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A finite difference scheme is used to develop a numerical method to solve the flow of an 
unbounded viscoelastic fluid with zero to moderate inertia around a prolate spheroidal particle. 
The equations are written in prolate spheroidal coordinates, and the shape of the particle 
is exactly resolved as one of the coordinate surfaces representing the inner boundary of the 
computational domain. As the prolate spheroidal grid is naturally clustered near the particle 
surface, good resolution is obtained in the regions where the gradients of relevant flow variables 
are most significant. This coordinate system also allows large domain sizes with a reasonable 
number of mesh points to simulate unbounded fluid around a particle. Changing the aspect ratio 
of the inner computational boundary enables simulations of different particle shapes ranging 
from a sphere to a slender fiber. Numerical studies of the latter particle shape allow testing of 
slender body theories. The mass and momentum equations are solved with a Schur complement 
approach allowing us to solve the zero inertia case necessary to isolate the viscoelastic effects. 
The singularities associated with the coordinate system are overcome using L’Hopital’s rule. A 
straightforward imposition of conditions representing a time-varying combination of linear flows 
on the outer boundary allows us to study various flows with the same computational domain 
geometry. For the special but important case of zero fluid and particle inertia we obtain a novel 
formulation that satisfies the force- and torque-free constraint in an iteration-free manner. The 
numerical method is demonstrated for various flows of Newtonian and viscoelastic fluids around 
spheres and spheroids (including those with large aspect ratio). Good agreement is demonstrated 
with existing theoretical and numerical results.

 Introduction

The flow of viscoelastic or polymeric fluids around solid particles of various shapes is important in many industrial processes. A 
rticle shape is chosen to achieve the manufactured product’s specific purpose or property. For example, fibers allow the desired 
isotropy in the roll-to-roll manufacturing of high aspect ratio, low resistance films for flexible and transparent electronics [1,2]. In 
draulic fracturing [3], spheres may be used as proppants to keep the pores of fractured rocks from closing. In extrusion molding and 
er spinning [4–7] spheres or fibers may be added to the fluid to impart strength to the finished product. A spheroid is a convenient 
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ape to span a range of aspect ratios that can be synthesized by dispersing polystyrene spheres in a solution of polyvinyl alcohol, 
llowed by drying the solution into thin sheets. The particles obtained after heating, stretching, and cooling these sheets [8] may be 
ed in experiments [9] or industrial applications (such as the ones discussed above) involving the flow of viscoelastic fluids around 
rticles. Viscoelasticity arises in these fluids from the underlying polymer molecules. Viscoelastic fluids exhibit several properties 
ch as shear thinning and first normal stress difference (rod-climbing) due to the response of the polymers to the imposed flow 
ld. Therefore, numerical computations using specific polymer constitutive models are very useful to isolate the origins of novel 
w physics from the interaction of the polymers with the suspended particles. Furthermore, due to several parameters defining the 
operties of a viscoelastic fluid, such as the polymer mobility, its maximum extensibility, and relaxation time [10], computations 
mplement laboratory experiments by exploring a wider range of these parameters. Studies concerning moderate inertial effects 
ch that the flow is not turbulent but leads to mechanisms (absent in Stokes flow) such as a significant Saffman lift force [11] on a 
rticle are relevant to several engineering applications and natural phenomena that involve particulate flows. These include air and 
ater pollution, pneumatic and slurry transport, fluidized bed combustion, mineral separation, hemodynamics, and sedimentation 
 rivers [12,13].
The numerical challenges in studying the flow of particle suspensions in the applications mentioned above are two-fold: fluid-
rticle interaction and particle-particle interaction. To incorporate both these effects, numerical computations involving more than 
e particle resort to the immersed boundary method (IBM) [14,15]. These are useful in studying dense particle suspensions. How-
er, the no-slip condition on the particle surface is not directly imposed in IBM. Instead, the particle region is modeled using 
titious forces required to enforce the necessary no-slip condition. The diffuse particle-solid interface does not fully resolve the 
rge polymer stress gradients near the surface. In several of the scenarios above, the particle concentration is dilute enough, so 
e particle-particle interaction is rare. Thus, dilute particle suspensions can be modeled as an ensemble of several isolated particles 
 an unbounded fluid. The fluid-particle interaction is often analytical in Stokes flow (i.e. flow of inertia-less Newtonian fluid). 
wever, it is complex for a Newtonian fluid with moderate inertia or a viscoelastic fluid because the particle-induced disturbance 
ects the velocity field in a way that alters the interplay of viscous and inertial or viscous and elastic forces. Therefore, valuable 
d more accurate physical insight is obtained by studying the flow of a fluid around an isolated particle where the no-slip on the 
rticle surface is imposed. Such numerical studies can also qualitatively complement IBM simulations (where the particle-particle 
teraction is incorporated) for dense suspensions, such as in [16]. Furthermore, accurate force and torque coefficients for spheroids 
 different aspect ratios obtained from single particle simulations can be useful in Lagrangian models. In this paper, we describe a 
merical method based on the finite-difference approximations to model the flow of viscoelastic fluid around a prolate spheroidal 
rticle. The equations are solved in a particle-fixed reference frame which rotates and translates with the spheroid.
Computational fluid mechanics of viscoelastic fluids, which first started in the 1970s, is now a well-established research field 
7,18]. Viscoelasticity of linear polymers is modeled through continuum equations governing second moment of the polymer end-
-end distance averaged over the polymer configuration [10]. Interesting and novel physical phenomena arise in the industrially 
levant parameter regimes when the polymer stretch is significant, leading to significant polymer stress and its gradients. It is in these 
rameter regimes where unique numerical challenges also arise that have required ingenious solutions in the past, such as the log-
nformation formulation by Fattal and Kupferman (2004) [19] and algebraic numerical treatment of the polymer stretch by Richter 
 al. (2010) [20] to ensure finite polymer length and hence finite polymer stress. Accurately resolving the polymeric flow around 
rticles with large aspect ratios provides yet another numerical challenge as it requires high spatial resolution to accurately model 
e large polymer stress gradients along with the thin particle surface. Therefore, this paper uses a prolate spheroidal coordinate 
stem to discretize the governing equations spatially. This exactly models the particle surface as one of the coordinate surfaces 
d is well suited to study the flow around a prolate spheroid, just as spherical [21] or cylindrical [22–24] coordinate systems 
e beneficial in studying the flow around a sphere and in a cylindrical pipe respectively. Furthermore, even a uniform grid in our 
osen coordinate system is naturally more clustered (than a Cartesian grid) near the particle surface in the Euclidean sense, allowing 
hanced spatial resolution in the regions that require it the most.
The flow of viscoelastic fluids around particles in the aforementioned industrial applications undergoes a series of local linear 
ws with time in a Lagrangian reference frame. For example, in fiber spinning, the material is first sheared within the spinneret 
d then pulled by the drawing mechanism leading to a strong uni-axial extensional flow before solidifying to form a fiber. The 
mputational domain consists of the prolate spheroidal surface of the solid particle as the inner boundary and a nearly spherical 
ter surface where the imposed flow boundary conditions are applied. On the outer boundary of our computational domain, we can 
ply any choice of imposed stationary, time-varying, or alternating linear flow fields that mimic industrial scenarios. This allows us 
eater flexibility in the choice of imposed flow conditions as compared to previous numerical techniques where the computational 
main is problem specific such as using parallel, oppositely moving walls to obtain simple shear flow [25,26] or a cylindrical outer 
rface for a uniform far-field flow [27]. In our method, boundary conditions can be changed with time within a simulation.
Theoretical studies and numerical simulations are complementary. Theoretical studies are however often done either for spherical 
8,29], or for slender particles [30,31]. For the latter, a matched asymptotic expansion in particle aspect ratio, also known as slender 
dy theory, [32–34] is used to obtain useful physical insight by considering the particle aspect ratio to be very large. Furthermore, 
w around a particle is solved in an unbounded fluid in such theoretical developments. The choice of a prolate spheroidal coordinate 
stem allows us to simulate the flow around a large aspect ratio particle in a very large computational domain with good spatial 
solution in the regions near the particle surface where the velocity and polymer stress gradients are expected to be large while 
aintaining a reasonable number of mesh points. Therefore, our numerical method is a suitable testing ground for slender body 
eories. As we demonstrate later, we can simulate the flow around a sphere by allowing the particle aspect ratio to be 1+𝜖, where 
2

is a very small positive number.
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We use a finite difference method to discretize the spatial gradients. Polymer viscosity is large in polymer melts and concentrated 
lymer solutions. An increase in the solvent viscosity in dilute polymer solutions leads to a large polymer relaxation time, leading 
 interesting mechanisms that are numerically challenging to resolve. Therefore, viscoelastic fluids are generally highly viscous, 
d numerical studies with negligible fluid and particle inertia are appropriate to study the effects of viscoelasticity [25,35,26]. 
rthermore, the solutions of uniform and linear flows of an unbounded inertia-less Newtonian fluid around spheres and spheroids 
6] are analytically known. Thus, numerical studies around such particles in the absence of inertia are more relevant in the presence 
 viscoelasticity.
Some previous investigations of the flow of viscoelastic fluids, such as [25] and [37], intending to ignore inertia, have used small 
t finite values of Reynolds number, 𝑅𝑒 (ratio of inertial to viscous forces). In such numerical solvers, the momentum conservation 
d incompressibility (mass conservation) equations are solved via a splitting method where momentum equations are advanced in 
e. The incompressibility is imposed via a pressure Poisson equation. Therefore, additional boundary conditions are required for 
e pressure field, and Neumann boundary conditions are usually used at the solid surface [38,39]. The splitting method is more 
propriate for large 𝑅𝑒 flows where the splitting errors due to the introduction of artificial boundary conditions are not dominant. 
wever, when 𝑅𝑒 is small, splitting errors increase with the dominance of the viscous forces [40]. To avoid this issue, we solve 
e coupled system of momentum and incompressibility equation iteratively using a Schur complement method with GMRES [41]. 
 addition, unlike the splitting method, we can solve a flow with 𝑅𝑒 = 0 where the momentum equation is quasi-steady, and the 
ethod used does not require us to use time marching.
For a finite 𝑅𝑒, we incorporate the inertial terms in the momentum equation within the Schur complement method similar to 
0]. Therefore, in addition to solving the flow of inertia-less viscoelastic fluid, our method allows us to access the effects of small 
 moderate inertia (with or without viscoelasticity). Accurate simulations for small (but nonzero) inertia made possible by the large 
mputational domain enable us to test perturbation theories for the limit 𝑅𝑒 ≪ 1. Such simulations of a Newtonian fluid with finite 
ertia for larger aspect ratio prolate spheroids can allow us to test the slender body theories, such as in [42], describing the effect 
 inertia on fibers.
In the next section, we present governing equations for the mass and the momentum conservation in the fluid along with the 
lymer constitutive equations in their original and log-conformal [19] formulation. We also present the equations governing particle 
namics and treatment of the boundary conditions. Section 3 deals with the temporal discretization of the governing equations. 
is entails the description of the Schur complement method [41] for solving mass and momentum equations, the technique of [20]
 treat finite extensibility of a polymer, quaternion formulation to account for the particle orientation, and separate methodologies 
r zero and finite particle inertia to account for the particle motion. In section 4 we illustrate the spatial discretization of the 
uations using the finite difference method. In this section, we also present the method to treat the coordinate system dependent axis 
gularities that arise when the governing equations are expressed in the prolate spheroidal coordinate system. This is motivated by a 
ilar method [23,24] developed for the cylindrical coordinate system. In section 5 we demonstrate the robustness and versatility of 
r numerical solver through examples of a variety of flows past a particle in (a) Stokes flow (inertia-less flows of a Newtonian fluid), 
) flow of a Newtonian fluid with finite inertia, and (c) inertia-less flows of viscoelastic fluids with different constitutive models. 
mparison with previous numerical studies or analytical results is provided for each case. Our numerical solver is parallelized using 
e domain decomposition method implemented in the Message Passing Interface (MPI). All the examples presented are run on more 
an one processing unit. Finally, we present the conclusions in section 6.

 Governing equations

We consider the flow of an incompressible viscoelastic fluid around a prolate spheroidal particle in a reference frame rotating 
d translating with the particle (Fig. 1).
The equations governing the conservation of mass (incompressibility) and momentum in this rotating reference frame are

∇ ⋅ 𝐮 = 0, (1)

𝜌𝑓
( 𝜕𝐮
𝜕𝑡

+ADV(𝐮,𝐮𝑝,𝝎𝑝; 𝐫)
)
=∇ ⋅ 𝝈, (2)

here

ADV(𝐮,𝐮𝑝,𝝎𝑝; 𝐫) =
𝑑𝐮𝑝
𝑑𝑡

+ 𝐮 ⋅∇𝐮+ 2𝝎𝑝 × 𝐮+𝝎𝑝 ×𝝎𝑝 × 𝐫 +
𝑑𝝎𝑝

𝑑𝑡
× 𝐫. (3)

is the angular velocity of the particle, 𝐫 and 𝐮 are the position and the fluid velocity vector relative to the centroid of the particle, 
d 𝝈 is the stress tensor field in the fluid. The stress in a viscoelastic fluid is the sum of the Newtonian solvent stress, 𝝉, (with 
scosity 𝜇) and the polymer, 𝚷, stress,

𝝈 = 𝝉 +𝚷 = −𝑝𝜹+ 2𝜇𝒆+𝚷, (4)

here 𝑝 is the reduced pressure (the difference between the hydrodynamic and the hydrostatic pressure), 𝒆 = (∇𝐮 + (∇𝐮)𝑇 )∕2 is 
e strain rate tensor, and 𝜌𝑓 is the fluid density. A rotating frame fixed with the particle avoids the need to introduce a mesh 
locity but leads to the first, third, fourth, and fifth terms on the RHS of equation (3). These arise due to the non-inertial (rotating) 
ference frame and represent the linear acceleration, Coriolis force, centrifugal force, and angular acceleration. As shown in Fig. 1
3

e computational domain for these equations is bounded by 𝐫𝑝 (representing the particle surface) on the inside, and 𝐫∞ (representing 
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. 1. Computational domain for the flow around a prolate spheroid: particle surface, 𝐫𝑝 is the inner boundary, and the exterior boundary is 𝐫∞ indicated with a 
shed black curve. 𝐫∞ is at a large distance from the particle’s center and represents a surface in the far-field where the velocity boundary conditions are applied. A 
locity field, 𝐫 ⋅𝚪 +𝐮0 with time varying 𝚪 and 𝐮0 indicated by blue arrows and curves can be imposed at 𝐫∞. The gray shaded region is the interior fluid region over 
ich we solve the governing equations. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

e far-field) on the outside. The boundary conditions on the velocity field are the imposed flow conditions in the far-field and no-slip 
d no-penetration on the particle surface. In the frame of reference rotating and translating with the particle, these are,

𝐮 = 𝟎, on particle surface, 𝐮 = 𝐮∞(𝐫) = 𝐫 ⋅ 𝚪+ 𝐮0 − 𝐮𝑝 −𝝎𝑝 × 𝐫, as |𝐫|→∞≈ 𝐫∞, (5)

here 𝚪 and 𝐮0 are the imposed velocity gradient and uniform velocity field. The angular and translational velocities of the particle, 
and 𝐮𝑝, may either be imposed or obtained from relevant equations governing the motion of the particle due to the moments and 
rces acting on the particle. In the latter case, Newton’s equations govern the particle motion,

𝜌𝑝𝑉𝑝
𝑑𝐮𝑝
𝑑𝑡

= 𝐟fluid + 𝐟ext., (6)

𝐈𝑝 ⋅
𝑑𝝎𝑝

𝑑𝑡
= 𝐪fluid + 𝐪ext., (7)

here 𝑉𝑝, 𝜌𝑝 and 𝐈𝑝 are the volume, density and moment of inertia tensor of the particle. 𝐟ext. and 𝐪ext. are the external imposed 
rce and torque that can be prescribed. In case gravity is present, 𝐟ext. includes the buoyancy force acting on the particle due to 
e difference in particle and fluid densities represented by (𝜌𝑝 − 𝜌𝑓 )𝑉𝑝𝐠. Here, 𝐠 is the gravity vector in the particle fixed frame. 
though it is likely fixed in the inertial reference frame, the orientations of 𝐟ext., 𝐪ext. and 𝐠 vary in the particle reference frame with 
e for a rotating particle. For a prolate spheroid with minor radius, 𝑟minor and aspect ratio, 𝜅,

𝑉𝑝 =
4
3
𝜋𝑟3minor𝜅, 𝐈𝑝 =

1
5
𝜌𝑝𝑉𝑝𝑟

2
minor

⎡⎢⎢⎣
1 + 𝜅2 0 0

0 1 + 𝜅2 0
0 0 2

⎤⎥⎥⎦ . (8)

uid = 𝐟(𝝈) and 𝐪fluid = 𝐪(𝝈) are the fluid stress dependent hydrodynamic force and torque acting on the particle defined as,

𝐟(𝝈) = ∫
𝐫𝑝

𝑑𝑆 𝝈 ⋅ 𝐧, 𝐪(𝝈) = ∫
𝐫𝑝

𝑑𝑆 𝐫 × (𝝈 ⋅ 𝐧), (9)

here 𝐧 is the surface normal. In a viscoelastic fluid 𝐟fluid = 𝐟(𝝈) and 𝐪fluid = 𝐪(𝝈) are thus sums of contributions from the Newtonian 
lvent and polymeric stress,

𝐟fluid = 𝐟(𝝉) + 𝐟(𝚷), 𝐪fluid = 𝐪(𝝉) + 𝐪(𝚷). (10)

As considered in section 3.5.1 later, for finite particle inertia (𝜌𝑝 ≠ 0) equations (6) and (7) are numerically integrated in time 
ter discretizing the time derivative on the left-hand side of these equations. However, in the limit of zero particle inertia (𝜌𝑝 = 0), 
e appropriate conditions are zero net force and torque on the particle. In that case, as discussed in section 3.5.2, either a secant 
4

ration method (for a massless particle in a fluid with finite density, 𝜌𝑓 ) or a novel decomposition of the inertia-less non-Newtonian 
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omentum equation combined with a resistivity formulation is used to ensure that various components on the right-hand side of 
ese equations balance each other.
Finite difference discretization of the governing equations in the Cartesian coordinate system is exactly satisfied by a uniform flow, 
t this is not the case in curvilinear coordinates because the spatial gradients of the relevant variables such as velocity, pressure, and 
lymer stress involve coordinate system dependent metric derivatives [43]. Free-stream preservation of the imposed linear flow field 
r away from the particle is particularly important for the simulations of our interest since we use a large computational domain. 
rious previously proposed techniques to treat this issue are in [43,44] and references therein. However, by simply simulating the 
viation of the velocity field from its far-field value, the discretization errors associated with the violation of free-stream preservation 
e removed. In other words, we do not need to numerically simulate the analytical value of the far-field velocity, 𝐮∞, and pressure, 
.
Since the fluid is considered to be incompressible, in the imposed velocity gradient tensor, 𝚪, we require trace(𝚪) = 0 and hence 

e have ∇ ⋅ 𝐮∞ = 0. The far-field flow (relative to particle motion), 𝐮(𝐫)∞ = 𝐮∞ is linear in position, the polymer stress generated by 
e linear imposed velocity field is a spatially constant value, 𝚷∞. Therefore, the far-field momentum equation is

𝜕𝐮∞
𝜕𝑡

+ADV(𝐮∞,𝐮𝑝,𝝎𝑝; 𝐫) = − 1
𝜌𝑓

∇𝑝∞. (11)

nce, the governing mass and momentum equations for the deviation of velocity field and the pressure field from the far-field flow,

𝐮̃ = 𝐮− 𝐮∞, 𝑝 = 𝑝− 𝑝∞. (12)

e,

∇ ⋅ 𝐮̃ = 0, (13)

𝜌𝑓
( 𝜕𝐮̃
𝜕𝑡

+ ÃDV(𝐮̃,𝐮∞,𝝎𝑝; 𝐫)
)
= −∇𝑝+∇2𝐮̃+∇ ⋅ (𝚷−𝚷∞), (14)

here

ÃDV(𝐮̃,𝐮∞,𝝎𝑝; 𝐫) = 𝐮̃ ⋅ (∇𝐮̃+∇𝐮∞) + 𝐮∞ ⋅∇𝐮̃+ 2𝝎𝑝 × 𝐮̃, (15)

d the boundary conditions are

𝐮̃ = −𝐮∞(𝐫) = −𝐫 ⋅ 𝚪− 𝐮0 + 𝐮𝑝 +𝝎𝑝 × 𝐫, on particle surface , 𝐮̃ = 0, as |𝐫|→∞≈ 𝐫∞. (16)

mulating 𝐮̃ and 𝑝 instead of 𝐮 and 𝑝 allows free-stream preservation trivially. Furthermore, the momentum equation for 𝐮̃ does 
t include centrifugal and angular acceleration terms (compare (3) with (15)) and hence we do not need to numerically evaluate 
𝑝∕𝑑𝑡 at different times during a simulation involving particle rotation.
To model the polymer stress, 𝚷, we consider various dumbbell models that consider polymer molecules as a spring at-
ched to Brownian beads [10]. These dumbbell-based models define a constitutive equation for the polymer configuration, 
= ⟨𝐪𝐪⟩polymer configuration, where 𝐪 is the end-to-end vector of the dumbbell and the angle brackets represent the average over 
lymer configurations. 𝚲 is non-dimensionalized with the square of the radius of gyration of the polymer, and the dumbbell models 
ve the following form of the constitutive equation,

𝜕𝚲
𝜕𝑡

+ 𝐮 ⋅∇(𝚲−𝚲∞) = ∇𝐮T ⋅𝚲+𝚲 ⋅∇𝐮−1
𝜆
𝐑(𝚲), (17)

here the polymer convection 𝐮 ⋅ ∇(𝚲 − 𝚲∞) = 𝐮 ⋅ ∇𝚲 is balanced by its stretching (∇𝐮T ⋅ 𝚲 + 𝚲 ⋅ ∇𝐮) and relaxation (𝐑(𝚲)∕𝜆) for 
polymer solution with relaxation time 𝜆. Since any valid constitutive equation is materially frame-invariant or objective [45], as 
ng as the components of the 𝚲 tensor are expressed in the appropriate reference frame, the constitutive equations retain their 
rm in different reference frames. In other words, unlike the momentum equation governing the fluid velocity (a frame variant 
antity), particle rotation does not introduce additional terms in the constitutive equation governing 𝚲 (a frame-invariant quantity) 
 a non-inertial or rotating reference frame. We subtract the spatially constant far-field polymer configuration, 𝚲∞, before taking the 
adient in the convective term to ensure free-stream preservation. The polymeric stress, 𝚷 is directly proportional to the polymer 
nfiguration, 𝚲 and can be written as

𝚷 = 𝑐𝜇

𝜆
𝐅(𝚲), (18)

here 𝑐 is the polymer concentration defined as the ratio of zero shear rate polymer to solvent viscosity (𝜇). The exact form of the 
laxation tensor, 𝐑(𝚲), and the polymer force-configuration relation, 𝐅(𝚲), depends on the particular model being used to represent 
e spring force. If the spring is considered to be Hookean, one obtains the Oldroyd-B model; if the spring force is nonlinear and 
s finite extensibility, one obtains a FENE (finite extensible nonlinear elastic) model. A closure approximation is needed to obtain 
ntinuum-level constitutive equations from the FENE model, and different choices lead to FENE-P and FENE-CR models. The latter 
es not exhibit shear-thinning. The Giesekus model is also a nonlinear model but has a quadratic nonlinearity. In FENE models, the 
aximum length of the polymers is 𝐿 (non-dimensionalized with the radius of gyration). The Giesekus model describes concentrated 
lymer solutions and melts by including the anisotropic effect of nearby dumbbells through the mobility parameter 𝛼. See [10] for 
5

review of various constitutive models. 𝐅(𝚲) and 𝐑(𝚲) for the different constitutive models we consider are,
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Model ∶ Oldroyd-B FENE-P FENE-CR Giesekus
𝐑(𝚲) ∶ 𝚲− 𝜹 𝑓𝚲− 𝑏𝜹 𝑓𝚲− 𝑓𝜹 (𝚲− 𝜹) − 𝛼(𝚲− 𝜹)2
𝐅(𝚲) ∶ 𝚲− 𝜹 𝑓𝚲− 𝑏𝜹 𝑓𝚲− 𝑓𝜹 𝚲− 𝜹,

(19)

here,

𝑓 = 1∕(1 − tr(𝚲)∕𝐿2), and 𝑏 = 1∕(1 − tr(𝜹)∕𝐿2). (20)

e polymer constitutive equation (17) (or equation (25) discussed later) is a hyperbolic equation. Therefore, the boundary conditions 
e required at the locations the streamlines of the velocity field, 𝐮, enter the computation domain. At these locations, the boundary 
ndition is a time-dependent, spatially constant polymer configuration tensor, 𝚲 =𝚲∞, driven by the imposed velocity field and is 
verned by,

𝜕𝚲∞
𝜕𝑡

=∇𝐮T∞ ⋅𝚲∞ +𝚲∞ ⋅∇𝐮∞−1
𝜆
𝐑(𝚲∞). (21)

ing equation (18), 𝚷∞ = 𝑐𝜇∕𝜆𝐅(𝚲∞) and 𝐅(𝚲∞) is evaluated from equation (19).

1. Log conformal form of constitutive equations

An important property of 𝚲 that is preserved by an appropriate constitutive equation such as the ones introduced above is its 
sitive definiteness [19]. However, numerical discretization of constitutive equations of the form in equations equation (17) and 
8) with a model from (19) may lead to violation of positive definiteness in the numerical solution of 𝚲 at high 𝐷𝑒. This manifests 
 a numerical instability and is also termed the high Weissenberg number problem (HWNP)– Weissenberg number is defined as 
e product of the characteristic flow gradient magnitude and the polymer relaxation time; for steady linear flows Deborah and 
eissenberg numbers are equivalent. Fattal and Kupferman [19] remedied the HWNP by introducing an equivalent constitutive 
uation for the matrix logarithm of the conformation tensor, 𝚲,

𝚿 = log(𝚲). (22)

lving the governing equation for 𝚿 instead of 𝚲 provides a more stable numerical solution as found in numerous numerical studies 
ch as [25,27,46–48] after the seminal work of [19]. Fattal and Kupferman [19] derived an equation for 𝚿 based on the eigen-
composition of the velocity gradient. We use the alternative derivation, provided by Hulsen and the previous authors [49], based 
 the evolution of the principal axes of 𝚲 (and hence also 𝚿 since 𝚲 and 𝚿 have same eigenvectors). We find this form to be simpler 
 treating cases such as biaxial extensional flow for which the two eigenvalues are identical. We use the Jacobi algorithm provided 
 [50] to obtain the eigen-decomposition of 𝚲 and 𝚿,

𝚲 =𝐕 ⋅𝐃𝚲 ⋅𝐕𝑇 , 𝚿 =𝐕 ⋅𝐃𝚿 ⋅𝐕𝑇 , (23)

here 𝐕 is a 3 × 3 matrix with the eigenvectors, 𝐯𝑖, 𝑖 ∈ [1, 3] as its columns and 𝐃𝚲 and

𝐃𝚿 = log(𝐃𝚲), (24)

e diagonal matrices with eigenvalues 𝜆𝑖 and 𝜓𝑖 = log(𝜆𝑖), 𝑖 ∈ [1, 3] as their entries. The governing equation for the matrix logarithm, 
is,

𝜕𝚿
𝜕𝑡

+ 𝐮 ⋅∇(𝚿−𝚿∞) = SR(𝚿,𝐮), (25)

here,

SR(𝚿,𝐮) = 2Σ3
𝑖=1𝐿𝑖𝑖𝐯𝑖𝐯𝑖 +Σ3

𝑖=1Σ
3
𝑗=1,𝑗≠𝑖

𝜓𝑖 −𝜓𝑗

𝜆𝑖 − 𝜆𝑗
(𝜆𝑗𝐿𝑖𝑗 + 𝜆𝑖𝐿𝑗𝑖)𝐯𝑖𝐯𝑗−exp(−𝚿) ⋅𝐑(exp(𝚿)), (26)

= ∇𝐮 is the velocity gradient tensor, exp(𝚿) = 𝐕 ⋅𝐃𝚲 ⋅𝐕𝑇 and exp(−𝚿) = 𝐕 ⋅𝐃−1
𝚲 ⋅𝐕𝑇 . The three terms of SR(𝚿, 𝐮) in equation (26)

present the stretching of eigenvectors by 𝐿𝑖𝑖, rotation of eigenvectors by vorticity and their relaxation respectively [49]. When two 
genvalues are identical [49] in the second term of equation (26),

lim
𝜆𝑖→𝜆𝑗

𝜓𝑖 −𝜓𝑗

𝜆𝑖 − 𝜆𝑗
(𝜆𝑗𝐿𝑖𝑗 + 𝜆𝑖𝐿𝑗𝑖)→𝐿𝑖𝑗 +𝐿𝑗𝑖. (27)

e governing equation for the undisturbed matrix logarithm, 𝚿∞, is obtained by setting 𝐋 = ∇𝐮∞ and 𝚿 = 𝚿∞ in equations (25)
d (26).

 Temporal discretization and coupling between equations and boundary conditions

The constitutive equation (25) for the matrix logarithm, 𝚿 is driven by the velocity and velocity gradients. The polymer stress 
nce generated (see equations (18), (19) and (22)) acts as a body force in the momentum equation (2) and influences the velocity 
6

d pressure field. The constraint of divergence-free velocity field defined by equation (1) ensures mass conservation. In this section, 
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e describe the temporal discretization and methods that treat the coupling between mass (equation (1)) and momentum (equation 
)) conservation and the polymer constitutive equation (25). We also describe the separate numerical treatments of the Newton’s 
uations (equations (6) and (7)) governing the particle dynamics for the case when particle inertia is negligible and when it is finite. 
e former case is of particular interest when fluid inertia is also neglected.
We adopt a similar methodology as [40] to treat the time discretization of the momentum and mass conservation equations. The 
ass conservation equation at time step 𝑛 + 1 is

∇ ⋅ 𝐮̃𝑛+1 = 0. (28)

ing a backward Euler temporal discretization scheme, at a time step 𝑛 + 1, the momentum equation is written as,

𝜌𝑓
( 𝐮̃𝑛+1 − 𝐮̃𝑛

Δ𝑡
+ 3

2
ÃDV(𝐮̃𝑛,𝐮𝑛∞,𝝎

𝑛
𝑝; 𝐫) −

1
2
ÃDV(𝐮̃𝑛−1,𝐮𝑛−1∞ ,𝝎𝑛−1

𝑝 ; 𝐫)
)
=

−∇𝑝𝑛+1 +∇2𝐮̃𝑛+1 +∇ ⋅ (𝚷𝑛+1 −𝚷𝑛+1
∞ ),

(29)

here the non-linear terms i.e. ÃDV(𝐮̃, 𝐮∞, 𝝎𝑝; 𝐫) from equation (15) are treated explicitly using a second-order Adams–Bashforth 
heme after the first time step (in the first time step a first-order explicit Euler scheme is used). Explicit treatment of these non-
ear terms dependent upon fluid inertia is a valid strategy because we aim to study the effect of zero to moderate fluid inertia 
 flows of viscoelastic fluids. After the first time step, we use a second-order implicit Crank-Nicholson scheme where the polymer 
nstitutive equation is temporally discretized as following,

𝚿𝑛+1 −𝚿𝑛

Δ𝑡
+

𝐮𝑛+1 ⋅∇(𝚿𝑛+1 −𝚿𝑛+1
∞ )

2
+

𝐮𝑛 ⋅∇(𝚿𝑛 −𝚿𝑛
∞)

2
= SR(𝚿𝑛+1,𝐮𝑛+1)

2
+ SR(𝚿𝑛,𝐮𝑛)

2
. (30)

e consider both a fixed time step and a variable time step in our studies. SR(𝚿𝑛+1,𝐮𝑛+1) is dependent on the unknown values at the 
rrent time step. We use a weighted Jacobi method to iteratively solve equation (30) for 𝚿𝑛+1. In the first time step we solve the 
lymer constitutive equation with a first order implicit Euler method. To obtain 𝚷𝑛+1 from 𝚿𝑛+1, we use the eigen-decomposition 
 𝚿𝑛+1 and then use equations (23) and (24) to obtain 𝚲𝑛+1 along with the relevant relation between 𝚲𝑛+1 and 𝚷𝑛+1 from equation 
8) and (19).

1. Decoupling mass-momentum system from polymer constitutive equations

The polymer stress, 𝚷𝑛+1, is considered constant while solving the mass-momentum system of equations (28) and (29). Similarly, 
e velocity field, ̃𝐮𝑛+1 is considered constant when solving the constitutive equation (30). This allows us to numerically decouple the 
ass and momentum equations from the polymer constitutive equations. To properly account for the correct time location of 𝚷𝑛+1 , 
𝑛+1, 𝑝𝑛+1 and 𝐮̃𝑛+1, similar to [20], we consider 𝐾 inner iterations. At 𝑘𝑡ℎ iteration, first the polymer constitutive equations are 
lved using velocity information from the previous, 1𝑠𝑡 < (𝑘 −1)𝑡ℎ ≤𝐾𝑡ℎ, step to update the values of 𝚷𝑛+1 and 𝝍𝑛+1 (at 𝑘 = 1𝑠𝑡 inner 
ration velocity information is taken from the previous time step). Then the mass-momentum system of equations is solved using 
e latest polymer stress to update the values of ̃𝐮𝑛+1 and 𝑝𝑛+1. The inner iterations are terminated when a user defined tolerance or 
is reached. We obtain accurate results even with 𝐾 = 1.

2. Decoupled Schur complement approach to solve mass-momentum system

The coupled system of discrete mass and momentum equations (28) and (29) is written in an operator form,[
 

 𝟎

][
𝐮̃𝑛+1
𝑝𝑛+1

]
=
[
𝒎

0

]
, (31)

, using a Schur complement reduction approach similar to Furuichi et al. (2011), [41] as,[
 

𝟎 

][
𝐮̃𝑛+1
𝑝𝑛+1

]
=
[
𝒎

ℎ

]
, (32)

 decouple pressure from velocity. Here,  = −
−1
 is the Schur complement of the matrix in equation (31) and ℎ = −

−1𝒎. In 
ese equations, = (𝜌𝑓∕Δ𝑡)𝜹−∇2,  =∇, and,  =∇⋅ represent different spatial operators. Here, ∇2 is a vector Laplacian operator. 
 the Cartesian basis, the unit vectors are spatially constant. However, due to the spatial dependence of unit vectors in a curvilinear 
sis, cross-terms exist that involve multiple vector components in a particular component of the Laplacian of that vector. This guides 
r choice of basis for vectors and tensors in section 4.2. The discretization of these spatial operators will be described in more detail 
 section 4.

𝒎 = 𝜌𝑓
( 𝐮̃𝑛
Δ𝑡

− 3
2
ÃDV(𝐮̃𝑛,𝐮𝑛∞,𝝎

𝑛
𝑝; 𝐫) +

1
2
ÃDV(𝐮̃𝑛−1,𝐮𝑛−1∞ ,𝝎𝑛−1

𝑝 ; 𝐫)
)
+∇ ⋅ (𝚷𝑛+1 −𝚷𝑛+1

∞ ) (33)

presents the sum of terms in the momentum equations that are considered constant within a time-step (or within a 𝑘𝑡ℎ iteration as 
scribed in section 3.1), i.e., the explicit terms and the divergence of the polymer stress. On the boundaries of the computational 
main, i.e., the particle surface and the outer boundary, the matrix-vector system of equation (31) is appropriately changed to 
7

present the velocity boundary conditions of equation (16).
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As highlighted in section 1, in the context of finite difference spatial discretization, splitting methods (that advance the momentum 
uation in time and solve a pressure-Poisson equation to obtain an appropriate pressure for ensuring incompressibility) are not 
itable for cases in which the fluid inertia is small. This is related to artificial boundary conditions for pressure (since a second-order 
rtial differential equation now governs it) required in the splitting methods [38,39]. The splitting errors may be ignored compared 
ith more important momentum advection terms when fluid inertia is larger than the viscous forces, making them suitable for studies 
 turbulent flows. The dominance of viscous terms at lower fluid inertia values in studies of our interest prevents us from using 
ch methods. Fluid inertia is quantified in the above equations by the fluid density, 𝜌𝑓 . Furthermore, due to the time advancement 
 the momentum equation in splitting methods, studies with 𝜌𝑓 = 0 cannot be considered. 𝜌𝑓 = 0 studies are useful to isolate 
scoelasticity’s effect from fluid inertia completely. This Schur complement reduction method was originally developed to study 
e behavior of fluids with zero inertia and large viscosity variations, such as in long time scale dynamics of the Earth’s convecting 
antle [41]. We have found it useful in studies of zero to moderate inertia viscoelastic fluids.
Similar to [41], we begin by solving the decoupled pressure equation

𝑝𝑛+1 = ℎ, (34)

ing a Krylov subspace method that constructs a subspace 𝐾( , 𝑟0) = Span(𝑟0, 𝑟0, 2𝑟0, ⋯ , 𝑁−1𝑟0), for  ∈𝑁×𝑁 , with

𝐮̃0 =
−1(𝑮𝑝0 −𝒎), 𝑟0 = ℎ−𝑝0 =𝐮̃0, (35)

r an initial guess 𝑝0 for 𝑝𝑛+1. The generalized minimum residual (GMRES) method [51] is our choice of Krylov subspace method. 
e matrix vector product 𝑦𝑖 = 𝑥𝑖 consists of three separate operations defined as (similar to [41]),

𝐚∗ = 𝑥𝑖, 𝐮̃∗𝑖 =
−1𝐚∗, 𝑦𝑖 =𝐮̃∗𝑖 . (36)

e first and third steps are simple matrix-vector products of a known matrix and vector that can be computed straightforwardly 
 an efficient manner. The second step requires solution of a matrix equation 𝐮̃ ∗= 𝐚∗ and the operator  involves the sum of an 
entity and a Laplacian operator. Therefore, we use the aggregation-based algebraic multigrid (AGMG) method of [52,53] to solve 
is elliptic equation efficiently. We use the implementation provided in [54]. Once the GMRES method terminates upon reaching a 
fficient user-defined tolerance (see [51,55] for details), say in 𝑀 iterations, the solution for 𝑝𝑛+1 is formed as,

𝑝𝑛+1 = 𝑝0 + Σ𝑀
𝑖=1𝑦𝑖∕||𝑦𝑖||2𝑙𝑖, (37)

here for each GMRES iteration 𝑖, 𝑦𝑖 is a vector defined by equation (36) and 𝑙𝑖 is a scalar defined within the GMRES procedure (see 
1,55] for details). If we keep track of different 𝐮̃∗𝑖 in the GMRES iteration for solution of the pressure equation (34), by a simple 
d fast operation we can construct,

𝛿𝐮̃𝑛+1 = Σ𝑀
𝑖=1𝐮̃

∗
𝑖 𝑙𝑖. (38)

e velocity field at step n+1 is thus obtained by

𝐮̃𝑛+1 = 𝐮̃0 − 𝛿𝐮̃𝑛+1, (39)

here ̃𝐮0 is already calculated and defined in equation (35). Our methodology to solve the coupled system of mass and momentum 
uation closely follows that of [41] for solving the decoupled pressure equation (34). However, careful observation of the GMRES 
ethod allows us to obtain the solution for velocity, 𝐮̃𝑛+1 as an auxiliary product of the same calculation. This avoids the need to 
lve a velocity equation 𝐮̃𝑛+1 = 

−1(𝒎 − 𝑝𝑛+1) and saves CPU time. In [41] authors note a similar point but still solve the velocity 
uation after obtaining the pressure solution. This has so far proven to be unnecessary for our studies.

3. Ensuring stretch limited by maximum polymer extensibility in FENE models

In dumbbell based models for polymer configuration, as discussed in section 2, the polymer configuration is 𝚲 =
𝐪⟩polymer configuration, where 𝐪 is end-to-end vector (non-dimensionalized with polymer’s radius of gyration) of the dumbbell and the 
gle brackets represent average over polymer configuration. Therefore, the polymer stretch is 

√
tr(𝚲). In FENE models such as the 

NE-P and FENE-CR (equation (19)) models, the polymers have a maximum extensibility 𝐿. Following the technique introduced in 
0] we numerically impose this constraint by separately evolving the variable 𝛾 = 1∕𝑓 = 1 − tr(𝚲)∕𝐿2 (equation (20)) used in the 
NE models. An evolution equation for 𝛾 is obtained by taking the trace of the polymer constitutive equation (17) with one of the 
NE models from equation (19),

𝜕𝛾

𝜕𝑡
+ 𝐮 ⋅∇𝛾 + 2

𝐿2 𝚲 ∶ ∇𝐮+ 1
𝐷𝑒

( 𝛾 − 1
𝛾

+ 𝛽) = 0, 𝛽 =

{ 3
𝐿2−3 , FENE-P
3

𝐿2𝛾
, FENE-CR

. (40)

milar to [20], we temporally discretize equation (40) using a Cranck-Nicholson scheme for the relaxation terms (1∕𝐷𝑒((𝛾−1)∕𝛾+𝛽)) 
d treating the advection (𝐮 ⋅∇𝛾) and stretching (2∕𝐿2𝚲 ∶ ∇𝐮) terms explicitly. This leads to the following quadratic equation for 
8

+1,
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(𝛾𝑛+1)2 + 𝛾𝑛+1Δ𝑡
(
− 𝛾𝑛

Δ𝑡
+ 𝐮𝑛 ⋅∇𝛾𝑛 + 2𝚲𝒏 ∶ ∇𝐮𝑛

𝐿2 + 𝛾𝑛 − 0.5
𝐷𝑒𝛾𝑛

+ 1
𝐷𝑒𝐿2 𝛼

𝑛
1

)
− Δ𝑡

2𝐷𝑒
𝛼2 = 0, (41)

here 𝛼𝑛1 = 3∕(𝐿2 − 3) for FENE-P and 1.5∕𝛾𝑛 for FENE-CR, and, 𝛼2 = 1 for FENE-P and 1 − 3∕𝐿2 for FENE-CR. This equation leads 
 two real roots with opposite signs [20]. The negative root is unphysical since it implies tr(𝚲𝑛+1) > 𝐿2. Choosing the positive 
ot ensures that the polymer stretch is upper-bounded by the maximum extensibility, 𝐿. At each time step, 𝑛 + 1, we calculate 
+1 = 1∕𝛾𝑛+1 from this treatment and use this value of 𝑓𝑛+1 in the relaxation term of the discretized polymer constitutive equation 
0).

4. Evolution of particle orientation and velocity boundary conditions

As mentioned in section 2, we solve the governing equations in a particle fixed reference frame. In our simulations, the inertial 
r laboratory) frame is defined either from the initial particle orientation (e.g., a particle rotating about its axis in quiescent fluid) 
 through the geometry of the imposed flow (e.g., a reference frame fixed with the imposed simple shear flow, uniaxial extensional 
w or a uniform flow field). The particle orientation is defined using quaternions, 𝐪 =

[
𝑞1 𝑞2 𝑞3 𝑞4

]𝑇
, (see chapter 8 of [56]) 

at are related to the Euler angles, 𝜃, 𝜙, 𝜓 , between the particle-fixed and inertial reference frames,

𝑞1 = sin(𝜃∕2) cos((𝜙−𝜓)∕2), 𝑞2 = sin(𝜃∕2) sin((𝜙−𝜓)∕2),

𝑞3 =cos(𝜃∕2) sin((𝜙+𝜓)∕2), 𝑞4 = cos(𝜃∕2) cos((𝜙+𝜓)∕2).
(42)

e sequence of three rotations that define the Euler angles are described in [56]: 𝜃 = sin−1(−𝑋3), 𝜙 = sin−1(𝑌3∕
√

1 −𝑋2
3 ), 𝜓 =

−1(𝑋2∕
√

1 −𝑋2
3 ). Here, 𝑋2 and 𝑋3 are the projections of the 𝑋 (or 1) axis of the particle-fixed reference frame on the 2 and 3 axis, 

spectively, of the inertial reference frame. 𝑌2 and 𝑌3 are the same projections of the 𝑌 (or 2) axis of the particle-fixed reference 
me. The quaternion formulation has previously been used to study fluid flows around prolate spheroids in [26,57]. The evolution 
uation for quaternions is related to the particle’s angular velocity, 𝝎𝑝 =

[
𝜔1 𝜔2 𝜔3

]𝑇
,

𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎣
𝑞1
𝑞2
𝑞3
𝑞4

⎤⎥⎥⎥⎥⎦
= 1

2

⎡⎢⎢⎢⎢⎣
𝑞4 −𝑞3 𝑞2 𝑞1
𝑞3 𝑞4 −𝑞1 𝑞2
−𝑞2 𝑞1 𝑞4 𝑞3
−𝑞1 −𝑞2 −𝑞3 𝑞4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝜔1
𝜔2
𝜔3
0

⎤⎥⎥⎥⎥⎦
. (43)

e consider second and third-order accurate Adams-Bashforth schemes to discretize equation (43) temporally. The transformation 
atrix from the inertial frame to the particle-fixed frame is,

𝑨(𝑡) = 2
⎡⎢⎢⎣
𝑞21 + 𝑞24 − 1∕2 𝑞1𝑞2 + 𝑞3𝑞4 𝑞1𝑞3 − 𝑞2𝑞4
𝑞1𝑞2 − 𝑞3𝑞4 𝑞22 + 𝑞24 − 1∕2 𝑞2𝑞3 + 𝑞1𝑞4
𝑞1𝑞3 + 𝑞2𝑞4 𝑞2𝑞3 − 𝑞1𝑞4 𝑞23 + 𝑞24 − 1∕2

⎤⎥⎥⎦ . (44)

(𝑡) is an orthonormal matrix. A vector in the particle-fixed frame, 𝐛particle is transformed into the inertial reference frame 
ith 𝐛inertial = 𝑨(𝑡)𝑇 ⋅ 𝐛particle. The major axis or the center-line of the spheroidal particle is along the 𝑥3 axis of the particle-
ed frame. At a particular time, in the inertial reference frame the particle orientation vector i.e. the particle center line is 
=
[
𝑞1𝑞3 + 𝑞2𝑞4 𝑞2𝑞3 − 𝑞1𝑞4 𝑞23 + 𝑞24 − 1∕2

]
. At the end of each time step, after updating the quaternions we update the velocity 

undary conditions. Consider a general case where the imposed fluid motion consists of a uniform velocity, 𝐮inertial
𝑓𝑎𝑟

and a velocity 
adient, 𝚪inertial

far
in the laboratory frame. The particle’s translation and angular velocities (numerical methods to evaluate these are 

scussed in section 3.5) in the frame aligned with the particle are 𝐮𝑝 and 𝝎𝑝 respectively. In the frame of reference aligned with the 
rticle coordinates, the appropriately rotated imposed fluid motion at the outer boundary is,

𝐮∞(𝐫, 𝑡) =𝑨(𝑡) ⋅ 𝐮inertialfar + 𝐫 ⋅𝑨(𝑡) ⋅ 𝚪inertialfar ⋅𝑨(𝑡)𝑇 − 𝐮𝑝 −𝝎𝑝 × 𝐫, 𝐫 = 𝐫∞. (45)

5. Particle velocities

As mentioned in section 2 the particle’s angular and translation velocities, 𝝎𝑝 and 𝐮𝑝 may be a prescribed quantity in a study 
 interest, so that the procedure mentioned above has all the required quantities to solve the equations. We are also interested in 
dying the scenarios where the particle is free to move due to the imposed and fluid-generated forces and torques. The case when 
rticle inertia is zero must be dealt with differently than the one with finite particle inertia, and we will consider these two cases 
xt.

5.1. Finite particle inertia
At each time step the particle motion must satisfy the Newton’s equations (6) and (7). These equations are discretized using a 
cond order implicit Crank-Nicholson scheme,

𝑛+1 𝑛 Δ𝑡 𝑛+1 𝑛
9

𝐮𝐩 =𝐮𝐩 +
2𝜌𝑝𝑉𝑝

(𝐟net + 𝐟net) (46)
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𝝎𝑛+1
𝑝 =𝝎𝑛

𝑝 +
5Δ𝑡

2𝜌𝑝𝑉𝑝𝑟2minor

⎡⎢⎢⎢⎣
1

1+𝜅2 0 0
0 1

1+𝜅2 0
0 0 0.5

⎤⎥⎥⎥⎦ ⋅ (𝐪
𝑛+1
net + 𝐪𝑛net), (47)

here 𝑉𝑝 = 4𝜋𝜅𝑟3𝑚𝑖𝑛𝑜𝑟∕3,

𝐟𝑛+1net =𝐟𝑛+1
fluid

+ 𝐟𝑛+1ext. , 𝐟𝑛+1
fluid

= 𝐟(𝝉)𝑛+1 + 𝐟(𝚷)𝑛+1

𝐪𝑛+1net =𝐪
𝑛+1
fluid

+ 𝐪𝑛+1ext. , 𝐪𝑛+1
fluid

= 𝐪(𝝉)𝑛+1 + 𝐪(𝚷)𝑛+1,
(48)

e the net force and torque acting on the particle at time step 𝑛 + 1. 𝐟𝑛+1
fluid

and 𝐪𝑛+1
fluid

are evaluated from equations (9) and (10) once 
e fluid stress on the particle surface at time step 𝑛 + 1, 𝝈𝑛+1 = 𝝉𝑛+1 +𝚷𝑛+1, is available. 𝐟𝑛+1ext. and 𝐪

𝑛+1
ext. are the externally imposed 

ossibly time-varying) force and torques in the frame aligned with the particle at time step 𝑛 + 1. We use the first order explicit 
ler scheme in the first time step.

5.2. Zero particle inertia
As mentioned earlier in section 1 and 3.2, we are also interested in the scenario of zero particle inertia or zero 𝜌𝑝. In our studies, 
ch a case arises when we want to completely remove the inertial effects and study the influence of viscoelasticity, but it could 
so be used to investigate massless particles in a fluid with finite inertia. In both of these cases, Newton’s equations governing the 
rticle motion at each time step are,

𝐟𝑛+1net =𝐟𝑛+1
fluid

+ 𝐟𝑛+1ext. = 0, 𝐟𝑛+1
fluid

= 𝐟(𝝉)𝑛+1 + 𝐟(𝚷)𝑛+1,

𝐪𝑛+1net =𝐪
𝑛+1
fluid

+ 𝐪𝑛+1ext. = 0, 𝐪𝑛+1
fluid

= 𝐪(𝝉)𝑛+1 + 𝐪(𝚷)𝑛+1,
(49)

d the time marching used for finite 𝜌𝑝 in (48) cannot be employed. The governing equations (49) are viewed as force and torque 
nstraints that velocity, pressure and polymer stress field must satisfy at each time step to yield an appropriate 𝐮𝐩𝑛+1 and 𝝎𝑛+1

𝑝 . 
dhy et al. (2013) [58] used a secant method to iteratively impose the torque-free constraint on a sphere rotating in a cross shear 
w. We first consider this method for imposing force- and torque-free constraints for a finite fluid inertia case. Subsequently, we 
ow that a novel decomposition of inertia-less fluid’s momentum equation can be used to impose these constraints in a non-iterative 
d hence computationally efficient manner. These two techniques are discussed next.
Secant iteration method for finite fluid inertia and zero particle inertia: At each time step or within each inner 𝑘 iteration 

ection 3.1) the polymer stress, 𝚷 and hence the polymer torque and force, 𝐪(𝚷)𝑛+1 and 𝐟(𝚷)𝑛+1, from equations (9) and (10), 
e fixed. 𝐮𝐩𝑛+1 and 𝝎𝑛+1

𝑝 are iterated along with 𝐮̃𝑛+1 and 𝑝𝑛+1 to generate the appropriate Newtonian solvent torque and force, 
𝝉)𝑛+1 and 𝐟(𝝉)𝑛+1, that ensures the torque and force balance in equation (49). In practice, once the polymer constitutive equation 
0) is solved, we first obtain the polymeric torque and force, 𝐪(𝚷)𝑛+1 and 𝐟(𝚷)𝑛+1, from equation (9). The mass-momentum system 
scribed by equation (32) depends on the particle’s angular velocity 𝝎𝑝 (see equations (15), (16), and (33)). In the secant iterations 
ethod, iterations proceed by solving the mass-momentum system by the Schur complement method described in section 3.2 and 
taining the Newtonian torque and force, 𝐪(𝝉)𝑛+1 and 𝐟(𝝉)𝑛+1, from equation (9). After each secant iteration, 𝑠, the particle’s angular 
d translational velocities 𝝎𝑝 and 𝐮𝑝 are updated component-wise,

𝜔𝑠+1
𝑝,𝑖 = 𝜔𝑠

𝑝,𝑖 − 𝑞𝑠𝑛𝑒𝑡,𝑖

𝜔𝑠
𝑝,𝑖 −𝜔𝑠−1

𝑝,𝑖

𝑞𝑠𝑛𝑒𝑡,𝑖 − 𝑞𝑠−1𝑛𝑒𝑡,𝑖

, 𝑢𝑠+1𝑝,𝑖 = 𝑢𝑠𝑝,𝑖 − 𝑓𝑠
𝑛𝑒𝑡,𝑖

𝑢𝑠𝑝,𝑖 − 𝑢𝑠−1𝑝,𝑖

𝑓 𝑠
𝑛𝑒𝑡,𝑖 − 𝑓𝑠−1

𝑛𝑒𝑡,𝑖

, 𝑖 ∈ [1,3]. (50)

+1 and 𝐮𝑠+1𝑝 are used in the velocity boundary condition (equation (45)) for the next secant iteration. The secant iterations are 
pped once the magnitudes of all components of the net torque and force on the particle, 𝐪𝑛+1net and 𝐟

𝑛+1
net , are below prescribed 

lerances. The numerical solution at this point consists of the velocity, pressure, and polymer stress fields and the particle’s required 
gular and translational velocity that satisfy the force and torque constraints of equation (49).
Novel resistivity formulation for zero fluid and particle inertia in non-Newtonian fluids: The system of mass and momentum 
uations and the torque- and force- free constraint is quasi-steady when both fluid and particle inertia are neglected. All the variables 
m here until the end of this section are taken at time step 𝑛 + 1 and we will supress the superscript for clarity. Upon neglecting 
id inertia, the momentum equation (2) becomes

∇ ⋅ 𝝈 = 0, (51)

bject to the boundary conditions mentioned in equation (5) and the stress tensor, 𝝈, in equation (4). In this case, the momentum 
d mass (1) conservation equations are linear in the velocity and pressure. Therefore, using

𝐮 = 𝐮M + 𝐮P, 𝑝 = 𝑝M + 𝑝P, (52)

e system of mass and momentum equations along with the associated boundary conditions is linearly decomposed into two parts. 
and 𝑝M represent the motion-induced velocity and pressure fields and 𝐮P and 𝑝P the polymer-induced fields. The equations 
verning the motion-induced part are,
10

∇ ⋅ 𝐮M = 0, ∇ ⋅ 𝝈M = 0, (53)
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ith,

𝝈M = 𝝉M = −𝑝M𝜹+ 𝜇(∇𝐮M + (∇𝐮M)𝑇 ) (54)

d the boundary conditions,

𝐮M = 𝟎, on particle surface , 𝐮M = 𝐮∞(𝐫) = 𝐫 ⋅ 𝚪+ 𝐮0 − 𝐮𝑝 −𝝎𝑝 × 𝐫, as |𝐫|→∞≈ 𝐫∞. (55)

e polymer-induced part is governed by,

∇ ⋅ 𝐮P = 0, ∇ ⋅ 𝝈P = 0, (56)

ith,

𝝈P = 𝝉P +𝚷 = −𝑝P𝜹+ 𝜇(∇𝐮P + (∇𝐮P)𝑇 +𝚷) (57)

d the boundary conditions,

𝐮P = 𝟎, on particle surface , 𝐮P = 𝟎, as |𝐫|→∞≈ 𝐫∞. (58)

e hydrodynamic force and torque acting on the particle are also decomposed into a motion- and polymer-induced part,

𝐟fluid = 𝐟Mfluid + 𝐟Pfluid, 𝐪fluid = 𝐪Mfluid + 𝐪Pfluid, (59)

ith,

𝐟Mfluid = 𝐟(𝝈M), 𝐟Pfluid = 𝐟(𝝈P), 𝐪Mfluid = 𝐪(𝝈M), and, 𝐪Pfluid = 𝐪(𝝈P), (60)

here, 𝐟(𝝈) and 𝐪(𝝈) are defined in equation (9). This way of decomposing the momentum equation attributes the entire effect of 
rticle motion (via the boundary conditions in equation (55)) to the motion-induced part of the governing equations. This part has 
 influence of the polymer stress. The polymer-induced pressure and velocity fields are forced by the effect of the polymer stress, but 
e not explicitly affected by the particle’s motion. A key observation allowing us to circumvent an iterative procedure in calculating 
e particle’s motion is that the motion-induced equations represent a Stokes flow (inertia-less Newtonian flow). Hence, the motion 
duced force and torque are simply,

𝐟𝑀fluid = 𝑭 𝑝 ⋅ 𝐮𝑝 + 𝐟∞, 𝐪𝑀fluid =𝑸𝑝 ⋅𝝎𝑝 + 𝐪∞. (61)

e tensors 𝑭 𝑝 and 𝑸𝑝 depend upon only on the particle shape, and the vectors 𝐟∞ and 𝐪∞ depend upon both the particle shape and 
e imposed flow. These are either evaluated analytically for simple particle shapes and imposed flows or calculated by considering 
ly the motion-induced mass and momentum equations with appropriate boundary conditions. For example, the 21 component of 𝑭 𝑝

simply the second component of 𝐟(𝝈M) for a boundary condition 𝐮M = 𝟎, on particle surface and 𝐮M = [1 0 0]𝑇 , as |𝐫| →∞ ≈ 𝐫∞. 𝐟∞
d 𝐪∞ are simply the hydrodynamic force and torque on a fixed particle in the imposed flow (𝐫 ⋅𝚪 +𝐮0) of an inertia-less Newtonian 
id. From the force- and torque-free constraints, we obtain

𝐮𝑝 = −𝑭 −1
𝑝 ⋅ (𝐟∞ + 𝐟Pfluid + 𝐟ext), and, 𝝎𝑝 = −𝑸−1

𝑝 ⋅ (𝐪∞ + 𝐪Pfluid + 𝐪ext) (62)

 a non-iterative way. This method of obtaining a particle’s motion has long been used in micro-hydrodynamics of Newtonian fluids 
d is called a resistivity formulation [59]. However, with the novel decomposition of the inertia-less momentum equation we have 
own that a similar principal can be applied in a computationally useful manner for non-Newtonian problems.
Unlike the polymer induced pressure and velocity fields, the determination of the motion induced velocity and pressure fields 
es not require application of the Schur complement approach described in section 3.2 at each time step of the simulation. Once 
e particle’s translational and angular velocity are available, these fields are either taken from the analytical solution of Stokes 
w around the particle or from a linear superposition of pre-calculated numerical solutions of a few fundamental incompressible 
ws around the particle. The boundary conditions at a given time instant can be represented by a superposition of the boundary 
nditions in these fundamental flows. In the most general case when the velocity at the outer boundary in equation (55) has 
n-zero components for all the components of the effective (incompressible) imposed velocity gradient (𝚪 + 𝝐 ⋅𝝎𝑝) and the effective 
posed velocity (𝐮0 −𝐮𝑝), 11 fundamental Stokes flows have to be pre-calculated. While we are primarily considering linear velocity 
undary conditions, this method can be extended to other types of boundary conditions where the Stokes flows required to be pre-
lculated will be different. Using this resistivity formulation, our simulations become significantly faster relative to the secant 
ration method.
The two most computationally intensive components of our method are the weighted Jacobi method to iteratively solve equation 
0) for 𝚿𝑛+1 and the algebraic multigrid method to invert . The domain decomposition method implemented in Message Passing 
terface (MPI) is used to parallelize the code in the 𝜉1 and 𝜉2 directions (the 𝜉3 direction could also be parallelized in future). The 
eighted Jacobi method is implemented completely in-house and shows good strong and weak scaling for 100 s of processing units. 
e parallel scaling of the algebraic multigrid method is dependent on the external vendor’s capability. We use the academic version 
 AGMG [54] for which good scaling was only obtained up to about 20 processing units. The examples considered in section 5 are 
11

mpleted within a reasonable time of up to four days using 20 processing units. However, for more stringent cases, AGMG can be 
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placed with other open source algebraic multigrid solvers available in libraries such as the BoomerAMG of HYPRE [60] that scales 
ell up to a large number of processing units, but requires more parameter tuning.
In this section 3, we have described the algorithmic structure of our numerical method in a coordinate system free manner. In the 
xt section, we will delve into the specific choice of the prolate spheroidal coordinate system and the finite difference schemes used 
 discretize the spatial gradients in the governing equations. This will allow us to discretize the computational space and various 
erators mentioned above.

 Spatial discretization

One of the benefits of using body-fitted grids and expressing equations in the particle reference frame is that the discrete space or 
esh remains fixed as the particle rotates, and the discretized spatial operators defined here need to be calculated only once before 
e equations are evolved in time.

1. Prolate spheroidal coordinate system for spatial discretization of computational domain

We use a prolate spheroidal coordinate system to spatially discretize the particle surface and the fluid region around it. The 
nsformation between the prolate spheroidal (𝝃) and cartesian (𝐱) coordinates, defined for the particle-fixed reference frame, are

𝑥1 = 𝑓 sinh(𝜉1) sin(𝜉2) sin(𝜉3), 𝑥2 = 𝑓 sinh(𝜉1) sin(𝜉2) cos(𝜉3), 𝑥3 = 𝑓 cosh(𝜉1) cos(𝜉2), (63)

here 𝜉2 ∈ [0, 𝜋] and 𝜉3 ∈ [0, 2𝜋]. 𝑓 is the focal length of the prolate spheroidal particle. Here, 𝜉1, 𝜉2, and 𝜉3 are similar to the radial, 
lar and azimuthal directions respectively in a spherical coordinate system. The surface of the particle with an aspect ratio, 𝜅, is 
actly modeled as one of the coordinate surface i.e. 𝜉1 = 𝜉surface1 . We consider a prolate spheroid spheroid with minor radius, 𝑟minor. 
e surface, 𝜉surface1 and focal length, 𝑓 , are,

𝜉surface1 = 1
2
log

(
𝜅 + 1
𝜅 − 1

)
, 𝑓 =

𝑟minor

sinh(𝜉surface1 )
. (64)

e outer surface of the computational domain, 𝐫∞, is also a prolate spheroidal surface that has a constant 𝜉1 = 𝜉∞1 ,

𝜉∞1 = sinh−1(||𝐫minor∞ ||2∕𝑓 ), (65)

here ||𝐫minor∞ ||2 (2-norm or the Euclidean norm of 𝐫minor) is the minor radius of the outer surface. It is a user prescribed parameter. 
e Euclidean distance of any point on a prolate spheroid ||𝐫∞||2 is related to its minor axis through ||𝐫∞||22 = ||𝐫minor∞ ||22 +𝑓 2 cos2(𝜉2). 
this surface is placed far from the particle, such as the outer surface, ||𝐫∞|| ≈ ||𝐫minor∞ ||2. In other words, the outer surface is a 
arly spherical surface. This is shown schematically in Fig. 1 and for an actual discretized example in the left panel of Fig. 2. The 
mputational domain is defined within the limits: 𝜉1 ∈ [𝜉surface1 , 𝜉∞1 ], 𝜉2 ∈ [0, 𝜋], 𝜉3 ∈ [0, 2𝜋].
In order to prevent pressure aliasing that leads to the checkerboard effect causing spurious pressure oscillations, we use a staggered 
id arrangement [61]. The three velocity components are stored at the same location that we term velocity grid. Pressure and the 
mponents of the polymer configuration tensor 𝚲 and the latter’s matrix logarithm 𝚿 are stored at a location that is staggered 
lative to the velocity grid. These staggered locations form the pressure grid. The velocity and pressure grids are

Velocity Grid: 𝜉dist.,vel1 ∪ 𝜉dist.,vel2 ∪ 𝜉dist.,vel3 , Pressure Grid: 𝜉dist.,pres1 ∪ 𝜉
dist.,pres
2 ∪ 𝜉

dist.,pres
3 , (66)

here

𝜉dist.,vel1,𝑖 =𝜉surface1 +
𝜉∞1 − 𝜉surface1

𝑁1 − 1
(𝑖− 1)[𝑐1

(𝑖− 1)(𝑖− 0.5)
(𝑁1 − 1)2

+ 1], 𝑖 = [1,2,⋯ ,𝑁1],

𝜉
dist.,pres
1,1 =𝜉surface1 , 𝜉

dist.,pres
1,𝑖 =

𝜉dist.,vel1,𝑖 + 𝜉dist.,vel1,𝑖−1

2
, 𝑖 = [2,3,⋯ ,𝑁1], 𝜉

dist.,pres
1,𝑁1+1

= 𝜉∞1 ,

𝜉
dist.,pres
2,𝑗 =𝜋 𝑗 − 1

𝑁2
[𝑐2

(𝑗 − 1)(𝑗 − 0.5)
(𝑁2 − 1)2

+ 1], 𝑗 = [2,3,⋯ ,𝑁2 + 1],

𝜉dist.,vel2,𝑗 =
𝜉
dist.,pres
2,𝑗 + 𝜉

dist.,pres
2,𝑗+1

2
, 𝑗 = [1,2,⋯ ,𝑁2],

𝜉dist.,vel3,𝑘 =2𝜋 𝑘− 1
𝑁3 − 1

, 𝑘 = [1,2,⋯ ,𝑁3], 𝜉
dist.,pres
3,𝑘 =

𝜉dist.,vel3,𝑘 + 𝜉dist.,vel3,𝑘+1

2
, 𝑘 = [1,2,⋯ ,𝑁3 − 1],

(67)

hen 𝑐1 and 𝑐2 are zero, we obtain a uniform grid in spheroidal coordinates. A uniform spheroidal grid is naturally more clustered 
ar the particle surface in the Euclidean sense than a uniform Cartesian grid. When 𝑐1 < 0, further grid clustering towards the 
rticle and the outer surface is obtained. Another useful grid for this purpose to obtain grid clustering near the particle surface 
ly (and appropriate when 𝑐1 ≠ 0) is 𝜉dist.,vel1,𝑖 = 𝜉surface1 + (𝜉∞1 − 𝜉surface1 ){exp[−𝑐1(𝑖 − 1)∕(𝑁1 − 1)] − 1}∕{exp(−𝑐1) − 1}, 𝑖 = [1, 2, ⋯ , 𝑁1]. 
tting 𝑐2 < 0 allows us to cluster the grids (in 𝜉2 coordinate) towards the major axis of the particle (which is useful in studies such 
12

 extensional flow around the particle with its major axis aligned with the extensional axis). We only consider a uniform grid in 
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. 2. Discretized computational domain (𝜅 = 4, 𝑟minor = 1, ||𝐫∞||2 ≈ ||𝐫minor∞ ||2 = 80, 𝑁1 = 90, 𝑁2 =𝑁3 = 71 and 𝑐1 = 𝑐2 = 0): left panel shows the full domain, and right 
nel shows a zoomed region near particle surface (red). Pressure grid is shown here, velocity grid is staggered relative to this according to definitions in equation 
).

e azimuthal, 𝜉3 direction as the particle is axisymmetric, and there is no a priori preference of gradients at a particular 𝜉3 location 
r a general linear flow around the particle. Any other function to describe a non-uniform grid can be used with our method as the 
ite difference and interpolation schemes described in section 4.3 do not assume a grid type. Fig. 2 shows the pressure grid for a 
heroid with 𝜅 = 4, ||𝐫∞||2 ≈ ||𝐫minor∞ ||2 = 80, 𝑁1 = 90, 𝑁2 =𝑁3 = 71 and 𝑐1 = 𝑐2 = 0.

2. Cartesian basis for vectors and tensors and discrete representation of spatial operators

We use the Cartesian basis on this prolate spheroidal grid to represent the velocity vector or the polymer configuration tensor at 
ch location. This is done to prevent the coupling of different velocity vector components in the vector Laplacian operator (also see 
uation (31) and following discussion) appearing in the momentum equations. The momentum equation written in Cartesian basis 
 the prolate spheroidal grid is,

𝜌𝑓
( 𝜕𝑢̃𝑖
𝜕𝑡

+ ÃDV(𝐮̃,𝐮∞,𝝎𝑝; 𝐫)𝑖
)
= −

𝜕𝜉𝑘
𝜕𝑥𝑖

𝜕𝑝

𝜕𝜉𝑘
+∇2

SphinCart𝑢̃𝑖 +
𝜕𝜉𝑘
𝜕𝑥𝑗

𝜕(Π𝑗𝑖 −Π𝑗𝑖,∞)
𝜕𝜉𝑘

, (68)

here,

∇2
SphinCart =

1
ℎ21

( 1
tanh(𝜉1)

𝜕

𝜕𝜉1
+ 𝜕2

𝜕𝜉21

)
+ 1
ℎ22

( 1
tan(𝜉2)

𝜕

𝜕𝜉2
+ 𝜕2

𝜕𝜉22

)
+ 1
ℎ23

𝜕2

𝜕𝜉23

, (69)

a Laplacian operator that acts on individual Cartesian velocity component, 𝑢𝑖 with derivatives defined in prolate spheroidal 
ordinates. In the above equation

ℎ1 = ℎ2 = 𝑓

√
sinh2(𝜉1) + sin2(𝜉2), ℎ3 = 𝑓 sinh(𝜉1) sin(𝜉2). (70)

 advantage of this operator is that SphinCart𝑢̃𝑖 has no cross-terms with other velocity components. This decoupling allows us to 
lve the mass-momentum system of equations more efficiently. As mentioned in section 3.2 the second step of the matrix-vector 
oduct in the Krylov subspace procedure (equation (36)) within the Schur complement method involves inversion of a discrete 
placian operator acting on velocity vector. Unlike in curvilinear basis, the vector Laplacian in Cartesian basis can be treated as a 
t of three independent scalar Laplacians acting on three velocity components. Hence, it allows us to use the algebraic multi-grid 
ethods such as AGMG [54], developed for scalar elliptic equations, to obtain the efficient inversion of the vector Laplacian operator. 
 other words, this choice of basis allows us to have a smaller bandwidth and number of off-diagonal components of the discrete 
atrix operators in equation (31) as compared to using a more natural choice of spheroidal basis.
As mentioned earlier in section 4.1, we use a staggered grid arrangement to represent different variables: 𝐮̃ is stored on the 
locity and 𝑝, 𝚿 and 𝛾 on the pressure grid. The momentum equation (29) is discretized on the velocity grid. 𝐮∞ is an analytically 
own function that can be evaluated at any location. The mass conservation equation (28), polymer constitutive equation (30) and 𝛾
uation (41) for FENE models are discretized on the pressure grid. Similar to the finite difference representation of the viscous terms 
 [24], we use a straightforward local Lagrange polynomial representation of the spatial operators on a discretized quantity. This 
lows flexibility in choosing the order of accuracy of finite difference schemes in different directions and for different interpolation 
d spatial derivative operators and is described in section 4.3. The spatially and temporally discretized governing equations at each 
id point and at time step 𝑛 + 1 are,

𝜕̂𝜉𝑘 𝛿̂𝑢̃
𝑛+1
𝑖

13

𝜕𝑥𝑖 𝛿𝜉𝑘
= 0, (71)
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Δ𝑡

−∇2
SphinCart

||||disc.)𝑢̃𝑛+1𝑖 +
𝜕𝜉𝑘
𝜕𝑥𝑖

𝛿𝑝𝑛+1

𝛿𝜉𝑘
= 𝑔disc.𝑖 , (72)

Ψ𝑛+1
𝑖𝑗

Δ𝑡
+ 1

2
𝑢̂𝑛+1
𝑙

𝜕̂𝜉𝑘
𝜕𝑥𝑙

𝛿Ψ𝑛+1
𝑖𝑗 − 𝛿Ψ𝑛+1

𝑖𝑗,∞

𝛿𝜉𝑘
−
SR(𝚿𝑛+1, 𝐮̂𝑛+1)disc.𝑖𝑗

2
=
SR(𝚿𝑛, 𝐮̂𝑛)disc.𝑖𝑗

2
− 1

2
𝑢̂𝑛𝑙
𝜕̂𝜉𝑘
𝜕𝑥𝑙

𝛿Ψ𝑛
𝑖𝑗

𝛿𝜉𝑘
, (73)

(𝛾𝑛+1)2 + 𝛾𝑛+1Δ𝑡
(
− 𝛾𝑛

Δ𝑡
+ 𝑢̂𝑛𝑗

𝜕̂𝜉𝑘
𝜕𝑥𝑗

𝛿𝛾𝑛

𝛿𝜉𝑘
+

2Λ𝑛
𝑖𝑗

𝐿2
𝜕̂𝜉𝑘
𝜕𝑥𝑖

𝜕̂𝑢𝑗

𝜕𝜉𝑘
+ 𝛾𝑛 − 0.5

𝐷𝑒𝛾𝑛
+ 1
𝐷𝑒𝐿2 𝛼

𝑛
1

)
− Δ𝑡

2𝐷𝑒
𝛼2 = 0, (74)

+1 in the polymer equations (73) and (74) is the total velocity i.e. the sum of velocity deviation ̃𝐮𝑛+1 and undisturbed velocity 𝐮𝑛+1∞
aluated on the pressure grid. In these equations the hat, ̂, represents the scenario when the velocity or its spatial gradients are 
aluated on the pressure grid. Similarly, the overbar, ̄, represents the case when a pressure grid variable or its gradient is evaluated 
 the velocity grid. Various terms appearing in these equations are now defined. 𝛼𝑛1 = 3∕(𝐿2 − 3) for FENE-P and 1.5∕𝛾𝑛 for FENE-CR 
odel, and, 𝛼2 = 1 for FENE-P and 1 − 3∕𝐿2 for FENE-CR model. These variables are irrelevant for Oldroyd-B or Giesekus models as 
e 𝛾 equation is unnecessary.

∇𝐱𝝃 =

⎡⎢⎢⎢⎢⎣
𝜕𝜉1
𝜕𝑥1

𝜕𝜉2
𝜕𝑥1

𝜕𝜉3
𝜕𝑥1

𝜕𝜉1
𝜕𝑥2

𝜕𝜉2
𝜕𝑥2

𝜕𝜉3
𝜕𝑥2

𝜕𝜉1
𝜕𝑥3

𝜕𝜉2
𝜕𝑥3

𝜕𝜉3
𝜕𝑥3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑓 cosh(𝜉1) sin(𝜉2) cos(𝜉3)

ℎ21

𝑓 sinh(𝜉1) cos(𝜉2) cos(𝜉3)
ℎ22

− sin(𝜉3)
ℎ3

𝑓 cosh(𝜉1) sin(𝜉2) sin(𝜉3)
ℎ21

𝑓 sinh(𝜉1) cos(𝜉2) sin(𝜉3)
ℎ22

cos(𝜉3)
ℎ3

𝑓 sinh(𝜉1) cos(𝜉2)
ℎ21

− 𝑓 cosh(𝜉1) sin(𝜉2)
ℎ22

0

⎤⎥⎥⎥⎥⎦
, (75)

e spatial functions of the coordinate system that remain constant with time. 𝜕𝜉𝑖
𝜕𝑥𝑗

and 𝜕𝜉𝑘
𝜕𝑥𝑖

are temporally constant analytical functions 
aluated at the velocity and pressure grid respectively.

∇2
SphinCart|disc.𝑢̃𝑛+1𝑖 = 1

ℎ21

( 1
tanh(𝜉1)

𝛿𝑢̃𝑛+1𝑖

𝛿𝜉1
+
𝛿2𝑢̃𝑛+1𝑖

𝛿𝜉21

)
+ 1
ℎ22

( 1
tan(𝜉2)

𝛿𝑢̃𝑛+1𝑖

𝛿𝜉2
+
𝛿2𝑢̃𝑛+1𝑖

𝛿𝜉22

)
+ 1
ℎ23

𝛿2𝑢̃𝑛+1𝑖

𝛿𝜉23

, (76)

discrete Laplacian operator acting at the velocity grid (𝜉1, 𝜉2, ℎ1, ℎ2 and ℎ3 are evaluated at each grid point on the velocity grid).

𝑔disc.𝑖 = 𝜌𝑓
( 𝑢𝑛𝑖
Δ𝑡

− 3
2
ÃDV(𝐮̃𝑛,𝐮𝑛∞,𝝎

𝑛
𝑝; 𝐫)𝑖 +

1
2
ÃDV(𝐮̃𝑛−1,𝐮𝑛−1∞ ,𝝎𝑛−1

𝑝 ; 𝐫)
)
𝑖
+
𝜕𝜉𝑘
𝜕𝑥𝑗

𝛿(Π𝑛+1
𝑗𝑖 −Π𝑛+1

𝑗𝑖,∞)

𝛿𝜉𝑘
, (77)

ÃDV(𝐮̃𝑛,𝐮𝑛∞,𝝎
𝑛
𝑝; 𝐫)𝑖 = (𝑢̃𝑛𝑗 + 𝑢𝑛∞,𝑗 )

𝜕𝜉𝑘
𝜕𝑥𝑗

𝛿𝑢̃𝑛𝑖
𝛿𝜉𝑘

+ 𝑢̃𝑛𝑗 (∇𝐮∞)𝑗𝑖 + 2𝜖𝑖𝑗𝑘𝜔𝑛
𝑗 𝑢̃

𝑛
𝑘, (78)

∞ is a spatially constant tensor, that is analytically determined from the imposed flow and particle velocities along with the 
rticle orientation (equation (45)). SR(𝚿𝑛, ̂𝐮𝑛)𝑖𝑗 |disc., is defined in equation (26) with 𝚿 = 𝚿𝑛 and 𝐮 = 𝐮̂𝑛 where the velocity, 𝐮̂𝑛, 
pendence appears through 𝐋 =∇𝐮𝑛 defined as,

𝐿𝑖𝑗 =𝐿𝑛
𝑖𝑗 =

𝜕̂𝜉𝑘
𝜕𝑥𝑖

𝛿̂𝑢𝑛𝑗

𝛿𝜉𝑘
. (79)

3. Finite difference schemes for spatial derivatives and interpolations

Values of various spatial derivatives and interpolated quantities appearing in the discretized equations, 𝛿𝑢̃
𝑛
𝑖

𝛿𝜉𝑗
, 𝛿𝑝𝑛

𝛿𝜉𝑗
, 

𝛿(Ψ𝑛+1
𝑖𝑗 −Ψ𝑛+1

𝑖𝑗,∞)
𝛿𝜉𝑘

, 

Π𝑛+1
𝑗𝑖

−Π𝑛+1
𝑗𝑖,∞)

𝛿𝜉𝑘
, 𝛿𝛾

𝑛

𝛿𝜉𝑗
, 𝑢̂𝑛𝑖 , 

𝜕𝑢̃𝑛
𝑖

𝜕𝜉𝑗
and 𝛿

2 𝑢̃𝑛
𝑖

𝛿𝜉2𝑗
, are approximated by higher order finite difference or interpolation schemes. Lagrange polynomials 

ovide a convenient and flexible way to generate finite difference weights, irrespective of the grid spacing and order of accuracy 
2]. Each variable, 𝑢̃𝑖, 𝑝, Ψ𝑖𝑗 , Π𝑖𝑗 and 𝛾 is locally represented by an (𝑀 − 1)𝑡ℎ order Lagrange polynomial by fitting the variable’s 
ta on 𝑀 neighboring grid points on which it is stored. Consider any of these variables to be represented by 𝜙(𝜉1, 𝜉2, 𝜉3) which is 
red at locations [𝜉dist.1,𝑖 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑘 ], 𝑖, 𝑗, 𝑘, ∈ ℕ (which represent either the pressure or the velocity grid defined in equation (67)). 
terpolation along coordinate 𝜉𝑖, 𝑖 = [1, 3], to a location 𝜉dist.𝑖 , in Lagrange basis polynomials is,

𝜙(𝜉dist.1 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑘 ) = Σ𝑀−𝑛1
𝑞=𝑛1 𝑙(0)𝑞 (𝜉dist.1 , 𝜉dist.1,(.) )𝜙(𝜉

dist.
1,𝑞 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑘 ),

𝜙(𝜉dist.1,𝑖 , 𝜉dist.2 , 𝜉dist.3,𝑘 ) = Σ𝑀−𝑛1
𝑞=𝑛1 𝑙(0)𝑞 (𝜉dist.2 , 𝜉dist.2,(.) )𝜙(𝜉

dist.
1,𝑖 , 𝜉dist.2,𝑞 , 𝜉dist.3,𝑘 ),

𝜙(𝜉dist.1,𝑖 , 𝜉dist.2,𝑗 , 𝜉dist.3 ) = Σ𝑀−𝑛1
𝑞=𝑛1 𝑙(0)𝑞 (𝜉dist.3 , 𝜉dist.3,(.) )𝜙(𝜉

dist.
1,𝑖 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑞 ).

𝑙(0)𝑞 (𝜉dist.𝑖 , 𝜉dist.
𝑖,(.) ) =

𝑀−𝑛1∏
𝑗=𝑛1 ,𝑗≠𝑞

𝜉dist.𝑖 − 𝜉dist.𝑖,𝑗

𝜉dist.𝑖,𝑞 − 𝜉dist.𝑖,𝑗

,

(80)

here the set of discrete points {𝜉dist.𝑖,𝑞 , 𝑞 = 𝑛1, 𝑛1 + 1, ⋯ , 𝑀 + 𝑛1, 𝑛1 ∈ℕ} form an M point stencil around 𝜉dist.𝑖 . The value of the variable 
14

is thus interpolated from its representation at these 𝑀 locations to a location represented by the point 𝜉dist.𝑖 . As expected, if 𝜉dist.𝑖
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one of the locations in the 𝑀 point stencil, 𝜉dist.𝑖,𝑞 , the original value of 𝜙 is recovered. Equation (80) is used to interpolate a 
riable from the pressure or velocity grid to a point 𝜉dist.𝑖 which is not one of 𝜉dist.𝑖,𝑞 locations but lies somewhere between these in 
e continuous space. One can then choose to have 𝜉dist.𝑖 represent a point on the other grid. The discrete first and second derivatives 
 𝜉1 are,

𝛿𝜙

𝛿𝜉1
(𝜉dist.1 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑘 ) = Σ𝑀+1−𝑛1

𝑞=𝑛1 𝑙(1)𝑞 (𝜉dist.1 , 𝜉dist.1,(.) )𝜙(𝜉
dist.
1,𝑞 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑘 )

𝛿2𝜙

𝛿𝜉21

(𝜉dist.1 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑘 ) = Σ𝑀+1−𝑛1
𝑞=𝑛1 𝑙(2)𝑞 (𝜉dist.1 , 𝜉dist.1,(.) )𝜙(𝜉

dist.
1,𝑞 , 𝜉dist.2,𝑗 , 𝜉dist.3,𝑘 ),

(81)

here,

𝑙(1)𝑞 (𝜉dist.𝑖 , 𝜉dist.
𝑖,(.) ) = Σ𝑀+1−𝑛1

𝑝=𝑛1 ,𝑝≠𝑞
1

𝜉dist.𝑖,𝑞 − 𝜉dist.𝑖,𝑝

𝑀+1−𝑛1∏
𝑗=𝑛1 ,𝑗≠(𝑞,𝑝)

𝜉dist.𝑖 − 𝜉dist.𝑖,𝑗

𝜉dist.𝑖,𝑞 − 𝜉dist.𝑖,𝑗

,

𝑙(2)𝑞 (𝜉dist.𝑖 , 𝜉dist.
𝑖,(.) ) = Σ𝑀+1−𝑛1

𝑟=𝑛1 ,𝑟≠𝑞
1

𝜉dist.𝑖,𝑞 − 𝜉dist.𝑖,𝑟

Σ𝑀+1−𝑛1
𝑝=𝑛1 ,𝑝≠(𝑞,𝑟)

1
𝜉dist.𝑖,𝑞 − 𝜉dist.𝑖,𝑝

𝑀+1−𝑛1∏
𝑗=𝑛1 ,𝑗≠(𝑞,𝑝,𝑟)

𝜉dist.𝑖 − 𝜉dist.𝑖,𝑗

𝜉dist.𝑖,𝑞 − 𝜉dist.𝑖,𝑗

.

(82)

e derivatives in 𝜉2 and 𝜉3 are similarly defined. In the first and second order derivative operators of equation (82) 𝜉dist.𝑖 may or may 
t be one of 𝜉dist.𝑖,𝑞 locations. In the latter case it is somewhere within these 𝜉dist.𝑖,𝑞 locations in the continuous space. The interpolation 
d discrete differentiation in the above equations is expressed as a discrete operator acting on the variable 𝜙.

Terms including variables on the other grid: 𝛿𝑢̃𝑛𝑖
𝛿𝜉𝑗

is obtained by the multiplying the first order discrete differential operator, 
)(𝜉dist.,pres𝑗 , 𝜉dist.,vel

𝑗,(.) ) and two interpolation operators 𝑙(0)𝑞 (𝜉dist.,pres
𝑓

, 𝜉dist.,vel
𝑓,(.) ) for {𝑓 = 1, 2, 3, 𝑓 ≠ 𝑗} with 𝑢𝑛𝑖 in any order. Each operator 

 this case acts on the velocity grid and produces an output on the pressure grid in a particular dimension. Thus, 𝛿𝑢̃
𝑛
𝑖

𝛿𝜉𝑗
is the derivative 

 the velocity component 𝑢𝑖 at time step 𝑛 with respect to the 𝜉𝑗 coordinate, evaluated on the pressure grid. Similarly, 
𝛿𝑝𝑛

𝛿𝜉𝑗
is obtained 

 multiplication of 𝑙(1)𝑞 (𝜉dist.,vel𝑗 , 𝜉dist.,pres
𝑗,(.) ), and 𝑙(0)𝑞 (𝜉dist.,vel

𝑓
, 𝜉dist.,pres

𝑓,(.) ) for {𝑓 = 1, 2, 3, 𝑓 ≠ 𝑗} with 𝑝𝑛 in any order to give the pressure 

rivative in 𝜉𝑗 direction, evaluated on the velocity grid. 
𝛿(Π𝑛+1

𝑗𝑖
−Π𝑛+1

𝑗𝑖,∞)
𝛿𝜉𝑘

is obtained in a way similar to pressure derivative after the 
lymer stress Π𝑛+1

𝑗𝑖 and Π𝑛+1
𝑗𝑖,∞ are obtained from the matrix logarithm of the polymer configurations Ψ𝑛+1

𝑗𝑖 and Ψ𝑛+1
𝑗𝑖,∞ respectively using 

e method described just before section 3.1. 𝑢̂𝑛𝑖 , the velocity component in 𝑖𝑡ℎ coordinate evaluated on the pressure grid, is obtained 
 three successive interpolations of velocity deviation from the undisturbed value in each direction from velocity to pressure grid 
d then adding the interpolated value to the undisturbed velocity evaluated at the pressure grid. Therefore, the interpolation errors 
e only incurred on the velocity deviation from the far field. Since centered schemes introduce no numerical diffusion the stencils in 
ese cases consist of an even number of grid points centered (equal on each side) around the output location, 𝜉dist.,vel𝑗 or 𝜉dist.,pres𝑗 , i.e. 
is an even integer. Near the boundaries of the computational domain, a centered stencil is not possible. In this case we still use an 
point stencil, but with more points on one side of the output location so as to keep all the stencil points within the computation 
main and avoid using any ghost nodes. This issue arises only in the 𝜉1 direction. 𝜉3 coordinate is periodic about 𝜉3 = 0 or 2𝜋 and 
e utilize this periodicity. The 𝜉2 coordinate also has no external boundaries in the computational domain and we will discuss the 
ecial treatment required near the coordinate system dependent internal boundaries at 𝜉2 = 0 and 𝜋 in section 4.3.1.
Non-convective terms including variables on the same grid: The terms 𝜕𝑢̃

𝑛
𝑖

𝜕𝜉𝑗
and 𝛿

2 𝑢̃𝑛𝑖
𝛿𝜉2𝑗

appearing in the Laplacian operator, 

phinCart
|disc.𝑢𝑛+1𝑖 , require a single multiplication of the discrete derivative operator (first or second order) with the respective 

riable. In this case, the input and output grid are the same, i.e., the velocity grid. For 𝜕𝑢̃
𝑛
𝑖

𝜕𝜉𝑗
and 𝛿

2 𝑢̃𝑛
𝑖

𝛿𝜉2
𝑗

we use a stencil of odd length 

 the output location is one of the stencil points and there are equal number of points on either side of it. We deal with the 𝜉1
undaries in the similar way as described above for terms including variables on the other grid.
Convective terms (HOUC schemes of Nourgaliev et al. (2007) [63]): The spatial gradients appearing in the convective terms 

ust be treated carefully to prevent numerical instability. These include 
𝛿(Ψ𝑛+1

𝑖𝑗 −Ψ𝑛+1
𝑖𝑗,∞)

𝛿𝜉𝑘
and 𝛿𝛾

𝑛

𝛿𝜉𝑗
in equations (73) and (74), and, 𝛿𝑢̃

𝑛
𝑖

𝛿𝜉𝑘

ithin ÃDV(𝐮̃𝑛, 𝐮𝑛∞, 𝝎𝑛
𝑝; 𝐫)𝑖 of the discrete momentum equation (equations (72) and (77)). Using centered difference schemes such as 

e one noted above for non-convective terms lead to a numerical instability. A slight upwinding, where one more point upstream 
used relative to the downstream direction, allows one to maintain high spatial accuracy while maintaining numerically smooth 
d stable solution [24,63]. This is termed as a higher order upwind central scheme (HOUC). It is straightforward to implement and 
troduces much less diffusion error compared to WENO schemes used to discretize the convective term [63]. Near the boundaries 
 the computational domain (𝐫𝑝 and 𝐫∞) we reduce the length of the stencil while maintaining upwinding. The direction of the 

locity term multiplying the convective spatial gradient, 𝑢̃𝑛𝑗
𝜕𝜉𝑘
𝜕𝑥𝑗
, 𝑢𝑛𝑗,∞

𝜕𝜉𝑘
𝜕𝑥𝑗

or 𝑢̂𝑛𝑗
𝜕𝜉𝑘
𝜕𝑥𝑗
, determines the shape of the stencil used at the 

e step, 𝑛. This term is equivalent to the velocity components in the spheroidal basis for 𝑘 = 1 and 2 i.e. the velocity along 𝜉1 and 
15

directions respectively. For 𝑘 = 3 this term differs from velocity in the azimuthal, 𝜉3 , direction by a factor ℎ3 from equation (70)
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d instead we use the direction of velocity in 𝜉3 to determine the stencil shape. Therefore, similar to the original HOUC proposition 
 [63] we choose the stencil shape based on the direction of convection in each direction. HOUC was originally [63] proposed for 
terface tracking in multiphase flows, but we have found it to improve numerical stability of flow of viscoelastic fluid around a 
olate spheroid as well.

3.1. Internal boundaries in the 𝜉2 direction
The only physical boundaries of the computational domain are the two 𝜉1 surfaces at 𝜉surface1 and 𝜉∞1 . Due to the choice of the 
ordinate system, 𝜉2 is bounded by 0 and 𝜋 and 𝜉3 by 0 and 2𝜋, which requires one to consider appropriate boundary conditions at 
ese computational boundaries. As mentioned above, 𝜉3 is a periodic coordinate, and the points 𝜉3 = 0 and 2𝜋 represent the same 
ysical location. Therefore periodic boundary condition in 𝜉3 allows the interpolation mentioned above and discrete derivative 
erators in the 𝜉3 direction to be implemented near the boundaries in a way similar to internal 𝜉3 points. The boundary treatment 
 𝜉1 operators is already described above. The 𝜉2 coordinate has non-periodic internal boundaries. Such a scenario appears at 𝑟 = 0
 the cylindrical coordinate system and has previously been treated in the context of finite difference schemes by several researchers 
2–24,64]. In this situation scenarios the finite difference stencil near 𝑟 = 0 requires information at an unphysical location 𝑟 < 0. 
 prolate spheroidal coordinates, the information is required in the unphysical regions 𝜉2 < 0 and 𝜉2 > 𝜋. Similar to these previous 
orks, a variable 𝜙 (representing 𝑝, 𝛾 or a component of 𝐮 or 𝚿) at these locations is defined as,

𝜙(𝜉1, 𝜉2, 𝜉3) = 𝜙(𝜉1,−𝜉2, 𝜉3 + 𝜋), 𝜉2 ≤ 0

𝜙(𝜉1, 𝜉2, 𝜉3) = 𝜙(𝜉1,2𝜋 − 𝜉2, 𝜉3 + 𝜋), 𝜉2 ≥ 𝜋.
(83)

 previous works, the coordinate system and choice of basis for the vectors and tensors are the same, and care must be taken in the 
n of certain components of vectors or tensors when using these transformations around the internal points/ axes [24]. However, 

 a Cartesian basis the transformations of equation (83) are valid for any component of 𝐮 or 𝚿 (as well as 𝑝 or 𝛾).
The issue of non-physical internal boundaries also appears in the spherical coordinate system near the origin at 𝑟 = 0 and at 
e polar axis (𝜃 = 0 and 𝜋). This has been treated in a recent work of Santelli et al. [21] by writing momentum equations for a 
nsformed vector [𝑢𝜙 𝑢𝑟𝑟

2 𝑢𝜃 sin(𝜃)]𝑇 obtained from the original velocity vector [𝑢𝜙 𝑢𝑟 𝑢𝜃]𝑇 . Zero transformed vector boundary 
nditions are imposed on the internal boundaries for equations governing the transformed vector by Santelli et al. [21].

3.2. Singular axis and boundary conditions
Another non-physical issue that arises due to the choice of the coordinate system is the appearance of singular terms. 1∕ℎ3
efined in equation (70)), and 𝜕𝜉3

𝜕𝑥1
and 𝜕𝜉3

𝜕𝑥2
(defined in equation (75)) have sin(𝜉2) in the denominator. These terms appear as a 

ctor in front of several terms in the governing equations. As expressed so far, these terms lead to a coordinate system generated 
gularity at the axis on which 𝜉2 = 0 or 𝜋. However, these factors appear along with a spatial gradient in the 𝜉3 direction. The 
gular part of these terms can be expressed as

Sing = 1
sin(𝜉2)

𝜕𝜙

𝜕𝜉3
. (84)

 the singular axes 𝜙, representing either a scalar 𝑝 or 𝛾 or a Cartesian component of 𝐮 or 𝚿, is unique. Therefore,

𝜕𝜙

𝜕𝜉3

||||𝜉2=0 = 𝜕𝜙

𝜕𝜉3

||||𝜉2=𝜋 = 0. (85)

can be checked from the governing equations that wherever terms of the type in equation (84) appear there is no other 𝜉2
pendence in the multiplicative factors. Therefore, using L’Hopital’s theorem

lim
𝜉2→(0,𝜋)

Sing = 1
cos(𝜉2)

𝜕2𝜙

𝜕𝜉2𝜕𝜉3
, (86)

d the non-physical coordinate system generated singularity is removed at the expense of introducing additional derivatives in the 
(azimuthal) direction. This treatment of coordinate system generated axis singularities is motivated by the treatment of the 1∕𝑟
gularity at 𝑟 = 0 in cylindrical coordinate system by [23] and [24]. The axis singularity appears in the pressure grid where the 
ints 𝜉dist.,pres2,1 = 0 and 𝜉dist.,pres2,𝑁2

= 𝜋 are defined. Therefore, the singularity axis treatment is implemented in the discretization of 
e mass conservation and polymer constitutive equations. Such singularity does not appear on the velocity grid as it is staggered 
lative to the pressure grid. This treatment is not required to discretize the momentum equation.
The previous methods of [23] and [24] that used L’Hopital’s theorem to account for the coordinate system generated singularity 
ed a curvilinear (cylindrical) basis for the vectors. These vector components are multi-valued at the singularity (𝑟 = 0) and as 
result the axis values of these components were obtained using the relation between curvilinear and Cartesian components on 
e axis. The Cartesian components were averaged/ interpolated using the points off the singular axis. This leads to a difference 
tween the analytical equation obtained after L’Hopital’s theorem and that obtained using the Taylor series expansion of the actual 
scretized equations (compare equations (37) and (51) of [24]). As mentioned in those studies, strict energy conservation cannot be 
16

tained. Here, we use Cartesian components for the vectors and tensors and do not encounter this problem.
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This completes the description of the numerical method. In the next section, we implement this method on several flows of 
ertia-less Newtonian and viscoelastic fluids, along with examples of Newtonian fluids with inertia.

 Numerical tests

In this section, we use the numerical method described above to compute the flow field around particles such as a sphere 
d a prolate spheroid in a Newtonian fluid with and without (Stokes flow) inertia and an inertia-less viscoelastic fluid. Several 
id-particle interaction problems are considered for each class by changing the imposed velocity boundary conditions and torque 
nstraint on the particle. These include fixed and freely rotating spheres and spheroids (including high aspect ratios) in uniform 
w, simple shear flow, extensional flow, and combinations of the first two. These studies show forces, torques and stresslets, fluid 
eamlines, and the orientational trajectories of freely suspended spheroids.
As mentioned in section 4.3 using Lagrange polynomials to represent finite difference spatial discretization and interpolation 

lows us great flexibility in choosing the order of spatial discretization schemes. In all the examples presented, we have used a 
ur-point stencil in 𝜉1, a six-point stencil in 𝜉2 and an eight-point stencil in the 𝜉3 direction. The higher-order discretization in 𝜉2
d 𝜉3 is useful because for most cases (excluding section 5.3.2) we use less mesh points in these directions as compared to 𝜉1. After 
itial testing of different orders of accuracy (not shown), we have found these orders of accuracy to be adequate for validating the 
ses we present while obtaining numerically stable simulations. In all the examples presented 𝑟minor = 1.

1. Stokes flow: motion of particles in inertia-less Newtonian fluid

One of our primary objectives in developing the numerical method described in the previous sections is to study flows with zero 
 moderate inertia. The interest in the former is in the presence of viscoelasticity. As discussed in section 1, 3.2 and 3.5.2 zero 
ertia studies are important in isolating the effect of viscoelastic fluids and our numerical method is suitable for studying flow with 
ro particle and fluid inertia. In this section, we compare our numerical method against the analytically available solution of Stokes 
w (𝜌𝑓 = 𝜌𝑝 = 0) of a Newtonian fluid (𝑐 = 0) around prolate spheroids.

1.1. Jeffery orbits: a spheroid rotating in an inertia-less Newtonian fluid
The orientation trajectory of a freely rotating prolate spheroid in a simple shear flow of an inertia-less Newtonian fluid in the 
sence of particle inertia is available from the work of Jeffery (1922) [65]. At a given time, 𝑡, the polar angle, 𝜃𝑣𝑜𝑟𝑡, with the vorticity 
is of the imposed shear flow, and the azimuthal angle, 𝜙𝑔𝑟𝑎𝑑 , with the gradient direction in the flow-gradient plane, subtended by 
prolate spheroid of aspect ratio 𝜅 are given by

tan(𝜙𝑔𝑟𝑎𝑑 ) = 𝜅 tan
( 𝛾̇ 𝑡

𝜅 + 𝜅−1

)
, tan(𝜃𝑣𝑜𝑟𝑡) =

𝐶𝜅√
𝜅2 cos2(𝜙𝑔𝑟𝑎𝑑 ) + sin2(𝜙𝑔𝑟𝑎𝑑 )

, (87)

here 𝛾̇ is the shear rate of the imposed flow and 𝐶 is an orbital constant that depends on initial orientation. Hence, a prolate spheroid 
dergoes three-dimensional periodic motion in a shear flow of a Newtonian fluid, and the orbit’s shape is determined by initial 
ientation. In Figs. 3a and 3b, we show these Jeffery orbits and the evolution of the polar angle, 𝜙𝑔𝑟𝑎𝑑 , respectively, computed from 
r code along with the analytical expressions from equation (87) for 𝜅 = 20 at four starting orientations. In the numerical solution, 
e domain size used is 10𝜅 and a uniform mesh is used with 𝑁1 = 120, 𝑁2 =𝑁3 = 71 (these are defined in equation (67)). Terms 
ultiplying fluid and particle density are ignored. At each time step, the resistivity formulation method described in section 3.5.2 is 
ed to determine the particle’s angular velocity, which leads to zero net torque on the particle. The necessary Stokes flows (motion 
duced part of the momentum equation) required in this formulation (as mentioned in section 3.5.2) are pre-calculated numerically 
ing the Schur complement approach of section 3.2 before time evolving the particle’s orientation. The numerical and the analytical 
rves shown in Fig. 3 are indistinguishable.

1.2. Forces on a fixed spheroid in a uniform flow
The drag, 𝐶𝐷 , and the lift coefficient, 𝐶𝐿, of a prolate spheroid with aspect ratio, 𝜅, fixed in a uniform flow are given by [66–68],

𝐶𝐿 = Lift
𝜇𝑈0𝑟minor

= 16𝜋𝜅((𝐾𝑧𝑧 −𝐾𝑥𝑥) cos2(𝜃) +𝐾𝑥𝑥), 𝐶𝐷 =
Drag

𝜇𝑈0𝑟minor
= 16𝜋𝜅(𝐾𝑥𝑥 −𝐾𝑧𝑧) cos(𝜃) sin(𝜃), (88)

here drag and lift are the hydrodynamic forces acting parallel and perpendicular to the imposed flow in the plane of the imposed 
w and the particle center line (major axis). 𝜇 and 𝑈0 are the fluid viscosity and imposed speed, and 𝜃 is the angle of imposed flow 
lative to the major axis of the particle.

𝐾𝑥𝑥 =
1

𝜉 + 𝛼
, 𝐾𝑧𝑧 =

1
𝜉 + 𝜅2𝛾

,

𝛼 = 𝜅2

𝜅2 − 1
+ 𝜅

2(𝜅2 − 1)1.5
𝜂, 𝛾 = − 2

𝜅2 − 1
− 𝜅

(𝜅2 − 1)1.5
𝜂, 𝜂 = log

(𝜅 −
√
𝜅2 − 1

𝜅 +
√
𝜅2 − 1

)
.

(89)

e show the lift and drag coefficient for the flows past spheroids of three different aspect ratios, 𝜅 = 6, 10 and 20 in Fig. 4 for seven 
17

fferent angles of attack between the imposed uniform flow and the particle’s major axis. Good quantitative agreement between 
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. 3. Jeffery orbits: Prolate spheroid of aspect ratio 𝜅 = 20 rotating in simple shear flow of Newtonian fluid. Four different starting orientations are plotted in (a), 
d the orientation trajectory follows one of the degenerate periodic orbits depending upon the starting orientation. (b) shares the same legend as (a) and shows the 
e evolution of the polar angle 𝜙𝑔𝑟𝑎𝑑 for the orbits of (a) (curves are indistinguishable as 𝜙𝑔𝑟𝑎𝑑 is independent of the orbit constant). We obtain good agreement with 
 analytical prediction of Jeffery [65] for all orientations.

. 4. Lift and drag coefficients (89) on a prolate spheroid fixed in a uniform flow at various angle of attacks (𝜃) and particle aspect ratios (𝜅) in the inertia-less limit 
= 0). We obtain good agreement with the analytical prediction available in [66–68] for each 𝜅 and 𝜃.

r numerical results and the analytical expressions from equations (88) and (89) is obtained. The domain size used is 100𝜅. A 
rge computational domain is required for low inertia flows past a solid particle because the velocity disturbance created by the 
rticle decays as 1∕𝑟 at large distances (𝑟) from the particle [59,45]. This issue has marred previous computations of Andersson et 
. [69] who mentioned the requirement of a large computational domain as the Reynolds number in their study of 𝜅 = 6 particle 
as reduced to about 0.1. They used a rectangular computational domain of size 64𝜅 × 64𝜅 × 42.7𝜅. Depending upon the angle of 
tack, they reported a deviation of 0.6 to 15% from the analytical 𝐶𝐷 and 10.3 −24.9% from the analytical 𝐶𝐿 values for zero inertia. 
 contrast, using a very large computational domain of size 100𝜅 with 𝑁1 = 250, 𝑁2 = 80 and 𝑁3 = 51 we obtain highly accurate 
sults for 𝜅 = 6, 10 and 20 shown in Fig. 4. The largest absolute error is at 𝜃 = 45◦ for 𝜅 = 20. It is only 1.09% and 0.23% in 𝐶𝐿

d 𝐶𝐷 respectively. An accurate simulation of these cases with a reasonable number of mesh points is possible because while the 
quired size of the computational domain is large, the grid can be relatively sparse in the far-field and the prolate spheroidal grid 
naturally more clustered near the particle surface. Therefore, prolate spheroidal coordinates employed in our simulations are an 
propriate choice for such studies, particularly when we test theories designed to be a perturbation from Stokes flow. This example 
ill be shown in section 5.2.1.

2. Particles in Newtonian fluid with finite inertia

2.1. Uniform flow past a fixed prolate spheroid
A prolate spheroid sediments in an inertial-less Newtonian fluid without any change in orientation. Equivalently, a uniform flow 

 inertial-less Newtonian fluid past a fixed spheroid, i.e., the cases of section 5.1.2, exerts no hydrodynamic torque on the particle. 
ertia, however, leads to a finite torque on a fixed spheroid. In the low inertia limit, at the steady-state, Dabade et al. (2015) [70]
lculated the coefficient of inertial torque, 𝐶𝑇 , on a particle with aspect ratio, 𝜅, fixed in a Newtonian fluid. When the angle of 
tack of the oncoming flow relative to the particle axis is 𝜃, they find,

𝐶𝑇 = 𝑅𝑒

2
𝐹 (𝜅) sin(2𝜃), (90)
18

here, 𝐶𝑇 and the Reynolds number, 𝑅𝑒, are,
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. 5. Uniform flow past a fixed spheroid: Steady-state torque coefficient, 𝐶𝑇 normalized with Reynolds number, 𝑅𝑒, from our numerical simulations and those of 
dersson and Jiang (2019) [69] and Jiang et al. (2021) [71] at different angles of attack, 𝜃 and Reynolds numbers, 𝑅𝑒 = 0.3, 3.0 and 30 along with the analytical 
lculations of Dabade et al. [70] is also shown. Our results agree with that of [69,71] at larger 𝑅𝑒 and with [70] at 𝑅𝑒 = 0.3.

𝐶𝑇 =
Torque

𝜇𝑈0𝑟
2
minor

𝜅2
, 𝑅𝑒 =

𝜌𝑓𝑈0𝑟minor𝜅

𝜇
, (91)

d 𝑈0 is the imposed velocity. 𝐹 (𝜅) is a non-dimensional parameter that depends on the particle aspect ratio and 𝐹 (6) = 0.5458
0]. In Fig. 5, we show the steady-state values of 𝐶𝑇 ∕𝑅𝑒 at various 𝜃 for 𝜅 = 6 and three different 𝑅𝑒 = 0.3, 3.0 and 30.0 from our 
merical results along with those of Andersson and Jiang (2019) [69] and Jiang et al. (2021) [71]. We also show the analytical 
pression 𝐹 (6) sin(2𝜃)∕2 of Dabade et al. (2015) [70].
Due to the inertial screening (see [72–74] for numerical and experimental evidence of this mechanism in a dilute suspension of 
dimenting spheres), the velocity disturbance due to the particle in the presence of fluid inertia decays at a rate faster than the 1∕𝑟
is the distance from the particle) decay characteristic of the inertia-less or Stokes limit (see section 5.1.2 and [59,45]). However, 
e inertial screening length may still be large if Reynolds number is small and a large computational domain may be required to 
antitatively assess the validity of theories developed for small inertial corrections. In Fig. 5 we observe that our numerical results, 
rformed with a large computational domain size of ||𝐫∞||2 ≈ ||𝐫minor∞ ||2 = 100𝜅 are closer to the analytical prediction of Dabade 
 al. (2015) [70] for 𝑅𝑒 = 0.3 than the numerical results of Andersson, Jiang and co-workers (2019,2021) [69,71] performed with 
rectangular domain of size 64𝜅 × 64𝜅 × 42.7𝜅 [69] or 34𝜅 × 34𝜅 × 34𝜅 [71]. For 45◦, simulations of [69,71] have a deviation of 
% from the analytical prediction of [70] at 𝑅𝑒 = 0.3. We have a deviation of 2.7%. In addition to larger domain size, we use a 
aightforward boundary condition of a constant uniform velocity on the outer boundary. However, the discussion in [69] points to 
more involved boundary condition treatment. At higher 𝑅𝑒 = 3.0 and 30.0 our computations agree with that of [69,71] as shown 
 Fig. 5. For 𝑅𝑒 = 3.0 we show another simulation result at ||𝐫∞||2 ≈ ||𝐫minor∞ ||2 = 50𝜅. The resolution of our computational grid is 
1 = 200, 𝑁2 = 131 and 𝑁3 = 65 for both computational domains. The agreement with the results of [69,71] is better for the smaller 
 our computational domains at 𝑅𝑒 = 3.0, a further indication of the importance of domain size at small to moderate inertia. For 
= 45◦ at 𝑅𝑒 = 3.0 and 30.0 we simulated additional cases with increased resolution 𝑁1 = 300, 𝑁2 = 201 and 𝑁3 = 91 (not shown) 
d found similar results as with our lower resolution. Due to the nature of spheroidal coordinates (see equation (63) and more 
tailed discussion in section 1 and 4.1 about Euclidean spacing of the spheroidal grid), the domain size can be greatly increased 
ithout decreasing the resolution near the particle surface significantly. Therefore, our method is well equipped to study flow around 
sedimenting particle or a particle fixed in uniform flow in the limit of small to moderate inertia.
We also show the steady-state streamlines of the flow for 𝑅𝑒 = 0 and 𝑅𝑒 = 30 in Fig. 6 for 𝜃 = 90◦. The presence of inertia leads to 
e formation of trailing edge vortices. The streamline pictures for 𝑅𝑒 = 30 are qualitatively similar to those shown by Andersson et 
. [69].

2.2. Effect of inertia on a freely rotating sphere in simple shear flow
In the previous section, we demonstrated the validity of our method to capture the inertial effect on a fixed particle. In this section, 

e show an example where particle and fluid inertia are moderate, and the particle is allowed to rotate due to the hydrodynamic 
esses acting on the particle surface as treated by the method described in section 3.5.1. For this purpose, we validate our code 
ith the simulations of Bagchi and Balachandar (2002) [12] where the particle is a sphere. We use 𝜅 = 1.001 to represent a sphere 
 the prolate spheroidal coordinate system. The sphere is not allowed to translate but can rotate freely under the influence of the 
drodynamic torque. The imposed fluid velocity is,

𝐮inertial
imposed

= [𝑈0 + 𝛾̇𝑦 0 0]𝑇 , (92)

 the laboratory frame. Two different Reynolds numbers based on the uniform flow speed, 𝑈0, or the shear rate, 𝛾̇ can be defined 
 this case. One of them i.e. the translational Reynolds number (𝑅𝑒) is the same as defined earlier in equation (91) and the shear 
19

ynolds number is,
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. 6. Streamlines of the Newtonian fluid flow around a fixed prolate spheroid of aspect ratio, 𝜅 = 6 at Reynolds number 𝑅𝑒 = 0 (Stokes flow) and 𝑅𝑒 = 30 with major 
is at 90◦ to the oncoming flow (left to right). For each 𝑅𝑒, two different views are shown. The 𝑅𝑒 = 30 streamlines are the same as those observed i in figures 5(d) 
d 6(d) of [69].

. 7. Comparison of the inertial slow down of a freely rotating sphere in a flow 𝐮 = [𝑈0 + 𝛾̇𝑦 0 0]𝑇 from our simulations and those of Bagchi and Balachandar 
02) [12] (𝑈0 and 𝛾̇ are constants). The sphere is allowed to rotate freely but not translate. The left figure shows the ratio of steady state rotation rate of a sphere, 

𝑡 to the fluid rotation rate, 𝜔𝑓 = 𝛾̇∕2 at various translations Reynolds numbers and at two different 𝛾̇𝑟∕𝑈0 = 0.05 and 0.1. Quantitative agreement in 𝜔𝑠𝑡∕𝜔𝑓 between 
r simulations and those of [12] is found at the 𝑅𝑒 and 𝛾̇𝑟∕𝑈0 shown. The right figure shows the streamlines for Re=100 and 𝛾̇𝑟∕𝑈0 = 0.1 that are qualitatively 
ilar to the respective streamlines in figure 8(b) of [12].

𝑅𝑒𝛾̇ =
𝜌𝑓 𝛾̇𝑟

2

𝜇
, (93)

here 𝑟 (= 𝑟𝑚𝑎𝑗𝑜𝑟) is the radius of the sphere. 𝑅𝑒 and 𝑅𝑒𝛾̇ are related by a non-dimensional factor, 𝛾̇𝑟∕𝑈0. In Stokes flow (𝑅𝑒 =𝑅𝑒𝛾̇ = 0) 
e sphere rotates at the angular velocity of the fluid, 𝜔𝑓 = 𝛾̇∕2. The presence of inertia lowers the rotation rate of the sphere. In 
g. 7a we show the steady state rotation rate of the sphere, 𝜔𝑠𝑡, normalized with 𝜔𝑓 for a range of 𝑅𝑒 at two different 𝛾̇𝑟∕𝑈0 = 0.05
d 0.1 from our simulations and those of Bagchi and Balachandar (2002) [12]. We find a good, albeit not exact, agreement of 
𝑡∕𝜔𝑓 between the two simulations for all the cases shown up to 𝑅𝑒 = 100. Bagchi and Balachandar (2002) [12] found the inertial 
w-down, 𝜔𝑠𝑡∕𝜔𝑓 , of a sphere’s rotation to be independent of 𝛾̇𝑟∕𝑈0 for a constant 𝑅𝑒. This is also captured by our results in Fig. 7a 
 the results for the two 𝛾̇𝑟∕𝑈0 shown nearly collapse. In Fig. 7b we show the streamlines of the fluid flow around the sphere for 
 = 100 and 𝛾̇𝑟∕𝑈 +0 = 0.1. These are qualitatively similar to the streamlines shown in figure 8(b) of Bagchi and Balachandar (2002) 
2].
20

This example shows the capability of our numerical methodology to handle moving particles in the presence of inertia.
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. 8. Slower particle rotation due to viscoelasticity. Period average angular velocity, 𝜔̄, (normalized with the fluid rotation rate, 𝜔𝑓 = 𝛾̇∕2) of a torque-free sphere 
d a prolate spheroid with aspect ratio, 𝜅 = 2.0 in the flow-gradient plane of a simple shear flow of Giesekus viscoelastic fluid (𝑐 = 10 and 𝛼 = 0.2) at various 𝐷𝑒. Our 
ults are quantitatively similar to that of Avino et al. (2014) [26] at all 𝐷𝑒.

. 9. Streamlines around a torque-free sphere rotating in a simple shear flow of a Newtonian fluid (left) and of a Giesekus viscoelastic fluid (right) with 𝑐 = 10.0, 
0.2 and 𝐷𝑒 =1.0. The changes in streamlines due to viscoelasticity are consistent with the observations of Avino et al. (2008) [75] (figures 9(a) and 9(d) of [75]). 
eamlines for a Giesekus fluid with 𝐷𝑒 = 3.0 are also shown that extend the conclusions of Avino et al. (2008) [75] to higher 𝐷𝑒 than explored in their study.

3. Motion of particles in inertia-less viscoelastic fluid

In this section, we compare our numerical method with other numerical and semi-analytical results of the flow of viscoelastic 
ids around spheres and prolate spheroids in various linear flows.

3.1. Torque-free rotation in simple shear flow
In section 5.2.2, we discussed the influence of inertia in slowing down the rotation of a sphere in simple shear flow from its value 

 the Stokes limit. Avino et al. (2008) [75] reported a similar effect due to viscoelasticity where increasing 𝐷𝑒 in an inertia-less 
scoelastic fluid lowers the rotation rate of a spherical particle. A subset of these authors reported the steady-state angular velocity 
 the sphere in Avino et al. (2014) [26]. Here 𝐷𝑒 is the non-dimensional parameter known as the Deborah number, representing 
e product of the imposed shear rate and the particle relaxation time. The fluid and particle inertia are ignored, and the net torque 
e to the fluid stresses acting on the surface of a freely moving particle is zero. Hence the particle motion in the cases considered in 
is section is obtained through the method described in section 3.5.2. The Giesekus constitutive relation (equations (18) and (19)) 
ith 𝑐 = 10.0 and 𝛼 = 0.2 is used to model the polymer stress in the viscoelastic fluid. In Fig. 8 we show that the results from our 
ulations for a sphere rotating in a simple shear flow of this fluid are almost identical to that of Avino et al. (2014) [26]. In our 
ulations, a prolate spheroid with aspect ratio 𝜅 = 1.001 represents the sphere. Avino et al. (2014) [26] also shown the average 
gular velocity for the case when the major axis of a prolate spheroid rotates in the flow-gradient plane of a simple shear flow of 
e same viscoelastic fluid. We compare the results for 𝜅 = 2.0 from our simulations with that of Avino et al. (2014) [26] in Fig. 8 and 
d an excellent agreement at all 𝐷𝑒 shown. For a spheroid in a Newtonian fluid, i.e. at 𝐷𝑒 = 0.0, according to Jeffery (1922) [65]
𝜔𝑓 = 2.0𝜅∕(1 + 𝜅2) = 1.0 and 0.8 for 𝜅 = 1.0 (spheres) and 2.0 respectively. These analytical estimates are the numerical values 
own in Fig. 8 at 𝐷𝑒 = 0.0. We show the streamlines around a freely rotating sphere in a Newtonian fluid and viscoelastic fluid with 
𝑒 = 1.0 in Figs. 9a and 9b. These are qualitatively similar to those shown in figures 9(a) and 9(d) of Avino et al. (2008) [75]. The 
ect of viscoelasticity is to distort the region of closed streamlines around the sphere that extends to infinity for Newtonian fluid. 
 𝐷𝑒 = 1.0, both the simulations find stagnation points on either side of the sphere in the flow direction, which marks the end of the 
osed streamline region. By showing streamlines for 𝐷𝑒 = 0.1, 0.3 and 1.0 Avino et al. (2008) [75] established the movement of the
gnation points closer to the sphere upon increasing 𝐷𝑒. We also show the continuation of this trend to 𝐷𝑒 = 3.0. At this higher 𝐷𝑒, 
 asymmetry of the region of closed streamlines and a reverse wake about the flow (horizontal) direction is also observed.
Now we consider three dimensional rotation of a 𝜅 = 4.0 prolate spheroid in shear flow of the same viscoelastic fluid. As shown 
21

 the numerical simulations of Avino et al. (2014) [26], in the presence of viscoelasticity the orientation of a prolate spheroid no 
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. 10. Orientation trajectory of a torque-free prolate spheroid with aspect ratio, 𝜅 = 4 released in a simple shear flow of an inertia-less Giesekus viscoelastic fluid 
= 10 and 𝛼 = 0.2) at two different initial orientations in the gradient-vorticity plane at 𝐷𝑒 = 1.0 and 3.0. Solid orange and purple lines are from our simulations and 
 dashed gray and black are from Avino et al. (2014) [26]. Grey arrows indicate the imposed flow in the shearing plane. Good qualitative agreement is obtained 
tween the two results. The orientation trajectories of Avino et al. (2014) [26] were obtained through personal communication with the authors.

nger follows the Jeffery orbits as in Newtonian Stokes flow [65] (section 5.1.1). In Fig. 10 we compare the orientation trajectory 
 a 𝜅 = 4.0 prolate spheroid rotating in an inertia-less viscoelastic fluid from our simulations with that of Avino et al. (2014) [26]. 
e show two different starting orientations for 𝐷𝑒 = 1.0 and 3.0 in Fig. 10. The resolution used in these simulations is 𝑁1 = 150, 
2 = 71 and 𝑁3 = 57 (equation (67)). The size of the computational domain used is ||𝐫∞||2 ≈ ||𝐫minor∞ ||2 = 20𝜅. Our simulation results 
alitatively agree with those of Avino et al. (2014) [26] with small, subtle differences. Similar to Avino et al. (2014) [26], we find 
e final orientation behavior of the particle at 𝐷𝑒 = 1 to be spiraling towards the vorticity direction of the imposed simple shear 
w, irrespective of the initial orientation. At 𝐷𝑒 = 3.0, the particle in both simulations settles to a location very close to the flow 
rection, irrespective of the starting orientation.

3.2. Rheology of dilute suspensions of spheres
As mentioned in section 1, fluid flow around a particle in an unbounded fluid is useful in studying the rheology of a dilute 
spension of particles where the inter-particle interaction is rare. In Newtonian fluids, the presence of particles leads to an additional 
ess 𝑛𝑺 in the suspension, where 𝑛 is the number of particles per unit volume and 𝑺 is termed stresslet. In rheology studies of 
compressible suspensions, the deviatoric or traceless part of the suspension stress is most interesting as the trace of the stress can 
 absorbed in the modified pressure. The deviatoric part of the stresslet, 𝑺̂ , is an area integral over the particle surface, 𝐫𝑝, of a 
nsor product of the fluid stress [76],

Ŝ(𝝈) = ∫
𝐫=𝐫𝑝

d𝐴
{1
2
[nn ⋅ 𝝈 + n ⋅ 𝝈n] − 1

3
𝜹n ⋅ 𝝈 ⋅ n

}
, (94)

here n is the unit surface normal pointing into the fluid. The stresslet also appears in the particle suspension of viscoelastic fluids 
here 𝝈 is the sum of Newtonian solvent and polymer stress. The deviation of the polymeric stress 𝚷 (equation (18)) from its 
disturbed value 𝚷∞ leads to an additional component of the suspension stress known as the ensemble average polymeric stress. 
is requires more careful treatment, as pointed out by Koch et al. (2016) [77]. In this section, we will compare the stresslet due 
 a sphere (represented by a prolate spheroid with 𝜅 = 1.001) in a simple shear flow and a uni-axial extensional flow of viscoelastic 
id with the previously available results.
Jain & Shaqfeh (2021) [16] considered the shear rheology of a suspension of spheres in a Giesekus viscoelastic fluid (equations 
8) and (19)) with 𝑐 = 0.471 and 𝛼 = 0.0039. In the dilute particle limit, this is obtained by studying simple shear flow around a 
here. The evolution of the shear or Ŝ12 component (where 1 and 2 represent the flow and gradient directions of the imposed shear 
w) of the stresslet (normalized with the product of the particle volume, 𝑉𝑝, solvent’s dynamic viscosity, 𝜇, and imposed shear rate 
 with strain, from our numerical simulations for this case is compared with that of [16] in Fig. 11 for four different 𝐷𝑒. Here, 
𝑒 or Deborah number is the non-dimensional product of the polymer relaxation time and the imposed shear rate. The simulations 
ported in [16] were not converged with mesh size. Through personal communication with the authors, we obtained results from 
eir numerical method at a finer grid and used these refined values to compare with our results here. At the first instant of time, 
e normalized stresslet value is 2.5, representing the constant stresslet in a Newtonian fluid originally calculated by Einstein (1906) 
8], as initially, the polymers in the viscoelastic fluid are in equilibrium and have zero stress. The normalized particle stresslet 
creases with the strain in the suspension. Stresslet values from the two simulations are in good quantitative agreement at all 
𝑒 and strain. Upon increasing the mesh resolution, their evolution of the normalized stresslet remained qualitatively similar but 
creased in magnitude by about 0.06 for all 𝐷𝑒 values. We have found that our values converged with the mesh size near their most 
fined values. In the results presented we use 1.72 million mesh points (𝑁1 = 150, 𝑁2 = 201 and 𝑁3 = 57) and the refined results of 
in & Shaqfeh (2021) [16] (computed using a finite volume method) are from simulations using 1.75 million volume elements.
Jain et al. (2019) [79] considered the extensional rheology of a dilute suspension of spheres in a viscoelastic fluid, where the 
esslet can be obtained by studying uni-axial extensional flow around a sphere. As shown in Fig. 12a the extensional component of 
e deviatoric stresslet, Ŝ11, (normalized with the product of particle volume, 𝑉𝑝, solvent’s dynamic viscosity, 𝜇, and imposed exten-
22

n rate, 𝜖̇) for a FENE-P (equations (18) and (19)) viscoelastic fluid with 𝐿 = 100 and 𝑐 = 0.471 from our simulations qualitatively 
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. 11. Comparison of the stresslet due to a sphere in simple shear flow of a Giesekus viscoelastic fluid with 𝑐 = 0.471 and 𝛼 = 0.0039 from our simulations and that 
Jain & Shaqfeh (2021) [16]. The curves of Jain & Shaqfeh’s (2021) study are obtained via personal communication with the authors.

. 12. Stresslet vs. strain due to a sphere in uniaxial extensional flow of a FENE-P viscoelastic fluid. Comparison with the results of Jain et al. (2019) [79] is shown 
(a) with the viscoelastic fluid parameters: 𝐿 = 100, 𝑐 = 0.471 and various 𝐷𝑒. We compare our numerical results at 𝑐 = 10−5 with those of our low 𝑐 semi-analytical 
thod described in our previous publication [77] at various 𝐷𝑒 and 𝐿 in (b) and (c).

rees with that of Jain et al. (2019) [79] at all strain values for 𝐷𝑒 = 0.4, 0.6, and 0.8. In this case, 𝐷𝑒 is the product of polymer 
laxation time and imposed extension rate. Due to the same reasons discussed above for shear rheology, the normalized extensional 
esslet in these cases starts at 2.5, but then it reduces in magnitude as strain increases. In [77] we introduced a semi-analytical 
ethod for rheology of particles in viscoelastic fluid. We used this method to obtain the extensional rheology of spheres in FENE-P 
id. It allows us to perform a wider parameter study at much less computational cost. It is valid at a small polymer concentration, 𝑐, 
d we validate our numerical method described here using this semi-analytical method in Figs. 12b and 12c. We consider 𝑐 = 10−5
d 𝐷𝑒 = 0.4, 2.0 and 5.0 at two different 𝐿 = 10 and 100 and show the variation of the non-Newtonian component of the deviatoric 
esslet, Ŝ𝑧𝑧 − 2.5𝑉𝑝𝜇𝜖̇ normalized with the particle volume times extensional component of deviatoric undisturbed polymer stress, 
𝑧,∞𝑉𝑝 with Hencky strain. At zero Hencky strain, both the numerator and the denominator in this normalized stresslet are zero, 
t it has a finite limit of 2.5. Our numerical results capture all the features of the stresslet from this semi-analytical method, and the 
o are almost identical at all 𝐷𝑒, 𝐿, and Hencky strain shown. For all the preceding simulations concerning uni-axial extensional 
w we have used 𝑁1 = 251, 𝑁𝑦 = 351 and 𝑁𝑧 = 25. The flow is axi-symmetric; hence, we do not need many points in the azimuthal 
23

3) direction. Therefore another benefit of using prolate spheroidal coordinates is that in simulating a strong, but axisymmetric flow 
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ound an aligned axisymmetric particle, we can maintain a small CPU time for the simulation by having fewer points in 𝜉3 and 
creasing the resolution in the radial (𝜉1) and polar (𝜉2) direction. In this case, good resolution in the polar (𝜉2) direction is essential 
 capture the large polymer stress gradients around the extensional axis.

Simulating viscoelastic fluids around particles is a challenging numerical problem, particularly at large polymer relaxation times 
 Deborah numbers, 𝐷𝑒. This is because of the large polymer stretch possible in this scenario creating large gradients in polymer 
ess that require good resolution around both the particle surface and in specific regions where large polymer stretch is observed. By 
mparing and showing an agreement of results from our numerical method with the state-of-the-art simulation results available for 
latively low aspect ratio spheroids (𝜅 = 4) and spheres, we have demonstrated that our numerical method is suitable for studying 
ch flows. Furthermore, due to the chosen coordinate system, we are well poised to investigate higher particle aspect ratios where 
e required numerical simulations will be more challenging. However, the physical effects due to viscoelasticity are expected to be 
ore interesting.

 Conclusions

We have presented a finite difference numerical method to solve the flow of viscoelastic liquids around a prolate spheroid in a 
dy conforming coordinate system. We can simulate much larger particle aspect ratios than previous computational studies as the 
rticle surface is exactly modeled as one of the coordinate surfaces in the prolate spheroidal coordinates used. This is the inner 
undary of the computational domain where the required no-slip/ no-penetration condition on the particle is imposed. The outer 
undary of the computational domain is nearly spherical. It represents the far-field where appropriate boundary conditions can be 
posed for any constant or time-varying combination of linear flows. This allows us to study a wide range of highly resolved particle 
apes ranging from a spherical particle to a large aspect ratio prolate spheroidal fiber. Our method is valid for zero to moderate fluid 
ertia. Various components within the numerical methods are inspired by the existing numerical techniques originally developed 
r varying applications. Schur complement method developed [41] to solve zero-inertia, large viscosity gradient flows in the Earth’s 
antle is used to solve the mass and momentum equations. To remove the coordinate system generated singularity on the polar axes 
 the prolate spheroidal coordinate system, we used L’Hopital’s rule as first demonstrated for finite difference methods developed in 
lindrical coordinate system [22–24]. Stability of the convective derivatives is obtained by using the higher-order upwinding central 
hemes [63] that were originally used for interface tracking in multiphase flows and lead to low numerical diffusion. To overcome 
e violation of free-stream preservation in a curvilinear coordinate system, we simulate the deviation of the relevant flow variables 
m the known far-field flow that is undisturbed by the particle’s presence. This also simplifies the governing equations. For the case 

 zero particle and fluid inertia in viscoelastic liquids, using a novel resistivity formulation, we develop a computational technique 
 satisfy the torque- and force-free constraints on the particle in a non-iterative manner, thus saving computational resources. We 
monstrate our method on a variety of flows of Newtonian (with and without inertia) and viscoelastic fluids around spheres and 
olate spheroids and find good agreement with existing numerical and theoretical results. The capability to handle a variety of 
ids, boundary conditions, and particle shapes opens numerous avenues that can be explored with our numerical methodology. 
exibility in choosing different imposed flows on the outer boundary within a simulation allows our numerical method to study the 
w around a particle or dilute suspensions of particles in industrial processes where they experience different linear flows in time. 
ymptotic theories for flows around particles are generally developed for the parameter range that is difficult to test numerically 
e to requirements such as very large domain size or large particle aspect ratio. Such challenges are overcome by our numerical 
ethod.
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