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Abstract. The advancement in Internet of Things (IoT) technology has
been having a huge societal and economic impact, effectively changing
the paradigms in doing business including the healthcare industry. While
citizens now can enjoy the convenience brought up by healthcare IoT
systems, such as wearable healthcare IoT devices, the privacy risks in-
curred by these systems and devices are not well understood, let alone
adequately addressed. In this paper we systematically characterize the
privacy risks in healthcare IoT systems, by considering a range of pri-
vacy attack vectors such as those that can be imposed by healthcare IoT
device fingerprinting and semi-honest Internet Service Providers. Then,
we leverage these characteristics to guide us in exploring countermea-
sures for mitigating privacy risks in healthcare IoT systems. We hope
the present study will serve as a baseline for designing a systematic so-
lution to protect citizen’s privacy in healthcare IoT systems.

Keywords: Healthcare IoT Systems · Healthcare IoT Devices · Privacy
· Data Breach · Privacy Risk · Cyber Risk

1 Introduction

Internet of Things (IoT) devices have become popular recent years, including
smart watch and smart home ecosystem (e.g., smart thermostat, WiFi plug).
Correspondingly, the healthcare industry has leveraged IoT devices to improve
their services, leading to the notion of healthcare IoT systems, which have been
widely employed for healthcare functions such as automated and remote patient
monitoring, glucose monitoring, smart inhaler, and health data collection [21,30,
43,64]. This leads to a large amount of data that can not only be used by doctors
for purposes such as diagnosing and immediate attention to health issues, but
also be used for healthcare research purposes. It is predicted that the global
⋆ Corresponding author
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market size of healthcare IoT devices will rapidly grow from US$291.2 billion in
2023 to US$861.3 billion in 2030 [1].

With the fast-growing popularity of healthcare IoT systems, we must ade-
quately understand, characterize, and mitigate the potential security and privacy
risks pertinent to healthcare IoT systems. For example, healthcare IoT devices
are widely known to have unaddressed vulnerability surface that makes them
susceptible to many attack vectors. This imposes a big risk because health-
care data often, if not always, include sensitive personal information, such as
one’s vital signs (e.g., pulse rate, body temperature) and medical problems (e.g.,
blood sugar level, blood pressures). These sensitive healthcare data pose a serious
threat to citizens’ privacy and potential unfair social welfare (e.g., a healthcare
insurance company may refuse to sell insurance to a person when the company
knows what kinds of medical problems from which the person is suffering).

To the best of our knowledge, the privacy problem in the context of health-
care IoT systems has not received the due amount of attention, meaning much
research remains to be done. In this paper, we conduct a systematic study on
characterizing the privacy risks in healthcare IoT systems.

Our Contributions. This paper makes two contributions. First, we characterize
the privacy risks that can occur to healthcare IoT systems, through the following
perspectives: (i) attack vectors via healthcare IoT device fingerprinting, (ii) at-
tack vectors associated with Internet communications despite the employment of
standard countermeasures such as cryptography-protected communications (e.g.,
Transport Layer Security or TLS, VPN-protected communications) and anony-
mous communication channels (e.g., Tor), (iii) attack vectors that are applicable
to IoT data collection, (iv) attack vectors that may be waged by a curious or
semi-honest Internet Service Provider (ISP), and (v) attack vectors that may be
waged against healthcare service provider servers. Second, we leverage the re-
sulting characteristics to guide our exploration of potential countermeasures to
protect healthcare privacy against those attack vectors. This exploration would
pave a way for future studies on designing systematic and practical solutions to
harden healthcare privacy.

Related Works. Healthcare IoT techniques have shown great potential in pro-
viding high-quality healthcare services to citizens as evidenced by the following
studies. Liu et al. [43] proposed an IoT-based heart ECG monitoring system that
can detect cardiac abnormality in real time. Wu et al. [64] proposed to integrate
ECG sensors into a T-shirt and use a bio-potential chip to collect quality ECG
data. Istepanian et al. [30] reported a non-invasive IoT glucometer to monitor
the glucose in real time. Fu and Liu [21] designed a non-invasive tissue oximeter
to measure the blood oxygen saturation level, along with heart rate and pulse
parameters.

However, the security and privacy issues in healthcare IoT systems have re-
ceived much less attention and there are not so many studies. Tang et al. [62] de-
signed a privacy-preserving healthcare data aggregation scheme that can achieve
secure data collection from multiple sources and provide fair incentives for con-
tributing patients. Fang et al. [19] proposed an anomaly detection scheme to
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detect healthcare IoT devices that have been compromised by attackers. Li et
al. [37] adopted consortium blockchains to allow patients to manage, share, trade
their medical records securely. In addition, there are early studies on analyzing
risks associated with IoT systems in the healthcare domain [3] and there are some
studies on exploring countermeasures [36, 58, 63]. For example, the Open Web
Application Security Project (OWASP) [58] has identified some threats and vul-
nerabilities in healthcare IoT systems, including the lack of authorization, the
insufficient authentication associated with the pertinent Internet communica-
tions, the insecure web interface of the healthcare service provider servers, the
lack of transport layer encryption, the insecure network service, the insecure
cloud interface, the inadequate security configuration, and the insecure mobile
interface. Despite these studies, there is no systematic understanding on the pri-
vacy risks in healthcare IoT systems. For example, even [3] does not present a
system model that would be comparable to what we will propose in this paper,
which means that their analysis of risks would not be applicable to our setting.
The present study aims at a systematic characterization of privacy risks. For ex-
ample, we investigate privacy risks despite the employment of countermeasures
that could have prevented some vulnerabilities discussed in [3] (e.g., employing
sufficient authentication and transport layer cryptographic mechanisms).

Paper Organization. The rest of the paper is organized as follows. Section
2 presents the system model of healthcare IoT systems. Section 3 characterizes
the privacy risks associated with healthcare IoT systems. Section 4 explores
countermeasures to mitigate the privacy risks. Section 5 discusses the limitations
of the present study. Section 6 concludes the paper with several exciting future
research directions.

2 System Model

Figure 1 describes the system model of healthcare IoT systems, which will severe
as the basis for discussing privacy risks in healthcare IoT systems and counter-
measures for mitigating these privacy risks. We consider a range of healthcare
IoT devices, including: emergency button (for emergency care), heart rate mon-
itor, glucose monitor, sleep tracker, and blood sugar monitor. These devices are
assumed to be connected to a gateway or a smartphone. The connection can be
via WiFi, ZigBee, or Bluetooth Low Energy (BTLE).

The gateway is responsible for collecting data from those devices and commu-
nicating healthcare data to some healthcare servers by some healthcare service
providers. There are multiple servers because the IoT devices are manufactured
by different companies and each service provider has its own server to collect and
analyze the data collected from its customers or patients. The analysis results
are assumed to be returned back to a customer or patient via an App provided
by the service provider, and the App runs in the gateway (i.e., smartphone). The
communications between the gateway and the healthcare servers are based on
the Internet, likely facilitated by some Internet Service Provider (ISP).
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Fig. 1. System model of healthcare IoT systems

To protect the privacy of customers or patients, the healthcare servers of-
ten adopt some “standard” security and privacy mechanisms. For example, they
would employ the TLS protocol or the Virtual Private Network (VPN) tech-
nology to protect the communication between the gateway and the server in
question. Moreover, this gateway-server communication may even be protected
by some anonymous communication mechanisms, such as the Tor technology. At
the application layer, a customer or patient may have created some pseudonym
rather than using real name in the communication (e.g., for authenticating to a
server), and a server may not know the mapping between the pseudonym and
the real name of the customer or patient.

The research question we ask is: even if the aforementioned security and pri-
vacy mechanisms have been employed in healthcare IoT systems, is the privacy
of customers or patients adequately protected? In what follows we character-
ize the privacy risks in healthcare IoT systems despite the employment of the
standard security and privacy mechanisms mentioned above.

3 Privacy Risks in Healthcare IoT Systems

Due to the sensitive nature of the healthcare data, privacy protection in health-
care IoT systems is a necessity and required by law. In what follows we discuss
six categories of privacy risks with respect to the system model presented above.
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3.1 Privacy Risks Incurred by Communications between Healthcare
IoT Devices and the Gateway (Smartphone)

Healthcare IoT devices connect to the gateway via wireless communications,
which provide the attackers the chance to eavesdrop the connection. Encrypting
the traffic of healthcare IoT devices to the gateway can mitigate this risk, but
encryption alone is far from sufficient because studies have showed that wireless
devices could be fingerprinted by exploiting the identifiable features at the phys-
ical layer, the Medium Access Control (MAC) layer, and the network layer [69].

First, the imperfection in the manufacture process of wireless transmitters
can cause varying wireless communication features (e.g., clock skew, frequency
offset, and phase offset) [24]. As a consequence, healthcare IoT devices manu-
factured by the same vendor would share some common wireless features, which
can be exploited by an attacker to recognize what IoT devices are being used
and who are their vendors.

Second, some details of the MAC layer protocol are unspecified in the perti-
nent standard. As a consequence, the concrete implementation is largely left to
the vendors and the discrepancy between these implementations can be exploited
to infer the vendor to which a healthcare IoT device belongs [12].

Third, an attacker could exploit network-layer features to fingerprint health-
care IoT devices effectively [59]. This is because different kinds of IoT devices
communicate with the gateway in different ways (e.g., the frequency of com-
munication, the number of packets that are communicated). More specifically,
network-layer features such as the number of packets, the packet size, and the
direction of the packets can be exploited by an attacker to distinguish different
kinds of healthcare IoT devices [38]. An even more concrete example is that the
heart rate monitor may incur more frequent updates than the glucose monitor
does, and this discrepancy can be exploited to tell these devices apart. This pri-
vacy risk cannot be prevented by encrypting the traffic because cryptosystems
cannot hide the frequency of communications.

3.2 Privacy Risks Incurred by Internet Communications Despite
Standard Countermeasures

Pertinent to the system model described in Figure 1, there are privacy risks
associated with the communications between the gateway and the healthcare
service provider servers (or clouds), which would be partly or completely based
on Internet. To characterize these risks, we consider three scenarios: the commu-
nications are protected by TLS; the communications are protected by VPN; the
communications are protected by anonymous communication techniques such as
Tor. We do not consider the scenario where none of these mechanisms (i.e., TLS,
VPN, Tor) is employed because in which case a passive attacker can breach a
user’s privacy completely by eavesdropping the channel owing to the fact that
the personal medical data is sent in plaintext.
Privacy Risks Despite TLS-protected Communications. In this scenario,
the smartphone that acts as a gateway of the BWAN (Body Wide Area Network),
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which consists of the smartphone and the healthcare IoT devices (including their
associated sensors), is expected to communicate securely with the healthcare ser-
vice provider servers using the well-established TLS protocol. The TLS protocol
provides, among other things, authentication, confidentiality, and data integrity
services between two parties by establishing an authenticated private channel
via an appropriate key-exchange procedure. That is, TLS allows mutual authen-
tication between users’ smartphones / gateways and the remote medical servers,
encrypts data to assure it confidentiality, and assures that the data (encrypted
or not) is not manipulated during transmission.

However, the employment of TLS might give a false sense of privacy protec-
tion, at least for the following four reasons. First, earlier versions of TLS (i.e.,
version 1.1 and version 1.2) are known to be vulnerable, explaining why TLS
version 1.3 has been proposed. However, many computers or devices in the real
world (smartphone and/or the server in this context) have not employed the
most updated protocol [31, 60], meaning that some of them would be suscepti-
ble to known attacks. Second, even if TLS version 1.3 is used, the authenticity
of public key certificate of the gateway and/or the server represents another
source of potential vulnerability even if these certificates are issued by trusted
certification authority and their integrity is assured. One root cause of this phe-
nomenon is that there are systems-based attacks against cryptosystems that may
not be detected immediately, and these delays undermine the trustworthiness
of cryptographic services owing to the presence of (for example) compromised
cryptographic signing keys and/or functions [80]. Third, there are vulnerabilities
that can affect the assurance offered by TLS, such as the CRIME attack [31]
and the BREACH attack [22, 31, 49], which exploit the cookie mechanism by
brute-forcing them. Fourth, TLS requires a granular configuration (application
to application), which offers a great configuration flexibility but, if not prop-
erly managed, opens doors to serious implementation vulnerabilities that can be
exploited by attackers [56].

Even if the preceding risks associated with TLS are carefully prevented, TLS
does not provide any means to assure anonymous communications between a
gateway and a healthcare service provider server. As a consequence, an attacker
passively eavesdropping the Internet could easily figure out which user (via the
user’s smartphone) is communicating with which healthcare service provider,
which could breach privacy. For example, if a user’s smartphone often communi-
cates with a cancer care service provider, this communication alone would expose
that the user has the kind of cancer in question.

Privacy Risks Despite VPN-protected Communications. The VPN tech-
nology aims to create a secure point-to-point connection over the Internet (inse-
cure network) between two networks or devices (e.g., the gateway and a health-
care service provider in the context of the present paper) [2]. By creating a
point-to-point connection, the VPN technology encapsulates IP packets to pre-
vent attackers from sniffing the network traffic. It can also prevent ISPs from
spying on the network traffic of its users. In general, VPN can guarantee data
integrity, confidentiality and authenticity of network communications.
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Still, privacy risks can emerge despite the employment of the VPN technol-
ogy for a gateway to access a healthcare service provider server. For example,
when the VPN service is outsourced to an external service provider that han-
dles the activities of its users, the VPN service provider can be a threat to
privacy. Second, the cryptographic protocol that is used by a VPN may have
vulnerabilities, such as those associated with the key exchange protocols whose
cryptographic properties are extremely delicate. Such vulnerabilities could cause
the compromise of data confidentiality, and thus privacy of the users. Third, the
environment in which VPN is used can pose as a threat. This can be demon-
strated by the LocalNet attack [81]. Putting this attack into the context of the
present paper, a compromised router between a gateway and a healthcare service
provider server can, despite the use of VPN, provide the client with incorrect
network settings (e.g., routing tables), which represent public IP addresses of
interest to the attackers as part of the local network. As a consequence, the data
communicated in a VPN channel falls under the exclusions and bypasses the
VPN tunnel [81].

Even if the preceding risks associated with VPNs are carefully prevented,
VPN, similar to TLS, does not provide any means to assuring anonymous com-
munication between a gateway and a healthcare service provider server. As a
consequence, an attacker passively eavesdropping the Internet can still breach a
user’s privacy by monitoring communication patterns (e.g., what disease a user
may be suffering as shown in the case of TLS).

Privacy Risks Despite Tor-protected Communications. Tor [13,38,55] is
one implementation of the concept of Onion Routing. It is a network of virtual
tunnels that aim to assure privacy and anonymity of its users by preventing
passive attackers from tracking the traffic generated by, in the context of this
paper, a gateway and a healthcare service provider server. While using cryp-
tosystems to protect the confidentiality and integrity of the payload, Tor could
give a false sense of privacy that it can hide the source-destination communica-
tion relationship because Tor is also vulnerable to attacks [13]. As one example,
the Autonomous System eavesdropping attack [4] can be waged by the ISP used
by a smartphone (i.e., gateway in this paper) to allow the autonomous system
that deals with the re-routing of packets, to be present in the access relay and
exit relay of the smartphone. As a consequence, the attacker can carry out a
correlation attack between the incoming and outgoing traffic to breach privacy.
As another example, the exit node eavesdropping attack [33] can be waged by
its ISP to intercept the traffic from an exit Tor node. Since the exit relay traffic
may not be encrypted by the Tor user and Tor doesn’t encrypt the exit relay
traffic by itself, the ISP may successfully eavesdrop the exit relay traffic.

3.3 Privacy Risks in Healthcare IoT Data Collection

Healthcare IoT devices leverage a smartphone as the gateway to communicate
with a healthcare service provider server largely because of their constrained
power and computational capability. Unfortunately, the gateway (smartphone)
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is subject to cyber attacks. For example, a smartphone often runs many apps,
and a malicious app may be able to break its sandbox via privilege-escalation to
control the smartphone and the other apps (e.g., healthcare apps). Moreover, the
apps may share the smartphone’s cache in the CPU, making cache side-channel
attacks possible. For example, a malicious app that uses the same cache with a
healthcare app can perform a side-channel attack (e.g., PRIME+PROBE [50])
to learn how the cache has been affected by the healthcare app, effectively infer-
ring the activities of the healthcare app and even its cryptographic private keys.
In addition, studies (e.g., [65]) even showed that an attacker can exploit inaudi-
ble attacks to compromise a smartphone (e.g., sending unauthorized text mes-
sages, triggering malicious downloads, changing the WiFi settings, or performing
context-aware voice recording). As a consequence, the attacker can exploit these
attacks to breach private healthcare data.

3.4 Privacy Risks Incurred by Curious Internet Service Providers

It is important to highlight a particular privacy threat vector that can be waged
by ISPs, including the scenarios that an ISP itself is compromised and then
abused to breach the privacy of its users. Healthcare IoT device users typically
depend on ISPs to connect to healthcare care service provider servers. However,
an ISP can be curious (i.e., semi-honest) to learn its users’ usage of healthcare
IoT devices. In what follows we discuss why standard techniques for privacy
protection are not adequate.

– TLS. TLS can protect the communications between users’ smartphones /
gateways and the healthcare service provider servers, but not the communi-
cations between the healthcare IoT devices and the associated smartphone /
gateway in most cases (owing to the computational and communication over-
head incurred by TLS). Although employing TLS can prevent an ISP from
learning the application-layer data, it cannot prevent the ISP from learning
“who is communicating with whom” or “which IP address is communicat-
ing with which other IP address.” This can breach the privacy of the users.
For example, if a user frequently communicates with a healthcare service
provider offering cancer therapy, the ISP can infer that the user might be
suffering from a cancer.

– VPN. The healthcare IoT gateway may use the VPN technology to com-
municate with a healthcare service provider server. In this case, the gateway
would incur Internet communication traffic with the VPN server offered by
the healthcare service provider, which still exposes with which healthcare
service provider a user is communicating. Moreover, an ISP could exploit
the traffic correlation technique to figure out the destination of the traffic
originating from the gateway [32].

– Tor. As discussed above, Tor [13] can hide the communication relationship
between a user and a healthcare service provider server to some extent.
However, studies [38, 59] have showed that traffic features, such as packet
count and packet direction, could still leak information about the source
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and destination of the connection. In particular, privacy risk can be incurred
when the Tor routers belong to a single ISP.

The preceding analysis shows that standard techniques cannot adequately pre-
vent ISPs from breaching the privacy of users in healthcare IoT systems.

3.5 Privacy Risks Incurred by Attacks against Healthcare Service
Provider Servers

The healthcare service provider servers can become the target of cyberattacks.
Recent years have witnessed some large-scale data leakage from healthcare servers,
impacting millions of patients [20,34,67]. The leaked information include patient
name, home address, date of birth, and appointment information. One approach
to mitigating the privacy risks incurred by attacks against the healthcare service
provider servers is to make these servers store personal information as little as
possible. However, this is not practical for at least two reasons: (i) the healthcare
service providers would treat the user’s data as their assets; (ii) keeping all data
pertinent to a user would enable a better healthcare service to the user because
a complete medical history is a critical source of information when a user gets a
serious disease.

3.6 Privacy Risks Despite the Use of Application-Layer
Pseudonyms

One may suggest to use application-layer pseudonyms to alleviate privacy risks
against a malicious or compromised healthcare service provider server and the
other attacks mentioned above. For example, a user may use a pseudonym rather
than personal identifier to index their healthcare data. However, this technique
is often vulnerable to the re-identification attack because it cannot guarantee
complete anonymity (e.g., the data may retain some “fingerprints” or “linka-
bility” that can be exploited to recover the identity of a data owner [9, 54]).
These deanonymization attacks may be waged by a malicious healthcare ser-
vice provider, or by an attacker that compromised a healthcare service provider
server.

To be more specific, we note that patient re-identification has been reported
by correlating medical data saved in data servers with patient discharge logs [82].
It is intuitive that the greater the medical details of the pathology categorized
with codes in the databases, the greater the possibility that this data will be re-
identified. Moreover, the greater the side information made public by healthcare
facilities, the greater the ability to deanonymize patient data by correlating
them (e.g., information about hospitalizations and medical conditions, including
prescription data, medical mailing lists , employers, debtors, friends, and family).

Note that making a user to have multiple pseudonyms is no good idea because
it will reduce the usefulness of the healthcare data as a medical doctor cannot see
the complete medical history of a patient and the statistical analysis conducted
by a medical researcher would not obtain high-quality results.
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4 Exploring Countermeasures for Enhancing Privacy in
Healthcare IoT Systems

As analyzed above, privacy risks impose challenges that demand new solutions.
In this section we explore four kinds of countermeasures that would be needed
in order to mitigate those privacy risks.

4.1 Traffic Feature Obfuscation between IoT Devices and Gateway

In order to defeat the healthcare IoT device fingerprinting attacks discussed
above, we propose obfuscating the identifiable features at the physical layer, the
MAC layer, and the network layer.
Fingerprint obfuscation at the physical layer. The imperfection in the
manufacture process of wireless transmitters is inevitable, which makes finger-
printing possible. One approach to alleviating the risk would be to make the
physical layer’s features device-specific rather than vendor-specific. The intu-
ition is that if the physical-layer features of a healthcare IoT device are unique
to the device and do not leak any information about its vendor, it would prevent
an attacker from inferring the vendor. What remains to be investigated include:
(i) the unique features could be exploited to unambiguously identify a device,
which may have another kind of privacy implication because unique fingerprint
may serve as a unique identifier of the device; (ii) how the manufacturing process
may be “randomized” to achieve fingerprint obfuscation; and (iii) the required
distance to the patient that makes the fingerprinting attacks feasible.
Fingerprint obfuscation at the MAC layer. MAC-layer features are in-
curred by vendor-specific implementations of the protocols when dealing with
the unspecified details of MAC-layer protocols. To prevent the vendor-specific
features at the MAC layer, a vendor should adopt more common implementa-
tion shared with other vendors, instead of crafting its own. To achieve this, the
healthcare IoT industry should standardize the unspecified MAC layer details
so as to preserve the healthcare IoT users’ privacy at the MAC layer.
Fingerprint obfuscation at the network layer. When a healthcare IoT
device user is in a public space, an attacker can monitor its wireless traffic to
learn the IoT devices that are being used. The network-layer features include
packet size, packet count, packet directions, and burst pattern. To defeat such
attacks, we propose obfuscating the network traffic features. In what follows we
propose two preliminary schemes for this purpose.

– Random Dummy Packet Injection. When a healthcare IoT device com-
municates with the gateway (smartphone), both sides need to inject dummy
packets randomly so as to obfuscate traffic features such as packet counts
and packet direction. In order to prevent interference to the existing IoT
data processing services, an IoT device should send its real packets with no
delay, while injecting dummy packets to the gateway with a pre-determined
probability pi. Similarly, the gateway sends its real packets to the IoT de-
vice as usual, while sending dummy packets with a probability pg. To better
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protect user privacy, we prefer larger pi and pg. However, the IoT devices
are usually energy-constrained, which means that pi should not be too large;
otherwise, the IoT device’s power would be drained quickly. Thus, we need
to make a trade-off when determining probability pi. On the contrary, the
gateway has no such constraints, and we can choose a larger pg to achieve
better privacy protection.

– Random Packet Padding. If the packets sent by the healthcare IoT de-
vices and the gateway have different sizes, we propose padding the packets
in order to prevent the packet size from leaking any information to the at-
tacker. When an IoT device or the gateway is about to send a packet with
size sc, the sender should pad the packet to the size sc+d with a probability
pc, where d is a random integer between 0 and smax − sc and smax is the
maximum size a packet is allowed to have.

Note that the general idea of traffic padding has been proposed in other con-
text [35], but hasn’t been systematically studied in medical IoT settings. Open
research questions include: How can we determine the padding parameters for
medical IoT devices? Moreover, these techniques should be used together with
cryptographic mechanisms for encrypting the content of device-gateway com-
munication; otherwise, an attacker could recognize the dummy packets. For this
purpose, light-weight cryptosystems, including both confidentiality and integrity
protection mechanisms, should be used.

4.2 Privacy Enhancement for Healthcare IoT Device Data
Collection

We propose taking countermeasures to defeat an attacker from learning health-
care data from the gateway or smartphone. In response to a malicious app tak-
ing control of the smartphone or gateway, we advocate adopting the Trusted
Execution Environment (TEE) and implement the healthcare apps to leverage
TEE [18]. This assures that even if a process with a higher privilege has been
hijacked by a malicious app, the attacker still cannot compromise the data of the
healthcare app because the data is encrypted in the memory space. Note that
it is only when the healthcare app gets executed, the data is decrypted in the
TEE. In addition, we need to address the cache side-channel attacks by run-time
diversification or cache partitioning [42], so that a malicious app and healthcare
app do not share a common cache resource.

4.3 Thwarting a Curious ISP

We propose addressing the privacy risks that can be incurred by a curious ISP by
hiding the true destination of the gateway’s Internet traffic. TLS protocol cannot
conceal the true destination’s IP address, while VPN service is subject to the
traffic correlation attack mentioned above. Therefore, we propose adopting the
onion routing [55] or the TOT implementation to conceal the true destination
of the gateway’s traffic, but in a more sophisticated way than the standard
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use described in Section 3.4, by using onion routers that belong to different
ISPs. Recall that Tor contains thousands of volunteer nodes or onion routers.
We propose that the gateway (smartphone) should choose at least three onion
routers as its entry guard, middle relay, and exit relay. A gateway should have
its traffic to go through the chosen onion routers sequentially before reaching the
healthcare service provider server. The gateway exhibits traffic destined to the
Tor onion routers such that a curious ISP has no idea about the true destination.
It’s also much harder to conduct traffic correlation attacks on Tor onion routers
as long as the three onion routers belong to different ISPs (i.e., no single ISP
can monitor these three onion routers).

Note that recent studies [38,59] find that the traffic features of Tor networks
can be informative, and that an advanced attacker can harvest these traffic fea-
tures to tell which website a Tor user has visited. In our context, such an attack
can be exploited by a curious ISP to learn which healthcare service provider
server the gateway has connected to, which compromises the user’s privacy. In
order to mitigate this attack, we propose that the gateway should initiate delib-
erate web browsing activities when connecting to the healthcare service provider
server, and both the web browsing traffic and IoT traffic use the same set of
onion routers. The goal is to mix the two kinds of traffic together so that the
traffic features of healthcare IoT devices will be obfuscated by the web browsing
traffic.

4.4 Data Privacy Protection for Healthcare Provider Server

Healthcare service provider servers can become the subject of the cyber attacks
discussed above. Although the stored medical records in the these servers may
be anonymized, the records are still subject to re-identification attacks. To pro-
tect data privacy, we propose the following scheme. First, the data should be
encrypted using some appropriate homomorphic encryption schemes that allow
the desired operations over ciphertexts corresponding to some applications (e.g.,
statistical analysis). Second, the private key for decrypting the data and the ci-
phertext resulting from homomorphic operations over the ciphertexts should be
protected in a secure environment, such as TEE such that the private key cannot
be compromised (assuming the attacker cannot exploit any side-channel). How-
ever, one must recognize that even if the private key cannot be compromised,
data privacy can still be at risk. This is because the cryptographic function
corresponding to the private key could be compromised without compromising
the private key. In theory this is known as oracle access to the cryptographic
function (e.g., decryption or digital signing). In practice, this threat has inspired
many studies to mitigate the problem, such as [11,14,15,28,52,72,80].

5 Limitations

The present study has three limitations, which need to be addressed in future
studies. First, the system model we considered, which focused on data collection,
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can be extended to accommodate other emerging components, such as edge com-
puters with which the gateway may communicate with. Second, the extended
system model may introduce new threat vectors, meaning that the threat model
may need to be revised correspondingly. Third, we proposes several counter-
measures to address the privacy risks but without experimental evaluation. The
high-level design we proposed need to be elaborated, refined, and evaluated.

6 Conclusion and Future Research Directions

We have presented a characterization of privacy risks associated with healthcare
IoT systems via a range of privacy attack vectors. We have explored counter-
measures to mitigate these privacy risks. We hope this study will inspire many
future endeavors on adequately assuring privacy in healthcare IoT systems.

Open problems for future studies are abundant. In addition to addressing
the limitations mentioned above, we highlight the following.

First, how should we design a systematic architecture to assure privacy in
healthcare IoT systems? This architecture should be holistic in the sense of
encompassing all the layers, including the application layer and communication
layer, because the preceding discussion suggests that privacy breaching can be
achieved by exploiting information gathered at multiple layers.

Second, how should we design a systematic set of privacy-protection mecha-
nisms to mitigate privacy risks in healthcare IoT systems? Similarly, the mech-
anisms should consider multiple layers and the inference attacks that may be
waged by attackers. This is nontrivial because the current research are often
geared towards point solutions. For example, cryptographic multiparty compu-
tation [23], an elegant mechanism for protecting data privacy when multiple
participants need to conduct some joint computational tasks over the union of
their data, does not prevent an eavesdropper to infer which participants are con-
ducting such activities with which other participants. This means that additional
mechanisms are needed in order to prevent the eavesdropped from making such
inferences.

Third, how should we quantify privacy risks in healthcare IoT systems? How
should we quantify the effectiveness or capabilities of each privacy mechanisms?
What privacy metrics are needed? Although there have been some very nice
and useful privacy metrics, such as differential privacy [17], we observe they are
geared towards the application layer if not a particular kind of applications.
As mentioned above, privacy risks can be incurred by exploiting information
collected at different layers (e.g., application layer and communication layer).
This highlights that privacy is an emergent property, which suggests that holistic
privacy cannot be achieved by composing building-block or point solutions each
of which achieves certain privacy assurances in their respective models [70].

Fourth, the preceding discussion suggests that privacy in the healthcare sec-
tor (and perhaps in a broader context) should be treated holistically. This is
reminiscent of the notion of cybersecurity dynamics [71,76,77], which intends to
model, quantify, and analyze cybersecurity from a holistic perspective because
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cybersecurity also exhibit emergent behavior [8, 53, 70, 78]. This prompts us to
envision the notion of privacy dynamics, which intuitively means the following:
the degree of privacy breached by the adversary evolves with time, and there
could be a threshold of tolerable privacy reach above which the privacy in ques-
tion is completely breached. This means that privacy breaching would exhibit
the phase transition phenomenon, which has been exhibited by theoretical cy-
bersecurity dynamics studies [10,25,26,39,41,45,51,66,68,73–75,79,83,84] and
data-driven cybersecurity studies [6,7,27,61]. For example, it would be very inter-
esting to know whether the rich phenomena exhibited by cybersecurity dynamics
would be exhibited by privacy dynamics as well, such as: global convergence [84]
and global attractivity [26] for preventive and reactive cyber defense dynamics,
and chaos for active cyber defense dynamics under certain circumstances [83].
The privacy implications of these phenomena would also deserve investigation.
Moreover, we would need to define privacy metrics to accommodate the emergent
properties, reminiscent of studies on defining cybersecurity metrics to measuring
cybersecurity from a holistic perspective [5, 8, 16,46,53,78].

Fifth. going beyond the healthcare sector, it is important to realize that cyber
attackers are interested in compromising healthcare data (e.g., via cyber social
engineering attacks [44,47,48,57]) not only for the purpose of breaching privacy,
but also for garnering patients’ information and then exploiting the breached
data to wage further attacks (e.g., blackmailing) [29,40].
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