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ABSTRACT

We numerically estimate the superposition of the HOMFLY-PT polynomial of an
open two-component link, define its spread, and describe how this quantity may be
employed to quantify the degree of entanglement of confined two component open links.
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1. Introduction

Many physical materials are composed of filamentous structures, such as macro-
molecules, and are mathematically modeled as collections of open simple curves in
space. The entanglement of these molecules, reflected in the entanglement of the
modeled curves, has a significant influence on the mechanical properties and func-
tion of such materials [3, 4, 27]. However, it has been a challenge to rigorously define
a mathematical measure of entanglement in such systems. Panagiotou [20, 22, 23]
employed the Gauss linking integral to create measures of entanglement in peri-
odic boundary condition models of such systems. For the case of a single curve,

i.e. an open knot, Millett et al. [14, 16] used the HOMFLY-PT [5] knot polynomial

to define the probability distribution of knot types on the ensemble of closures of
the endpoints of the curve over the 2-sphere of directions in space giving spec-
trum of the open knot and its dominate knot types. The superposition of this
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spectrum defines the average of the HOMFLY-PT polynomials of the ensemble of
closures. Panagiotou and Kauffman [10] provide a rigorous definition of the Jones
[8] polynomial of open chains via averaging the Jones polynomial of projections of
an open curve (thereby defining a knotoid) over all possible projection directions.
The Jones polynomial of open curves is a polynomial with real coefficients that
are continuous functions of the chain coordinates. As the endpoints of the chain
tend to coincidence they converge to those of the Jones polynomial of the result-
ing closed curve. Recently, the Jones polynomial of collections of open curves in
3-space was defined in [2]. Note that the definition of the HOMFLY-PT polynomial
of open arc diagrams (knotoids) is not yet defined. As a consequence, we employ
an extension of the MDS method [14] for knots to the case of open links. Thus,
whereas the superposition of the HOMFLY-PT 52 pdf of MDS gave the average
closure HOMFLY-PT polynomial of the knot, the superposition of the HOMFLY -
PT 52 x 52 pdfof closures of the two-component open link gives the average closure
HOMFLY-PT polynomial of the link.

We compare our results to those provided by an application of the Gauss linking
number employed in the study of entanglement of polymer gels [20].

Our estimation of the average HOMFLY-PT is achieved by determining the
HOMFLY-PT polynomial and, therefore, the associated oriented link type at each
pair of points in an independent uniformly distributed collection of 49 closure direc-
tions on each of the two spheres thereby giving a collection of 2401 samples. One
can understand this procedure as providing an estimation of the integration of the
HOMFLY-PT on the 5% x 52 space of pairs of closure directions divided by the
four-dimensional volume of 5% x 52. Oneof the fundamental properties of this
method is that the proportion of link types of pairs of open chains converges to
that of the closed chains as the distance between the two termini of each chain,
respectively, goes to zero. We will explore this convergence in the case of a Hopf
link.

As was observed in the study of protein structures, the linking spectrum depends
on the specific geometry of the chain [16, 24, 28]. To examine the effect of the
local geometry, we will consider the influence of the location of the gap in a
closed chain as well as the effect of the spatial geometry of the chain. We will
also study HOMFLY-PT polynomial of random pair of disjoint random walks,
i.e. a random pair of disjoint equilateral polygons, in the 3-ball as their length
increases.

This paper is organized as follows: In Sec. 2, by way of introduction to the study
of complex two component open links, we study the link spectrum of an open Hopf
link and its dependence on the location of the endpoints of the open link. In Sec. 3,
we describe the foundation of our analysis starting with the definition of the average
closure HOMFLY-PT polynomial of an open two component links in 3-space. In
Sec. 4, we present results on the HOMFLY-PT polynomial of confined open two
component links.
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2. The HOMFLY-PT Polynomial of Open Hopf Links
The HOMFLY-PT polynomial of a closed negative Hopf link, Fig. 1, is
(£+£3)m-1-£m.

The polynomial of the mirror reflection, the closed positive Hopf link, is given
by replacingf by g-1 giving
(£-3+ £-1)m-1_£-1m.

To illustrate the properties of the average HOMFLY-PT polynomial, we apply
our method to the case of open Hopf links for a small collection of gap openings
in the closed link. The collection of 2401 closures can contain links of different
topological types, see Fig. 2. For a fixed gap size, the character of the entanglement,
as reflected in the average HOMFLY-PT of open Hopf links can vary, depending
on the location of the gap, see Fig. 3 and Table 1. In these instances one observes

Fig. 1. For a closed negative Hopf link, the HOMFLY-PT polynomial is (/ +e3m-1- I m.
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Fig. 2. The HOMFLY-PT and Kauffman polynomials of the simplest closed links [13].
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Fig.3. (a) A partial open negative Hopf link A: 49 x 49 closures give Oi, £21, +41, andStlink
types, Table A.l in the appendix. (b) The partial open positive Hopf link B: closures give 0 and
+21, link types. The gap is 1.66294, Table A.2. (c) The partial open positive Hopf link C: closures
give Or,:lz2i, and 4i link types. The gap is 1.17286, Table A.3. (d) The partial open positive

Hopf link D: closures give OY, +2f, and 4f link types. The gap is 0.390177, Table A.4. (e) The
partial open positive Hopf link E: closures give Of, £2i, and 4f link types. The gap is 0.196034,
Table A.5.

that the dominate terms are those of the Hopf link and the secondary terms reflect
the varying position of the gap.

2.1. Convergence as gap length goes to zero

AB the gap, the segment connecting the termini, lengths of an open two-component
link go to zero we know the link type converges to the closed link type, i.e. the
proportion of closures having the link type as the closed link goes to 1. What is
the nature of this convergence, for example, how is this reflected in the evolution of
the average HOMFLY-PT polynomial? Suppose one considers a polygonal positive
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Table 1. The average HOMFLY-PT polynomials and Gauss linking numbers for the open
Hopf links shown in Fig. 3.

Open Hopf Average HOMFLY-PT polynomial Gauss linking

link

A (0.001666£-3 - 0.0884321-! + 0.8246561 + 0.909204€3) m-! 0.930618
+(0.001249f-1 - 0.9058731) m - 0.001666£-1

B (0.158251£-3 - 0.4679854€-1 - 0.406038£ + 0.21863613) m-1 0.013390
1+(-0.156689f-1-0.218636f) m

C (0.079966¢-> - 0.392753e-! - 0.03206991 + 0.439400f%) m-1 0.444706
+(-0.0787112e-1 = 0.439400f) m

D (0.0270721-  0.252395e- + 0.403582f + 0.6817991 m-1 0.729073
+(-0.258226f-1 - 0.6817993f) m

E (0.001666e-> - 0.09745939¢-1 + 0.788421491 + 0.8875468£%) m-! 0.86317

+(-0.001666£-1 - 0.8875468£) m

proportion
1.0

0.8

0.6

0.4

0.2

Fig. 4. The proportion of link types for the closures as a function of the gap size: 0i; dashed, zf;
solid, -21; dash--<lot, 4i; dotted and 4i; large dashed.

Hopf link, see Fig. 3 and associated data tables. We show what happens to the
proportion of 01's, £2i's, and4i's as the gap length decreases in Fig. 4. Curiously,
the limiting +21 is less likely than - 21 when this particular gap becomes large.

3. Measures of Linking and Entanglement

In this section, we will review the classical Gauss linking number, and we will
explore how the average HOMFLY-PT polynomial can be used to quantify the
entanglement present in two component links.

3.1. The Gauss linking number

The Gauss linking integral defines a linking number for a pair of disjoint oriented
chains, closed or open, L1 and L2, described by piecewise C! parameterizations,
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Fig. 5. The proportion of positive Hopf links, solid, and the Gauss linking number, dashed, versus
the gap.

1'1(2) and ")'2(s), 0 :St s :S1, is defined by the double integral:

Lk(L| Ly)= { ¢ blL®.i26).1'1(0) -12(s)dtd @))
' 41rJ[0,11J[o, 11 11'1(t) -1"2(s)IP3 s,

where (i'1(1),i'"2(s),1'L(t) -")'2(s)) is the triple product of the derivatives, i'l(t) and
1'2(s), and of the difference ")'1(?) - 1'2(s).

While this is an integer for closed chains, it is a real number that captures
the linking of a pair of oriented open chains finding application in many scientifi-
cally important context such as polymer melt models employing periodic boundary
conditions; Panagiotou [15, 20, 22, 23]; complex systems such as Olympic gels [7];
protein structures [18, 19, 25, 26]. In Graph 5, we compare the proportion of positive
Hopf links and the Gauss linking number.

For example, the Gauss linking number of the oriented open link shown in Fig. 15
is 1.12954.

3.2. The average HOMFLY-PT polynomial
as a measure of entanglement

We propose to define the average HOMFLY-PT of a pair of oriented open curves
in 3-space as the superposition HOMFLY-PT polynomial over the pdf of S? x S?
independent closures for pairs of chains thereby providing a new quantification of
the degree of entanglement present in the link. In the following we will examine

the relationship between the Gauss linking integral and the average HOMFLY-PT
polynomial.

3.2.1. The presence of the Gauss linking number in the HOMFLY-PT
polynomial of a closed link

Suppose that L= {Li, L.2,... ,L.e }sanoriented closed link of ¢ components and
A is the total Gauss linking number of L, i.e. the sum of the c(c - 1)/2 pairs of

2340017-6
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linking numbers between distinct components of L. Collecting the powers of m, we
may express the HOMFLY-PT polynomial of L by

PL(£,m) =j=l-c Pj(f) mi
and of any component L; by,
PL,(£,m) = j=0 P](f) mi
The following proposition is proved in [12]:

Proposition 3.1 ([12,Proposition 22|). For an oriented link L, the powers of
£ and m which appear in PL are all even or all odd, depending upon whether the
number of components of L, c, is odd or even, respectively. The exponent of the
lowest power of m which appears is precisely 1 - c. It has the coefficient

Pl-c(£) = (-£2)-A(~(£-] +£))c-1If=1Ph(£),

where>. is the total Gauss linking number of L, i.e. the sum of the c(c - 1)/2 pairs
of linking numbers between distinct components of L.

For example, for the negative Hopf link, Fig. 1, one has

p_1(0) = (=)= + ) =L+

Due to the simplicity of the open Hopf links conformations analyzed here, one can
detect the HOMFLY-PT polynomial of the closures by inspection of Table 1. One
observes that the dominant terms in the average HOMFLY-PT polynomial over
the 2401 closures correspond to these powers of £ and the proportion of closures
that give the negative Hopf link. We observe that this relationship to the closed
negative Hopf link is equally reflected in the coefficient of the £m term, again due
to the simplicity of these links.

We have seen how to extend the Gauss linking number to collections of oriented
open chains. Here, we consider if this proposition can be extended to oriented open
links. Consider the oriented open two-component polygonal link, RL6 = {L1,L2}
in Fig. 15, where we can estimate PRL6, PRL6u and PRL6.-

In the case of open chains, the estimates of P-1 (£), p6(£), and p5(£) are, individ-
ually, the superposition of a complex collection of terms each of which come from
the closures of these open chains. While the term (- (£-' +£)) is common to all and,
therefore, would appear in the left side of the expression, the resulting total expres-
sion reflects the superposition of a collection of terms in which the linking number
depends on the closures as do each of the polynomials of the individual components.
As a consequence, due to the complexity of the links, one can only propose that
the coefficient, P1-c(£), is average of Eq. (3.2.1) applied to the 52 x 52 closures of
the two component open oriented links. Consider the case of RL6, Fig. 15.

P-1(£) = (0.000416£-° - 0.011291£-7 - 0.284465£-> + 0.319034£-°
+0.449396£-1- 0.155352¢- 0.005831£3),

2340017-7
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P6(f) = (-0.000781£-  0.014531£- +0.964219- 0.032656£  0.0090625£4),
p ()= (0.000313£-6 - 0.00875£-*- 0.0185937P-2+ 0.989219
-0.02046875£% - 0.00109375£%),
(-£2)-1(<(£-1 +0)pB(Opi()  (0.00044574£-° - 0.00850606£-7
- 0.0409534£-5 +0.922805£-3 +0.902953£-1 - 0.0612069£
- 0.00912977£3 4 0.000231128£5).

In the final product expression, the unknotted character of the two components
is strongly reflected in thep-3 andp-1 coefficients whilst, it seems, this is lost in
P-1 of the link, at least is so far as one might anticipate a relationship of the type
expressed in the proposition manifested in coefficients. This divergence illustrates
the strong entanglement complexity mixing the Gauss linking and the superposition
of the HOMFLY-PT polynomials of the two component link closures.

3.2.2. The HOMFLY-PT polynomial

In the previous section we discussed the relationship between the m-!' term of a
two-component chain, the two m® terms of the two individual components, and the
Gauss linking number of the two components [12, Proposition 22]. While we do
not know of an analogous relationship reflected in the higher order components of
the HOMFLY-PT polynomial examples show that they reflect the complexity of
the entanglement of the two components, see Fig. 2 and, for example, the White--
head link 5r Note that these classical link examples illustrate the conclusions of
Proposition 22, e.g. compare the initial terms of the trivial link and the Whitehead
link. Furthermore, in reversing the orientation of the Solomon link 4?, one does
not merely change £ to Y2 but there are higher order term consequences illustrat-
ing the HOMFLY-PT polynomial sensitivity to linking beyond the linking number,
even for unknotted components or homologically unlinked cases such as the trivial
link and the Whitehead link. As a consequence, one anticipates reflections of these
complexities in the spectrum of closures of open two component links.

3.2.3. An open link example

As discussed earlier, we have found that, foropen links, the relationship for classical
closed links described in Proposition 22 holds for open links in the sense that it
is a convolution of Gauss linking terms and those coming from the HOMFLY-PT
polynomials of the individual chains of the closure spectrum. Consider the average
HOMFLY-PT polynomial for RL6, an open oriented two-component case discussed
earlier,

PnLsi = (-0.000781£-  0.014531£- +0.964219 - 0.032656£  0.0090625£4)
+(0.0007813P- +0.0129687 + 0.0090625£)m

2340017-8
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PRL62 = (0.000313£-°- 0.00875£-*- 0.0185937£-2 +0.989219 - 0.02046875£2
- 0.00109375£4) + (0.00906245£-* + 0.00015625 + 0.00109375£%)m?,
PRL6I: = (0.000416£-° - 0.011291£-7 - 0.284465£-°> +0.319034£-3
+0.449396£-! - 0.155352£- 0.005831£3) m-! +(-0.001249£-7
+0.231570£->+0.694711£-3 - 0.626405£-! +0.029155£
+0.010412£3)m + (0.000833£-° - 0.209913£-3 + 0.020824¢-!
- 0.002082£)m? - 0.009996£-1m®.

In RL61 and RL62, we observe a demonstration of the dominant unknotting
character of the chains and, in RL61,2 the strongly entangled character of the two
chain conformation. In order to quantify the extent of complexity of the HOMFLY -
PT we propose to employ the spread of the polynomial. This new measure of the
complexity of a finite integral Laurent polynomial, such as the HOMFLY-PT,

i=k.j=n
Pimy= [: afm
i=-k j=-n
isdefined as follows:
Each point with coordinates (i, j) of the 2k x 2n 2-dimensional integral lattice
given the value Ja;J J. In analogy with a physical system, we determine the total
mass, M, and the "center of mass", (u1,, um) of this system:

=k j=n
M= L Jai,JI,

i=-K,j=-n

1 i=kj=n
(p1.,pum) =M Jai,J1(i,j).

i=-K,j=-n

‘W ¢hen define the spread of P(R, m) in analogy with squared radius of gyration of
a physical system:

1 i=kg=n
sp(P(R,m)) =M L JaiJJI((i - p1,)2+( - pm)z).

i=-k,j=-n

Inthepresent case the spread of PRL6i,, (£, m) is 44.2135 which one may com-
pare with that of the positive Hopf link polynomial having spread 15.7292. Recall
that the positive Hopf link has Gauss linking number 1 while RL6 has a compa-
rable Gauss linking number of 1.12954 thereby illustrating the interest in this new
measure of entanglement.

2340017-9
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4. Random Confined Open Two Component Links

The HOMFLY-PT polynomial of open two component links provides a new method
to quantify the extent of entanglement of polymer chains in a melt. This has long
been an objective of researchers concerned with the nature of material systems in
engineering, chemistry, biology, and physics. Model conformations of polymers of
polymers can be obtained using computer simulations. From a historical perspec-
tive, one strategy has been to "tighten" the system of open chains, without moving
termini, so as to localize physical obstructions at isolated points, called "entangle-
ments", that are then used to characterize the system [27]. The topology of knots
and links in systems composed of closed chains have been used to assess the pres-
ence of entanglement using the algebraic topology of the Gauss linking number [18].
The linking number has been extended to systems of oriented open chains using
the Gauss linking integral [21]. Scaling characteristics of polymer chains can be
obtained by studying random walks. In particular, the behavior of random walks
in confined spaces can provide information about similarly confined polymer chains
such as biopolymers in a cell. Here, we apply this thinking to pairs of random walks
whose initial termini lie within a ball of fixed radius, with a uniform distribution,
and are confined to lie in this ball. For example, consider the case of walks with 15,
20, 25, 30, and 40 steps, see Figs. 7,9, 11, 13, and 15, respectively. In Fig. 6, we
show the growth of the average absolute value of the Gauss linking number of such
chains as a function of the length of the chains.

4.1. Discussion of the HOMFLY-PT polynomials of two
component link examples

For single open chains, such as these, the classical knot theory has been extended to
open arcs whereby one considers the distribution of knot types, the knot spectrum,

Fig. 6. The average absolute value of the Gauss linking number of two random walks confined
to a ball of radius 4, as a function of the length of the walks, n. The linear growth is -0.00834 +
0.118216n with R? = 0.9994 [21].

2340017-10
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defined by collection of closures of the arc termini over the two sphere of direc-
tions [14]. As mentioned earlier, Kauffman and Panagioutou [10] describe a theory
that defines an average of the Jones polynomial of an open chain over all projection
directions. In this paper we propose to associate a HOMFLY-PT polynomial to an
open arc by taking the average of the HOMFLY-PT polynomial over all closure
directions of an open arc, i.e. the superposition of the knotting spectrum of [14].
Moreover, we propose to associate a HOMFLY-PT polynomial to a pair of oriented
open arcs by taking the superposition of the HOMFLY-PT polynomials over all the
independent closure directions of the open arcs, thereby taking a superposition of
their linking spectrum. This method extends to collections of oriented open chains.

Here, we apply this thinking to pairs of random walks whose initial termini lie
within a ball of a fixed radius, with a uniform distribution, and are confined to lie
within this ball. For example, in the case of a pair of 15 step random walks, Fig. 7,
the Gauss linking number is 1.0892, and the spectrum is given in Table B.1. The
average HOMFLY-PT polynomial is

(-0.130362£-5+0.583507£- +0.576426£-! - 0.132028£+ 0.004165£%) m-!
+(0.075385£-5 +0.284465£-3 - 0.761000£-! +0.0008330£) m
+ (-0.075385r3 - 0.003319C! - 0.000833£)m?

whose spread is 28.87. The spectrum of this link is illustrated in Fig. 8.

In order to illustrate this new approach to quantifying the growth in entangle-
ment complexity as the length of the chains grows, we first share examples with
increasing chain length. In the case of a pair of 20 step random walks, Fig. 9. The
Gauss linking number is -0.0456613, and the spectrum is given Table B.2. The

Fig. 7. A confined pair of random walks of length 15. The Gauss linking number is 1.0892. The
average HOMFLY-PT polynomial is (-0.130362f-5 + 0.583507£-3 + 0.576426£-1 - 0.132028% +
0.004165£ m- +(0.075385e- +0.284465£- -0.761000£- +0.0008330£) m+ (-0.075385%£-
0.003319£-1 - 0.000833£)m3.

2340017-11
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Fig. 8. The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length 15.

e

Fig. 9. A confined pair of random walks of length 20. The average HOMFLY-PT polynomial is

(-0.007189f-5 +0.100000£-3 - 0.633333£-1 - 0.6000000f +0.13856213) m-! +(0.0071895f-5 +
0.022222e-  0.103922f- 0.137908£) m + (-0.0071895£- 0.0006536£- )m

average HOMFLY-PT polynomial is

(-0.007189£-° +0.100000£-3 - 0.633333£-' - 0.6000000£ + 0.138562£3) m-!
+(0.0071895£-° +0.022222£-3 - 0.103922£-' - 0.137908£) m
+(-0.0071895£-3 - 0.0006536f-")m?

whose spread is 5.28712. The spectrum of this link is illustrated in Fig. 10.
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Fig.10. The HOMFLY-PT polynomial spectrum ofa confined pair of random walks of length 20.

Fig. 11. A confined pair of random walks of length 25. The average HOMFLY-PT polyno-
mial is (-0.00249895¢-5 + 0.0270721£-3 - 0.482716£-! - 0.20824661 + 0.302790513) m-T +
(0.000832996—5 + 0.47938359¢-3 + 0.9204498¢-! + 0.1724281£) m + (—0.000832986£—3 -
0.4752187£-1)ym3.

In the case of a pair of 25 step random walks, Fig. 11, The Gauss linking
number is -1.85846, and the spectrum is given Table B.3. The average HOMFLY-
PT polynomial is

(-0.00249895t~> +0.0270721£-3 - 0.482716£-' - 0.2082466£
+0.3027905£%) m-! +(0.00083299£-5 + 0.47938359£-3 + 0.9204498£-!
+0.1724281£) m + (-0.000832986£-3 - 0.4752187£-")m?

whose spread is 23.02798. The spectrum of this link is illustrated in Fig. 12.

In the case of a pair of 30 step random walks, Fig. 13. The Gauss linking number
is 0.00715655, and the spectrum is given Table B.4. The average HOMFLY-PT
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Fig.12. The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length 25.

Fig. 13. A confined pair of random walks of length 30. The average HOMFLY-PT polyno-
mial is (-0.00249895£-5 + 0.0270721£-3 - 0.482716£-1 - 0.2082466£ + 0.3027905£3) m-1 +
(0.00083299¢-> + 0.47938359¢-> + 0.9204498¢-! + 0.1724281f) m + (-0.000832986e-> -
0.4752187£-1)m?>.

polynomial is
(-0.00249895£-5 +0.0270721£-3 - 0.482716£-1 - 0.2082466£
+0.3027905£3%) m-! +(0.00083299£-° + 0.47938359£-3 + 0.9204498£-!

+0.1724281£) m + (-0.000832986£-3 - 0.4752187f-"m?

whose spread is 3.94706. The spectrum of this link is illustrated in Fig. 14.
The estimated HOMFLY-PT polynomial of the link RL6 is

PnL6(fm) = (-0.002082466£-> + 0.489796£-> + 0.0414493£-' - 0.450229£
- 0.0012495£3 - 0.0012495£%)m-! + (0.0020824661°
+0.006247397£-3 - 0.4918783£-1+0.00374844£3 + 0.001249479£5)m
+ (-0.002082466£-* - 0.00124948t'3)m>.
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Fig.14. The HOMFLY-PT polynomial spectrum ofa confined pair of random walks of length 30.

Fig. 15. A confined pair of random walks, RL6, of length 40. The average HOMFLY-PT
polynomial is (-0.002082466£-5 + 0.489796e-3 + 0.0414493£-! - 0.450229£ - 0.0012495£3 -
0.0012495£5)m-1 4+ (0.002082466£-> + 0.00624739U-> - 0.4918783£-1 + 0.00374844£3 +

0.001249479£ )m + (-0.002082466£- 0.00124948£)m

RL6 Spectrum

I

Fig. 16. The HOMFLY-PT polynomial spectrum of a confined pair of random walks of length
40, RL6.
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Roughly half of closures of RL6 are negative Hopf links and the other half trivial
links, the complexity of the remaining closures expresses a greater degree of linking
complexity present in this link.

The spread of PRL6(f, m) is 13.8730 while the negative Hopf link polynomial
has spread 15.7292. The Gauss linking number ofRL6 is -1.12954 compared to -1
for the negative Hopf link.

4.2. A study of the HOMFLY-PT polynomials of random open
confined two component links

In this section, we apply the HOMFLY-PT polynomial to the study of open two
component links confined to balls of varying radii. Each edge in each chain is of
unit length, the chains have an initial point randomly selected from the confining
ball with radii 1, 2, 3, or 4 and have lengths 5, 10, 15, 20, 25, or 30. Each case has
a sample size of 10,000.

To set the stage, traditionally one might determine the absolute value of the
Gauss linking number for a pair of chains as a measure of their entanglement. The
averages of these values as a function of the radius of the ball and the length of
the chains of the samples are shown in Fig. 17. We observe that the absolute Gauss
linking number depends linearly on the length of the chain in a manner depend-
ing on the character of confinement, as expected [21]. Considering the absolute
Gauss linking number for pairs of chains of link 5, we see that the values decrease
monotonically with increasing radius of the confining ball, Fig. 18.

While the Gauss linking number provides a traditional measure of link entan-
glement, the HOMFLY-PT provides a much richer assessment of entanglement for
both open and closed two component links due to its capacity for distinguishing
topological knot and link types. To quantify the level of entanglement we will first
consider two component links of chains with lengths 5 and 10 confined to a ball of

I 10 5 20 25 30

Fig. 17. The absolute Gauss linking numbers as a function of length when confined to balls of
radius 4 (dot---<lashed), 3 (dotted), 2 (dashed) and 1 (solid).
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Fig. 18. The average absolute Gauss linking numbers of pairs of chains of length 5 confined to
balls of radii 1 through 10.

radius one. The first question we ask is "How large a sample must one have in order
to give a reasonable estimate of the average degree of entanglement of a collection
open polygonal chains?"

While it is possible for two equilateral triangles to be Gauss linked, we are
interested in more complex entanglement. The closure of a chain of three edges will
have five edges, still too few to achieve a trefoil knot as this requires at least six
edges. As a consequence, we consider the closure of a chain of five edges which will
have a total of seven edges. A chain with seven edges can be one of only of four
topological knot types: 01, £31, and 41. To make a crude estimate of the complexity
of the task of assessing the entanglement of collections of open polygonal chains
of five edges, one first estimates the number of distinct presentations of closures of

>

Fig. 19. The polygonal Imotoids of three and four edge polygons.
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Fig. 20. The37polygonal knotoids of five edge polygons.

five edge polygonal chains. To give an estimate of the complexity of the problem,
we can look at the diagrams generated by open curves in 3-space, which can be
seen as knotoids (Turaev [l, 301). For three and four edges, see Fig. 19, there are
very few polygonal knotoids though more than one expects for small numbers of
crossings. This changes for five edges, see Fig. 20 for 37 instances. If one adds the
mirror reflections, one estimates rough 74 polygonal knotoids with five edges. The
closure to a large 2-sphere adds two additional edges joined to the termini from a
point on the 2-sphere. This adds a potential total of eight crossings of the five edge
knotoid for a total of 14 possible crossings and, therefore, 16,384 crossing choices.
This gives an estimate of a total of 1212416 diagrams, so that 10° would be a very
cautious estimate of the number of cases.
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If one uses this rough estimate of 10° presentations, without taking inter-
crossings into consideration, there are roughly the square this number for the pos-
sible cases for two component links. Each edge of one component can over or under
cross an edge of the other component once, without taking order into consideration,
so one has an additional factor of 16384 = 27 giving a very crude estimate of

1.6 x 10'* different presentations. Using such arguments one can show that the
number of distinct link types in each instance is finite and is certainly quite large.
Recall that, for each pair of chains, we consider 2401 closures. We show the
growth in the number of distinct HOMFLY-PT polynomials for 10k samples of size
2401 of two component links of length 5 for £ = 2, 3,4, and 5 in Fig. 21. While
the number of distinct conformations steadily increases, with an unknown useful
upper bound, a consideration of 10,000 sample data for increasing ball radius,
Fig. 22, suggests that the number of distinct links observed reflects the degree of
entanglement as it is largest for the ball of radius one and decreases as the radius
increases reflecting the expected decrease in entanglement.

The mean squared radius of gyration for this data suggests a limit of roughly
2.87, Fig. 23. Considering the squared radius of gyration for length 5 links as the
ball radius increases, Fig. 24, the monotonic increase is consistent with decreasing
density and, correspondingly, decreasing entanglement.

With regard to our putative measure of entanglement, the spread of the
HOMFLY-PT polynomial, there is visible variation in this range with an aver-
age of 5.08, Fig. 25. The monotonic decrease in spread with respect to ball radius,
Fig. 26, reflects the decrease in entanglement with the relaxation of confinement
for two component links of length 5.

Consider the case of length 10, for comparison. One observes the growth in the
number of distinct HOMFLY-PT polynomials for /0« samples fork= 2, 3, 4, and 5
in Fig. 27. Again the number of conformations steadily increases, with an unknown

200!

"mm

/

Fig. 21. The number of distinct HOMFLY-PT polynomials for length 5 two component links in
a ball of radius 1 for /0k samples for k= 2,3,4, and 5.
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Fig. 22. The number of distinct HOMFLY-PT polynomials of length 5 two component links in
a ball of radius k& for 10,000 samples with £ =1,2,3,4, and 5.

2.870)

Fig. 23. The squared radius of gyration for length 5 two component links in a ball of radius 1
for 70k samples for k = 2,3,4,5, and 6.

Fig. 24. The squared radius of gyration for length 5 two component links in a ball of radius &
for 10,000 samples with £ = 1,2,3,4,5, and 6.
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Fig. 25. The HOMFLY-PT polynomial spread for length 5 two component links in a ball of
radius 1 for /0k samples for k = 2,3,4,5, and 6.

Fig. 26. The HOMFLY-PT polynomial spread for length 5 two component links in a ball of
radius k& for 10,000 samples with £ = 1,2,3,4, and 5.

€0000

0000}

el

Fig. 27. The number of distinct HOMFLY-PT polynomials for length 10 two component links
in a ball of radius 1 for /0k samples for k = 2,3,4, and 5.
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35 40 as En

Fig. 28. The squared radius of gyration for length 10 two component links in a ball of radius 1
for 10k samples for k= 2,3,4, and 5.

155 \

20 25 3 40 45

Fig. 29. The HOMFLY-PT polynomial spread for length 10 two component links in a ball of
radius 1 for 70k samples for k= 2,3,4, and 5.

upper bound. The squared radius of gyration suggests a limit of 2.28, Fig. 28.
With regard to our putative measure of entanglement, the spread of the HOMFLY -
PT polynomial, there is visible variation in this range with an average of 15.46,
Fig. 29.

Although these data suggest that a sample of 100,000 cases or more would be
desirable, computational time constraints require that an analysis of 10,000 cases
be used to illustrate the effects of confinement and length on our HOMFLY-PT
quantification of entanglement.

4.2.1. Consequences of confinement

To give another perspective on the consequences of confinement we hold the ball
radius constant and increase the chain length. In the case of the number of observed
distinct HOMFLY-PT polynomials, Fig. 30, we are constrained to lengths 5, 10, 15,
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and 20 due to the computational complexity encountered with increasing length in
confinement. The growth of the number quantifies the increasing entanglement as
the length of the chains increases. A log analysis shows the number grows as

0.00220086£6 25078

where /! is the length of the chain confined to the ball of radius 1. The monotically
decreasing squared radius of gyration with increasing chain length, Fig. 31, also
reflects the increasing entanglement. Finally, the HOMFLY-PT spread, Fig. 32,
captures the increasing entanglement.

For the ball of radius 2, one can slightly increase the length of the chains to
25 before computational complexity prevents further increase, Figs. 33-35. A log

1.5x10°

500000

6 10 12 14 16 16 20

Fig. 30. The number of distinct HOMFLY-PT polynomials in a ball of radius 1 for lengths 5,
10, 15, and 20.

1.6

10 12 14 16 18 20

Fig. 31. The squared radius of gyration for two component links in a ball of radius 1 for lengths
5,10, 15, and 20.
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20,

10 12 16 16 20

Fig. 32. The HOMFLY-PT spread for two component links in a ball of radius 1 for lengths 5,
10, 15, and 20.
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Fig. 33. The number of distinct HOMFLY-PT polynomials in a ball of radius 2 for lengths 5,
10, 15, and 20.
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w
n

5 10 15 20 25

Fig. 34. The squared radius of gyration for two component links in a ball of radius 2 for lengths
5,10, 15, and 20.
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15|

10+

5 10 15 20 25

Fig. 35. The HOMFLY-PT spread for two component links in a ball of radius 1 for lengths 5,
10, 15, and 20.

analysis shows the number grows as
0.00591167£5.20749,

where s is the length of the chain confined to the ball of radius 1. The squared
radius of gyration and the HOMFLY-PT show the same behavior as in the case of
radius 1.

For a ball of radius 3, the number of distinct HOMFLY-PT polynomials grows
as

0.00818644£5.71424
and, for radius 4, the number grows as

0.0124913£5.479%8

7.0

6.0

T

—~—

10 L5 20 25 30 35 %
Fig. 36. The growth of distinct HOMFLY-PT polynomials is modeled by a power law whose

exponent, shown here, decreases with increasing radius of the confining ball reflecting the degree
of entanglement as the radius increases.
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Fig. 37. The number of distinct HOMFLY-PT polynomials for chains of length 20 as function of
the radius.

Fig. 38. The dependence of squared radius of gyration on the length of the chains and confining
ball radius.

Figure 36 displays the evolution of the exponent as the radius of the ball increases.
For longer links, the degree of entanglement, as reflected in the number of distinct
HOMFLY-PT polynomials decreases in a manner similar to that of links of length
5, Fig. 37.

The mean squared radius of gyration, Fig. 38, confirms the consequences of
length versus confinement, with larger values corresponding to, relatively, decreased
values of confinement.

The larger values of the spread of the HOMFLY-PT polynomial of the two-
component link as a function of the ball radius correspond to increased entangle-
ment as a function of chain length and confinement, Fig. 39.
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1.0 L5 20 25 30 35 40

Fig. 39. The dependence of the spread of the HOMFLY-PT polynomial of the two-component
link on the length of the chains and confining ball radius.

20, -

10 15 20 25

Fig. 40. The dependence of the spread of the HOMFLY-PT polynomial of the two-component
link as a function of the chain length on the length of the chains and confining ball radius.

5. Discussion

With the objective of employing the HOMFLY-PT to create a quantitative measure
of entanglement of two open chains we have defined the average, over independent
spatial closures, of the HOMFLY-PT. While it is invariant over orientation pre-
serving Euclidean transformations, i.e. translations and S0(3) rotations, the open
Hopflink examples in Sec. 2, is not a diffeomorphism invariant. In this sense, these
examples show that it is similar to the values of the Gauss linking integral 1 [6, 21]
but are more geometric than topological in character. Although the Gauss linking
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number of two oriented closed chains can be found in the HOMFLY-PT polynomial
as per Proposition 3.1, we have noted that it does not carry over to the average
HOMFLY-PT polynomial that we've defined here. Similarly, it seems to have a
character distinct from the shape quantities defined by Rogen [25, 26] that are
inspired by the Gauss linking integral and related to Vassiliev invariants. Alas, at
this point, a useful characterization of the geometric significance of our average
HOMFLY-PT has not been identified.

The complexity of the average HOMFLY-PT, even in simple cases such as open
Hopf links, leads one to seek a single numerical measure of the quantification. To
this end we define the spread of the two variable polynomial in 3.2.3. For one
variable polynomials, e.g. the Jones polynomial [8], this would be the radius of
gyration of the system of points on the integers with the absolute values of the
coefficients placed at the exponents. In this case, the spread would analogous to
the breadth of Jones polynomial and one is provoked to seek an extension of the
Kauffman-Murasugi-Thistlethwaite theorem [9, 17, 29] relating the breadth of the
Jones polynomial to the number of crossings in a minimal crossing presentation of
the link: specifically, the breadth of the Jones polynomial is an upper bound for the
number of crossings in a minimal presentation and is achieved only for alternating
presentations. At this time there is no known analogue for the HOMFLY-PT poly-
nomial nor is there a version that works for open knots due to the consequences of
the averaging procedure.

6. Conclusions

We have suggested the use of the superposition of the HOMFLY-PT polynomials
of the spectrum of an open chain [14] to define a HOMFLY-PT of an open chain in
3-space. We have described how the superposition of the HOMFLY-PT polynomials
of the random closures of an open two-component link can be employed to give a
HOMFLY-PT polynomial of the open link whose spread can be understood as a
quantifying measure of the degree of entanglement present in the open link. This
measure of entanglement is characterized though its estimation for links of length
5 through 30 under confinement to ball of varying radius. While the classic Gauss
linking measure of entanglement suggests a linking dependence on the chain length,
the spread shows a much more nuanced dependence. The computational complexity
of the HOMFLY-PT polynomial is a constraining factor in this study that, there-
fore, suggests that employing a less sensitive such as the Alexander polynomial or
Vassiliev invariants [11] should be studied in the hope that they will, neverthe-
less, be able to give a useful measure of entanglement using the superposition of
closures.
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Appendix A. Open Hopf Links

Table A.l. This data reports the links types observed for the 2401 closures of the open
Hopf Link A shown in Fig. 3. The link types labeled 4f are members of a family of four
topologically distinct oriented differentiated by orientation and mirror reflection.

HOMFLY-PT type Number of observations HOMFLY-PT polynomial

or 199 (-e-1 - e)m-!
2r 2183 (e+f3)m-1 - em
- 1 {e-3 +e)m-1 - e-Im

4r (-£3 - €m-1 +(-e - €3 m
(-f3 - es)m-1+(3e3 + f5)m -e3m3

(-e-1 - e)m-1+(e-1 +2e+f3)m - fm3

NIV )

Table A.2. The data reports the links types observed for the 2401 closures for the open
Hopf Link B shown in Fig. 3.

HOMFLY-PT type Number of observations ~HOMFLY-PT polynomial

or 1680 (-e-1- ¢)m-1

2r 420 (f +)m-! - £m

2f 301 (f-3+ £)m-1- £-Im

4r (4] (-£3 - es)m-1+t(-e - €3)m

4r 0 (-f3 - es)m-1+ (3e3+ es)m-e3m3

5r 0 (-e—1 - e)m—1 +(e-! +2e+3)m - fin3

Table A.3. The data reports the links types observed for the 2401 closures for the open
Hopf Link C shown in Fig. 3.

HOMFLY-PT type Number of observations HOMFLY-PT polynomial

or 1132 (-e-! - e)m-!

2r 1055 (et£Hm-1 - em

- B9 (£-3+ £)m-1_£-Im

4r 25 (-£3 -es)m-1 +(-e-e3)m

4r 0o (-e3 - es)m-1 +(3e3 +es)m -£3m3

5r 0 (-e-" - e)m-1 +(e—1 +Ze+f3)m - fm?

Table A.4. The data reports the links types observed for the 2401 closures for the open
Hopf link shown in Fig. 3.

HOMFLY-PT type Number of observations ~HOMFLY-PT polynomial

or 668 (-e-1- e)m-!
2r 1637 (et+ym-! - em
2f 62 (e-3+ Dm-1 - £-Im
4r 34 (-£3 -es)m-1 +(-e-e3)m
0 (-f3 - es)m-1+ (3e3+ es)m -£3m3
0 (-e-" - e)m-1 +(e—1 +Ze+f3)m - fm3
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Table A.5. The data reports the links types observed for the 2401 closures for the open
Hopf link shown in Fig. 3.

HOMFLY-PT type Number of observations HOMFLY-PT polynomial

or 238 (-e-1-e)m-1
zj 2Ll (e+e*>m-' - em
-7j 4 (e-3+e)m-_1 e-lm
4y 27 (-e 3 es)m-1+ (-£- £3)m
1 (-3 es)m-1+(3e3 +es)m e3m3
5y 0 (-e-1 -e)m-1 + (e-1+ 2£+e3)m-em3

Appendix B. Two Component Link Examples

This appendix contains the data reporting the spectrum of distinct link types
observed in the 2401 closures of some examples of open two component links at
the length of the chains varies.

Table 8.1. Thedata reports the link types observed for the 2401 closures for the confined
random two-component link in Fig. 7.

HOMFLY-PT Number of HOMFLY-PT polynomial

type observations

02 320 (-e-1- Dm-1

22 10 (e+e3)m-1 - em

-2r 1711 (e-3+e)m-1- e-lm

42 129 (-e3 - es)m-1+ (-e- e3)m

4,2 181 (- 3 f5)m-1+(3£3+ es)m e3m3

5,2 2 (-e-1 - l)m-l + (e-1 +2£+ e3)1n - em?

-5f 5 (-e-1 -Dm-1 + (e-3 +2.e-1 +e)m-£-Im3

62 1 (e-7+e-5)m-1+ (-e-5+e-_3 e-m

) 39 (e-! + 6-5)1‘1’1-1 + (—e-1 - 2e-5 - 26-3)m+
(e-5 _e-3)m3

652 3 (-£—5 - e-3)m-l + (2f—3 +e-1 +e)m- e-Im3

Table8.2. Thedata reportsthe link types observed for the 2401 closures for the confined
random two-component link in Fig. 9.

HOMFLY-PT Number of HOMFLY-PT polynomial

type observations

@ 2000 (-£-1 - Dm-1

22 212 EF£Hm-1-em

—92 161 (£-3 +e)m-1 - e-lm

421? 15 (-£3 - es)m-1+ (-£- 3)m

4213 1 (-13 es)m-1+(3e3 +es)m e3m3

_4% 11 (-£-5_e-3)m-1+ (e-5+ 3e-3)m _ .e-3m3
52 0 (_e_l - Dm-1+ (f-l +2£+ 13)m - em3
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Table B.2. (Continued)

HOMFLY-PT Number of HOMFLY-PT polynomial

type observations

- 512 1 (-e-1 - e)m-1+ (e-3 + U-1+e)m- e-1m3

62 0 (e-7 +e-s)m-1+ (-e-5 +e-3 - e-I)m

6, 0 (e-7 + e-s)m-1 + (-e-7 - wu-5 - 2e-3)m+
(e-5- e-3)m3

652 0 (-e-5- e-3ym-1+ (2e-3 + e-1+ e)m-e-Tm3

Table B.3. The data reports the link types observed for the 2401 closures for the confined
random two-component link in Fig. 11.

HOMFLY-PT Number of HOMFLY-PT polynomial

type observations

012 0 (-e-1 - e)m-1

22 727 (e+e>Hm-1 -em

- 212 68 (e—3+e)m-1 - e-im

4,2 41 (-£3 - es)m-1 + (-e- £3)m

- 412 4 (-e-5-e-3)m-1+ (-e-3 - e-I)m

9 6 (-[[3 es)m-1+ (3e3+ [5)m e3m3

49 2 (-£- 5 e-3)m-1+ (£-5 + 3£-3)m -£-3m3

5,2 1227 (-e-1 - e)m-1 + (e-1 + 21+ 13)m -£m3

-5i (0] (-e-1- em-1 + (e—3 + u-1+£)m— e-1m3

6,2 0 (£-7 +£-5)m-1 + (-£-5 +e-3 -e-)m

6, 0 (e-7 +e-5ym-1 + (-£-7 - ze-5 . 21-3)m+
(e-5- e-3)m3

652 0 (-e-3-e3ym-1+2e3+e-L +e)m- e-Im3

-6 15 (-3 -es)m-1 + (2e3+£1 +e-))m -Im3

22113 36 (e+e3)m-1(-21-1 - 5e- 2£3)m + (e-1+4£+£3)m3 -ems

22213 98

22313

22413 5

22513 3

22713 98

22813 14

230r3 2

23213 2

23313 1

23413 2

23613 13

22813 1

23913 29

240r3 2

24113 2

242r3 1

2340017-31



Ramifications Downloaded from www.worldscientific.com

by UTAH STATE UNIVERSITY on 0(1706!24. Re-use and distribution is strictly not permitted, except for Open Access articles.

J. Knot Theo

K. C. Millett & E. Panagiotou

Table B.4. 2401 closures: data for a confined two-component random link of arc length

30, Fig. 13.

HOMFLY-PT Number of HOMFLY-PT polynomial

type observations

0,2 1905 (-e-1- e)ym-1

2,2 347 (e+e3)m-1 - em

=272 91 (e-3 +Dm-! - e-lm

42 19 (-e3 - 65)111—l + (-£ - e3)m

42, 10 (-3 -es)m-1+ (3.3 + es)m - e3m3

-42 0 (-e-5 - e-3)ym-1 + (e-5 + 3e-3)m - e-3m3

5% 0 (-e-1 - f.)m-l +ce-l+ 2e+ f.3)m - em’

-5? 0 (-e-1- fym-1+ (f-3 + 2f.-1 + f)m - e-Im3

62, 0 (e-7 + e-s)m-1 + (-e-5 + e-3 -e-hm

-6? 2 (f.5 + f7)m-1 +(-el+ e3- eS)m

@ 0 (e-7 +e-s)m-1 + (-e-7 - u-5- 2e-3)m+
(e-s - e-3)m3

- 632 4 (-e3 -es)m-1+ (2e3 - es - £.7)m + (-e3 + es)m3

025 0 (-e-s - e-)m-1+ (2e-3 + e-1 +e)m- e-1m3

22514 20

226r4 2

227r4 1

Table B.5. 2401 closures: data for a confined two-component random link of arc length

40,Fig. 15.

HOMFLY-PT Number of HOMFLY-PT polynomial

type observations

0,2 1081 (-e-1- f)ym-1

2.2 118 (et €3m-! -em

22 1181 (e-3 +e)m-1 - e-lm

2 1 (-e3 - es)m-!l + (-e- e m

-4? 12 (-e-S- e-3)m-1 + (-f.-3 - e-Dm

421 3 (-e3 - £.5)m-1+ (3f.3 + es)m - e3m3

_49 5 (-e-s - e-3)m-1 + (e- + 3e-3)m - e-3m3

5% 0 (—e—1 - f.)rn-1 + ce-l+ 2f.+ e3)m - em?

-52 0 (-e-1- fym-1+ (f-3 + 2e-1+f)m- e-lm3

62, 0 (f.-7 + e-s)m-1 + (-e-5 +e-3 -f.-)m

~-6? 0 (es+ f7)m-1 + (-el +£3- e5)m

6, 0 (e-7 +e-5)ym-1+ (-e-7 - u-s - 2e-3)m+
(e-s - e-3)m3

-61 0 (- 3 f5m-1+(2£3 es_ f.7)m+ (-e3 +f.5)m3

625 0 (-e-5-e-3)m-1+ (2f.-3 + e-1+ £)m- e-lm3
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