, with an unknown useful 
upper bound, a consideration of 10, 000 sample data for increasing ball radius, 
Fig. 22, suggests that the number of distinct links observed reflects the degree of 
entanglement as it is largest for the ball of radius one and decreases as the radius 
increases reflecting the expected decrease in entanglement. 
The mean squared radius of gyration for this data suggests a limit of roughly 

2.87, Fig. 23. Considering the squared radius of gyration for length 5 links as the 
ball radius increases, Fig. 24, the monotonic increase is consistent with decreasing 
density and, correspondingly, decreasing entanglement. 
With regard to our putative measure of entanglement, the spread of the 

HOMFLY-PT polynomial, there is visible variation in this range with an aver- 
age of 5.08, Fig. 25. The monotonic decrease in spread with respect to ball radius, 
Fig. 26, reflects the decrease in entanglement with the relaxation of confinement 
for two component links of length 5. 
Consider the case of length 10, for comparison. One observes the growth in the 

number of distinct HOMFLY-PT polynomials for lQk samples fork= 2, 3, 4, and 5 
in Fig. 27. Again the number of conformations steadily increases, with an unknown 
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Fig. 21. The number of distinct HOMFLY-PT polynomials for length 5 two component links in 
a ball of radius 1 for lQk samples for k = 2, 3, 4, and 5. 
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Fig. 22. The number of distinct HOMFLY-PT polynomials of length 5 two component links in 
a ball of radius k for 10,000 samples with k = l, 2,3,4, and 5. 

 

 
Fig. 23. The squared radius of gyration for length 5 two component links in a ball of radius 1 
for 10k samples for k = 2, 3, 4, 5, and 6. 
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Fig. 24.  The squared radius of gyration for length 5 two component links in a ball of radius k 
for 10,000 samples with k = l, 2,3, 4, 5, and 6. 
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Fig. 25. The HOMFLY-PT polynomial spread for length 5 two component links in a ball of 
radius 1 for 10k samples for k = 2, 3, 4, 5, and 6. 

 

 
Fig. 26. The HOMFLY-PT polynomial spread for length 5 two component links in a ball of 
radius k for 10,000 samples with k = 1, 2, 3, 4, and 5. 
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Fig. 27.  The number of distinct HOMFLY-PT polynomials for length 10 two component links 
in a ball of radius 1 for 10k samples for k = 2, 3, 4, and 5. 
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Fig. 28. The squared radius of gyration for length 10 two component links in a ball of radius 1 
for 10k samples for k = 2, 3, 4, and 5. 
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Fig. 29. The HOMFLY-PT polynomial spread for length 10 two component links in a ball of 
radius 1 for 10k samples for k = 2, 3, 4, and 5. 

 
 

upper bound. The squared radius of gyration suggests a limit of 2.28, Fig. 28. 
With regard to our putative measure of entanglement, the spread of the HOMFLY- 
PT polynomial, there is visible variation in this range with an average of 15.46, 
Fig. 29. 
Although these data suggest that a sample of 100,000 cases or more would be 

desirable, computational time constraints require that an analysis of 10,000 cases 
be used to illustrate the effects of confinement and length on our HOMFLY-PT 
quantification of entanglement. 

 
4.2.l. Consequences of confinement 

To give another perspective on the consequences of confinement we hold the ball 
radius constant and increase the chain length. In the case of the number of observed 
distinct HOMFLY-PT polynomials, Fig. 30, we are constrained to lengths 5, 10, 15, 
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and 20 due to the computational complexity encountered with increasing length in 
confinement. The growth of the number quantifies the increasing entanglement as 
the length of the chains increases. A log analysis shows the number grows as 

0.00220086£6 95078' 

where I! is the length of the chain confined to the ball of radius 1. The monotically 
decreasing squared radius of gyration with increasing chain length, Fig. 31, also 
reflects the increasing entanglement. Finally, the HOMFLY-PT spread, Fig. 32, 
captures the increasing entanglement. 
For the ball of radius 2, one can slightly increase the length of the chains to 

25 before computational complexity prevents further increase, Figs. 33-35. A log 
 
 

6 10 12 14 16 16 20 

Fig. 30.  The number of distinct HOMFLY-PT polynomials in a ball of radius 1 for lengths 5, 
10, 15, and 20. 
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Fig. 31. The squared radius of gyration for two component links in a ball of radius 1 for lengths 
5, 10, 15, and 20. 
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Fig. 32. The HOMFLY-PT spread for two component links in a ball of radius 1 for lengths 5, 
10, 15, and 20. 
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Fig. 33.  The number of distinct HOMFLY-PT polynomials in a ball of radius 2 for lengths 5, 
10, 15, and 20. 
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Fig. 34. The squared radius of gyration for two component links in a ball of radius 2 for lengths 
5, 10, 15, and 20. 
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Fig. 35. The HOMFLY-PT spread for two component links in a ball of radius 1 for lengths 5, 
10, 15, and 20. 

 
 

analysis shows the number grows as 

0.0059ll67£6•00749, 

where f is the length of the chain confined to the ball of radius 1. The squared 
radius of gyration and the HOMFLY-PT show the same behavior as in the case of 
radius 1. 
For a ball of radius 3, the number of distinct HOMFLY-PT polynomials grows 

as 

0.00818644£5•71424 

and, for radius 4, the number grows as 

0.0124913£5•47958. 

 

Fig. 36. The growth of distinct HOMFLY-PT polynomials is modeled by a power law whose 
exponent, shown here, decreases with increasing radius of the confining ball reflecting the degree 
of entanglement as the radius increases. 
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Fig. 37.  The number of distinct HOMFLY-PT polynomials for chains of length 20 as function of 
the radius. 

 
 

 
Fig. 38. The dependence of squared radius of gyration on the length of the chains and confining 
ball radius. 

 
 

Figure 36 displays the evolution of the exponent as the radius of the ball increases. 
For longer links, the degree of entanglement, as reflected in the number of distinct 
HOMFLY-PT polynomials decreases in a manner similar to that of links of length 
5, Fig. 37. 
The mean squared radius of gyration, Fig. 38, confirms the consequences of 

length versus confinement, with larger values corresponding to, relatively, decreased 
values of confinement. 
The larger values of the spread of the HOMFLY-PT polynomial of the two- 

component link as a function of the ball radius correspond to increased entangle- 
ment as a function of chain length and confinement, Fig. 39. 
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Fig. 39. The dependence of the spread of the HOMFLY-PT polynomial of the two-component 
link on the length of the chains and confining ball radius. 
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Fig. 40. The dependence of the spread of the HOMFLY-PT polynomial of the two-component 
link as a function of the chain length on the length of the chains and confining ball radius. 

 
 
 

5. Discussion 

With the objective of employing the HOMFLY-PT to create a quantitative measure 
of entanglement of two open chains we have defined the average, over independent 
spatial closures, of the HOMFLY-PT. While it is invariant over orientation pre- 
serving Euclidean transformations, i.e. translations and S0(3) rotations, the open 
Hopf link examples in Sec. 2, is not a diffeomorphism invariant. In this sense, these 
examples show that it is similar to the values of the Gauss linking integral 1 [6, 21] 
but are more geometric than topological in character. Although the Gauss linking 
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number of two oriented closed chains can be found in the HOMFLY-PT polynomial 
as per Proposition 3.1, we have noted that it does not carry over to the average 
HOMFLY-PT polynomial that we've defined here. Similarly, it seems to have a 
character distinct from the shape quantities defined by Rogen [25, 26] that are 
inspired by the Gauss linking integral and related to Vassiliev invariants. Alas, at 
this point, a useful characterization of the geometric significance of our average 
HOMFLY-PT has not been identified. 
The complexity of the average HOMFLY-PT, even in simple cases such as open 

Hopf links, leads one to seek a single numerical measure of the quantification. To 
this end we define the spread of the two variable polynomial in 3.2.3. For one 
variable polynomials, e.g. the Jones polynomial [8], this would be the radius of 
gyration of the system of points on the integers with the absolute values of the 
coefficients placed at the exponents. In this case, the spread would analogous to 
the breadth of Jones polynomial and one is provoked to seek an extension of the 
Kauffman-Murasugi-Thistlethwaite theorem [9, 17, 29] relating the breadth of the 
Jones polynomial to the number of crossings in a minimal crossing presentation of 
the link: specifically, the breadth of the Jones polynomial is an upper bound for the 
number of crossings in a minimal presentation and is achieved only for alternating 
presentations. At this time there is no known analogue for the HOMFLY-PT poly- 
nomial nor is there a version that works for open knots due to the consequences of 
the averaging procedure. 

 
6. Conclusions 

We have suggested the use of the superposition of the HOMFLY-PT polynomials 
of the spectrum of an open chain [14] to define a HOMFLY-PT of an open chain in 
3-space. We have described how the superposition of the HOMFLY-PT polynomials 
of the random closures of an open two-component link can be employed to give a 
HOMFLY-PT polynomial of the open link whose spread can be understood as a 
quantifying measure of the degree of entanglement present in the open link. This 
measure of entanglement is characterized though its estimation for links of length 
5 through 30 under confinement to ball of varying radius. While the classic Gauss 
linking measure of entanglement suggests a linking dependence on the chain length, 
the spread shows a much more nuanced dependence. The computational complexity 
of the HOMFLY-PT polynomial is a constraining factor in this study that, there- 
fore, suggests that employing a less sensitive such as the Alexander polynomial or 
Vassiliev invariants [11] should be studied in the hope that they will, neverthe- 
less, be able to give a useful measure of entanglement using the superposition of 
closures. 
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Appendix A. Open Hopf Links 

 
Table A.l. This data reports the links types observed for the 2401 closures of the open 
Hopf Link A shown in Fig. 3. The link types labeled 4f are members of a family of four 
topologically distinct oriented differentiated by orientation and mirror reflection. 

 

HOMFLY-PT type Number of observations HOMFLY-PT polynomial 

or 199 (-e-1 - e)m-1 
2r 2183 (e+f3)m-1 - em 
- 1 {e-3 +e)m-1 - e-1m 
4r 9 (-£3 - e5)m-1 +(-e - e3)m 
 5 (-f3 - es)m-1 +(3e3 + f5)m -e3m3 
 4 (-e-1 - e)m-1 +(e-1 + 2e+f3)m - fm3 

 
Table A.2. The data reports the links types observed for the 2401 closures for the open 
Hopf Link B shown in Fig. 3. 

 

HOMFLY-PT type Number of observations HOMFLY-PT polynomial 

or 1680 (-e-1 - e)m-1 

2r 420 (f +f3)m-1 - £m 
-2f 301 (f-3+ £)m-1 - £-Im 
4r o (-£3 - es)m-1 +(-e - e3)m 
4r o (-f3 - es)m-1+ (3e3+ es)m -e3m3 
5r 0 (-e-1 - e)m-1 +(e-1 + 2e+f3)m - fm3 

 
Table A.3. The data reports the links types observed for the 2401 closures for the open 
Hopf Link C shown in Fig. 3. 

 

HOMFLY-PT type Number of observations HOMFLY-PT polynomial 

or 1132 (-e-1 - e)m-1 
2r 1055 (e+£3)m-1 - em 
- IB9 (£-3+ £)m-1 _ £-Im 
4r 25 (-£3 -es)m-1 +(-e-e3)m 
4r o (-e3 - es)m-1 +(3e3 + es)m -£3m3 
5r 0 (-e-1 - e)m-1 +(e-1 + 2e+f3)m - fm3 

 
Table A.4. The data reports the links types observed for the 2401 closures for the open 
Hopf link shown in Fig. 3. 

 

HOMFLY-PT type Number of observations HOMFLY-PT polynomial 

or 668 (-e-1 - e)m-1 
2r 1637 (e+f3)m-1 - em 
-2f 62 (e-3+ l)m-1 - £-Im 
4r 34 (-£3 -es)m-1 +(-e-e3)m 
 0 (-f3 - es)m-1+ (3e3+ es)m -£3m3 
 0 (-e-1 - e)m-1 +(e-1 + 2e+f3)m - fm3 
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Table A.5. The data reports the links types observed for the 2401 closures for the open 
Hopf link shown in Fig. 3. 

 

HOMFLY-PT type Number of observations HOMFLY-PT polynomial 

or 238 (-e-1-e)m-1 
zj 2Lll (e+e3)m-1 - em 
-zj 4 (e-3 + e)m-_1 e-lm 
4y 27 (-e_3 es)m-1 + (-£ - £3)m 
 1 (-e_3 es)m-1 + (3e3 + e s )m_  e3m3 
5y 0 (-e-1 -e)m-1 + (e-1 + 2£+e3)m-em3 

 

 
Appendix B. Two Component Link Examples 

This appendix contains the data reporting the spectrum of distinct link types 
observed in the 2401 closures of some examples of open two component links at 
the length of the chains varies. 

 
Table 8.1. Thedata reports the link types observed for the 2401 closures for the confined 
random two-component link in Fig. 7. 

 

HOMFLY-PT  Number of HOMFLY-PT polynomial 
type observations 

 

0 12  320 (-e-1 - l)m-1 
2 12  10 (e+e3)m-1 - em 
-2r 1711 (e-3 + e)m-1 - e-lm 
412 129 (-e3 - es)m-1 + (-e - e3)m 
412 181 (-e_3 f5)m-1 + (3£3 + e s )m_  e3m3 
512 2 (-e-1 - l)m-1 + (e-1 + 2£ + e3)m - em3 
-5f 5 (-e-1 -l)m-1 + (e-3 +2.e-1 +e)m-£-lm3 
6 12  1 (e-7 + e-5)m-1 + (-e-5 + e-_3  e-l)m 
6222 39 (e-1 + e-5)m-1 + (-e-1 - 2e-5 - 2e-3)m+ 

(e-5 _ e-3)m3 
632 3 (-£-5 - e-3)m-l + (2f-3 + e-l + e)m- e-1m3 

 
Table8.2. Thedata reports the link types observed for the 2401 closures for the confined 
random two-component link in Fig. 9. 

HOMFLY-PT 
type 

Number of 
observations 

HOMFLY-PT polynomial 
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Table B.2.  ( Continued) 
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Table B.3. The data reports the link types observed for the 2401 closures for the confined 
random two-component link in Fig. 11. 

HOMFLY-PT  Number of 
type observations 
o12 0 
212 727 

HOMFLY-PT polynomial 
 
(-e-1 - e)m-1 
(e+e3)m-1 -em 

- 212 68 
412 41 
- 412 4 

(e-3+e)m-1 - e-im 
(-£3 - es)m-1 + (-e - £3)m 
(-e-5 - e-3)m-1 + (-e-3 - e-1)m 

421 6 (-[_3 es)m-1 + (3e3 + [ 5 ) m_  e3m3 
-4? 2 
512 1227 
-5i 0 
612 0 
62 0 

(-£-_5 e-3)m-1 + (£-5 + 3£-3)m -£-3m3 
(-e-1 - e)m-1 + (e-1 + 2l + l3)m -£m3 
(-e-1 - e)m-1 + (e-3 + u-1 + £)m- e-1m3 
(£-7 +£-5)m-1 + (-£-5 +e-3 -e-l)m 
(e-7 + e-5)m-l + (-£-7 - ze-5 - 2l-3)m+ 
(e-5 - e-3)m3 

632 0 
-6 15 
221r3 36 
222r3 98 
223r3 2 
224r3 5 
225r3 3 
227r3 98 
228r3 14 
230r3 2 
232r3 2 
233r3 1 
234r3 2 
236r3 13 
228r3 1 
239r3 29 
240r3 2 
241r3 2 
242r3 1 

(-e-5 - e-3)m-1 + (2e-3 + e-1 + e)m- e-1m3 
(-l3 -es)m-1 + (2e3 +£1 +e-l)m -lm3 
(e+e3)m-1(-2l-1 - 5e- 2£3)m + (e-1 +4£+£3)m3 -ems 

 
 

HOMFLY-PT 
type 

Number of 
observations 

HOMFLY-PT polynomial 

- 512 1 (-e-1 - e)m-1 + (e-3 + u-1 + e)m- e-1m3 
62 0 (e-7 + e-s)m-1 + (-e-5 + e-3 - e-1)m 
62 0 (e-7 + e-s)m-1 + (-e-7 - u-5 - 2e-3)m+ 
  (e-5 - e-3)m3 
632 0 (-e-5 - e-3)m-1 + (2e-3 + e-1 + e)m-e-1m3 
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Table B.4. 2401 closures: data for a confined two-component random link of arc length 
30, Fig. 13. 

HOMFLY-PT Number of 
type observations 
012 1905 
212 347 
-2? 91 
412 19 

HOMFLY-PT polynomial 
 
(-e-1 - e)m-1 
(e+e3)m-1 - em 
(e-3 +l)m-1 - e-1m 
(-e3 - e5)m-1 + (-£ - e3)m 

421 10 (-e3 -es)m-1 + (3f.3 + es)m - e3m3 
-4? 0 
52 
I 
-5? 0 

(-e-5 - e-3)m-1 + (e-5 + 3e-3)m - e-3m3 
(-e-1 - f.)m-1 + ce-1 + 2e + f.3)m - em3 
(-e-1 - f.)m-1 + (f-3 + 2f.-l + f.)m - e-lm3 

621 0 (e-7 + e-s)m-1 + (-e-5 + e-3 -e-l)m 
-6? 2 
6222 0 

 
- 632 4 

(f.5 + f7)m-l +(-el+ e3- eS)m 
(e-7 +e-s)m-1 + (-e-7 - u-5 - 2e-3)m+ 
(e-s - e-3)m3 

(-e3 -es)m-1 + (2e3 - es - f.7)m + (-e3 + es)m3 
623 0 (-e-s - e-3)m-l + (2e-3 + e-l + e)m- e-1m3 
225r4 20 
226r4 2 
227r4 1 

Table B.5. 2401 closures: data for a confined two-component random link of arc length 
40,Fig. 15. 

HOMFLY-PT Number of 
type observations 

o12 1081 
212 118 
-2? 1181 
42 
I 

-4? 12 

HOMFLY-PT polynomial 

 
(-e-1 - f.)m-1 
(e + e3)m-1 -em 
(e-3 + e)m-l - e-lm 

(-e3 - es)m-1 + (-e - e3)m 
(-e-S - e-3)m-l + (-f.-3 - e-l)m 

421 3 (-e3 - f.5)m-l + (3f.3 + es)m - e3m3 
-4? 5 
52 
I 

-5? 0 

(-e-s - e-3)m-1 + (e-5 + 3e-3)m - e-3m3 
(-e-1 - f.)m-1 + ce-1 + 2f.+ e3)m - em3 
(-e-1 - f.)m-1 + (f-3 + 2e-1 + f.)m - e-lm3 

621 0 (f.-7 + e-s)m-1 + (-e-5 + e-3 -f.-l)m 
-6? 0 
62 0 

(es+ f7)m-l + (-el + f.3 - e5)m 
(e-7 +e-5)m-1 + (-e-7 - u-s - 2e-3)m+ 
(e-s - e-3)m3 

-6l 0 (-e_3 f.5)m-l + ( 2 £_3  es_ f.7)m + (-e3 + f.5)m3 
623 0 (-e-5 - e-3)m-1 + (2f.-3 + e-1 + £)m- e-lm3 

 
 

0 

1 

0 
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