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Abstract. Honeypot is an important cyber defense technique that can
expose attackers’ new attacks (e.g., zero-day exploits). However, the effec-
tiveness of honeypots has not been systematically investigated, beyond
the rule of thumb that their effectiveness depends on how they are
deployed. In this paper, we initiate a systematic study on characterizing
the cybersecurity effectiveness of a new paradigm of deploying honeypots:
blending honeypot computers (or IP addresses) into production comput-
ers. This leads to the following Honeypot Deployment (HD) problem: How
should the defender blend honeypot computers into production computers
to maximize the utility in forcing attackers to expose their new attacks while
minimizing the loss to the defender in terms of the digital assets stored in
the compromised production computers?We formalize HD as a combinato-
rial optimization problem, prove its NP-hardness, provide a near-optimal
algorithm (i.e., polynomial-time approximation scheme). We also conduct
simulations to show the impact of attacker capabilities.
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Approximation Algorithm · Risk Attitude · Combinatorial
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1 Introduction

Cyberspace is complex and extremely challenging to defend because there are
so many vulnerabilities that can be exploited to compromise its components,
including both technological ones (e.g., software or network configuration vul-
nerabilities) and non-technological ones (e.g., human factors) [29,37]. It would
be ideal if we could prevent all attacks; unfortunately, this is not possible for
reasons that include undecidability of computer malware [1]. Not surprisingly,
cyber attacks have caused tremendous damages [26,28].

Honeypot [13,27,35] is a deception technique for luring and exposing cyber
attacks, especially new attacks or zero-day exploits. The basic idea is to set up
fake services that are open in the Internet, meaning that any access to these
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fake services can be deemed as malicious and the defender can learn the attacks
by monitoring these fake services. The importance and potential of honeypots
have attracted a due amount of attention (e.g., [4–6,20–22,24,33,43]). However,
the effectiveness of honeypots has not been systematically characterized. The
rule of thumb is that their effectiveness depends on how they are deployed. The
traditional way of deploying honeypots is to isolate a set of honeypot computers
from any production network. However, it is well known that such honeypots can
be easily figured out, and thus evaded, by attackers. One approach to addressing
this problem is to “blend” honeypot computers into the production computers
of an enterprise network.

Our Contributions. This paper makes two contributions. The conceptual con-
tribution is to initiate the study on systematically characterizing the effectiveness
of blending honeypot computers with production computers, leading to the for-
malization of a Honeypot Deployment (HD) problem: How should the defender
blend honeypot computers with production computers to maximize the utility of
honeypot in forcing attackers to expose their new attacks, while minimizing the
loss to the defender in terms of the digital assets stored in the compromised
production computers? One salient feature of the formalization is that it can
naturally incorporate attacker’s risk attitude (i.e., risk-seeking, risk-neutral, or
risk-averse). The technical contribution is that we show: (i) the decision version
of the HD problem is NP-complete; and (ii) we present a near-optimal algo-
rithm to solve it, namely a Polynomial-Time Approximation Scheme (PTAS) by
leveraging a given sequence of attacker’s preference (i.e., attack priority) result-
ing from the attacker’s reconnaissance process and the attacker’s risk attitude.
We also conduct simulation studies to draw insights into the aspects which we
cannot analytically treat yet, which would shed light on future analytic research.

2 Problem Statement

Intuition. It is non-trivial to model the Honeypot Deployment (HD) problem,
so we start with an intuitive discussion. Consider (for example) an enterprise net-
work with some production computers, which provide real business services, and
a set of IP addresses. Some IP addresses are assigned to these production com-
puters. The defender deploys some traditional defense tools (e.g., anti-malware
tools and intrusion-prevention systems) to detect and block recognizable attacks.
However, these tools can be evaded by new attacks (e.g., zero-day exploits),
which are not recognizable by them, per definition. In order to defend the net-
work against new attacks, the defender can blend some honeypot computers into
the production ones, meaning that some of the remaining (or unassigned) IP
addresses are assigned to honeypot computers, and some IP addresses may not
be used at all (in which case we say these IP addresses are assigned to dummy
computers). Each computer (production, honeypot, and dummy alike) will be
assigned one unique IP address. Note that traditional defense tools are still useful
because they can detect and block recognizable attacks.

The research is to investigate how to optimally assign IP addresses to com-
puters to benefit the defender, where the meaning of optimization is specified
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as follows. First, suppose deploying one honeypot computer incurs a cost to
the defender, which is plausible because the honeypot computer does not pro-
vide any business-related service. Second, when a new attack is waged against a
production computer, it incurs a loss to the defender because the digital assets
stored in the production computer are compromised and the new attack can-
not be blocked by traditional defense tools. Third, when a new attack is waged
against a honeypot computer, it incurs no loss to the defender but does incur
a cost to the attacker because the new attack now becomes recognizable to the
defender. In this case, we say a valid new attack becomes invalid (i.e., no more
useful to the attacker). Fourth, the usefulness of honeypot computers is based on
the premise that the attacker does not know which IP addresses are assigned to
honeypot computers; otherwise, the attacker can simply avoid attacking them.
In the real world, the attacker often uses a reconnaissance process, which can be
based on a range of techniques (from social engineering to technical methods),
to help determine which IP addresses may be assigned to honeypot comput-
ers. The reconnaissance process often correctly detects which IP addresses are
assigned to the dummy computers because no attempt is made by the defender
to disguise these IP addresses (otherwise, they can be deemed as honeypot com-
puters). The reconnaissance process is not perfect in identifying the honeypot
computers, meaning that when the attacker decides to attack a computer, which
the attacker deems as a production computer, the computer is actually a hon-
eypot one, causing the attacker to lose the new attack. Because of the uncer-
tainty associated with the outcome of the reconnaissance process, the attacker
would decide whether to attack a computer with some probability, which reflects
the attacker’s reconnaissance capability, the attacker’s risk attitude (i.e., risk-
seeking, risk-neutral, or risk-averse), and the honeypot computer’s capability
in disguising itself as a production computer. To accommodate attacker recon-
naissance capabilities, we assume the probabilities are given; this is reasonable
because deriving such probabilities is orthogonal to the focus of this study.

Problem Formalization. Let N denote the set of positive integers and R the
set of real numbers. For any positive integer z ∈ N, we define [z] = {1, . . . , z}.
Suppose the defender is given n ∈ N production computers and n + m IP
addresses, meaning that m ∈ N is the number of IP addresses that can be used
to deploy honeypot computers and dummy computers (if applicable). Suppose
the defender needs to deploy up-to m ∈ N honeypots computers. Each honeypot
computer may incur a cost c ∈ N, which may vary depending on the degree of
sophistication embedded into the honeypot computer (i.e., the most sophisti-
cated a honeypot computer, the more difficult for the attacker’s reconnaissance
to determine whether it is a honeypot or production computer). Suppose the
total budget for deploying the honeypot computers is B ∈ N. This means that
the defender will select h-out-of-the-m IP addresses for deploying honeypot com-
puters subject to the total cost for deploying the h honeypot computers is at most
B. Then, m − h dummy computers are respectively deployed at the remaining
m−h IP addresses. Recall that the attacker can correctly recognize the dummy
computers and will not attack them. We use the term “non-dummy computer”
to indicate a computer that is a production or honeypot computer.
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For ease of reference, we use “computer j” to denote “the computer assigned
with IP address j, where the computer may be a production, honeypot, or
dummy one.” Let vj,D be the value of the digital assets stored in computer
j (e.g., sensitive data and/or credentials). This leads to a unified representation:
an IP address j ∈ [n + m] is associated with a value vj,D ∈ N as assessed by the
defender and a cost cj ∈ N to the defender, where

– vj,D > 0 if j is a production computer, and vj,D = 0 otherwise.
– cj > 0 if j is a honeypot computer, and cj = 0 otherwise.

Suppose the attacker has r valid new attacks which are not recognized by
the traditional defense tools employed by the defender, where r represents the
attacker’s budget. Before using these attacks, the attacker often conducts a
reconnaissance process to identify: (i) the value of digital assets stored in com-
puter j ∈ [n + m], denoted by vj,A ∈ N, which is the attacker’s perception of
the ground-truth value vj,D that is not known to the attacker (otherwise, the
attacker would already know which computers are honeypot ones); and (ii) the
probability or likelihood that a non-dummy computer j is a honeypot computer,
denoted by qj , which is the probability that the attacker will not attack computer
j (i.e., 1 − qj is the probability that the attacker will attack it). The attacker
knows which computer is a dummy one and will not attack any dummy com-
puters. To summarize, let xj ∈ {0, 1} be an indicating vector such that xj = 1
if computer j is a production or honeypot computer, and xj = 0 if computer j
is a dummy computer, then we can see that the attacker will attack computer
j with probability (1 − qj)xj , which is 1 − qj for a non-dummy computer j and
0 otherwise. Note that vj,A and qj together reflect the attacker’s reconnaissance
capability.

When the attacker attacks computer j which happens to be a production
one, the loss to the defender (i.e., the reward to the attacker) is vj,D > 0; when
the attacker attacks computer j which happens to be a honeypot one, the loss
to the defender is vj,D = 0 and the attacker’s budget decreases by 1 because the
new attack now becomes invalid (i.e., recognizable to the defender). The attacker
cannot wage any successful attack after its r new attacks become invalid.

The research question is to identify the optimal strategy in assigning some
of the m IP addresses to honeypot computers under budget constraint B so as
to minimize the expected loss to the defender. The assignment of IP addresses
to the production, honeypot, and dummy computers is called a defense solution,
which is characterized by a vector x = (x1, x2, · · · , xm+n) ∈ {0, 1}n+m where
xj = 1 means computer j is a production or honeypot computer, and xj = 0
means it is a dummy computer. Given a fixed defense solution x, the loss to
the defender is defined as the total value of the production computers that are
attacked. The loss to the defender is probabilistic because the attacker attacks a
non-dummy computer with a probability, meaning that we should consider the
expected loss. To compute the expected loss, we need to specify the probability
distribution of the loss, which depends on the probability distribution of the
attacker’s decisions on attacking non-dummy computers. To characterize this
distribution, we introduce two concepts, attack sequence and attack scenario; the



Optimally Blending Honeypots into Production Networks 289

former is a stepping-stone for introducing the latter, which is used to compute
the expected loss. Given a defense solution, we assume the attacker sequentially
decides whether to attack computer j ∈ [n+m] according to probability qj . The
order according to which the attacker makes decisions is called attack sequence.

Fig. 1. Illustrating the concepts of production, honeypot, and dummy computers and
the idea of attack sequence.

As illustrated in Fig. 1, we use circles to represent production computers and
squares to represent the m IP addresses for which the defender needs to decide
whether to deploy a honeypot or dummy computer. An attack sequence repre-
sents the attacker’s choice of priority in considering which non-dummy computers
to attack, where priority depends on the attacker’s perception of the value of
computer j, namely vj,A, and the probability qj , and the attacker’s risk attitude.
We assume such attack sequences are given as input to the present study because
attaining these attack sequences is an orthogonal research problem. To define
attack scenario, we should specify when the attacker stops. The attacker stops
when any of the following two conditions hold: (i) after attacking some honeypot
computer which causes the attacker’s budget to decrease from 1 to 0, meaning
that the attacker has no more valid new attack to use; (ii) the attacker finishes
attacking all computers it would like to attack (based on its probabilistic deci-
sion) even if there are still valid new attacks, meaning that the attacker only con-
siders whether or not to attack a non-dummy computer once, which is plausible.
Specifically, given a defense solution x and an attack sequence, the decisions on
whether or not to attack computers j ∈ [j∗] is called an attack scenario; that is,
an attack scenario s is a binary vector πs = (πs(1), πs(2), · · · , πs(js)) ∈ {0, 1}js ,
where πs(j) = 1 means computer j is indeed attacked and πs(j) = 0 otherwise,
and js ≤ n + m is the last computer that is attacked. Note that πs(js) = 1 by
definition. Recall that the attacker attacks computer j with probability 1 − qj ,
meaning Pr[πs(j) = 1] = 1 − qj and Pr[πs(j) = 0] = qj . Define Pr[πs] as the
probability that attack scenario πs occurs, then we have

Pr[πs]=
∏

j∈[js]:πs(j)=1,xj=1

(1 − qj) ·
∏

j∈[js]:πs(j)=0,xj=1

qj .

Note that if xj = 0 then computer j is a dummy computer and the attacker
will not attack it at all, so it does not contribute to the probability Pr[πs].
Let P ⊂ [n + m] be the subset of the IP addresses that are assigned to pro-
duction computers and H := [n + m] \ P be the subset of the remaining
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IP addresses. If attack scenario πs occurs, then the loss to the defender is
the total value of all production computers attacked by the attacker, which
is Loss(πs)=

∑
j∈H:πs(j)=1 vj,D.

Given the loss incurred by a specific attack scenario as shown in the above
equation, the expected loss is defined over all possible attack scenarios. Not
every vector in {0, 1}k where k ≤ n + m is necessarily an attack scenario; a
vector π ∈ {0, 1}k is an attack scenario if and only if

– k = n + m and |{j ∈ [n + m] ∩ H : π(j) = 1}| ≤ r; or
– k < n + m, π(k) = 1 and |{j ∈ [k] ∩ H : π(j) = 1}| = r.

We call a vector π satisfying the preceding condition an attack scenario-
compatible vector. Let V be the set of all attack scenario-compatible vectors.
Then, the expected loss of the defender with respect to a fixed defense solution
is:

E[Loss] =
∑

π∈V
Loss(π) Pr[π]. (1)

In summary, we have:

Honeypot Deployment (HD) Problem
Input: There are n ∈ N production computers and a budget of B ∈ N for the
defender. There are n + m IP addresses, which are indexed as 1, . . . , n + m.
Among these n + m IP addresses, the n production computers are respec-
tively deployed at n pre-determined IP addresses; among the remaining m
IP addresses, the defender will select a subset of them to deploy honeypot
computers, and the other IP addresses will be assigned to dummy computers,
which are known to, and not be attacked by, the attacker. For each computer
j ∈ [n + m], there is an associated value vj,D ∈ N, where vj,D = 0 if j is a
honeypot or dummy computer and vj,D > 0 otherwise; moreover, there is an
associated cost cj ∈ N, where cj = 0 if j is a production or dummy computer,
and cj > 0 if j is a honeypot computer. The total cost incurred by deploying
honeypot computers cannot exceed budget B. The attacker has r ∈ N valid
new attacks. For computer j ∈ [n + m], the attacker has a perceived value
vj,A and a probability qj that a non-dummy computer j is a honeypot com-
puter. The attacker needs to use one valid new attack to attack a non-dummy
computer j. The attacker attacks a non-dummy computer with probability
1− qj , and does not attack a dummy computer. If the attacker indeed attacks
a non-dummy computer j, there are two cases: in the case j is a honeypot
computer, then the loss to the defender is vj,D = 0 and the attacker’s budget
decreases by 1; in the case j is a production computer, then the loss to the
defender is vj,D > 0 and the attack’s budget remains unchanged. The attacker
stops when its budget becomes 0, meaning that all of its r new attacks become
invalid, or it has made decisions on whether to attack the n + m computers.
Output: Decide which of the m IP addresses should be assigned to honeypot
computers within budget B so as to minimize the expected loss defined in
Eq. (1).
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3 Hardness and Algorithmic Results

In this section, we study the computational complexity of, and algorithms
for solving the HD problem, assuming an attack sequence is given. Without
loss of generality, we can index the computers so that the attack sequence is
(1, 2, · · · , n + m). As illustrated in Fig. 1, we use circles to represent production
computers and squares to represent the m IP addresses for which the defender
needs to decide whether to deploy a honeypot or dummy computer. Recall P is
exactly the set of indices of the circles and H is exactly that of the squares.

Note that the vj,A’s, qj ’s together with the attacker’s risk attitude decide
the priority of the non-dummy computers to the attacker, and thus the attack
sequence. Once an attack sequence is fixed, the objective value (i.e., expected
loss to the defender) only depends on vj,D’s. Since our hardness and algorithmic
results are based on a fixed attack sequence, our discussion throughout this
section does not involve vj,A’s. Hence, we let vj = vj,D for simplifying notations.

3.1 Hardness Result

Now we study the decision version of the HD problem: decide whether or not
there exists an assignment of the m IP addresses to honeypot computers with
budget B such that the expected loss is no larger than the given threshold T .

Theorem 1. The decision version of the HD problem is NP-complete.

The proof of Theorem 1 is deferred to Appendix A. Here we discuss the basic
idea behind the proof. Membership in NP is straightforward. Towards the NP-
hardness proof, we reduce from the Subset Product problem. The instance and
the solution of the Subset Product problem are given as follows:

Subset Product Problem
Input: k ∈ N, S ={1, . . . , m}, w=(w1, . . . , wm)∈N

m.
Output: Is there S′ ⊆S such that

∏
i∈S′wi = k?

A key fact for the Subset Product problem (which is different from the Subset
Sum problem) is that Subset Product is NP-hard even if each ai is bounded by
mO(1). This means we leverage the following Lemma 1 given by Yao [50].

Lemma 1 ([50]). Assuming P �= NP , the Subset Product problem can not be
solved in (mwmax log k)O(1) time where wmax = maxi wi.

3.2 Algorithmic Results

As a warm-up, we present an exact algorithm, Algorithm 1, to brute forces the
optimal solution in exponential time. We show this algorithm can be modified
to obtain Algorithm 2 to find a near-optimal solution in polynomial time.

An Exact Algorithm via Dynamic Programming. Algorithm 1 essentially
branches on whether or not to deploy a honeypot computer for every t ∈ H,



292 M. M. U. Zaman et al.

Algorithm 1. Dynamic Programming for the HD problem
Input: I : the attack sequence of IP address

qt : the probability that attacker does not attack computer t
vt : computer’s value assigned with IP address t
ct : cost of deploying honeypot computer at IP address t
B : budget of the defender

Output: The assignment of IP address to honeypot computers which minimizes the
expected loss of the defender and satisfies the total deployment cost is no greater
than B.

1: ˜F0 = {(0, 1, 0, . . . , 0)}
2: for t = 1 to n + m do
3: ˜Ft = ∅
4: for all (t−1, p0, p1, . . . , pr, e, b) ∈ ˜Ft−1 do
5: if IP address t is assigned to a production computer then
6: ˜Ft ← ˜Ft ∪ (t, p0, p1, . . . , pr, e + qtvt

∑r−1
i=0 pi, b)

7: else
8: ˜Ft ← ˜Ft ∪ (t, p0, p1, . . . , pr, e, b)
9: for k = 1 to r do

10: p
′
k = (1 − qt) · pk−1 + qt · pk

11: end for
12: p

′
0 = qtp0

13: ˜Fh ← ˜Ft ∪ (t, p
′
0, . . . , p

′
r, e, b + ct)

14: end if
15: end for
16: eliminate all the dominated states in ˜Ft

17: end for
18: return min{e : (n + m, p0, p1, . . . , pr, e, b) ∈ ˜Fn+m and b ≤ B}

thus the total number of distinct dominated states (e.g.,
∑

t |F̃t|) is bounded
by 2O(m). Hence, its running time is 2O(m). Algorithm 1 serves two purposes:
(i) it provides a method to recursively compute Eq. (1), while noting that the
definition of Eq. (1) involves an exponential number of attack scenarios that
cannot be used directly; (ii) it can be combined with rounding techniques to
give a polynomial-time approximation scheme, which is the main algorithmic
result (Algorithm 2).

We consider the following sub-problem: Let t ∈ [n + m]. Is it possible to
deploy honeypot computers at some IP addresses within [t] such that (i) the total
cost equals b which is a given constraint, (ii) the expected loss to the defender
because of attacks against the production computers in P ∩ [t] equals e, and (iii)
the probability that the attacker attacks exactly k honeypot computers within
[t] is pk for every k = 0, 1, · · · , r? We denote the sub-problem by a (r + 4)-tuple
(t, p0, p1, . . . , pr, e, b).

We define set Ft as: If the answer to the sub-problem (t, p0, p1, . . . , pr, e, b)
is “yes,” then we call (t, p0, p1, . . . , pr, e, b) as a stage-t state and store it in Ft.
Note that Ft can be computed recursively as follows. Suppose we have computed
Ft−1. Each stage-(t−1) state gives rise to stage-t states as follows:
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– If t ∈ P, i.e., IP address t is associated with a production computer, then
the stage-(t − 1) state (t−1, p0, p1, . . . , pr, e, b) gives rise for one stage-t state
(t, p0, p1, . . . , pr, e

′, b) where e′ = e+(1−qt)vt

∑r−1
k=1 pk. We explain this equa-

tion as follows. By the definition of a state, (t − 1, p0, p1, . . . , pr, e, b) ∈ Ft−1

implies that pr is the probability that the attacker has attacked r honeypot
computers within [t−1], and thus the attacker cannot attack anymore. If this
event happens, we have e′ = e; otherwise (with probability

∑r−1
k=1 pk = 1−pr)

the attacker is able to attack the production computer at IP address t which
has a value vt, and the attacker attacks it with probability 1 − qt. This leads
to e′ = epr + (e + vt)(1 − qt)

∑r−1
k=1 pk = e + (1 − qt)vt

∑r−1
k=1 pk.

– If t ∈ H, then we have two options, i.e., we either assign a honeypot com-
puter or a dummy computer to IP address t. If we assign a dummy com-
puter, then the stage-(t − 1) state (t − 1, p0, p1, . . . , pr, e, b) gives rise to
stage-t state (t, p0, p1, . . . , pr, e, b); if we assign a honeypot computer, then
(t − 1, p0, p1, . . . , pr, e, b) gives rise to stage-t state (t, p′

0, p
′
1, . . . , p′

r, e, b + ct)
where p′

0 = p0qt and p′
k = pkqt + pk−1(1 − qt) for 1 ≤ k ≤ r.

Definition 1. We say stage-t state (t, p0, p1, . . . , pr, e, b) dominates (t, p0, p1,
. . . , pr, e, b

′) if it holds that b < b′.

Denote by F̃t ⊆ Ft the set of all stage-t states which are not dominated by
any of the other stage-t states. Let x∗ denote the optimal solution of the HD
problem. Let H(x∗) be the set of IP addresses that are assigned to all honeypot
computers. Consider H(x∗) ∩ [t], which is the set of IP addresses in [t] that are
assigned to a honeypot computer in the optimal solution x∗. Denote by bt(x∗)
the total cost of deploying honeypot computers in H(x∗)∩ [t]. Denote by pt,i(x∗)
the probability that the attacker has attacked exact i honeypot computers within
H(x∗) ∩ [t]. Denote by et(x∗) the expected loss to the defender from computers
in [t]. The following lemma demonstrates that the optimal solution x∗ can be
determined from F̃n+m; its proof is deferred to Appendix B.

Lemma 2. For each optimal solution x∗ of the HD problem and each t ∈ [1, n+
m], there exists some stage-t state (t, pt,0(x∗), . . . , pt,r(x∗), et(x∗), b) ∈ F̃t such
that b ≤ bt(x∗).

A Polynomial-Time Approximation Scheme (PTAS). Now we design a
PTAS (i.e., Algorithm 2) for the HD problem by modifying Algorithm 1. The
key idea is to reduce the total number of states that need to be stored during the
dynamic programming. We start with a high-level description of Algorithm 2. Let
ξ = ε/2(n+m). Define Γξ = {[0], (0, 1], (1, 1+ξ], . . . , ((1+ξ)γ−1, (1+ξ)γ ]} where
(1 + ξ)γ−1 < nvmax ≤ (1 + ξ)γ . Define Λξ = {[0], (0, (1 + ξ)−γ ], ((1 + ξ)−γ , (1 +
ξ)−γ+1], . . . , ((1 + ξ)−1, 1]}. The high dimensional area [0, 1]r+1 × [0, (1 + ξ)γ ] is
then divided into a collection of boxes where each box I ∈ Λr+1

ξ × Γξ. In each
box, only one representative state will be constructed and stored in F̂t. F̂t is
computed recursively in two steps: (i). Given F̂t−1, each of its state gives rise
to stage-t states following the same formula as Algorithm 1 (see line 5 to line



294 M. M. U. Zaman et al.

13 of Algorithm 2). Here St is introduced as a temporary set that contains all
the stage-t states computed from F̂t−1. (ii). Within each box I, if St contains
multiple states, then only the state with the minimal value in coordinate b will
be kept. All other states are removed. By doing so we obtain F̂t from St. Details
of Algorithm 2 are presented below. The rest of this subsection is devoted to
proving the following theorem.

Theorem 2. Algorithm 2 gives an (1 + ε)-approximation solution for the HD
problem and runs in (n+m

ε )O(r) log(vmax) time where vmax = maxi vi.

To prove Theorem 2, we need the following lemma that estimates the error
accumulated in the recursive calculation of Algorithm 2 and illustrates the rela-
tionship between F̃t and F̂t.

Lemma 3. For each (t, p0, p1, . . . , pr, e, b) ∈ F̃t, there exists (t, p̂0, p̂1, . . . ,
p̂r, ê, b̂) ∈ F̂t such that b̂ ≤ b, (1 − ξ)tê ≤ e ≤ ê, and for i = 0, . . . , r it holds that
(1 − ξ)tp̂i ≤ pi ≤ p̂i.

Algorithm 2. Improved Dynamic Programming for the HD problem
Input: I, qt, vt, ct, B
Output: The assignment of IP address to honeypot computers which minimizes the

expected loss of the defender and satisfies the total deployment cost is no greater
than B.

1: ̂F0 = {(0, . . . , 0)}
2: for t = 1 to n + m do
3: St = ∅
4: for all (t−1, p1, . . . , pr, e, b) ∈ ̂Ft−1 do
5: if IP address t is assigned to a production computer then
6: St ← St ∪ (t, p0, p1, . . . , pr, e + qtvt

∑r−1
i=0 pi, b)

7: else
8: St ← St ∪ (t, p0, p1, . . . , pr, e, b)
9: for k = 1 to r do

10: p
′
k = (1 − qt)pk−1 + qt · pk

11: end for
12: St ← St ∪ (t, qtp0, p

′
1, . . . , p

′
r, e, b + ct)

13: end if
14: end for
15: ̂Ft = ∅
16: for all Box I ∈ (Λξ)

r+1 × Γξ do
17: for i = 0 to r do
18: p̂i = max{pi : (h, p0, p1, . . . , pi, . . . , pr, e, b) ∈ St ∩ I}
19: end for
20: ê = max{e : (h, p0, p1, . . . , pr, e, b) ∈ St ∩ I}
21: b̂ = min{b : (h, p0, p1, . . . , pr, e, b) ∈ St ∩ I}
22: ̂Ft ← ̂Ft ∪ (t, p̂0, p̂1, . . . , p̂r, ê, b̂)
23: end for
24: end for
25: return min{ê : (n, p̂0, p̂1, . . . , p̂r, ê, b̂) ∈ ̂Fn+m and b̂ ≤ B}
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Proof. We prove this by induction. Clearly, Lemma 3 holds for t = 1. Suppose
it holds for t = � − 1, i.e., for each (� − 1, p0, p1, . . . , pr, e, b) ∈ F̃�−1, there exists
(� − 1, p̂0, p̂1, . . . , p̂r, ê, b̂) ∈ F̂�−1 such that b̂ ≤ b, (1 − ξ)k−1ê ≤ e ≤ ê, and for
i = 0, . . . , r it holds that (1 − ξ)k−1p̂i ≤ pi ≤ p̂i. We prove Lemma 3 for t = �.

Note that the recursive computation is the same as Algorithm 1, the only
difference is that we replace the accurate value pk’s with the approximate value
p̂k’s. The rounding error will accumulate through the calculation, but will not
increase too much in each step through the following two observations: (i) For
any α ∈ [0, 1] and any j ∈ [1, r] it holds that

(1 − ξ)�−1(αp̂j−1 + (1 − α)p̂j) ≤ αpj−1 + (1 − α)pj ≤ αp̂j−1 + (1 − α)p̂j .

(ii) For any β ∈ R≥0 it holds that

(1 − ξ)�−1[ê + β

r−1∑

i=1

p̂i] ≤ e + β

r−1∑

i=1

pi ≤ ê + β

r−1∑

i=1

p̂i.

Hence, we know that for each (�, p0, p1, . . . , pr, e, b) ∈ F̃�, there exists (�, p′
0, p

′
1

, . . . , p′
r, e

′, b′) ∈ S� such that b′ ≤ b, (1 − ξ)�−1e′ ≤ e ≤ e′, and for i = 0, . . . , r it
holds that (1 − ξ)�−1p′

i ≤ pi ≤ p′
i.

We know that within each box I, only one representative state
(t, p̂0, . . . , p̂r, ê) will be constructed and stored in F̂t. By the definition of Λξ

and Γξ, we know that for each (k, p′
0, p

′
1, . . . , p

′
r, e

′, b′) ∈ St ∩ Γ there exists
(t, p̂0, p̂1, . . . , p̂r, ê, b̂) ∈ F̂t such that b̂ ≤ b′, (1−ξ)ê ≤ e′ ≤ ê, and for i = 0, . . . , r
it holds that (1 − ξ)p̂i ≤ p′

i ≤ p̂i. Thus, Lemma 3 is proved. �	
Now we are ready to prove Theorem 2.

Proof of Theorem 2. We first estimate the overall error incurred in Algorithm
2. Let ξ = ε/2(n + m). Since 1 − (n + m)ξ ≤ (1 − ξ)n+m, it is easy to verify
that (1 − ξ)−n−m ≤ 1 + ε. According to Lemma 3, Algorithm 2 gives an (1 + ε)-
approximation solution for the HD problem, i.e., the expected loss of the defender
is no larger than (1 + ε) times the minimum expected loss of the defender.

Now we estimate the overall running time. The total number of distinct dom-
inated states (e.g.,

∑
t |F̂t|) is bounded by O((n+m)|Λξ|r+1|Γξ|). We know that

|Λξ| ≤ O(n+m
ε ). In the meantime, |Γξ| = log1+ξ(nvmax) ≤ O(n+m

ε log(vmax))
where vmax = maxi vi. Overall, Algorithm 2 runs in (n + m)r+3 log(vmax)/εr+2

time. Hence, Theorem 2 is proved. �	

4 Experiment

Simulation Parameters. In our simulation, we set the number of production
computers as n = 255, m ∈ {15, 20, 25, 30}, the number of attacker’s new attacks
as r ∈ {5, 10, 15}, and the defender’s budget as B = {1000, 2000, 3000, 4000}.
The defender’s perceived value for each production computer j, vj,D, is gener-
ated uniformly at random within [50, 2000] (while noting that vj,D = 0 if j is no
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production computer); the attacker’s perceived value for each non-dummy com-
puter j, vj,A, is also generated uniformly at random within [50, 2000]. The cost
for deploying honeypot computer j is generated uniformly at random within
[50, 200]. The probability qj ∈ [0, 1] that the attacker believes j is a honey-
pot computer will be set in specific experiments. To conduct a fair comparison
between the expected losses incurred in different parameter settings, we normal-
ize them via expected relative loss, which is the ratio between the expected loss
and the summation of all vj,D, leading to a normalized range [0, 1].

4.1 Expected Losses Under Different Attack Sequences

Now we study how different attack sequences may affect the optimal objective
value of the HD problem. Recall that attack sequence is an input to our algo-
rithms. Given an attack sequence, we can apply Algorithm 2 to compute a near-
optimal defense solution to the defender, which leads to essentially the smallest
expected loss the defender can hope for. Consequently, the smallest expected
loss, i.e., the optimal objective value, reflects how destructive the attacker is
when it chooses a certain attack sequence.

While the attack sequence can be arbitrary, we are interested in the attack
sequences that are likely to be adopted by a rational attacker. Note that the
attacker observes qj and vj,A for each computer j ∈ [n + m]. Intuitively, the
attacker needs to weigh between the potential gain vj,A and the risk that the
attacker cannot get this gain, namely probability qj . Therefore, the attacker’s
risk attitude determines the attack sequence. Leveraging ideas from economics,
we study three types of risk attitudes of the attacker (see, e.g. [16,19]): (i)
risk-seeking, meaning that the attacker wants to maximize its revenue fast; (ii)
risk-averse, meaning that the attacker wants to minimize its chance of losing a
valid new attack; (iii) risk-neutral, meaning that the attacker acts in between
risk-seeking and risk-averse. A formal definition of risk-attitude depends on the
notion of utility function, denoted by uj . We focus on a broad class of utility
functions, known as exponential utility [8,34], which is defined as:

uj =

{
1−e−αvj,A

α , if α �= 0
vj,A, if α = 0

where α is the coefficient of absolute risk aversion, which, roughly speaking,
measures how much the attacker is willing to sacrifice the expected value vj,A in
order to achieve perfect certainty about the value it can receive. If α > 0, then
the attacker is risk-aversion; if α = 0, the attacker is risk-neutral; if α < 0, the
attacker is risk-seeking. With the utility function, the attacker (with risk attitude
specified by α) will rank (or prioritize) the non-dummy computers based on the
non-increasing order of the expected utility value (1−qj) ·uj and use these tanks
to formulate an attack sequence.

In our experiment, we choose α ∈ {−0.05,−0.005, 0, 0.005, 0.05}, where
α = −0.05 means the attacker is strongly risk-seeking and α = 0.05 means the
attacker is strongly risk-averse. For each α, we generate 4,560 instances. Figure 2
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Fig. 2. Expected relative loss with respect to different risk-attitude (i.e., α = −0.05
for most risk-seeking, α = −0.005 for risk-seeking, α = 0 for risk-neutral, α = 0.005
for risk-averse, α = 0.05 for most risk-averse).

uses the standard box-plot to summarize the expected relative loss with respect
to different values of α. Recall that for box-plot, the left and right boundary of
the rectangle respectively corresponds to the 25th and 75th percentile; the line
in the middle marks the 50th percentile or median; the small empty circle within
each box is the mean value; the black dots are outliers.

Insight 1. Under exponential utility, the expected relative loss with respect to a
risk-seeking attacker has a smaller variance than that of a risk-averse attacker,
meaning that defending against a risk-seeking attacker is more predictable.

Insight 1 is counter-intuitive at first glance because risk-averse attackers are,
by definition, more deterministic or prefer less variance. However, it can be
understood as follows: risk-averse attackers are very sensitive to the qj ’s. Among
the randomly generated instances, we observe that the attack sequences of a
risk-averse attacker can vary substantially for two instances with similar qj ’s; by
contrast, the attack sequence of a risk-seeking attacker does not. Since different
attack sequences can cause significant changes to the expected relative loss, the
expected relative loss of a risk-seeking attacker has a smaller variance in general.

4.2 Expected Loss w.r.t. Attacker’s Reconnaissance Capability

An attacker’s is reflected by the qj ’s and vj,A’s. For a perfectly capable attacker, it
holds that vj,A = vj,D (i.e., the attacker can correctly obtain the value of the dig-
ital assets in computer j), qj = 0 for each production computer j, and qj = 1 for
each honeypot computers j. For a specific attacker, we measure its reconnaissance
capability by comparing it with the perfect attacker, namely b comparing two
sequences: the sequence of the expected values perceived by an arbitrary attacker,
(aj)n+m

j=1 where aj = (1 − qj) · vj,A; the sequence of the expected value perceived
by the perfectly capable attacker, (vj,D)n+m

j=1 . We measure the similarity between
these two sequences by treating them as (n + m)-dimensional vectors and using
the cosine similarity metric widely used in data science [40]. The cosine similarity
between vector A = (aj)n+m

j=1 and D = (vj,D)n+m
j=1 is defined as:

SC(A,D) =
A · D

‖A‖‖D‖ .



298 M. M. U. Zaman et al.

If the cosine similarity is 0, it means that the two vectors are orthogonal to
each other in the sense that aj > 0 when vj,D = 0 and aj = 0 when vj,D > 0.
In this case, the attacker is completely wrong, namely believing that production
computers are honeypot computers and that honeypot computers are production
computers. If the cosine similarity equals to 1, then aj∑n+m

j=1 aj
= vj,D

∑n+m
j=1 vj,D

for

all j, meaning the expected value of each computer perceived by the attacker is
almost always proportional to vj,D.

In our experiment, we use different cosine similarity values by generat-
ing the qj ’s in a “semi-random” fashion (because drawing qj ’s uniformly at
random from [0, 1] always yields a large cosine similarity). More specifically,
we generate the qj ’s according to normal distribution N (x, 0.1) where x ∈
{0.1, 0.25, 0.5, 0.75, 0.9}, and for each x we use N (x, 0.1) to generate 20% of
the qj ’s.

Fig. 3. Attacker’s reconnaissance capability vs. the expected loss to the defender.

Figure 3 plots the experimental result, showing that the expected relative
loss increases marginally when the cosine similarity is below a certain threshold,
but increases sharply when it is above a certain threshold.

Insight 2. Blending honeypots into production computers is extremely effective
when the attacker’s reconnaissance capability is below a threshold.

5 Limitations

This study has a number of limitations. First, we assume that the attacker
attacks computers in an independent fashion. In practice, the attacker may re-
evaluate its perception of both vj,A and qj after attacking a computer. This
is possible because the attacker will receive feedback from attacking a produc-
tion computer that is different from attacking a honeypot computer. This poses
an outstanding open problem for future research: How should we extend the
model to incorporate this kind of feedback? Second, we assume that the new
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attacks available to the attackers are equally capable of attacking any produc-
tion computer and will be applicable to any honeypot computer. The former is a
simplifying assumption because new attacks may have different capabilities and
incur different costs (e.g., a zero-day exploit against an operating system would
be more powerful and expensive than a zero-day exploit against an application
program). The latter is also a simplifying assumption because, for example, an
exploit against Microsoft Windows is not applicable to Linux. Future research
needs to investigate how to extend the model to accommodate such differences.
Third, we formalize the HD problem in a “one-shot” fashion, meaning that
the honeypot computers, once deployed, are never re-deployed (i.e., their IP
addresses never change after deployment). The effectiveness of honeypots would
be improved by dynamically adjusting the locations of the honeypot computers.

6 Related Work

Prior Studies Related to Honeypots. From a conceptual point of view, the
present study follows the Cybersecurity Dynamics framework [47–49], which
aims to rigorously and quantitatively model attack-defense interactions in
cyberspace. From a technical point of view, honeypot is a cyber deception tech-
nique. We refer to [3,18,38,41,44,53] for cyber deception in a broader context.
We divide prior studies on honeypots into three families based on their purposes.

The first purpose is to study how to leverage honeypots to detect new attacks
(e.g., [4–6,22,24,33]). These studies typically assume that honeypot computers
and production computers belong to two different networks; this isolation renders
honeypot’s utility questionable because it is easy for attackers to determine
the presence of such honeypot networks or honeynets. The present study falls
under this thrust of research but advocates blending honeypot computers into
production computers. Moreover, our study is through an innovative lens, which
is to maximize the utility of honeypot in forcing attackers to expose their new
attacks, while minimizing the loss to the defender in terms of its digital assets
stored in the compromised production computers. To the best of our knowledge,
this is the first study on modeling and analyzing the utility of honeypots.

The second purpose is to study how to prepare or use honeypots [2,7,10,
17,20,21,23,25,32,43,45]. For example, some studies are geared toward mak-
ing honeypot computers and production computers look the same to disrupt
attackers’ reconnaissance process [2,23,25,32]; some studies are geared toward
deploying honeypots to defend networks with known vulnerabilities (e.g., [7]);
some studies focus on making honeypot self-adaptive to attacks [20,21,43]. Our
study is different from these studies for at least three reasons. (i) Putting into the
terminology of our study, these studies can be understood as treating the vj,A’s
and the qj ’s as their goal of study. Whereas, we treat the vj,A’s and qj ’s as a
stepping-stone for characterizing the utility of honeypots in forcing attackers to
expose their new attacks, which are not known to the defender. This means that
these studies, which lead to honeypot computers with various degrees of sophis-
tication, can be incorporated into our model to formulate a more comprehensive
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framework. (ii) These studies are dominated by game-theoretic models. By con-
trast, we use a combinatorial optimization approach. This difference in approach
can be justified by the difference in the goals because we focus on characterizing
the utility of honeypots in forcing attackers to expose their new attacks, while
minimizing the loss to the defender in terms of digital assets. (iii) Some of these
studies assume that the vulnerabilities are known (but unpatched). By contrast,
we can accommodate both known (but unpatched) and unknown vulnerabilities
(e.g., zero-day vulnerabilities unknown to the defender).

The third purpose is to study how to leverage honeypot-collected data to
forecast cyber threats [12,15,30,42,46,51,52]. These studies lead to innovative
statistical or deep learning models which can accurately forecast the number or
the type of incoming attacks. However, these studies leverage traditional honey-
pot deployments mentioned above, namely that honeypot computers belong to a
different network than the production network. By contrast, we investigate how
to optimally blend honeypot computers into production networks, which would
enable of more realistic forecasting results [39].

Prior Studies Related to Our Hardness and Algorithmic Results. We
study the defender’s optimization problem given a stochastic attacker. This prob-
lem is closely related to the bi-level optimization problem [9,11,14,31,36]. How-
ever, these results are all for a deterministic follower (attacker), while the HD
problem studied in this paper involves a stochastic attacker who makes decisions
in a probabilistic way. We are not aware of approximation algorithms for bi-level
optimization problems where the follower (attacker) is stochastic.

7 Conclusion

Honeypot is an important cyber defense technique, especially in forcing attack-
ers to expose their new attacks (e.g., zero-day exploits). However, the effective-
ness of honeypots has not been systematically investigated. This motivated us
to formalize the Honeypot Deployment (HD) problem as one manifestation of
understanding the effectiveness of blending honeypot computers into produc-
tion computers in an enterprise network. We show that the HD problem is NP-
hard, provide a polynomial time approximation scheme to solve it, and present
experimental results to draw further insights. The limitations mentioned above
represent interesting open problems for future research.

Acknowledgement. This work was supported in part by NSF Grants #2122631,
#2115134 and #2004096, and Colorado State Bill 18-086.

A Proof of Theorem 1

Proof of Theorem 1. Given an arbitrary instance of Subset Product, we construct
an instance of the HD problem as follows: there is only one production computer
(i.e., n = 1) with value 1. There are m + 1 IP addresses in total, where the
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production computer is the last computer (i.e., computer m + 1). The defender
can deploy honeypot computers at IP addresses from 1 to m. In particular,
deploying honeypot computer at IP address i costs ci = �log(wi)M�/M . The
defender’s budget is B = 
log(k)M�/M where M = k(m + 1). The probability
is qi = 1/wi for non-dummy computer i ∈ [m], and qm+1 = 0. Set parameter
r = 1 and the threshold of the expected loss to the defender as T = 1/k.

Note that although log k and log wi’s are not rational numbers, for the pur-
pose of determining the value of (e.g.) �log(wi)M�, it suffices to compute log wi

up to a precision of O(1/M), which can be done in O(log M) time. It is easy
to verify that the input length of the HD problem is O(m log k + m log wmax)
where wmax = maxi wi.

Consider the expected loss of the defender. Since the value of the production
computer is 1, E(Loss) equals the probability that computer m + 1 is attacked.
Since r = 1, the attacker can attack computer m + 1 only if it does not attack
any computer from 1 to m, which equals to

∏

i∈[m],a honeypot computer is deployed at i

1
wi

.

Suppose the answer to the instance of the Subset Product instance is “yes”,
then we know that there exists S′ such that

∏
i∈S′ wi = k. Deploying honeypot

computers at IP addresses i where i ∈ S′, we know the total cost to the defender
equals

∑

i∈S′

�M log wi�
M

≤
∑

i∈S′
log wi ≤ log k ≤ 
M log k�

M
= B,

which is within budget B. Meanwhile, the expected loss is
∏

i∈S′

1
wi

= 1/k.

Hence, the minimum expected loss for the HD instance is no larger than 1/k,
i.e., the answer for the HD instance is “yes”.

Suppose the answer for the HD instance is “yes” (i.e., the minimum expected
loss to the defender is no larger than 1/k). Let S′ ⊆ [m] be the IP addresses
where the defender deploys honeypot computers, we know that

∑

i∈S′
log(wi) − m/M ≤

∑

i∈S′
ci ≤ B ≤ log(k) + 1/M, (2)

and ∏

i∈S′
1/wi ≤ 1/k. (3)

By Combining Eq. (2) and Eq. (3), we know that

k ≤
∏

i∈S′
wi ≤ k · 2(m+1)/M < k + 1.

Consequently,
∏

i∈S′ wi = k. Hence, the answer to the Subset Product instance
is “yes”. �	
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B Proof of Lemma 2

Proof. We prove this by induction. It is easy to verify Lemma 2 for t = 1. Suppose
it holds for t = � − 1, that is, there exists some (� − 1, p�−1,0(x∗), . . . , p�−1,r(x∗),
e�−1x

∗), b) ∈ F̃�−1 such that b ≤ b�−1(x∗), we prove Lemma 2 for t = �. We
distinguish two cases based on computer � and the optimal solution x∗:

– If � ∈ P, then for the optimal solution x∗ it holds that p�,k(x∗) = p�−1,k(x∗)
for 0 ≤ k ≤ r, e�(x∗) = e�−1(x∗) + (1 − q�)v�

∑r−1
k=1 p�−1,k, and b�(x∗) =

b�−1(x∗). Given that (� − 1, p�−1,0(x∗), . . . , p�−1,r(x∗), e�−1(x∗), b) ∈ F̃�−1 ⊆
F�−1, according to the recursive computation of F� from F�−1, (�, p�,0(x∗),
. . . , p�,r(x∗), e�(x∗), b�(x∗)) ∈ F�. Hence, there exists some (�, p�,0(x∗), . . . ,
p�,r(x∗), e�(x∗), b) ∈ F̃� such that b ≤ b�(x∗) by the definition of F̃�.

– If � ∈ H, we further distinguish two sub-cases: (i) If computer � is a dummy
computer in x∗, then p�,k(x∗) = p�−1,k(x∗) for 0 ≤ k ≤ r, e�(x∗) = e�−1(x∗),
and b�(x∗) = b�−1(x∗). (ii) If computer � is a honeypot computer in x∗, then
we have p�,0(x∗) = q�p�−1,0(x∗), p�,k(x∗) = p�−1,k(x∗)q�+(1−q�)p�−1,k−1(x∗)
for 1 ≤ k ≤ r, and e�(x∗) = e�−1(x∗), b�(x∗) = b�−1(x∗) + ct. In both sub-
cases, the recursive computation of F� from F�−1 implies that (�, p�,0(x∗), . . . ,
p�,r(x∗), e�(x∗), b�(x∗)) ∈ F�. Hence there exists (�, p�,0(x∗), . . . , p�,r(x∗),
e�(x∗), b) ∈ F̃� such that b ≤ b�(x∗) by the definition of F̃�.

Hence, Lemma 2 is true for all t ∈ [n + m]. �	
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