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ARTICLE INFO ABSTRACT
Keywords: A finite difference scheme is used to develop a numerical method to solve the flow of an
Finite difference unbounded viscoelastic fluid with zero to moderate inertia around a prolate spheroidal particle.
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The equations are written in prolate spheroidal coordinates, and the shape of the particle
is exactly resolved as one of the coordinate surfaces representing the inner boundary of the
computational domain. As the prolate spheroidal grid is naturally clustered near the particle
surface, good resolution is obtained in the regions where the gradients of relevant flow variables
are most significant. This coordinate system also allows large domain sizes with a reasonable
number of mesh points to simulate unbounded fluid around a particle. Changing the aspect ratio
of the inner computational boundary enables simulations of different particle shapes ranging
from a sphere to a slender fiber. Numerical studies of the latter particle shape allow testing of
slender body theories. The mass and momentum equations are solved with a Schur complement
approach allowing us to solve the zero inertia case necessary to isolate the viscoelastic effects.
The singularities associated with the coordinate system are overcome using L’Hopital’s rule. A
straightforward imposition of conditions representing a time-varying combination of linear flows
on the outer boundary allows us to study various flows with the same computational domain
geometry. For the special but important case of zero fluid and particle inertia we obtain a novel
formulation that satisfies the force- and torque-free constraint in an iteration-free manner. The
numerical method is demonstrated for various flows of Newtonian and viscoelastic fluids around
spheres and spheroids (including those with large aspect ratio). Good agreement is demonstrated
with existing theoretical and numerical results.

1. Introduction

The flow of viscoelastic or polymeric fluids around solid particles of various shapes is important in many industrial processes. A
particle shape is chosen to achieve the manufactured product’s specific purpose or property. For example, fibers allow the desired
anisotropy in the roll-to-roll manufacturing of high aspect ratio, low resistance films for flexible and transparent electronics [1,2]. In
hydraulic fracturing [3], spheres may be used as proppants to keep the pores of fractured rocks from closing. In extrusion molding and
fiber spinning [4-7] spheres or fibers may be added to the fluid to impart strength to the finished product. A spheroid is a convenient
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shape to span a range of aspect ratios that can be synthesized by dispersing polystyrene spheres in a solution of polyvinyl alcohol,
followed by drying the solution into thin sheets. The particles obtained after heating, stretching, and cooling these sheets [8] may be
used in experiments [9] or industrial applications (such as the ones discussed above) involving the flow of viscoelastic fluids around
particles. Viscoelasticity arises in these fluids from the underlying polymer molecules. Viscoelastic fluids exhibit several properties
such as shear thinning and first normal stress difference (rod-climbing) due to the response of the polymers to the imposed flow
field. Therefore, numerical computations using specific polymer constitutive models are very useful to isolate the origins of novel
flow physics from the interaction of the polymers with the suspended particles. Furthermore, due to several parameters defining the
properties of a viscoelastic fluid, such as the polymer mobility, its maximum extensibility, and relaxation time [10], computations
complement laboratory experiments by exploring a wider range of these parameters. Studies concerning moderate inertial effects
such that the flow is not turbulent but leads to mechanisms (absent in Stokes flow) such as a significant Saffman lift force [11] on a
particle are relevant to several engineering applications and natural phenomena that involve particulate flows. These include air and
water pollution, pneumatic and slurry transport, fluidized bed combustion, mineral separation, hemodynamics, and sedimentation
in rivers [12,13].

The numerical challenges in studying the flow of particle suspensions in the applications mentioned above are two-fold: fluid-
particle interaction and particle-particle interaction. To incorporate both these effects, numerical computations involving more than
one particle resort to the immersed boundary method (IBM) [14,15]. These are useful in studying dense particle suspensions. How-
ever, the no-slip condition on the particle surface is not directly imposed in IBM. Instead, the particle region is modeled using
fictitious forces required to enforce the necessary no-slip condition. The diffuse particle-solid interface does not fully resolve the
large polymer stress gradients near the surface. In several of the scenarios above, the particle concentration is dilute enough, so
the particle-particle interaction is rare. Thus, dilute particle suspensions can be modeled as an ensemble of several isolated particles
in an unbounded fluid. The fluid-particle interaction is often analytical in Stokes flow (i.e. flow of inertia-less Newtonian fluid).
However, it is complex for a Newtonian fluid with moderate inertia or a viscoelastic fluid because the particle-induced disturbance
affects the velocity field in a way that alters the interplay of viscous and inertial or viscous and elastic forces. Therefore, valuable
and more accurate physical insight is obtained by studying the flow of a fluid around an isolated particle where the no-slip on the
particle surface is imposed. Such numerical studies can also qualitatively complement IBM simulations (where the particle-particle
interaction is incorporated) for dense suspensions, such as in [16]. Furthermore, accurate force and torque coefficients for spheroids
of different aspect ratios obtained from single particle simulations can be useful in Lagrangian models. In this paper, we describe a
numerical method based on the finite-difference approximations to model the flow of viscoelastic fluid around a prolate spheroidal
particle. The equations are solved in a particle-fixed reference frame which rotates and translates with the spheroid.

Computational fluid mechanics of viscoelastic fluids, which first started in the 1970s, is now a well-established research field
[17,18]. Viscoelasticity of linear polymers is modeled through continuum equations governing second moment of the polymer end-
to-end distance averaged over the polymer configuration [10]. Interesting and novel physical phenomena arise in the industrially
relevant parameter regimes when the polymer stretch is significant, leading to significant polymer stress and its gradients. It is in these
parameter regimes where unique numerical challenges also arise that have required ingenious solutions in the past, such as the log-
conformation formulation by Fattal and Kupferman (2004) [19] and algebraic numerical treatment of the polymer stretch by Richter
et al. (2010) [20] to ensure finite polymer length and hence finite polymer stress. Accurately resolving the polymeric flow around
particles with large aspect ratios provides yet another numerical challenge as it requires high spatial resolution to accurately model
the large polymer stress gradients along with the thin particle surface. Therefore, this paper uses a prolate spheroidal coordinate
system to discretize the governing equations spatially. This exactly models the particle surface as one of the coordinate surfaces
and is well suited to study the flow around a prolate spheroid, just as spherical [21] or cylindrical [22-24] coordinate systems
are beneficial in studying the flow around a sphere and in a cylindrical pipe respectively. Furthermore, even a uniform grid in our
chosen coordinate system is naturally more clustered (than a Cartesian grid) near the particle surface in the Euclidean sense, allowing
enhanced spatial resolution in the regions that require it the most.

The flow of viscoelastic fluids around particles in the aforementioned industrial applications undergoes a series of local linear
flows with time in a Lagrangian reference frame. For example, in fiber spinning, the material is first sheared within the spinneret
and then pulled by the drawing mechanism leading to a strong uni-axial extensional flow before solidifying to form a fiber. The
computational domain consists of the prolate spheroidal surface of the solid particle as the inner boundary and a nearly spherical
outer surface where the imposed flow boundary conditions are applied. On the outer boundary of our computational domain, we can
apply any choice of imposed stationary, time-varying, or alternating linear flow fields that mimic industrial scenarios. This allows us
greater flexibility in the choice of imposed flow conditions as compared to previous numerical techniques where the computational
domain is problem specific such as using parallel, oppositely moving walls to obtain simple shear flow [25,26] or a cylindrical outer
surface for a uniform far-field flow [27]. In our method, boundary conditions can be changed with time within a simulation.

Theoretical studies and numerical simulations are complementary. Theoretical studies are however often done either for spherical
[28,29], or for slender particles [30,31]. For the latter, a matched asymptotic expansion in particle aspect ratio, also known as slender
body theory, [32-34] is used to obtain useful physical insight by considering the particle aspect ratio to be very large. Furthermore,
flow around a particle is solved in an unbounded fluid in such theoretical developments. The choice of a prolate spheroidal coordinate
system allows us to simulate the flow around a large aspect ratio particle in a very large computational domain with good spatial
resolution in the regions near the particle surface where the velocity and polymer stress gradients are expected to be large while
maintaining a reasonable number of mesh points. Therefore, our numerical method is a suitable testing ground for slender body
theories. As we demonstrate later, we can simulate the flow around a sphere by allowing the particle aspect ratio to be 1+ ¢, where
€ is a very small positive number.
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We use a finite difference method to discretize the spatial gradients. Polymer viscosity is large in polymer melts and concentrated
polymer solutions. An increase in the solvent viscosity in dilute polymer solutions leads to a large polymer relaxation time, leading
to interesting mechanisms that are numerically challenging to resolve. Therefore, viscoelastic fluids are generally highly viscous,
and numerical studies with negligible fluid and particle inertia are appropriate to study the effects of viscoelasticity [25,35,26].
Furthermore, the solutions of uniform and linear flows of an unbounded inertia-less Newtonian fluid around spheres and spheroids
[36] are analytically known. Thus, numerical studies around such particles in the absence of inertia are more relevant in the presence
of viscoelasticity.

Some previous investigations of the flow of viscoelastic fluids, such as [25] and [37], intending to ignore inertia, have used small
but finite values of Reynolds number, Re (ratio of inertial to viscous forces). In such numerical solvers, the momentum conservation
and incompressibility (mass conservation) equations are solved via a splitting method where momentum equations are advanced in
time. The incompressibility is imposed via a pressure Poisson equation. Therefore, additional boundary conditions are required for
the pressure field, and Neumann boundary conditions are usually used at the solid surface [38,39]. The splitting method is more
appropriate for large Re flows where the splitting errors due to the introduction of artificial boundary conditions are not dominant.
However, when Re is small, splitting errors increase with the dominance of the viscous forces [40]. To avoid this issue, we solve
the coupled system of momentum and incompressibility equation iteratively using a Schur complement method with GMRES [41].
In addition, unlike the splitting method, we can solve a flow with Re =0 where the momentum equation is quasi-steady, and the
method used does not require us to use time marching.

For a finite Re, we incorporate the inertial terms in the momentum equation within the Schur complement method similar to
[40]. Therefore, in addition to solving the flow of inertia-less viscoelastic fluid, our method allows us to access the effects of small
to moderate inertia (with or without viscoelasticity). Accurate simulations for small (but nonzero) inertia made possible by the large
computational domain enable us to test perturbation theories for the limit Re < 1. Such simulations of a Newtonian fluid with finite
inertia for larger aspect ratio prolate spheroids can allow us to test the slender body theories, such as in [42], describing the effect
of inertia on fibers.

In the next section, we present governing equations for the mass and the momentum conservation in the fluid along with the
polymer constitutive equations in their original and log-conformal [19] formulation. We also present the equations governing particle
dynamics and treatment of the boundary conditions. Section 3 deals with the temporal discretization of the governing equations.
This entails the description of the Schur complement method [41] for solving mass and momentum equations, the technique of [20]
to treat finite extensibility of a polymer, quaternion formulation to account for the particle orientation, and separate methodologies
for zero and finite particle inertia to account for the particle motion. In section 4 we illustrate the spatial discretization of the
equations using the finite difference method. In this section, we also present the method to treat the coordinate system dependent axis
singularities that arise when the governing equations are expressed in the prolate spheroidal coordinate system. This is motivated by a
similar method [23,24] developed for the cylindrical coordinate system. In section 5 we demonstrate the robustness and versatility of
our numerical solver through examples of a variety of flows past a particle in (a) Stokes flow (inertia-less flows of a Newtonian fluid),
(b) flow of a Newtonian fluid with finite inertia, and (c) inertia-less flows of viscoelastic fluids with different constitutive models.
Comparison with previous numerical studies or analytical results is provided for each case. Our numerical solver is parallelized using
the domain decomposition method implemented in the Message Passing Interface (MPI). All the examples presented are run on more
than one processing unit. Finally, we present the conclusions in section 6.

2. Governing equations
We consider the flow of an incompressible viscoelastic fluid around a prolate spheroidal particle in a reference frame rotating

and translating with the particle (Fig. 1).
The equations governing the conservation of mass (incompressibility) and momentum in this rotating reference frame are

V-u=0, (@9)]
U | AD )=V 2
pf(E+ V(u,u,.0,r)=V-o, (2)
where
dup dcop
ADV(u,up,a)p;r)=7+u-Vu+2a)p><u+wp><(op><r+7><r. 3)

®, is the angular velocity of the particle, r and u are the position and the fluid velocity vector relative to the centroid of the particle,
and o is the stress tensor field in the fluid. The stress in a viscoelastic fluid is the sum of the Newtonian solvent stress, z, (with
viscosity u) and the polymer, II, stress,

c=17+I=-pb+2ue+1l, ©)]

where p is the reduced pressure (the difference between the hydrodynamic and the hydrostatic pressure), e = (Vu + (Va)7)/2 is
the strain rate tensor, and p, is the fluid density. A rotating frame fixed with the particle avoids the need to introduce a mesh
velocity but leads to the first, third, fourth, and fifth terms on the RHS of equation (3). These arise due to the non-inertial (rotating)
reference frame and represent the linear acceleration, Coriolis force, centrifugal force, and angular acceleration. As shown in Fig. 1
the computational domain for these equations is bounded by r, (representing the particle surface) on the inside, and r,, (representing
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Fig. 1. Computational domain for the flow around a prolate spheroid: particle surface, r, is the inner boundary, and the exterior boundary is r, indicated with a
dashed black curve. r is at a large distance from the particle’s center and represents a surface in the far-field where the velocity boundary conditions are applied. A
velocity field, r - I +u, with time varying I and u,, indicated by blue arrows and curves can be imposed at r,,. The gray shaded region is the interior fluid region over
which we solve the governing equations. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the far-field) on the outside. The boundary conditions on the velocity field are the imposed flow conditions in the far-field and no-slip
and no-penetration on the particle surface. In the frame of reference rotating and translating with the particle, these are,

u =0, on particle surface, u:um(r):r~l'+u0—up—a)pxr, as|r| > ocoxry, 5)

where I and u,, are the imposed velocity gradient and uniform velocity field. The angular and translational velocities of the particle,
o, and u,, may either be imposed or obtained from relevant equations governing the motion of the particle due to the moments and
forces acting on the particle. In the latter case, Newton’s equations govern the particle motion,

V —d Ly +f, 6
Pp¥p dr fluid T Lext. 6
. da)p o
P’ dt = 4fluid T Dext.

where V,, p, and 1, are the volume, density and moment of inertia tensor of the particle. f, and g are the external imposed
force and torque that can be prescribed. In case gravity is present, f,,, includes the buoyancy force acting on the particle due to
the difference in particle and fluid densities represented by (p, — p,)V,g. Here, g is the gravity vector in the particle fixed frame.
Although it is likely fixed in the inertial reference frame, the orientations of fg,; , ey, and g vary in the particle reference frame with
time for a rotating particle. For a prolate spheroid with minor radius, r;,,, and aspect ratio, «,

14«2 0 0
0 1+x2 0f. (€)
0 0o 2

4.3 _1 2
VIJ - gﬂrminor’(’ IP - gpFVPrminor

fauia = f(o) and qq;q = q(o) are the fluid stress dependent hydrodynamic force and torque acting on the particle defined as,

f(cr)=/dS c-n, q(a)=/dS rXx(o-n), 9

r T

P P

where n is the surface normal. In a viscoelastic fluid fg,;q = f(c) and qg,;q = q(6) are thus sums of contributions from the Newtonian
solvent and polymeric stress,

fuia =10+ £AD),  qguiq = () +qdD. (10

As considered in section 3.5.1 later, for finite particle inertia (pp # 0) equations (6) and (7) are numerically integrated in time
after discretizing the time derivative on the left-hand side of these equations. However, in the limit of zero particle inertia (p, =0),
the appropriate conditions are zero net force and torque on the particle. In that case, as discussed in section 3.5.2, either a secant
iteration method (for a massless particle in a fluid with finite density, p s)ora novel decomposition of the inertia-less non-Newtonian
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momentum equation combined with a resistivity formulation is used to ensure that various components on the right-hand side of
these equations balance each other.

Finite difference discretization of the governing equations in the Cartesian coordinate system is exactly satisfied by a uniform flow,
but this is not the case in curvilinear coordinates because the spatial gradients of the relevant variables such as velocity, pressure, and
polymer stress involve coordinate system dependent metric derivatives [43]. Free-stream preservation of the imposed linear flow field
far away from the particle is particularly important for the simulations of our interest since we use a large computational domain.
Various previously proposed techniques to treat this issue are in [43,44] and references therein. However, by simply simulating the
deviation of the velocity field from its far-field value, the discretization errors associated with the violation of free-stream preservation
are removed. In other words, we do not need to numerically simulate the analytical value of the far-field velocity, u,, and pressure,
Poo-

Since the fluid is considered to be incompressible, in the imposed velocity gradient tensor, I', we require trace(I') = 0 and hence
we have V -u = 0. The far-field flow (relative to particle motion), u(r),, = u,, is linear in position, the polymer stress generated by
the linear imposed velocity field is a spatially constant value, II . Therefore, the far-field momentum equation is

Ju

a—;"+ADV(uwul,,wl,;r)=—Lpr. an
Py

Hence, the governing mass and momentum equations for the deviation of velocity field and the pressure field from the far-field flow,

U=u-u,, J=p— P (12)
are,

V-u=0, 13)

pf(% +ADV(il,u . 0,:1)) = —V5+ VA + V- A1 -I), 14)
where

mﬁ,um,wp;r)=ﬁ~(Vl~l+ Vug) +u,, - Vi+ 20, X1, (15)

and the boundary conditions are

U=-uy(r)=-r-T'—uy, +u,+®,Xr, on particle surface , uU=0, as [r| > co & ry,. (16)

Simulating u and p instead of u and p allows free-stream preservation trivially. Furthermore, the momentum equation for u does
not include centrifugal and angular acceleration terms (compare (3) with (15)) and hence we do not need to numerically evaluate
do,/dt at different times during a simulation involving particle rotation.

To model the polymer stress, II, we consider various dumbbell models that consider polymer molecules as a spring at-
tached to Brownian beads [10]. These dumbbell-based models define a constitutive equation for the polymer configuration,
A = (49)polymer configuration» Where ¢ is the end-to-end vector of the dumbbell and the angle brackets represent the average over
polymer configurations. A is non-dimensionalized with the square of the radius of gyration of the polymer, and the dumbbell models
have the following form of the constitutive equation,

%+u~V(A—Am):VuT-A+A~Vu—%R(A), a7
where the polymer convection u - V(A — A, ) =1u- VA is balanced by its stretching (VuT - A + A - Vu) and relaxation (R(A)/4) for
a polymer solution with relaxation time A. Since any valid constitutive equation is materially frame-invariant or objective [45], as
long as the components of the A tensor are expressed in the appropriate reference frame, the constitutive equations retain their
form in different reference frames. In other words, unlike the momentum equation governing the fluid velocity (a frame variant
quantity), particle rotation does not introduce additional terms in the constitutive equation governing A (a frame-invariant quantity)
in a non-inertial or rotating reference frame. We subtract the spatially constant far-field polymer configuration, A, before taking the
gradient in the convective term to ensure free-stream preservation. The polymeric stress, II is directly proportional to the polymer
configuration, A and can be written as

M= %F(A), (18)

where ¢ is the polymer concentration defined as the ratio of zero shear rate polymer to solvent viscosity (). The exact form of the
relaxation tensor, R(A), and the polymer force-configuration relation, F(A), depends on the particular model being used to represent
the spring force. If the spring is considered to be Hookean, one obtains the Oldroyd-B model; if the spring force is nonlinear and
has finite extensibility, one obtains a FENE (finite extensible nonlinear elastic) model. A closure approximation is needed to obtain
continuum-level constitutive equations from the FENE model, and different choices lead to FENE-P and FENE-CR models. The latter
does not exhibit shear-thinning. The Giesekus model is also a nonlinear model but has a quadratic nonlinearity. In FENE models, the
maximum length of the polymers is L (non-dimensionalized with the radius of gyration). The Giesekus model describes concentrated
polymer solutions and melts by including the anisotropic effect of nearby dumbbells through the mobility parameter a. See [10] for
a review of various constitutive models. F(A) and R(A) for the different constitutive models we consider are,
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Model : Oldroyd-B FENE-P FENE-CR Giesekus
RA) : A-6  fA-bS fA—f6 (A—8)—a(A-b)> 19)
FA) : A-8  fA-bS6 fA-fb A -8,
where,
f=1/0—1tr(A)/L?), and b=1/(1 — tr(8)/L>). (20)

The polymer constitutive equation (17) (or equation (25) discussed later) is a hyperbolic equation. Therefore, the boundary conditions
are required at the locations the streamlines of the velocity field, u, enter the computation domain. At these locations, the boundary
condition is a time-dependent, spatially constant polymer configuration tensor, A = A, driven by the imposed velocity field and is
governed by,

oA T 1
a—t‘” =Vug A, +AW'VUm—;R(Aw)- 21

Using equation (18), I, = cu/AF(A) and F(A ) is evaluated from equation (19).
2.1. Log conformal form of constitutive equations

An important property of A that is preserved by an appropriate constitutive equation such as the ones introduced above is its
positive definiteness [19]. However, numerical discretization of constitutive equations of the form in equations equation (17) and
(18) with a model from (19) may lead to violation of positive definiteness in the numerical solution of A at high De. This manifests
as a numerical instability and is also termed the high Weissenberg number problem (HWNP)- Weissenberg number is defined as
the product of the characteristic flow gradient magnitude and the polymer relaxation time; for steady linear flows Deborah and
Weissenberg numbers are equivalent. Fattal and Kupferman [19] remedied the HWNP by introducing an equivalent constitutive
equation for the matrix logarithm of the conformation tensor, A,

¥ =log(A). (22)

Solving the governing equation for ¥ instead of A provides a more stable numerical solution as found in numerous numerical studies
such as [25,27,46-48] after the seminal work of [19]. Fattal and Kupferman [19] derived an equation for ¥ based on the eigen-
decomposition of the velocity gradient. We use the alternative derivation, provided by Hulsen and the previous authors [49], based
on the evolution of the principal axes of A (and hence also ¥ since A and ¥ have same eigenvectors). We find this form to be simpler
in treating cases such as biaxial extensional flow for which the two eigenvalues are identical. We use the Jacobi algorithm provided
in [50] to obtain the eigen-decomposition of A and ¥,

A=V-D, -V,  W=V.Dy VT, (23)
where V is a 3 x 3 matrix with the eigenvectors, v;,i € [1,3] as its columns and D, and

Dy =log(D,), (24)

are diagonal matrices with eigenvalues 4; and y; =log(4,),i € [1,3] as their entries. The governing equation for the matrix logarithm,
WV is,

% +u- V(¥ -¥_,)=SRY¥,u), (25)
where,
SR(W,u) =253 L 2oy YTV G e W) . R(exp(¥ 26
,u) = =1 LiiVivi + =1 %=1, m( jLij + 4 j,-)ViVj—eXP(— ) - R(exp(¥)), (26)
i A

L = Vu is the velocity gradient tensor, exp(¥) =V -D, - VT and exp(-¥)=V - DXI - VT The three terms of SR(¥,u) in equation (26)
represent the stretching of eigenvectors by L;;, rotation of eigenvectors by vorticity and their relaxation respectively [49]. When two
eigenvalues are identical [49] in the second term of equation (26),

Vi—V;

lim ———(4;L;; + 4L

hymdy A=y T ji) = Lij+ L. 27)

The governing equation for the undisturbed matrix logarithm, ¥, is obtained by setting L = Vu, and ¥ =¥, in equations (25)
and (26).

3. Temporal discretization and coupling between equations and boundary conditions
The constitutive equation (25) for the matrix logarithm, ¥ is driven by the velocity and velocity gradients. The polymer stress

hence generated (see equations (18), (19) and (22)) acts as a body force in the momentum equation (2) and influences the velocity
and pressure field. The constraint of divergence-free velocity field defined by equation (1) ensures mass conservation. In this section,
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we describe the temporal discretization and methods that treat the coupling between mass (equation (1)) and momentum (equation
(2)) conservation and the polymer constitutive equation (25). We also describe the separate numerical treatments of the Newton’s
equations (equations (6) and (7)) governing the particle dynamics for the case when particle inertia is negligible and when it is finite.
The former case is of particular interest when fluid inertia is also neglected.

We adopt a similar methodology as [40] to treat the time discretization of the momentum and mass conservation equations. The
mass conservation equation at time step n+ 1 is

V-t =o. (28)
Using a backward Euler temporal discretization scheme, at a time step n + 1, the momentum equation is written as,

ﬁn+l_ﬁn

At
~n+1 2~n+1 n+1 n+1

S AR E AN AY( | (AU | ()

3 v . L a5y mn—1 =1 n=1. ) _
Py +§ADVG",uzo,wZ,r)—§ADVG” el ;r)) = (29)

where the non-linear terms i.e. m(ﬁ, U, ®,T) from equation (15) are treated explicitly using a second-order Adams-Bashforth
scheme after the first time step (in the first time step a first-order explicit Euler scheme is used). Explicit treatment of these non-
linear terms dependent upon fluid inertia is a valid strategy because we aim to study the effect of zero to moderate fluid inertia
on flows of viscoelastic fluids. After the first time step, we use a second-order implicit Crank-Nicholson scheme where the polymer
constitutive equation is temporally discretized as following,

ekl _an L VPl gn g opn -y gRegertl yrtly  SR(WT,u')
ar 2 + 2 = 2 e/

We consider both a fixed time step and a variable time step in our studies. SR(¥"*!,u"*!) is dependent on the unknown values at the
current time step. We use a weighted Jacobi method to iteratively solve equation (30) for ¥"*!. In the first time step we solve the
polymer constitutive equation with a first order implicit Euler method. To obtain II"*! from W"*!, we use the eigen-decomposition
of ¥"*! and then use equations (23) and (24) to obtain A"*! along with the relevant relation between A"*! and IT"*! from equation
(18) and (19).

(30)

3.1. Decoupling mass-momentum system from polymer constitutive equations

The polymer stress, IT"*!, is considered constant while solving the mass-momentum system of equations (28) and (29). Similarly,
the velocity field, @"*' is considered constant when solving the constitutive equation (30). This allows us to numerically decouple the
mass and momentum equations from the polymer constitutive equations. To properly account for the correct time location of IT"*!,
"+, 7+ and W**!, similar to [20], we consider K inner iterations. At k' iteration, first the polymer constitutive equations are
solved using velocity information from the previous, 1** < (k — 1)"" < K", step to update the values of IT"*! and y"*! (at k = 1*' inner
iteration velocity information is taken from the previous time step). Then the mass-momentum system of equations is solved using
the latest polymer stress to update the values of W"*! and "*!. The inner iterations are terminated when a user defined tolerance or
K is reached. We obtain accurate results even with K = 1.

3.2. Decoupled Schur complement approach to solve mass-momentum system

The coupled system of discrete mass and momentum equations (28) and (29) is written in an operator form,

L g ﬁn+1 m

D 0 [pﬂﬂ o]’ (31)
or, using a Schur complement reduction approach similar to Furuichi et al. (2011), [41] as,

C g ﬁn+l m

to decouple pressure from velocity. Here, § = —DL'G is the Schur complement of the matrix in equation (31) and h=-DL 'm. In
these equations, £ = (p, /A8 — V2, G=V, and, D = V- represent different spatial operators. Here, V? is a vector Laplacian operator.
In the Cartesian basis, the unit vectors are spatially constant. However, due to the spatial dependence of unit vectors in a curvilinear
basis, cross-terms exist that involve multiple vector components in a particular component of the Laplacian of that vector. This guides
our choice of basis for vectors and tensors in section 4.2. The discretization of these spatial operators will be described in more detail
in section 4.

n — —_—
m= ,,/.(% - %ADV(ﬁ",uﬁo,mZ;r)+ %ADV(H"‘I,ugl,wﬁ_l;r)) + V-t - (33)

represents the sum of terms in the momentum equations that are considered constant within a time-step (or within a k* iteration as
described in section 3.1), i.e., the explicit terms and the divergence of the polymer stress. On the boundaries of the computational
domain, i.e., the particle surface and the outer boundary, the matrix-vector system of equation (31) is appropriately changed to
represent the velocity boundary conditions of equation (16).
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As highlighted in section 1, in the context of finite difference spatial discretization, splitting methods (that advance the momentum
equation in time and solve a pressure-Poisson equation to obtain an appropriate pressure for ensuring incompressibility) are not
suitable for cases in which the fluid inertia is small. This is related to artificial boundary conditions for pressure (since a second-order
partial differential equation now governs it) required in the splitting methods [38,39]. The splitting errors may be ignored compared
with more important momentum advection terms when fluid inertia is larger than the viscous forces, making them suitable for studies
of turbulent flows. The dominance of viscous terms at lower fluid inertia values in studies of our interest prevents us from using
such methods. Fluid inertia is quantified in the above equations by the fluid density, p,. Furthermore, due to the time advancement
of the momentum equation in splitting methods, studies with p, =0 cannot be considered. p, = 0 studies are useful to isolate
viscoelasticity’s effect from fluid inertia completely. This Schur complement reduction method was originally developed to study
the behavior of fluids with zero inertia and large viscosity variations, such as in long time scale dynamics of the Earth’s convecting
mantle [41]. We have found it useful in studies of zero to moderate inertia viscoelastic fluids.

Similar to [41], we begin by solving the decoupled pressure equation

Sl =h, (34

using a Krylov subspace method that constructs a subspace K (S, r() = Span(r, SrO,SZrO, ., 8N _lro), for S € RVXN  with

=L YGPy—m), ry=h—Sp,=Du,, (35)

for an initial guess p, for 7", The generalized minimum residual (GMRES) method [51] is our choice of Krylov subspace method.
The matrix vector product y; = Sx; consists of three separate operations defined as (similar to [41]),

a*=Gx, w=L""a", y=Du. (36)

The first and third steps are simple matrix-vector products of a known matrix and vector that can be computed straightforwardly
in an efficient manner. The second step requires solution of a matrix equation £u = a* and the operator £ involves the sum of an
identity and a Laplacian operator. Therefore, we use the aggregation-based algebraic multigrid (AGMG) method of [52,53] to solve
this elliptic equation efficiently. We use the implementation provided in [54]. Once the GMRES method terminates upon reaching a
sufficient user-defined tolerance (see [51,55] for details), say in M iterations, the solution for "*! is formed as,

P =B+ =M v/ 1yillaLs (37)

where for each GMRES iteration i, y; is a vector defined by equation (36) and /; is a scalar defined within the GMRES procedure (see
[51,55] for details). If we keep track of different ﬁ;" in the GMRES iteration for solution of the pressure equation (34), by a simple
and fast operation we can construct,

sumtt =M @ (38)

The velocity field at step n+1 is thus obtained by

ol =1, - surtt, (39)

where 1, is already calculated and defined in equation (35). Our methodology to solve the coupled system of mass and momentum
equation closely follows that of [41] for solving the decoupled pressure equation (34). However, careful observation of the GMRES
method allows us to obtain the solution for velocity, u"*! as an auxiliary product of the same calculation. This avoids the need to
solve a velocity equation @"*! = L7 (m — Gp™!) and saves CPU time. In [41] authors note a similar point but still solve the velocity
equation after obtaining the pressure solution. This has so far proven to be unnecessary for our studies.

3.3. Ensuring stretch limited by maximum polymer extensibility in FENE models

In dumbbell based models for polymer configuration, as discussed in section 2, the polymer configuration is A =
{49) polymer configuration> Where q is end-to-end vector (non-dimensionalized with polymer’s radius of gyration) of the dumbbell and the

angle brackets represent average over polymer configuration. Therefore, the polymer stretch is 4/tr(A). In FENE models such as the
FENE-P and FENE-CR (equation (19)) models, the polymers have a maximum extensibility L. Following the technique introduced in
[20] we numerically impose this constraint by separately evolving the variable y = 1/f =1 — tr(A)/L? (equation (20)) used in the
FENE models. An evolution equation for y is obtained by taking the trace of the polymer constitutive equation (17) with one of the
FENE models from equation (19),

3 FENE-P

dy 2 1 y—-1 730
—4u-Vy+ =A:Vu+ —(——+p) =0, = L3 .
T2 Dl 5, TP s { 3 FENE-CR

p” 5 (40)
L2y’

Similar to [20], we temporally discretize equation (40) using a Cranck-Nicholson scheme for the relaxation terms (1/De((y —1)/y + §))

and treating the advection (u- Vy) and stretching (2/L?A : Vu) terms explicitly. This leads to the following quadratic equation for
J/n+1 s
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n+142 n+1 r" n n, 2A" 1 Vu” 7" —0.5 1 n At

+ At(——+ VY + + + )—— =0, 41

Ty AT 12 Dey” " Der2™) " 2De™ (41)

where al =3/ (L? - 3) for FENE-P and 1.5/y" for FENE-CR, and, @, = | for FENE-P and 1 — 3/L? for FENE-CR. This equation leads

to two real roots with opposite signs [20]. The negative root is unphysical since it implies tr(A"*!) > L%. Choosing the positive

root ensures that the polymer stretch is upper-bounded by the maximum extensibility, L. At each time step, n + 1, we calculate

£ =1/y"*! from this treatment and use this value of f"*! in the relaxation term of the discretized polymer constitutive equation
(30).

3.4. Evolution of particle orientation and velocity boundary conditions

As mentioned in section 2, we solve the governing equations in a particle fixed reference frame. In our simulations, the inertial
(or laboratory) frame is defined either from the initial particle orientation (e.g., a particle rotating about its axis in quiescent fluid)
or through the geometry of the imposed flow (e.g., a reference frame fixed with the imposed simple shear flow, uniaxial extensional

flow or a uniform flow field). The particle orientation is defined using quaternions, q = [‘h & 4 q4]T, (see chapter 8 of [56])
that are related to the Euler angles, 6, ¢, y, between the particle-fixed and inertial reference frames,

q, =sin(@/2)cos((p —y)/2), g, =sin(0/2)sin((¢p —y)/2),
g3 =cos(0/2)sin((p+y)/2), g4 =cos(8/2)cos((¢p +w)/2).

(42)

The sequence of three rotations that define the Euler angles are described in [56]: 6 = sin"(—X3), ¢ = sin_l(Y3 / 1—X§), v =

sin! (X, /4 /1 - X 32). Here, X, and X; are the projections of the X (or 1) axis of the particle-fixed reference frame on the 2 and 3 axis,

respectively, of the inertial reference frame. Y, and Y; are the same projections of the Y (or 2) axis of the particle-fixed reference
frame. The quaternion formulation has previously been used to study fluid flows around prolate spheroids in [26,57]. The evolution
equation for quaternions is related to the particle’s angular velocity, ®, = [0, @, ;3 ]T,

q; 44 493 4 4 || @
dle|_1l & u -4 @fef (43)
dt| g3 2{-a 4@ a4 a3||@s

qs —q1 —9 —493 44 0

We consider second and third-order accurate Adams-Bashforth schemes to discretize equation (43) temporally. The transformation
matrix from the inertial frame to the particle-fixed frame is,

GHa=1/2 Qdtad 01434
AN=2| g —aas G+4-1/2 Ga+aa | (44)
Q93+ 994 D993~ 91494 4§ +‘I§ -1/2

A(t) is an orthonormal matrix. A vector in the particle-fixed frame, byayicle is transformed into the inertial reference frame
With biperial = A@T - bparticte- The major axis or the center-line of the spheroidal particle is along the x; axis of the particle-
fixed frame. At a particular time, in the inertial reference frame the particle orientation vector i.e. the particle center line is
p= [q1q3 +949; 99— G149, q§ + qi -1/ 2]. At the end of each time step, after updating the quaternions we update the velocity
boundary conditions. Consider a general case where the imposed fluid motion consists of a uniform velocity, uif“:r"ial and a velocity

gradient, I‘if;‘frﬁa' in the laboratory frame. The particle’s translation and angular velocities (numerical methods to evaluate these are
discussed in section 3.5) in the frame aligned with the particle are u, and ®, respectively. In the frame of reference aligned with the
particle coordinates, the appropriately rotated imposed fluid motion at the outer boundary is,

U (r,0) =A@ -ull@ 4 p . AG) TR AT —u, — @, X1, r=rg. (45)

3.5. Particle velocities

As mentioned in section 2 the particle’s angular and translation velocities, ®, and u, may be a prescribed quantity in a study
of interest, so that the procedure mentioned above has all the required quantities to solve the equations. We are also interested in
studying the scenarios where the particle is free to move due to the imposed and fluid-generated forces and torques. The case when
particle inertia is zero must be dealt with differently than the one with finite particle inertia, and we will consider these two cases
next.

3.5.1. Finite particle inertia
At each time step the particle motion must satisfy the Newton’s equations (6) and (7). These equations are discretized using a
second order implicit Crank-Nicholson scheme,

n+1

up

Ar (fn+1+fnet) (46)

=u," +
P net n
2p,V,
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5At 1+1’“2 0 0
+1 _ 1 +1
o, =o) 2 V2 0 = O (dper + e (47)
PpYp"minor | 0 05
where V, = 47rxr'3ma,/3,
frer =i * 18> fg =F@" +£aD™! “8)
n+l _ n+l n+l n+l _ n+l n+1
qne[ _qﬂuid + let. s qﬂuid - ‘I(T) + q(H) B

are the net force and torque acting on the particle at time step n + 1. fg:fuld and q;’lzll 4 are evaluated from equations (9) and (10) once
the fluid stress on the particle surface at time step n + 1, 6"+! = ¢"*! + II"*!, is available. fé’x*tl and q:x are the externally imposed
(possibly time-varying) force and torques in the frame aligned with the particle at time step n + 1. We use the first order explicit

Euler scheme in the first time step.

3.5.2. Zero particle inertia

As mentioned earlier in section 1 and 3.2, we are also interested in the scenario of zero particle inertia or zero pp- In our studies,
such a case arises when we want to completely remove the inertial effects and study the influence of viscoelasticity, but it could
also be used to investigate massless particles in a fluid with finite inertia. In both of these cases, Newton’s equations governing the
particle motion at each time step are,

! =k +U =0t =t ety o

ahed =dfrig tdewe =0 iy =a(@" +qa@m,
and the time marching used for finite p, in (48) cannot be employed. The governing equations (49) are viewed as force and torque
constraints that velocity, pressure and polymer stress field must satisfy at each time step to yield an appropriate up"+1 and m;“.
Padhy et al. (2013) [58] used a secant method to iteratively impose the torque-free constraint on a sphere rotating in a cross shear
flow. We first consider this method for imposing force- and torque-free constraints for a finite fluid inertia case. Subsequently, we
show that a novel decomposition of inertia-less fluid’s momentum equation can be used to impose these constraints in a non-iterative
and hence computationally efficient manner. These two techniques are discussed next.

Secant iteration method for finite fluid inertia and zero particle inertia: At each time step or within each inner k iteration
(section 3.1) the polymer stress, IT and hence the polymer torque and force, q(IT)"*! and f(II)"*!, from equations (9) and (10),
are fixed. up"’rl and w;* I are iterated along with W"*! and 7"*! to generate the appropriate Newtonian solvent torque and force,
q(z)™! and f(z)"*!, that ensures the torque and force balance in equation (49). In practice, once the polymer constitutive equation
(30) is solved, we first obtain the polymeric torque and force, q(ITy**! and f(IT)"*!, from equation (9). The mass-momentum system
described by equation (32) depends on the particle’s angular velocity o, (see equations (15), (16), and (33)). In the secant iterations
method, iterations proceed by solving the mass-momentum system by the Schur complement method described in section 3.2 and
obtaining the Newtonian torque and force, q(r)"*! and f(z)"*!, from equation (9). After each secant iteration, s, the particle’s angular
and translational velocities @, and u, are updated component-wise,

s s—1 u = s—1

w . — . . .
s+l _ s _ s _ PP s+l _ s _ ps _ P PE .
@pi = Ppi T ner,i s—1" Upi =Hpi neti rg s—17 i€[1.3]. (50)
net,i qner,i net,i net,i

m;“ and u;“ are used in the velocity boundary condition (equation (45)) for the next secant iteration. The secant iterations are

stopped once the magnitudes of all components of the net torque and force on the particle, q]',’lztl and fg:tl, are below prescribed
tolerances. The numerical solution at this point consists of the velocity, pressure, and polymer stress fields and the particle’s required
angular and translational velocity that satisfy the force and torque constraints of equation (49).

Novel resistivity formulation for zero fluid and particle inertia in non-Newtonian fluids: The system of mass and momentum
equations and the torque- and force- free constraint is quasi-steady when both fluid and particle inertia are neglected. All the variables
from here until the end of this section are taken at time step n+ 1 and we will supress the superscript for clarity. Upon neglecting

fluid inertia, the momentum equation (2) becomes

V.6=0, (51)

subject to the boundary conditions mentioned in equation (5) and the stress tensor, o, in equation (4). In this case, the momentum
and mass (1) conservation equations are linear in the velocity and pressure. Therefore, using

u=uM+u’, p=pM4 P, (52)

the system of mass and momentum equations along with the associated boundary conditions is linearly decomposed into two parts.
uM and pM represent the motion-induced velocity and pressure fields and u® and p® the polymer-induced fields. The equations
governing the motion-induced part are,

vV-uM=0, V.-oM=0, (53)

10
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with,

M=M= _pMs 4 (VoM + (V)T (54)
and the boundary conditions,

uM =0, on particle surface , uM=uw(r)=r~I‘+uO—up—wp><r, as |r| > o~ r,. (55)
The polymer-induced part is governed by,

v.u®=0, V-.6'=0, (56)
with,

6 =1 + M =—pP6+ u(Vu® + (V)T +10) (57)
and the boundary conditions,

u’ =0, on particle surface, u’ =0, as |[r| > o~ 1. (58)

The hydrodynamic force and torque acting on the particle are also decomposed into a motion- and polymer-induced part,

fuia = foga + fuia Iuid = Gigia + Yiiuia: (59
with,
fitq =f@™), ., =f@"). af . =q@™), and, qp ., =a(c), (60)

where, f(c) and q(o) are defined in equation (9). This way of decomposing the momentum equation attributes the entire effect of
particle motion (via the boundary conditions in equation (55)) to the motion-induced part of the governing equations. This part has
no influence of the polymer stress. The polymer-induced pressure and velocity fields are forced by the effect of the polymer stress, but
are not explicitly affected by the particle’s motion. A key observation allowing us to circumvent an iterative procedure in calculating
the particle’s motion is that the motion-induced equations represent a Stokes flow (inertia-less Newtonian flow). Hence, the motion
induced force and torque are simply,

ffll\{lxid=Fp'up+f°°’ qg{lid=Qp'wp+qco' (61)
The tensors F, and Q, depend upon only on the particle shape, and the vectors f, and q,, depend upon both the particle shape and
the imposed flow. These are either evaluated analytically for simple particle shapes and imposed flows or calculated by considering
only the motion-induced mass and momentum equations with appropriate boundary conditions. For example, the 21 component of F,
is simply the second component of f(¢™) for a boundary condition uM = 0, on particle surface and uM =[1 0 0]7, as |r| = co & 1,. f,
and q,, are simply the hydrodynamic force and torque on a fixed particle in the imposed flow (r - I +u,) of an inertia-less Newtonian
fluid. From the force- and torque-free constraints, we obtain

u,=—F ! (f + 15 +fexo)s and, @, = =07 - (@ + A g + dext) (62)

in a non-iterative way. This method of obtaining a particle’s motion has long been used in micro-hydrodynamics of Newtonian fluids
and is called a resistivity formulation [59]. However, with the novel decomposition of the inertia-less momentum equation we have
shown that a similar principal can be applied in a computationally useful manner for non-Newtonian problems.

Unlike the polymer induced pressure and velocity fields, the determination of the motion induced velocity and pressure fields
does not require application of the Schur complement approach described in section 3.2 at each time step of the simulation. Once
the particle’s translational and angular velocity are available, these fields are either taken from the analytical solution of Stokes
flow around the particle or from a linear superposition of pre-calculated numerical solutions of a few fundamental incompressible
flows around the particle. The boundary conditions at a given time instant can be represented by a superposition of the boundary
conditions in these fundamental flows. In the most general case when the velocity at the outer boundary in equation (55) has
non-zero components for all the components of the effective (incompressible) imposed velocity gradient (I' + € - ®,) and the effective
imposed velocity (u; —u,), 11 fundamental Stokes flows have to be pre-calculated. While we are primarily considering linear velocity
boundary conditions, this method can be extended to other types of boundary conditions where the Stokes flows required to be pre-
calculated will be different. Using this resistivity formulation, our simulations become significantly faster relative to the secant
iteration method.

The two most computationally intensive components of our method are the weighted Jacobi method to iteratively solve equation
(30) for ¥"*! and the algebraic multigrid method to invert £. The domain decomposition method implemented in Message Passing
Interface (MPI) is used to parallelize the code in the ¢, and &, directions (the &; direction could also be parallelized in future). The
weighted Jacobi method is implemented completely in-house and shows good strong and weak scaling for 100 s of processing units.
The parallel scaling of the algebraic multigrid method is dependent on the external vendor’s capability. We use the academic version
of AGMG [54] for which good scaling was only obtained up to about 20 processing units. The examples considered in section 5 are
completed within a reasonable time of up to four days using 20 processing units. However, for more stringent cases, AGMG can be

11
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replaced with other open source algebraic multigrid solvers available in libraries such as the BoomerAMG of HYPRE [60] that scales
well up to a large number of processing units, but requires more parameter tuning.

In this section 3, we have described the algorithmic structure of our numerical method in a coordinate system free manner. In the
next section, we will delve into the specific choice of the prolate spheroidal coordinate system and the finite difference schemes used
to discretize the spatial gradients in the governing equations. This will allow us to discretize the computational space and various
operators mentioned above.

4. Spatial discretization

One of the benefits of using body-fitted grids and expressing equations in the particle reference frame is that the discrete space or
mesh remains fixed as the particle rotates, and the discretized spatial operators defined here need to be calculated only once before
the equations are evolved in time.

4.1. Prolate spheroidal coordinate system for spatial discretization of computational domain

We use a prolate spheroidal coordinate system to spatially discretize the particle surface and the fluid region around it. The
transformation between the prolate spheroidal (&) and cartesian (x) coordinates, defined for the particle-fixed reference frame, are

x1 = f sinh(¢;)sin(&,) sin(&3), X, = f sinh(&;) sin(&,) cos(&3), x3 = f cosh(&;)cos(&,), (63)

where &, € [0, 7] and & € [0,27]. f is the focal length of the prolate spheroidal particle. Here, &, &, and &; are similar to the radial,
polar and azimuthal directions respectively in a spherical coordinate system. The surface of the particle with an aspect ratio, «, is
exactly modeled as one of the coordinate surface i.e. ¢, = §f“rface. We consider a prolate spheroid spheroid with minor radius, ry;,er-
The surface, 5?‘”&‘“3 and focal length, f, are,

surface _ 1 < K+1 _ "minor
& T2 log Kk—1 )’ /= sinh(ff“rfﬂce) . (64)

The outer surface of the computational domain, r, is also a prolate spheroidal surface that has a constant &, =¢&}°,

£% = sinh™! (||r0| |, / £), (65)

where ||r$i“°’| |, (2-norm or the Euclidean norm of r™i"°r) is the minor radius of the outer surface. It is a user prescribed parameter.
The Euclidean distance of any point on a prolate spheroid ||r,|[, is related to its minor axis through ||r| 3 = |[eRior 2 4 £2 cos?(&,).
If this surface is placed far from the particle, such as the outer surface, ||r,|| = [[r2""||,. In other words, the outer surface is a
nearly spherical surface. This is shown schematically in Fig. 1 and for an actual discretized example in the left panel of Fig. 2. The
computational domain is defined within the limits: ¢, € [cff“rface,ff"], & €[0,x], & €[0,2x].

In order to prevent pressure aliasing that leads to the checkerboard effect causing spurious pressure oscillations, we use a staggered
grid arrangement [61]. The three velocity components are stored at the same location that we term velocity grid. Pressure and the
components of the polymer configuration tensor A and the latter’s matrix logarithm W are stored at a location that is staggered
relative to the velocity grid. These staggered locations form the pressure grid. The velocity and pressure grids are

Velocity Grid: éflist.,vel U égist.,vel U égﬁst.,vel’ Pressure Grid: fiiist.,pres U é:;iist.,pres U égiist.,pres’ (66)
where
) g surface (i—=D(i-05
dist.,vel surface 1 1 . ! (=i .5) .
stovel = + (i Dley S + 1], i=[1.2,, Ny,
SLi ¢l N =1 (i = Dley N, — 12 ILoi=I 1]

dist.,vel dist.,vel
él S + 51 Li—1

dist.,pres f; dist.,pres . dist.,pres
g Pres —gsurface - g TSLPIES — i=[2,3, N, g =g,

2 ’ LN+l —
dist.,pres __ Jj— 1 (! - 1)(! _0~5) .
Gy T e 1L TSR3 N+ 67)
dist.,pres dist.,pres
. & +&,
dist.,vel _ ~2.j 2.j+1 L
gevel = 5 . J=1120, Ny,

dist.,vel dist.,vel
53.1( + 53,k+]

gy =2n%, k=12, N5, &P = 5 . k=[1,2,,N;—1],
when ¢, and ¢, are zero, we obtain a uniform grid in spheroidal coordinates. A uniform spheroidal grid is naturally more clustered
near the particle surface in the Euclidean sense than a uniform Cartesian grid. When ¢; < 0, further grid clustering towards the
particle and the outer surface is obtained. Another useful grid for this purpose to obtain grid clustering near the particle surface
only (and appropriate when ¢, #0) is gﬂif"’vel = ggurface 1 (goo _ gsurface) expl ¢ (i — 1)/(Ny — D] = 1}/{exp(=¢;) — 1}, i=[1,2,,N,1.
Setting ¢, < 0 allows us to cluster the grids (in &, coordinate) towards the major axis of the particle (which is useful in studies such
as extensional flow around the particle with its major axis aligned with the extensional axis). We only consider a uniform grid in
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Fig. 2. Discretized computational domain (x =4, ryiner = 1, [IFg ||, & |[FMin°T||, =80, N} =90, N, = N3 =71 and ¢, = ¢, = 0): left panel shows the full domain, and right
panel shows a zoomed region near particle surface (red). Pressure grid is shown here, velocity grid is staggered relative to this according to definitions in equation
67).

the azimuthal, &; direction as the particle is axisymmetric, and there is no a priori preference of gradients at a particular &; location
for a general linear flow around the particle. Any other function to describe a non-uniform grid can be used with our method as the
finite difference and interpolation schemes described in section 4.3 do not assume a grid type. Fig. 2 shows the pressure grid for a
spheroid with k =4, [|ry ||, & |[rTinr||, =80, N; =90, Ny =N;=71 and ¢; =¢, =0.

4.2. Cartesian basis for vectors and tensors and discrete representation of spatial operators

We use the Cartesian basis on this prolate spheroidal grid to represent the velocity vector or the polymer configuration tensor at
each location. This is done to prevent the coupling of different velocity vector components in the vector Laplacian operator (also see
equation (31) and following discussion) appearing in the momentum equations. The momentum equation written in Cartesian basis
on the prolate spheroidal grid is,

o, —— _ 05 0F ., ~0g oL — 11 40)
pr ( a_tl +ADV(, U, @) r)i) = _a_xi a_gk + VSphinCartui a T’ (68)
where,
2 1 ( 1 0 92 1 < 1 0 92 1 02
o= (—=2 s )y = =+ )+ =L (69)
Sphin€art = p2  tanh(&,) 0¢; ~ g2 ) n2\tan(&) 08, o ) h2 0g2

is a Laplacian operator that acts on individual Cartesian velocity component, u; with derivatives defined in prolate spheroidal
coordinates. In the above equation

hy = hy = f7/sinh?(&)) +sin?(&,), h; = f sinh(£;) sin(&,). (70)

An advantage of this operator is that SphinCartu; has no cross-terms with other velocity components. This decoupling allows us to
solve the mass-momentum system of equations more efficiently. As mentioned in section 3.2 the second step of the matrix-vector
product in the Krylov subspace procedure (equation (36)) within the Schur complement method involves inversion of a discrete
Laplacian operator acting on velocity vector. Unlike in curvilinear basis, the vector Laplacian in Cartesian basis can be treated as a
set of three independent scalar Laplacians acting on three velocity components. Hence, it allows us to use the algebraic multi-grid
methods such as AGMG [54], developed for scalar elliptic equations, to obtain the efficient inversion of the vector Laplacian operator.
In other words, this choice of basis allows us to have a smaller bandwidth and number of off-diagonal components of the discrete
matrix operators in equation (31) as compared to using a more natural choice of spheroidal basis.

As mentioned earlier in section 4.1, we use a staggered grid arrangement to represent different variables: W is stored on the
velocity and p, ¥ and y on the pressure grid. The momentum equation (29) is discretized on the velocity grid. u, is an analytically
known function that can be evaluated at any location. The mass conservation equation (28), polymer constitutive equation (30) and y
equation (41) for FENE models are discretized on the pressure grid. Similar to the finite difference representation of the viscous terms
by [24], we use a straightforward local Lagrange polynomial representation of the spatial operators on a discretized quantity. This
allows flexibility in choosing the order of accuracy of finite difference schemes in different directions and for different interpolation
and spatial derivative operators and is described in section 4.3. The spatially and temporally discretized governing equations at each
grid point and at time step n + 1 are,

55\1( 53’(&1

ox, 08,

=0, (71)
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u"! in the polymer equations (73) and (74) is the total velocity i.e. the sum of velocity deviation &+ and undisturbed velocity u”!
evaluated on the pressure grid. In these equations the hat, , represents the scenario when the velocity or its spatial gradients are
evaluated on the pressure grid. Similarly, the overbar,, represents the case when a pressure grid variable or its gradient is evaluated
on the velocity grid. Various terms appearing in these equations are now defined. o} =3/ (L? - 3) for FENE-P and 1.5/y" for FENE-CR
model, and, @, = 1 for FENE-P and 1 — 3/L? for FENE-CR model. These variables are irrelevant for Oldroyd-B or Giesekus models as
the y equation is unnecessary.

0g, 05 05 S cosh(g))sin(Gy)cos(é3)  [fsinh(g))cos(&H)cos(3)  _ sin(é3)
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are spatial functions of the coordinate system that remain constant with time. 'f’ and are temporally constant analytical functions
evaluated at the velocity and pressure grid respectively.

~n+1 2~n+1 ~n+1 2n+1
sl &% ; 1 8%

(76)

2
v2 |disc.~j1+1 — L( 1 ) i( 1 ou o°u ) L L
SphinCart i tanh(§;) 551 682 h2 \tan(&) 68, se2 2 og ,

is discrete Laplacian operator acting at the velocity grid (¢, &, hy, h, and h; are evaluated at each grid point on the velocity grid).

_— 1 1
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Vu,, is a spatially constant tensor, that is analytically determined from the imposed flow and particle velocities along with the
particle orientation (equation (45)). SR(W", a"); jldi“-, is defined in equation (26) with ¥ =¥" and u = #" where the velocity, @",
dependence appears through L = Vu" defined as,
98, 4]
L,=L"=——. 79
VT ox, 88, 79

4.3. Finite difference schemes for spatial derivatives and interpolations

. . - . iy o N )
Values of various spatial derivatives and interpolated quantities appearing in the discretized equations, %, % T’“’",
J J k
5(H'?f‘—1‘l'.’,.*1 ) 5}/" . dN" 52'&11 .
%, 5, a, =+ 3 and 552 , are approximated by higher order finite difference or interpolation schemes. Lagrange polynomials
k

provide a convenient and ﬂexlble way to generate finite difference weights, irrespective of the grid spacing and order of accuracy
[62]. Each variable, u;, p, ¥;;, I1;; and y is locally represented by an (M — 1)"* order Lagrange polynomial by fitting the variable’s
data on M neighboring grid pomts on which it is stored. Consider any of these variables to be represented by ¢(¢,.&,.&;) which is
stored at locations [.f“hst édlSt .f;’dl“ 1, i,j,k,€N (which represent either the pressure or the velocity grid defined in equation (67)).

Interpolation along coordinate &;,i =[1,3], to a location adiSt', in Lagrange basis polynomials is,

¢(é;dlst 5dlst 5d1st M "11(0)(§dlst é;dlst )¢(5dlst dlst 5dlst

q ny LG
¢(§fhlst gghst gdlst )= E‘/]\’in]"] 15]0) (égllst.7 étz:h(s; )¢(§?I:St gdlst gdlst ),
¢(é;dlst é;dlst églst.) — 21]1\1;]"1 I;O) (E;iist.’ é:;i’l(sg )¢(5dlst égdlst é;dlst (80)

M-—n; édlst. _ 5?11_“'
(0) zdist. gdist. L]
[ ¢ 51() )= H édist. _ gdist.’
ij

Jj=ny1.j#q iq

where the set of discrete points {fidf)“', g=ny,n +1,-, M +n;,n, €N} form an M point stencil around Ef““'. The value of the variable
¢ is thus interpolated from its representation at these M locations to a location represented by the point E;ii“'. As expected, if E;ﬁ“-
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is one of the locations in the M point stencil, 5?;“', the original value of ¢ is recovered. Equation (80) is used to interpolate a
variable from the pressure or velocity grid to a point Ef““' which is not one of é’f;“' locations but lies somewhere between these in

the continuous space. One can then choose to have E,.di“' represent a point on the other grid. The discrete first and second derivatives
in & are,

o¢p s M1
é: (fdlst ‘;;dlst :dlst )= q " ny l(”(&d“t 5;11(5; )¢(§dlst gdlst §dlst)
1
5 d) Zdist. gdist. gdist. M+1-ny ;2) Zdist. gdist. dist. gdist. gdist. (8 )
s G = P E e
where,
M+1-n; gdist. _ gdist.
](1)(§dlst gdlst M+1*"1 1 : 5 é J
i(.) P="1¢P¢Il gdist. _ édist édlst _ gdlst
i ip  J=n1.J#4.p) (82)
M+1-n; Edist. _ gdist.
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i(.) f*"lwf#q gglst. _ éghst. p=n1.p#(q.r) gdlst. _ gghst jenpsiHapr) §dlst g_ch_st.

The derivatives in &, and &; are similarly defined. In the first and second order derivative operators of equation (82) Efm' may or may
not be one of éf:ft' locations. In the latter case it is somewhere within these 51?1;“' locations in the continuous space. The interpolation
and discrete differentiation in the above equations is expressed as a discrete operator acting on the variable ¢.

Terms including variables on the other grid: % is obtained by the multiplying the first order discrete differential operator,

l(])(fdm .,pres éil(st ,vel

) and two interpolation operators l(o)(é,‘dlSt ~pres E,?'St el

) for {f=1,2,3, f #j} with 4! in any order. Each operator

in this case acts on the velocity grid and produces an output on the pressure grid in a particular dimension. Thus, % is the derivative
J

of the velocity component u; at time step n with respect to the &; coordinate, evaluated on the pressure grid. Similarly, % is obtained
J

J() IO
ﬁ(l—ln+l l—ln+l
o
29"
polymer stress I1"*! and I1"*! are obtained from the matrix logarithm of the polymer configurations ¥"*! and ¥"*! respectively using
ji ji,0 Ji Jji,oo

by multiplication of lél)(f;im"vel,éqi(St"Pres), and 1;0)(5?“"%1,fdm"pres) for {f =1,2,3,f #j} with 7 in any order to give the pressure

derivative in ¢; direction, evaluated on the velocity grid. is obtained in a way similar to pressure derivative after the

the method described just before section 3.1. 47, the velocity component in i’ coordinate evaluated on the pressure grid, is obtained
by three successive interpolations of velocity deviation from the undisturbed value in each direction from velocity to pressure grid
and then adding the interpolated value to the undisturbed velocity evaluated at the pressure grid. Therefore, the interpolation errors
are only incurred on the velocity deviation from the far field. Since centered schemes introduce no numerical diffusion the stencils in
these cases consist of an even number of grid points centered (equal on each side) around the output location, f‘.ﬁ“""d or f‘.ﬁ“"pres, ie.
M is an even integer. Near the boundaries of the computational domain, a centered stencil is not possible. In this case we still use an
M point stencil, but with more points on one side of the output location so as to keep all the stencil points within the computation
domain and avoid using any ghost nodes. This issue arises only in the ¢, direction. &; coordinate is periodic about & =0 or 2z and
we utilize this periodicity. The &, coordinate also has no external boundaries in the computational domain and we will discuss the
special treatment required near the coordinate system dependent internal boundaries at & =0 and z in section 4.3.1.

82

. . . . . o’ . . .
Non-convective terms including variables on the same grid: The terms % and ?“2’ appearing in the Laplacian operator,

|disc.,"+1 " require a single multiplication of the discrete derivative operator (ﬁrst or second order) with the respective

2
VSphinCart i

variable. In this case, the input and output grid are the same, i 3 5

as the output location is one of the stencil points and there are equal number of points on e1ther side of it. We deal with the &
boundaries in the similar way as described above for terms including variables on the other grid.

Convective terms (HOUC schemes of Nourgaliev et al. (2007) [63]): The spatial gradients appearing in the convective terms
5P n+|_\yn+l>
must be treated carefully to prevent numerical instability. These include T""" and % in equations (73) and (74), and
k
within ADV(H”,u';o ,mz ;1); of the discrete momentum equation (equations (72) and (77)). Using centered difference schemes such as
the one noted above for non-convective terms lead to a numerical instability. A slight upwinding, where one more point upstream
is used relative to the downstream direction, allows one to maintain high spatial accuracy while maintaining numerically smooth
and stable solution [24,63]. This is termed as a higher order upwind central scheme (HOUQ). It is straightforward to implement and
introduces much less diffusion error compared to WENO schemes used to discretize the convective term [63]. Near the boundaries

of the computational domain (r, and r,) we reduce the length of the stencil while maintaining upwinding. The direction of the

75:

velocity term multiplying the convective spatial gradient, " ai", W % or i gf" determines the shape of the stencil used at the
J Xj

time step, n. This term is equivalent to the velocity components in the sphermdal basis for k =1 and 2 i.e. the velocity along &, and
&, directions respectively. For k =3 this term differs from velocity in the azimuthal, &;, direction by a factor s; from equation (70)

15



A. Sharma and D.L. Koch Journal of Computational Physics 495 (2023) 112559

and instead we use the direction of velocity in &; to determine the stencil shape. Therefore, similar to the original HOUC proposition
of [63] we choose the stencil shape based on the direction of convection in each direction. HOUC was originally [63] proposed for
interface tracking in multiphase flows, but we have found it to improve numerical stability of flow of viscoelastic fluid around a
prolate spheroid as well.

4.3.1. Internal boundaries in the &, direction

The only physical boundaries of the computational domain are the two ¢, surfaces at cffurface and ¢&°. Due to the choice of the
coordinate system, &, is bounded by 0 and r and &; by 0 and 2z, which requires one to consider appropriate boundary conditions at
these computational boundaries. As mentioned above, &; is a periodic coordinate, and the points & =0 and 2z represent the same
physical location. Therefore periodic boundary condition in &; allows the interpolation mentioned above and discrete derivative
operators in the &; direction to be implemented near the boundaries in a way similar to internal & points. The boundary treatment
of &, operators is already described above. The &, coordinate has non-periodic internal boundaries. Such a scenario appears at r =0
in the cylindrical coordinate system and has previously been treated in the context of finite difference schemes by several researchers
[22-24,64]. In this situation scenarios the finite difference stencil near r = 0 requires information at an unphysical location r < 0.
In prolate spheroidal coordinates, the information is required in the unphysical regions &, <0 and &, > z. Similar to these previous
works, a variable ¢ (representing p, y or a component of u or ¥) at these locations is defined as,

P&1.62,83) = (&1, -85 + 1), & <0
P&1,6,83) =P, 2n — &, &3 + 1), &2

In previous works, the coordinate system and choice of basis for the vectors and tensors are the same, and care must be taken in the
sign of certain components of vectors or tensors when using these transformations around the internal points/ axes [24]. However,
in a Cartesian basis the transformations of equation (83) are valid for any component of u or ¥ (as well as p or y).

The issue of non-physical internal boundaries also appears in the spherical coordinate system near the origin at »r =0 and at
the polar axis (0 =0 and x). This has been treated in a recent work of Santelli et al. [21] by writing momentum equations for a
transformed vector [u u,r* uysin(@)]” obtained from the original velocity vector [uy u, ug)”. Zero transformed vector boundary
conditions are imposed on the internal boundaries for equations governing the transformed vector by Santelli et al. [21].

(83)

4.3.2. Singular axis and boundary conditions

Another non-physical issue that arises due to the choice of the coordinate system is the appearance of singular terms. 1/h;
(defined in equation (70)), and % and % (defined in equation (75)) have sin(&,) in the denominator. These terms appear as a
factor in front of several terms in the governing equations. As expressed so far, these terms lead to a coordinate system generated
singularity at the axis on which &, =0 or =. However, these factors appear along with a spatial gradient in the &; direction. The
singular part of these terms can be expressed as

. 1 0¢
Sing = — — (84)
8= Sin(&,) 05
On the singular axes ¢, representing either a scalar p or y or a Cartesian component of u or ¥, is unique. Therefore,
9| _90|  _, (85)
083 1g,=0 983 1g=r

It can be checked from the governing equations that wherever terms of the type in equation (84) appear there is no other &,
dependence in the multiplicative factors. Therefore, using L’Hopital’s theorem

lim Sing= 1 o’¢ s
&—(0.7) cos(&,) 0£,085

and the non-physical coordinate system generated singularity is removed at the expense of introducing additional derivatives in the
&3 (azimuthal) direction. This treatment of coordinate system generated axis singularities is motivated by the treatment of the 1/r
singularity at » =0 in cylindrical coordinate system by [23] and [24]. The axis singularity appears in the pressure grid where the
points éj;ils LPreS — 0 and fgi;z’mes =z are defined. Therefore, the singularity axis treatment is implemented in the discretization of
the mass conservation and polymer constitutive equations. Such singularity does not appear on the velocity grid as it is staggered
relative to the pressure grid. This treatment is not required to discretize the momentum equation.

The previous methods of [23] and [24] that used L’Hopital’s theorem to account for the coordinate system generated singularity
used a curvilinear (cylindrical) basis for the vectors. These vector components are multi-valued at the singularity (r =0) and as
a result the axis values of these components were obtained using the relation between curvilinear and Cartesian components on
the axis. The Cartesian components were averaged/ interpolated using the points off the singular axis. This leads to a difference
between the analytical equation obtained after L’Hopital’s theorem and that obtained using the Taylor series expansion of the actual
discretized equations (compare equations (37) and (51) of [24]). As mentioned in those studies, strict energy conservation cannot be
obtained. Here, we use Cartesian components for the vectors and tensors and do not encounter this problem.

(86)
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This completes the description of the numerical method. In the next section, we implement this method on several flows of
inertia-less Newtonian and viscoelastic fluids, along with examples of Newtonian fluids with inertia.

5. Numerical tests

In this section, we use the numerical method described above to compute the flow field around particles such as a sphere
and a prolate spheroid in a Newtonian fluid with and without (Stokes flow) inertia and an inertia-less viscoelastic fluid. Several
fluid-particle interaction problems are considered for each class by changing the imposed velocity boundary conditions and torque
constraint on the particle. These include fixed and freely rotating spheres and spheroids (including high aspect ratios) in uniform
flow, simple shear flow, extensional flow, and combinations of the first two. These studies show forces, torques and stresslets, fluid
streamlines, and the orientational trajectories of freely suspended spheroids.

As mentioned in section 4.3 using Lagrange polynomials to represent finite difference spatial discretization and interpolation
allows us great flexibility in choosing the order of spatial discretization schemes. In all the examples presented, we have used a
four-point stencil in &, a six-point stencil in & and an eight-point stencil in the &; direction. The higher-order discretization in &,
and &; is useful because for most cases (excluding section 5.3.2) we use less mesh points in these directions as compared to &,. After
initial testing of different orders of accuracy (not shown), we have found these orders of accuracy to be adequate for validating the
cases we present while obtaining numerically stable simulations. In all the examples presented rpinor = 1-

5.1. Stokes flow: motion of particles in inertia-less Newtonian fluid

One of our primary objectives in developing the numerical method described in the previous sections is to study flows with zero
to moderate inertia. The interest in the former is in the presence of viscoelasticity. As discussed in section 1, 3.2 and 3.5.2 zero
inertia studies are important in isolating the effect of viscoelastic fluids and our numerical method is suitable for studying flow with
zero particle and fluid inertia. In this section, we compare our numerical method against the analytically available solution of Stokes
flow (p r=p,=0) of a Newtonian fluid (¢ = 0) around prolate spheroids.

5.1.1. Jeffery orbits: a spheroid rotating in an inertia-less Newtonian fluid

The orientation trajectory of a freely rotating prolate spheroid in a simple shear flow of an inertia-less Newtonian fluid in the
absence of particle inertia is available from the work of Jeffery (1922) [65]. At a given time, ¢, the polar angle, 6,,,,, with the vorticity
axis of the imposed shear flow, and the azimuthal angle, ¢ with the gradient direction in the flow-gradient plane, subtended by
a prolate spheroid of aspect ratio « are given by

grad>

tan(d’gmd) =k tan ( “ -1 )’ tan(euort) = Cx ’ @7
KtK VK2 O (B y0q) + S0 (byra)

where 7 is the shear rate of the imposed flow and C is an orbital constant that depends on initial orientation. Hence, a prolate spheroid
undergoes three-dimensional periodic motion in a shear flow of a Newtonian fluid, and the orbit’s shape is determined by initial
orientation. In Figs. 3a and 3b, we show these Jeffery orbits and the evolution of the polar angle, ¢,,,,, respectively, computed from
our code along with the analytical expressions from equation (87) for x =20 at four starting orientations. In the numerical solution,
the domain size used is 10k and a uniform mesh is used with N| =120, N, = N3 =71 (these are defined in equation (67)). Terms
multiplying fluid and particle density are ignored. At each time step, the resistivity formulation method described in section 3.5.2 is
used to determine the particle’s angular velocity, which leads to zero net torque on the particle. The necessary Stokes flows (motion
induced part of the momentum equation) required in this formulation (as mentioned in section 3.5.2) are pre-calculated numerically
using the Schur complement approach of section 3.2 before time evolving the particle’s orientation. The numerical and the analytical
curves shown in Fig. 3 are indistinguishable.

5.1.2. Forces on a fixed spheroid in a uniform flow
The drag, Cp, and the lift coefficient, C;, of a prolate spheroid with aspect ratio, «, fixed in a uniform flow are given by [66-68],

Lift 2 Drag

= ——— =16zk((K,, — K, )cos“(0)+ K,), Cp=——
L #Uprminor B > e b #Uprminor

where drag and lift are the hydrodynamic forces acting parallel and perpendicular to the imposed flow in the plane of the imposed

flow and the particle center line (major axis). y and U,y are the fluid viscosity and imposed speed, and 0 is the angle of imposed flow

relative to the major axis of the particle.

=16zx(K,, — K,,)cos(§)sin(0), (88)
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We show the lift and drag coefficient for the flows past spheroids of three different aspect ratios, x =6, 10 and 20 in Fig. 4 for seven
different angles of attack between the imposed uniform flow and the particle’s major axis. Good quantitative agreement between
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(a) Complete Trajectories (b) Azimuthal angle vs. time

. 360 i i
Vorticity — Numerical
= = - Analytical
270 + 7
"0
)
=
E 180+ 1
\g
90 - 7
Gradient 0 ‘ ‘
Flow 0 0.5 1 1.5 2 2.5

__t
217/ (k+KT)

Fig. 3. Jeffery orbits: Prolate spheroid of aspect ratio x = 20 rotating in simple shear flow of Newtonian fluid. Four different starting orientations are plotted in (a),
and the orientation trajectory follows one of the degenerate periodic orbits depending upon the starting orientation. (b) shares the same legend as (a) and shows the
time evolution of the polar angle ¢,,,, for the orbits of (a) (curves are indistinguishable as ¢,,,, is independent of the orbit constant). We obtain good agreement with
the analytical prediction of Jeffery [65] for all orientations.
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Fig. 4. Lift and drag coefficients (89) on a prolate spheroid fixed in a uniform flow at various angle of attacks (¢) and particle aspect ratios («) in the inertia-less limit
(p; =0). We obtain good agreement with the analytical prediction available in [66-68] for each x and 6.

our numerical results and the analytical expressions from equations (88) and (89) is obtained. The domain size used is 100x. A
large computational domain is required for low inertia flows past a solid particle because the velocity disturbance created by the
particle decays as 1/r at large distances (r) from the particle [59,45]. This issue has marred previous computations of Andersson et
al. [69] who mentioned the requirement of a large computational domain as the Reynolds number in their study of « = 6 particle
was reduced to about 0.1. They used a rectangular computational domain of size 64x X 64k x 42.7x. Depending upon the angle of
attack, they reported a deviation of 0.6 to 15% from the analytical C, and 10.3 —24.9% from the analytical C; values for zero inertia.
In contrast, using a very large computational domain of size 100«x with N, =250, N, =80 and N; =51 we obtain highly accurate
results for k =6, 10 and 20 shown in Fig. 4. The largest absolute error is at § = 45° for x =20. It is only 1.09% and 0.23% in C;
and Cj, respectively. An accurate simulation of these cases with a reasonable number of mesh points is possible because while the
required size of the computational domain is large, the grid can be relatively sparse in the far-field and the prolate spheroidal grid
is naturally more clustered near the particle surface. Therefore, prolate spheroidal coordinates employed in our simulations are an
appropriate choice for such studies, particularly when we test theories designed to be a perturbation from Stokes flow. This example
will be shown in section 5.2.1.

5.2. Particles in Newtonian fluid with finite inertia

5.2.1. Uniform flow past a fixed prolate spheroid

A prolate spheroid sediments in an inertial-less Newtonian fluid without any change in orientation. Equivalently, a uniform flow
of inertial-less Newtonian fluid past a fixed spheroid, i.e., the cases of section 5.1.2, exerts no hydrodynamic torque on the particle.
Inertia, however, leads to a finite torque on a fixed spheroid. In the low inertia limit, at the steady-state, Dabade et al. (2015) [70]
calculated the coefficient of inertial torque, C;, on a particle with aspect ratio, «, fixed in a Newtonian fluid. When the angle of
attack of the oncoming flow relative to the particle axis is 6, they find,

Cr= %F(K)sin(%’), (90)
where, C; and the Reynolds number, Re, are,
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Our simulations with ||r[[; = 100k = ||r||; = 50k ‘
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Fig. 5. Uniform flow past a fixed spheroid: Steady-state torque coefficient, C;; normalized with Reynolds number, Re, from our numerical simulations and those of
Andersson and Jiang (2019) [69] and Jiang et al. (2021) [71] at different angles of attack, # and Reynolds numbers, Re =0.3, 3.0 and 30 along with the analytical
calculations of Dabade et al. [70] is also shown. Our results agree with that of [69,71] at larger Re and with [70] at Re =0.3.

c, = Torque Ree 21U minork

, s 91

H Uoriﬂnor’(2 H ( )
and U, is the imposed velocity. F(x) is a non-dimensional parameter that depends on the particle aspect ratio and F(6) = 0.5458
[70]. In Fig. 5, we show the steady-state values of Cr/Re at various 6 for x = 6 and three different Re = 0.3, 3.0 and 30.0 from our
numerical results along with those of Andersson and Jiang (2019) [69] and Jiang et al. (2021) [71]. We also show the analytical
expression F(6)sin(20)/2 of Dabade et al. (2015) [70].

Due to the inertial screening (see [72-74] for numerical and experimental evidence of this mechanism in a dilute suspension of
sedimenting spheres), the velocity disturbance due to the particle in the presence of fluid inertia decays at a rate faster than the 1/r
(r is the distance from the particle) decay characteristic of the inertia-less or Stokes limit (see section 5.1.2 and [59,45]). However,
the inertial screening length may still be large if Reynolds number is small and a large computational domain may be required to
quantitatively assess the validity of theories developed for small inertial corrections. In Fig. 5 we observe that our numerical results,
performed with a large computational domain size of ||ry ||, ~ ||r£i“°r||2 =100« are closer to the analytical prediction of Dabade
et al. (2015) [70] for Re =0.3 than the numerical results of Andersson, Jiang and co-workers (2019,2021) [69,71] performed with
a rectangular domain of size 64k X 64k x 42.7k [69] or 34k x 34k x 34k [71]. For 45°, simulations of [69,71] have a deviation of
17% from the analytical prediction of [70] at Re =0.3. We have a deviation of 2.7%. In addition to larger domain size, we use a
straightforward boundary condition of a constant uniform velocity on the outer boundary. However, the discussion in [69] points to
a more involved boundary condition treatment. At higher Re = 3.0 and 30.0 our computations agree with that of [69,71] as shown
in Fig. 5. For Re =3.0 we show another simulation result at ||r ||, ~ ||r$i“°r| |, = 50«. The resolution of our computational grid is
N, =200, N, =131 and N; =65 for both computational domains. The agreement with the results of [69,71] is better for the smaller
of our computational domains at Re = 3.0, a further indication of the importance of domain size at small to moderate inertia. For
6 =45° at Re =3.0 and 30.0 we simulated additional cases with increased resolution N; =300, N, =201 and N; =91 (not shown)
and found similar results as with our lower resolution. Due to the nature of spheroidal coordinates (see equation (63) and more
detailed discussion in section 1 and 4.1 about Euclidean spacing of the spheroidal grid), the domain size can be greatly increased
without decreasing the resolution near the particle surface significantly. Therefore, our method is well equipped to study flow around
a sedimenting particle or a particle fixed in uniform flow in the limit of small to moderate inertia.

We also show the steady-state streamlines of the flow for Re =0 and Re =30 in Fig. 6 for § =90°. The presence of inertia leads to
the formation of trailing edge vortices. The streamline pictures for Re =30 are qualitatively similar to those shown by Andersson et
al. [69].

5.2.2. Effect of inertia on a freely rotating sphere in simple shear flow

In the previous section, we demonstrated the validity of our method to capture the inertial effect on a fixed particle. In this section,
we show an example where particle and fluid inertia are moderate, and the particle is allowed to rotate due to the hydrodynamic
stresses acting on the particle surface as treated by the method described in section 3.5.1. For this purpose, we validate our code
with the simulations of Bagchi and Balachandar (2002) [12] where the particle is a sphere. We use x = 1.001 to represent a sphere
in the prolate spheroidal coordinate system. The sphere is not allowed to translate but can rotate freely under the influence of the
hydrodynamic torque. The imposed fluid velocity is,

U ed = [Uo +7y 0 01, (92)

in the laboratory frame. Two different Reynolds numbers based on the uniform flow speed, U, or the shear rate, y can be defined
in this case. One of them i.e. the translational Reynolds number (Re) is the same as defined earlier in equation (91) and the shear
Reynolds number is,
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Fig. 6. Streamlines of the Newtonian fluid flow around a fixed prolate spheroid of aspect ratio, x = 6 at Reynolds number Re =0 (Stokes flow) and Re = 30 with major
axis at 90° to the oncoming flow (left to right). For each Re, two different views are shown. The Re =30 streamlines are the same as those observed i in figures 5(d)
and 6(d) of [69].
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Fig. 7. Comparison of the inertial slow down of a freely rotating sphere in a flow u=[U, +7y 0 0]” from our simulations and those of Bagchi and Balachandar
(2002) [12] (U, and y are constants). The sphere is allowed to rotate freely but not translate. The left figure shows the ratio of steady state rotation rate of a sphere,
o, to the fluid rotation rate, , = /2 at various translations Reynolds numbers and at two different yr/U, = 0.05 and 0.1. Quantitative agreement in o, /w, between
our simulations and those of [12] is found at the Re and yr/U, shown. The right figure shows the streamlines for Re=100 and jr/U, = 0.1 that are qualitatively
similar to the respective streamlines in figure 8(b) of [12].
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Rey = L—, 93)
M
where r (=r,,,;,,) is the radius of the sphere. Re and Re; are related by a non-dimensional factor, 7r/Uj. In Stokes flow (Re = Re; = 0)

the sphere rotates at the angular velocity of the fluid, ®, = 7/2. The presence of inertia lowers the rotation rate of the sphere. In
Fig. 7a we show the steady state rotation rate of the sphere, w,,, normalized with @, for a range of Re at two different yr/U; = 0.05
and 0.1 from our simulations and those of Bagchi and Balachandar (2002) [12]. We find a good, albeit not exact, agreement of
g/ ’ between the two simulations for all the cases shown up to Re = 100. Bagchi and Balachandar (2002) [12] found the inertial
slow-down, w, /@, of a sphere’s rotation to be independent of yr/U, for a constant Re. This is also captured by our results in Fig. 7a
as the results for the two yr/U, shown nearly collapse. In Fig. 7b we show the streamlines of the fluid flow around the sphere for
Re =100 and yr/U +0=0.1. These are qualitatively similar to the streamlines shown in figure 8(b) of Bagchi and Balachandar (2002)
[12].
This example shows the capability of our numerical methodology to handle moving particles in the presence of inertia.

20



A. Sharma and D.L. Koch Journal of Computational Physics 495 (2023) 112559

le—
#
=2
0.88 g @
=2}
? ::] ® ;2]
0.6+ ® @
£ @ g og
wf ::] " & ]
0.4} ;]
::)
+ Avino et al., spheres [ I &
0.2} o Current, spheres i
+ Avinoet al,, Kk =2
O Current, k =2
0 . . .
0 1 2 3 4

De

Fig. 8. Slower particle rotation due to viscoelasticity. Period average angular velocity, @, (normalized with the fluid rotation rate, @, = j/2) of a torque-free sphere
and a prolate spheroid with aspect ratio, x = 2.0 in the flow-gradient plane of a simple shear flow of Giesekus viscoelastic fluid (¢ = 10 and a = 0.2) at various De. Our
results are quantitatively similar to that of Avino et al. (2014) [26] at all De.
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Fig. 9. Streamlines around a torque-free sphere rotating in a simple shear flow of a Newtonian fluid (left) and of a Giesekus viscoelastic fluid (right) with ¢ = 10.0,
a=0.2 and De =1.0. The changes in streamlines due to viscoelasticity are consistent with the observations of Avino et al. (2008) [75] (figures 9(a) and 9(d) of [75]).
Streamlines for a Giesekus fluid with De = 3.0 are also shown that extend the conclusions of Avino et al. (2008) [75] to higher De than explored in their study.

5.3. Motion of particles in inertia-less viscoelastic fluid

In this section, we compare our numerical method with other numerical and semi-analytical results of the flow of viscoelastic
fluids around spheres and prolate spheroids in various linear flows.

5.3.1. Torque-free rotation in simple shear flow

In section 5.2.2, we discussed the influence of inertia in slowing down the rotation of a sphere in simple shear flow from its value
in the Stokes limit. Avino et al. (2008) [75] reported a similar effect due to viscoelasticity where increasing De in an inertia-less
viscoelastic fluid lowers the rotation rate of a spherical particle. A subset of these authors reported the steady-state angular velocity
of the sphere in Avino et al. (2014) [26]. Here De is the non-dimensional parameter known as the Deborah number, representing
the product of the imposed shear rate and the particle relaxation time. The fluid and particle inertia are ignored, and the net torque
due to the fluid stresses acting on the surface of a freely moving particle is zero. Hence the particle motion in the cases considered in
this section is obtained through the method described in section 3.5.2. The Giesekus constitutive relation (equations (18) and (19))
with ¢ =10.0 and a =0.2 is used to model the polymer stress in the viscoelastic fluid. In Fig. 8 we show that the results from our
simulations for a sphere rotating in a simple shear flow of this fluid are almost identical to that of Avino et al. (2014) [26]. In our
simulations, a prolate spheroid with aspect ratio x = 1.001 represents the sphere. Avino et al. (2014) [26] also shown the average
angular velocity for the case when the major axis of a prolate spheroid rotates in the flow-gradient plane of a simple shear flow of
the same viscoelastic fluid. We compare the results for k¥ =2.0 from our simulations with that of Avino et al. (2014) [26] in Fig. 8 and
find an excellent agreement at all De shown. For a spheroid in a Newtonian fluid, i.e. at De = 0.0, according to Jeffery (1922) [65]
dfwy=2.0c/(1+ k%)= 1.0 and 0.8 for x = 1.0 (spheres) and 2.0 respectively. These analytical estimates are the numerical values
shown in Fig. 8 at De =0.0. We show the streamlines around a freely rotating sphere in a Newtonian fluid and viscoelastic fluid with
De =1.0 in Figs. 9a and 9b. These are qualitatively similar to those shown in figures 9(a) and 9(d) of Avino et al. (2008) [75]. The
effect of viscoelasticity is to distort the region of closed streamlines around the sphere that extends to infinity for Newtonian fluid.
At De = 1.0, both the simulations find stagnation points on either side of the sphere in the flow direction, which marks the end of the
closed streamline region. By showing streamlines for De = 0.1, 0.3 and 1.0 Avino et al. (2008) [75] established the movement of the
stagnation points closer to the sphere upon increasing De. We also show the continuation of this trend to De =3.0. At this higher De,
an asymmetry of the region of closed streamlines and a reverse wake about the flow (horizontal) direction is also observed.

Now we consider three dimensional rotation of a x = 4.0 prolate spheroid in shear flow of the same viscoelastic fluid. As shown
by the numerical simulations of Avino et al. (2014) [26], in the presence of viscoelasticity the orientation of a prolate spheroid no
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Fig. 10. Orientation trajectory of a torque-free prolate spheroid with aspect ratio, x = 4 released in a simple shear flow of an inertia-less Giesekus viscoelastic fluid
(¢ =10 and a = 0.2) at two different initial orientations in the gradient-vorticity plane at De = 1.0 and 3.0. Solid orange and purple lines are from our simulations and
the dashed gray and black are from Avino et al. (2014) [26]. Grey arrows indicate the imposed flow in the shearing plane. Good qualitative agreement is obtained
between the two results. The orientation trajectories of Avino et al. (2014) [26] were obtained through personal communication with the authors.

longer follows the Jeffery orbits as in Newtonian Stokes flow [65] (section 5.1.1). In Fig. 10 we compare the orientation trajectory
of a x =4.0 prolate spheroid rotating in an inertia-less viscoelastic fluid from our simulations with that of Avino et al. (2014) [26].
We show two different starting orientations for De = 1.0 and 3.0 in Fig. 10. The resolution used in these simulations is N; = 150,
N, =71 and N5 =57 (equation (67)). The size of the computational domain used is ||r ||, ||r:.}i“°r| |, =20k. Our simulation results
qualitatively agree with those of Avino et al. (2014) [26] with small, subtle differences. Similar to Avino et al. (2014) [26], we find
the final orientation behavior of the particle at De =1 to be spiraling towards the vorticity direction of the imposed simple shear
flow, irrespective of the initial orientation. At De = 3.0, the particle in both simulations settles to a location very close to the flow
direction, irrespective of the starting orientation.

5.3.2. Rheology of dilute suspensions of spheres

As mentioned in section 1, fluid flow around a particle in an unbounded fluid is useful in studying the rheology of a dilute
suspension of particles where the inter-particle interaction is rare. In Newtonian fluids, the presence of particles leads to an additional
stress nS in the suspension, where n is the number of particles per unit volume and S is termed stresslet. In rheology studies of
incompressible suspensions, the deviatoric or traceless part of the suspension stress is most interesting as the trace of the stress can
be absorbed in the modified pressure. The deviatoric part of the stresslet, S, is an area integral over the particle surface, r,, of a
tensor product of the fluid stress [76],

S(o) = /dA{%[nn~a+n~an]—%6n-o--n}, (94)

['=l‘p

where n is the unit surface normal pointing into the fluid. The stresslet also appears in the particle suspension of viscoelastic fluids
where o is the sum of Newtonian solvent and polymer stress. The deviation of the polymeric stress II (equation (18)) from its
undisturbed value II leads to an additional component of the suspension stress known as the ensemble average polymeric stress.
This requires more careful treatment, as pointed out by Koch et al. (2016) [77]. In this section, we will compare the stresslet due
to a sphere (represented by a prolate spheroid with ¥ = 1.001) in a simple shear flow and a uni-axial extensional flow of viscoelastic
fluid with the previously available results.

Jain & Shaqfeh (2021) [16] considered the shear rheology of a suspension of spheres in a Giesekus viscoelastic fluid (equations
(18) and (19)) with ¢ =0.471 and a =0.0039. In the dilute particle limit, this is obtained by studying simple shear flow around a
sphere. The evolution of the shear or §;, component (where 1 and 2 represent the flow and gradient directions of the imposed shear
flow) of the stresslet (normalized with the product of the particle volume, V,, solvent’s dynamic viscosity, u, and imposed shear rate
7) with strain, from our numerical simulations for this case is compared with that of [16] in Fig. 11 for four different De. Here,
De or Deborah number is the non-dimensional product of the polymer relaxation time and the imposed shear rate. The simulations
reported in [16] were not converged with mesh size. Through personal communication with the authors, we obtained results from
their numerical method at a finer grid and used these refined values to compare with our results here. At the first instant of time,
the normalized stresslet value is 2.5, representing the constant stresslet in a Newtonian fluid originally calculated by Einstein (1906)
[78], as initially, the polymers in the viscoelastic fluid are in equilibrium and have zero stress. The normalized particle stresslet
increases with the strain in the suspension. Stresslet values from the two simulations are in good quantitative agreement at all
De and strain. Upon increasing the mesh resolution, their evolution of the normalized stresslet remained qualitatively similar but
increased in magnitude by about 0.06 for all De values. We have found that our values converged with the mesh size near their most
refined values. In the results presented we use 1.72 million mesh points (N, = 150, N, =201 and N; =57) and the refined results of
Jain & Shaqfeh (2021) [16] (computed using a finite volume method) are from simulations using 1.75 million volume elements.

Jain et al. (2019) [79] considered the extensional rheology of a dilute suspension of spheres in a viscoelastic fluid, where the
stresslet can be obtained by studying uni-axial extensional flow around a sphere. As shown in Fig. 12a the extensional component of
the deviatoric stresslet, $,,, (normalized with the product of particle volume, V,, solvent’s dynamic viscosity, 4, and imposed exten-
sion rate, ¢) for a FENE-P (equations (18) and (19)) viscoelastic fluid with L =100 and ¢ = 0.471 from our simulations qualitatively
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Fig. 11. Comparison of the stresslet due to a sphere in simple shear flow of a Giesekus viscoelastic fluid with ¢ =0.471 and a =0.0039 from our simulations and that
of Jain & Shagfeh (2021) [16]. The curves of Jain & Shaqfeh’s (2021) study are obtained via personal communication with the authors.
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Fig. 12. Stresslet vs. strain due to a sphere in uniaxial extensional flow of a FENE-P viscoelastic fluid. Comparison with the results of Jain et al. (2019) [79] is shown
in (a) with the viscoelastic fluid parameters: L = 100, ¢ = 0.471 and various De. We compare our numerical results at ¢ = 10~> with those of our low ¢ semi-analytical
method described in our previous publication [77] at various De and L in (b) and (c).

agrees with that of Jain et al. (2019) [79] at all strain values for De =0.4,0.6, and 0.8. In this case, De is the product of polymer
relaxation time and imposed extension rate. Due to the same reasons discussed above for shear rheology, the normalized extensional
stresslet in these cases starts at 2.5, but then it reduces in magnitude as strain increases. In [77] we introduced a semi-analytical
method for rheology of particles in viscoelastic fluid. We used this method to obtain the extensional rheology of spheres in FENE-P
fluid. It allows us to perform a wider parameter study at much less computational cost. It is valid at a small polymer concentration, c,
and we validate our numerical method described here using this semi-analytical method in Figs. 12b and 12c. We consider ¢ = 107>
and De=0.4, 2.0 and 5.0 at two different L =10 and 100 and show the variation of the non-Newtonian component of the deviatoric
stresslet, S,, — 2.5V, ué normalized with the particle volume times extensional component of deviatoric undisturbed polymer stress,
11, .V, with Hencky strain. At zero Hencky strain, both the numerator and the denominator in this normalized stresslet are zero,
but it has a finite limit of 2.5. Our numerical results capture all the features of the stresslet from this semi-analytical method, and the
two are almost identical at all De, L, and Hencky strain shown. For all the preceding simulations concerning uni-axial extensional
flow we have used N, =251, N, =351 and N, = 25. The flow is axi-symmetric; hence, we do not need many points in the azimuthal
(&;) direction. Therefore another benefit of using prolate spheroidal coordinates is that in simulating a strong, but axisymmetric flow
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around an aligned axisymmetric particle, we can maintain a small CPU time for the simulation by having fewer points in & and
increasing the resolution in the radial (¢,) and polar (&,) direction. In this case, good resolution in the polar (&,) direction is essential
to capture the large polymer stress gradients around the extensional axis.

Simulating viscoelastic fluids around particles is a challenging numerical problem, particularly at large polymer relaxation times
or Deborah numbers, De. This is because of the large polymer stretch possible in this scenario creating large gradients in polymer
stress that require good resolution around both the particle surface and in specific regions where large polymer stretch is observed. By
comparing and showing an agreement of results from our numerical method with the state-of-the-art simulation results available for
relatively low aspect ratio spheroids (x =4) and spheres, we have demonstrated that our numerical method is suitable for studying
such flows. Furthermore, due to the chosen coordinate system, we are well poised to investigate higher particle aspect ratios where
the required numerical simulations will be more challenging. However, the physical effects due to viscoelasticity are expected to be
more interesting.

6. Conclusions

We have presented a finite difference numerical method to solve the flow of viscoelastic liquids around a prolate spheroid in a
body conforming coordinate system. We can simulate much larger particle aspect ratios than previous computational studies as the
particle surface is exactly modeled as one of the coordinate surfaces in the prolate spheroidal coordinates used. This is the inner
boundary of the computational domain where the required no-slip/ no-penetration condition on the particle is imposed. The outer
boundary of the computational domain is nearly spherical. It represents the far-field where appropriate boundary conditions can be
imposed for any constant or time-varying combination of linear flows. This allows us to study a wide range of highly resolved particle
shapes ranging from a spherical particle to a large aspect ratio prolate spheroidal fiber. Our method is valid for zero to moderate fluid
inertia. Various components within the numerical methods are inspired by the existing numerical techniques originally developed
for varying applications. Schur complement method developed [41] to solve zero-inertia, large viscosity gradient flows in the Earth’s
mantle is used to solve the mass and momentum equations. To remove the coordinate system generated singularity on the polar axes
of the prolate spheroidal coordinate system, we used L’Hopital’s rule as first demonstrated for finite difference methods developed in
cylindrical coordinate system [22-24]. Stability of the convective derivatives is obtained by using the higher-order upwinding central
schemes [63] that were originally used for interface tracking in multiphase flows and lead to low numerical diffusion. To overcome
the violation of free-stream preservation in a curvilinear coordinate system, we simulate the deviation of the relevant flow variables
from the known far-field flow that is undisturbed by the particle’s presence. This also simplifies the governing equations. For the case
of zero particle and fluid inertia in viscoelastic liquids, using a novel resistivity formulation, we develop a computational technique
to satisfy the torque- and force-free constraints on the particle in a non-iterative manner, thus saving computational resources. We
demonstrate our method on a variety of flows of Newtonian (with and without inertia) and viscoelastic fluids around spheres and
prolate spheroids and find good agreement with existing numerical and theoretical results. The capability to handle a variety of
fluids, boundary conditions, and particle shapes opens numerous avenues that can be explored with our numerical methodology.
Flexibility in choosing different imposed flows on the outer boundary within a simulation allows our numerical method to study the
flow around a particle or dilute suspensions of particles in industrial processes where they experience different linear flows in time.
Asymptotic theories for flows around particles are generally developed for the parameter range that is difficult to test numerically
due to requirements such as very large domain size or large particle aspect ratio. Such challenges are overcome by our numerical
method.
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