
Learning Gradual Typing Performance1

Mohammad Wahiduzzaman Khan #2

CACS, UL Lafayette3

Sheng Chen #4

CACS, UL Lafayette5

Yi He #6

Data Science, William & Mary7

Abstract8

Gradual typing has emerged as a promising typing discipline for reconciling static and dynamic9

typing, which have respective strengths and shortcomings. Thanks to its promises, gradual typing10

has gained tremendous momentum in both industry and academia. A main challenge in gradual11

typing is that, however, the performance of its programs can often be unpredictable, and adding or12

removing the type of a a single parameter may lead to wild performance swings. Many approaches13

have been proposed to optimize gradual typing performance, but little work has been done to aid the14

understanding of the performance landscape of gradual typing and navigating the migration process15

(which adds type annotations to make programs more static) to avert performance slowdowns.16

Motivated by this situation, this work develops a machine-learning-based approach to predict the17

performance of each possible way of adding type annotations to a program. On top of that, many18

supports for program migrations could be developed, such as finding the most performant neighbor19

of any given configuration. Our approach gauges runtime overheads of dynamic type checks inserted20

by gradual typing and uses that information to train a machine learning model, which is used to21

predict the running time of gradual programs. We have evaluated our approach on 12 Python22

benchmarks for both guarded and transient semantics. For guarded semantics, our evaluation results23

indicate that with only 40 training instances generated from each benchmark, the predicted times24

for all other instances differ on average by 4% from the measured times. For transient semantics,25

the time difference ratio is higher but the time difference is often within 0.1 seconds.26

2012 ACM Subject Classification Theory of computation → Type structures; Computing methodo-27

logies → Learning linear models28

Keywords and phrases Gradual typing performance, type migration, performance prediction, machine29

learning30

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.2331

Funding This work has been supported in part by the National Science Foundation (NSF) under32

Grant Nos. IIS-2245946, IIS-2236578, and CCF-1750886 and in part by the Commonwealth Cyber33

Initiative (CCI) and DARPA.34

1 Introduction35

Statically typed languages offer benefits such as early programming error detection, doc-36

umentation, and better performance but can hinder program executions when they are37

incomplete or contain type errors. Dynamically-typed languages offer the benefits of fast38

prototyping and flexible usability but provide less program correctness guarantee. Tra-39

ditionally, languages are either static or dynamic. In an effort to reconcile these typing40

disciplines, a typing discipline named gradual typing was developed and popularized in the41

last decade [39; 40; 13; 43; 44; 6; 9; 23; 32; 14].42

The main idea of gradual typing is that within a single program, parts of it may be43

statically typed (by giving type annotations to parameters in that part) and parts of it may44

be dynamically typed (by leaving out type annotations to parameters or explicitly giving45

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

42nd European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohammad-wahiduzzaman.khan1@louisiana.edu
https://orcid.org/0009-0001-1760-6645
mailto:sheng.chen@louisiana.edu
https://orcid.org/0000-0003-1735-0704
mailto:yihe@wm.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2024.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Learning Gradual Typing Performance

6.2-6.629.6-30.2

18.6-19.229.5-30.0 7.2-7.3 6.2-6.5 7.1-7.4

18.1-19.0

18.6-19.4 29.9-30.2 18.2-19.2 7.1-7.3

7.0-7.4 6.1-6.8

29.9-30.2

Figure 1 Part of the performance lattice for the Pascal benchmark. The lattice consists of 16
configurations, a combination of four parameters with each being typed or untyped. Each filled
(unfilled) oval represents a typed (untyped) parameter. Each configuration shows only 4 ovals and
omits the rest, which is the same across the 16 configurations. A circled number or letter is attached
to each configuration for easy reference in the paper. Each configuration is associated with two
times, separated by a ‘-’. The first time is the measured time of the configuration and the second (in
blue) is the predicted time by our machine learning algorithm. All times are in seconds in the paper.

them the dynamic type, written as Dyn). Ideally, in gradual typing, prototyping and initial46

development is done with the dynamic aspect of the language, and programs are migrated to47

static aspect when performance and correctness becomes critical.48

The goal of type migration is to add type annotations to parameters with dynamic types49

of a program. A commonly used notion in type migration is configurations [15]. For any50

program, a configuration specifies which subset of all the parameters are typed. For example,51

in the fully dynamic configuration, this subset is empty, and in the fully static configuration,52

this subset includes all parameters. For a program with n parameters, there can be up53

to 2n configurations since each parameter can be typed or untyped. We can organize all54

the configurations into a lattice such that the set of typed parameters in the join of two55

configurations is a union of those of the two configurations. To illustrate, Figure 1 presents a56

part of the lattice for the Pascal benchmark in Python.57

1.1 Performance Problem in Type Migration58

There are two issues related to gradual type migration: (1) finding parameters where type59

annotations could be added and (2) understanding performance changes and maintaining60

good (acceptable) performance as type annotations are added.61

For issue (1), a lot of work has been done to automatically adding type annotations62

to dynamically-typed programs, including static approaches [9; 20; 7; 35; 10; 40], dynamic63

approaches [25; 11], and machine learning based approaches [24; 31; 34; 3]. Several approaches64

have also been developed to find best migrations in the sense of adding type annotations to65

as many parameters as possible [6; 23; 32]. Issue (2), however, has received less attention.66

While it is tempting to integrate all the type annotations suggested by a type migration67

tool [9; 20; 7; 35; 10; 40; 24; 31; 34; 3], doing so may turn the original configuration into68

a new one that degrades performance significantly. The slowdown can be as high as more69

than 100 times [42], due to intricate type interactions. This is the case even when the type70

annotations for all the parameters in a single project are inferred. For example, in the71

spectral norm benchmark, the runtime for the fully typed configuration is about 2 times72

that of a configuration that has one fewer function typed [8]. The reason is that even all73

parameters in a project are typed, the libraries and third-party code used by the project may74

Wahid Khan, Sheng Chen, and Yi He 23:3

not be typed.75

In general, after migrating from configuration Ks to Ke, manually or with the aid of type76

migration tools, the developer may face a few performance related questions. In particular, if77

the performance at Ke is not satisfactory, then the user will have to explore the performance78

of the neighbors of Ke to find a configuration that can restore the performance at Ks or79

whose performance is the best among all neighbors.80

To illustrate, consider the performance lattice for the Pascal benchmark in Figure 1. The81

Pascal program has 19 parameters and thus 219 configurations, and we present a part of the82

lattice in the figure. Assume the user is currently at configuration 1 and a migration tool83

infers types for the four parameters, which corresponds to configuration G . However, noting84

that the performance at G is about 3 times slower than that at 1 , the user will explore the85

performance of neighbors and find one with good performance.86

The problem is that there is no obvious strategy [15; 42] that the user could employ to87

quickly find desired configurations. For example, a strategy like breadth-first-search will88

not find F , the configuration that both has good performance and has largest number of89

parameters being typed, without trying C , D , and E . Similarly, a strategy like depth-90

first-search will not find any configuration that restores performance until it goes back to91

the original configuration 1 . This problem will become worse in practice due to three92

reasons. First, type migration tools may suggest adding types to many more parameters,93

which quickly enlarges the search space. Second, as the program becomes bigger, it takes94

more time to measure the performance of each configuration. Also, it takes more time to95

move from one configuration to another as more type changes are involved. Third, since96

each program has its own structure and type of interactions, as witnessed by very diverse97

performance lattices in different programs [42; 17; 8], no single searching strategy works well98

for all programs.99

The biggest problem is probably the uncertainty associated with the exploration process.100

If the user has not found a configuration with good performance following some strategy,101

should the user stick to the strategy in hoping that the performance will finally improve or102

change the strategy in fearing that performant configurations are in other neighborhoods.103

1.2 A Machine Learning Based Solution104

In this paper, we propose and develop LearnPerf, a machine learning based solution for this105

problem. For each program, we train a model from the running time for a very limited106

number (usually 40) of configurations. We then use this model to predict the execution times107

of other configurations. To give a sense of how the predicted times of LearnPerf look like,108

we present them in Figure 1 in blue.109

Our prediction result is pretty accurate, with the difference ratio (defined as |predicted110

time - measured time|/measured time) often within 4%. On top of the prediction result, we111

can develop a series of migration support under different scenarios. We list some of them112

below.113

1. LearnPerf is able to predict the performance for a given configuration. Assume the114

developer wants to migrate the current configuration to a new one, this information can115

inform how performance looks like at the new configuration.116

2. LearnPerf is able to classify the performance of adjacent configurations. For a certain117

number of configurations around the current one, we can classify them according to118

performance speedup/slowdown scales. Takikawa et al. [42] introduced the notion 2-119

deliverable, which includes all configurations whose performance degrades by less than 2120

ECOOP 2024

23:4 Learning Gradual Typing Performance

Original
program

Time
prediction

model

Type inference

More precise
program

Configurations Feature vectors
 & running times

 Configurations

Feature vectors

Time predictions
& migration
suggestions

Feature
extraction &

runtime
measurement

Training
samples ML

algorithm

Feature
extraction

Testing
samplesDeep learning inference

Manual insertion

Figure 2 Workflow of LearnPerf. Solid arrows denote information flow in training phase and
dashed, blue arrows denote that in prediction phase. Dotted, red arrows denote type annotation
additions, and they are not a part of this work.

times that of the original configuration, and 2-5 usable, which includes all configurations121

that slows down the original configuration by 2-5 times. With the help of LearnPerf, we122

can highlight configurations that are 2-deliverable, 2-5 usable, etc.123

3. For each configuration, LearnPerf is able to find the most performant configurations124

within its neighborhood. If the user is not satisfied with the performance of the cur-125

rent configuration, this capability can suggest an alternating configuration with good126

performance.127

Note that this work studies the performance aspect of type migration only and is128

not intended to develop a new type inference algorithm or machine learning algorithm to129

automatically add type annotations. As mentioned earlier, there has been a long line of130

research of adding type annotations but little work has been done for the performance131

aspect except for two papers [8; 15]. Many approaches [12; 29; 26; 21; 47] have investigated132

performance optimization of gradual typing. Our work is orthogonal to these approaches133

and we discuss the relation with them in Section 6.134

To illustrate the usefulness of our migration support, assume the user was at configuration135

1 and has just migrated to G and observed that the performance at G is not satisfactory.136

LearnPerf can help in this case. For example, there are four neighbors of G , C through F .137

LearnPerf predicts that their running times are 19.4, 30.2, 19.2, and 7.3 seconds, respectively.138

Based on the predicted times, LearnPerf suggests the user to migrate to F , rather than G .139

We can observe that F slows down 1 by only 15% while G slows down by 3 times.140

Overall, LearnPerf finds F that reconciles both performance and static migration. It141

seems undesirable to migrate to F and not G because G adds a type annotation to one142

more parameter. In practice, this problem can often be solved by migrating a few parameters143

in unison in later migrations.144

1.3 Workflow and Contributions of This Work145

Figure 2 presents the workflow of LearnPerf. Starting from any “original program”, assume146

the user added some type annotations, manually or with the help of type migration tools.147

This will lead to a new, more precise program that has more type annotations than the148

original program. Note, that the new program may be partially typed or fully typed.149

As discussed earlier, both partial and fully typed programs may experience significant150

performance degradation. From the new program, we create 40 random training samples.151

We then extract relevant feature vector that characterizes runtime performance as well as the152

Wahid Khan, Sheng Chen, and Yi He 23:5

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = f(result,lst[i])

return result

def wider(cw:Int, ci:List(Int)) -> Int:
return max(cw, len(ci))

myreduce(wider,[[1], [], [4,5]],0)

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = (f : Dyn => Dyn -> Dyn -> Dyn)
(result, lst[i])

return result

def wider(cw, ci):
return max(cw, len(ci)) : Dyn => Int

myreduce(wider: Int -> List(Int) -> Int => Dyn,
[[1], [], [4,5]] : List(List(Int)) => Dyn,
0 : Int => Dyn)

Figure 3 A partially-typed version of myreduce (left) and its cast-inserted program (right)

running time for each generated configuration. This information is then input into LearnPerf153

for the purpose of training our model.154

Once we have the trained model, we can support scenarios 1 through 3 by generating155

appropriate configurations and predicting their running times. Section 5 will sketch the main156

steps to support scenarios 2 and present our evaluation results.157

In the above, the training will not start until the user initiates it. In practice, however,158

our approach will actively invoke a deep learning model [24; 31; 34; 3] to generate type159

annotations. As a result, the performance prediction model could be ready before the160

programmer starts the migration process and needs migration supports. We applied this161

idea to three large datasets for our evaluation (Section 5).162

Overall, this paper makes the following contributions:163

1. We develop a machine-learning based approach that can help understand the performance164

landscape of different configurations of a gradually-typed program. On top of that, many165

migration supports can be developed.166

2. We explore different features to represent program run times and find out that overheads167

of casts inserted by gradual typing are simple yet representative features.168

3. We implement our approach and evaluate its performance on twelve benchmarks, including169

nine benchmarks that are frequently used in gradual typing research and three larger170

benchmarks that each have more than 1000 LOC. We observe that with only 40 training171

instances, our predicted times differ from measured times by 4% only for guarded semantics.172

For transient semantics, the difference between the predicted time and measured time is173

often within 0.1 seconds.174

The rest of the paper is organized as follows. In Section 2, we discuss the background of175

gradual typing. In Sections 3 and 4, we present our exploration of searching for appropriate176

machine learning model and representative features for precisely estimating execution times of177

gradual programs. In Section 5, we present the evaluation results, as well as implementation178

details and benchmarks used. We discuss related work in Section 6 and conclude in Section 7.179

2 Background180

This section covers the background of gradual typing, with a focus on cast insertions and181

their overheads.182

ECOOP 2024

23:6 Learning Gradual Typing Performance

In gradual typing, a parameter may be given a static type, a dynamic type (often written183

as Dyn or is omitted) signifying that the type is not known statically, or a mix of static and184

dynamic types. Static type checking is applied to program parts that use parameters with185

static types, and dynamic type checking is used for other program parts.186

For example, Figure 3 (left) presents a program snippet written in a hypothetical gradual187

language in Python type hint syntax [46]. The function myreduce takes in a binary function,188

a list, and an initial value and reduces the list to a single value. In this program, static type189

annotations are given to the parameters, and the return of wider. All other parameters have190

dynamic types. A static type error will be detected if we pass a string value as the first191

argument to wider because the first parameter has a type annotation Int. In contrast, no192

such error will be detected if we pass a string value as the first argument to myreduce.193

Gradually-typed languages are often obtained by adding static type checking to underlie194

dynamic languages, such as Typed Clojure for Clojure, Typed Racket for Racket, and195

Reticulated Python [46] for Python. As such, a common implementation strategy of gradual196

typing is to translate its programs into programs in the underlying language and insert197

necessary runtime type checks (often called casts) during the translation.198

For example, when executed by a gradual typing implementation for Python, the program199

in Figure 3 (left) is translated to the program in Figure 3 (right), which can be executed200

on any Python interpreter. Comparing programs in Figure 3 left and right, we observe two201

important differences. First, the program on the right does not have type annotations. This202

is because the interpreter for the underlying, dynamic language often does not make use of203

type annotations so they are erased during translation. Second, the program on the right204

has extra constructs in the form of expr : src_type => trg_type, which are often called205

casts. Such casts are inserted when the static type checker determines that expr has the type206

src_type but is used in a context where a value of trg_type is required.207

As runtime type checks, these casts incur runtime overheads, and different casts lead to208

very different overheads. For example, the cast x : Dyn => Int can be performed where it209

appears as we can always verify if x is indeed an integer and is thus very lightweight. In210

contrast, the cast g : Dyn => Int -> Bool can not be verified where it appears because,211

for example, we do not know how g will be used and what arguments will be passed to it.212

As such, a proxy will be created for g such that the invocation of g will be handled by the213

proxy, which inserts a cast to check that the argument to g is Int and another cast to check214

that the return value of g is Bool. Such casts are more involved and lead to more significant215

overheads. Casts over data structures and objects are similarly heavyweight.216

It is not hard to envision that adding or removing the type annotation for a single217

parameter in gradual typing may yield significant performance swings [42; 17]. One might218

consider this a reason to abandon gradual language designs that enforce type invariants at219

runtime, but a study by [45] shows that programmers often expected the behavior of programs220

to emulate those done by gradual typing. This work in this paper enables programmers to221

enjoy the benefits of gradual typing while staying informed about the performance landscape222

as they migrate programs toward more static.223

3 Feature Engineering224

The two most important questions in machine learning are what kinds of models to train and225

what features will be used for representing programs. In this section and next, we present226

our exploration of searching for a suitable model and simple yet representative features.227

Wahid Khan, Sheng Chen, and Yi He 23:7

Table 1 Deep learning model performance on unseen benchmarks.

Unseen Benchmark # training # testing MAE MSE DR

Meteor 105945 1024 5.26 28.09 56.84%
Zebrafy 103969 3000 149.37 22350.18 86.96%
Pascal 101785 5184 22.82 653.85 273.42%
Chaos 100969 6000 25.67 784.96 35.57%

Richard 100969 6000 23.73 766.28 36.05%
Sieve 91608 15361 53.88 2933.99 1655.90%

Nbody 90585 16384 4.87 36.79 68.28%
Scimark 81881 25088 4.39% 28.27% 80.37%
Raytrace 73065 33904 6.49 46.29 110.17%

3.1 First Attempt: Global Model with Deep Learning228

Ideally, we train a global model that can be used to predict the runtime of different configur-229

ations for all user programs. Such a model needs to be trained only once by us (the model230

developer) and can be distributed to users (developers who migrate gradual programs) for231

use.232

Motivated by recent successes of deep learning models for predicting types [24; 31; 34; 3],233

our first attempt is to exploit deep learning to train a global model. For a given set of234

configurations for training and a set for testing, this process consists of several steps. The235

main challenge here is that the training instances may have different lengths. To solve this236

issue, we leverage source code embeddings that convert each configuration into an embedding237

that has the same length. Specifically, we use UniXcoder [18] to convert each configuration238

into a 4 * 768 float matrix. These embeddings, together with runtimes of corresponding239

configurations, are fed into a multi-layer perception network [33] to train a global model.240

Based on the trained model, we can predict the runtime for each configuration in the test set.241

To test the performance of this idea, we have developed a prototype and conducted242

experiments in two settings. In the first setting, we collected all configurations from nine243

benchmarks (listed in Table 1), with a total of 106,969 configurations (Section 5.1 will give244

more details about our evaluation benchmarks). We randomly choose 80% of them for245

training, 10% for cross-validation, and 10% for testing. In the second setting, we chose246

one benchmark for testing and used configurations from all other benchmarks for training.247

The main difference between these two settings is that in the first setting some testing248

configurations and training configurations may come from the same benchmark.249

To measure the performance of this exploration and later ones in this paper, we use two250

of the most popular metrics for a regression problem, mean absolute error (MAE) and mean251

square error (MSE). In addition, to capture the accuracy or error ratio more intuitively, we252

used another metric called difference ratio, shortened to DR. The definitions of these three253

metrics are given below, where ti and t̂i denote the measured and predicted running times of254

the configuration i, respectively, and D denotes the testing set of instances. For example, if255

the measured and predicted times for a configuration is 7.9s and 8.1s, respectively, then the256

difference ratio for this configuration is 2.53%. We will use these notations throughout the257

ECOOP 2024

23:8 Learning Gradual Typing Performance

paper.258

MAE =
∑D

i=1 |ti − t̂i|
|D|

MSE =
∑D

i=1(ti − t̂i)2

|D|
DR =

∑
i∈D

|ti−t̂i|
ti

|D|
259

The DR for the first setting is 147.58%. The details of the results for the second setting260

is given in Table 1. The results show that the global model trained with deep learning261

performs poorly. There are a few possible reasons. First, as discussed in Section 2, a gradual262

program is often translated to a base program in the untyped, underlying language with263

casts inserted. As such, the running time of a configuration roughly includes the time to264

execute the base program and the overhead due to casts. To be able to precisely predict the265

running time, we need to be able to do that for both parts. However, predicting the running266

time of a general program is still an open problem [22]. Second, the overhead due to casts267

can vary significantly across different programs as it depends on program structures, such as268

whether casts are in loops, whether multiple casts are applied to single values, etc. Third, as269

discussed in Section 2, two configurations that differ by whether a single parameter is typed270

or not may have very different runtimes. This exhibits similar phenomena as in molecular271

property prediction where minor changes in molecular structures lead to significant changes272

of properties [41]. Earlier work [51] has demonstrated that deep models often do not perform273

well for such tasks.274

For this reason, we decide to train an individual, project-specific model for each project in275

this work. Have decided which model to train, we next explore different feature representations276

to find representative features.277

3.2 Second Attempt: Individual Models with Bit Strings278

The problem of predicting gradual typing performance bears some similarity to performance279

prediction for highly-configurable software systems [19]. A highly-configurable program280

usually contains a large number of configuration options (for example, Linux has about 13,000281

such options) for customizing the functional and non-functional features of the program.282

For instance, Linux can be configured to run on a diverse set of devices, ranging from283

embedding devices to servers. Each configuration option may be set or unset, corresponding284

to enabling or disabling associated features, which often leads to the inclusion or exclusion285

of certain pieces of code into the generated program after customization. As such, different286

configurations of the same configurable program will lead to different performances.287

Understanding the performance landscape of configurable software systems is an im-288

portant research problem, particularly as generating all possible programs and measuring289

their performance is infeasible due to the exponential complexity (the number of different290

configurations that can be generated is exponential in the number of configuration options).291

A prevalent solution to this problem is building a performance-influence model for each292

configurable software system. This can be achieved by generating a few samples, measuring293

the performance of these samples, and building a model from them. With the performance-294

influence model, predicting the performance of a certain configuration is instantaneous,295

without having to generate the configuration and measure the performance.296

In gradual typing, each parameter can be typed or untyped, corresponding to enabling297

or disabling a configuration option. Due to this similarity, we started our exploration by298

using bit-string as features for machine learning. Specifically, we treat each parameter as a299

binary feature and use 1 to denote that the parameter is typed and 0 to denote it is untyped.300

Wahid Khan, Sheng Chen, and Yi He 23:9

Table 2 Python benchmark Performance (Bit strings)

Benchmark # training # testing MAE MSE DR

Monte Carlo 40 344 0.53 ± 0.00 0.45 ± 0.00 35.30%
Meteor 40 984 0.29 ± 0.02 0.19 ± 0.068 2.47%
CPU 40 2857 2.57 ± 0.06 3.487 ± 0.08 8.15%
Zebrafy 40 3960 12.25 ± 1.24 15.98 ± 0.78 91.64%
Pascal 40 5144 5.15 ± 0.18 6.44 ± 0.31 27.57%
Chaos 40 5960 2.38 ± 0.04 3.00 ± 0.06 4.78%
Richard 40 5960 9.58 ± 1.12 13.65 ± 1.68 42.88%
BenchFirst 40 5960 43.85 ± 3.88 58.58 ± 4.23 25.88%
Sieve 40 15321 0.12 ± 0.00 0.16 ± 0.00 1.56%
Nbody 40 16344 3.45 ± 0.17 4.46 ± 0.19 30.10%
Scimark 40 25048 2.41 ± 0.03 3.06 ± 0.05 17.02%
Raytrace 40 33864 5.80± 1.23 7.35 ± 1.60 38.90%

Monte Carlo 192 192 0.39 ± 0.00 0.47 ± 0.00 31.33%
Meteor 512 512 0.13 ± 0.00 0.08 ± 0.00 0.70%
CPU Benchmark 1427 1428 2.23 ± 0.03 2.84 ± 0.02 6.55%
Zebrafy 2000 2000 10.72 ± 0.95 14.58 ± 0.89 87.24%
Pascal 2592 2592 3.81 ± 0.00 5.09 ± 0.00 20.45%
Chaos 3000 3000 1.72 ± 0.01 2.13 ± 0.00 3.41%
Richard 3000 3000 8.86 ± 0.01 13.05 ± 0.02 36.78%
BenchFirst 3000 3000 28.85 ± 3.05 36.58 ± 3.90 11.88%
Sieve 7680 7680 0.10 ± 0.00 0.13 ± 0.00 1.32%
Nbody 8192 8192 2.70 ± 0.00 3.58 ± 0.00 23.64%
Scimark 12544 12544 1.75 ± 0.00 2.42 ± 0.00 12.36%
Raytrace 16952 16952 2.81± 0.00 3.19 ± 0.00 18.84%

Feature values for all parameters are concatenated together to form a bit-string, which forms301

the feature vector in this exploration.302

We developed a prototype implementing this idea and tested its performance on 12303

Python benchmarks (we will show details about them in Section 5.1). We present the result304

in Table 2. In the upper part of Table 2, we present the results with bit-strings as features305

when each individual model is trained with 40 configurations. We can observe that the306

average difference ratio (DR) is quite high for several benchmarks. For example, DR is307

around 92% for Zebrafy and 43% for Richard. We may think of increasing the number of308

training instances to boost the performance. Surprisingly, the performance does not increase309

significantly as we remarkably increase the number of training instances, as can be seen310

from the bottom part of Table 2. For example, as we increased the training instances from311

40 to 2000 (that is we used 50% of instances for training) for Zebrafy, the average DR is312

still around 87%. Similarly, the average DR is about 37% for Nbody as we use 50% of all313

instances for training.314

Another issue is that as we are training an individual model for each project, using too315

many training instances needs a very long preparation time. To solve this issue, we choose316

to generate a limited amount of configurations but extract highly effective features.317

ECOOP 2024

23:10 Learning Gradual Typing Performance

def myreduce(f:Function([Int,List(Int)],Int),
lst:List(List(Int)), init:Int):

result = init
for i in range(len(lst)):

result = f(result,lst[i])
return result

def wider(cw:Int, ci:List(Int)) -> Int:
return max(cw, len(ci))

myreduce(wider,[[1], [], [4,5]],0)

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = f(result : Dyn => Int,
lst[i]) : Int => Dyn

return result

def wider(cw, ci):
return max(cw, len(ci)) : Dyn => Int

myreduce(wider, [[1], [], [4,5]], 0)

Figure 4 The fully-typed version of myreduce (left) and its cast-inserted translation (right)

4 Third and Successful Attempt: Gauging Cast Overheads318

The main reason that bit strings do not work well is that bits only represent whether319

parameters are typed or not while the types of parameters interact in an intricate way. This320

makes bit strings a poor candidate for capturing inserted casts, which are the main causes321

for performance overheads. For example, if we compare the programs in Figures 3 and 4,322

we can observe that while the program in Figure 4 (left) has strictly more type annotations323

than that in Figure 3, no such relation appears for the casts in the translated programs. In324

particular, these programs share only one common cast (the cast for the return value in325

wider), and all other casts are different. The running times of these two versions of myreduce326

are very different: the running time of the partially-typed version (Figure 3) is about 16327

times that of the fully-typed version (Figure 4). In practice, removing or adding the type for328

a single parameter may lead to complete different casts being inserted.329

Thus, instead of using bit strings, we will next explore the inserted casts of the translated330

programs by gauging cast overheads. Our main idea is to give symbolic overheads to casts331

and let machine learning algorithm figure out the real overhead of each cast. To give a more332

formal account of our approach, we present the type syntax used for the rest of this section333

below.334

Base types U ::= Bool | Int | Unit
Gradual types G ::= U | G → G | Dyn | [G]335

Our type definition includes base types, ranged over by U , and gradual types, ranged over by336

G. Our base types include Int, Bool, and Unit, but they can be extended easily. In gradual337

types, we consider two type constructors: function types and list types. Again, they can be338

extended easily.339

In the rest of this section, we first discuss how to gauge the overhead for individual340

casts (Sections 4.1 and 4.2) and then the overhead for a whole program (Section 4.3). Finally,341

we assess the effectiveness of cast overheads (Section 4.4).342

4.1 Overheads for Individual Casts343

Casts involving base types Our first observation of gauging cast overheads is that casts344

have very different runtime overheads, as we discussed in Section 2. We first deal with casts345

that involve base types. For a cast of the form U ⇒ Dyn, it can be checked where it appears.346

We assign the symbolic overhead U i to it. Similarly, for the cast Dyn ⇒ U , we assign the347

symbolic overhead Up.348

Wahid Khan, Sheng Chen, and Yi He 23:11

Casts involving function types Next, we investigate overheads of casts that involve349

function types. In general, as discussed in Section 2, a function cast can not be verified350

where it appears. Instead, for a cast of the form f : G1 → G2 ⇒ G3 → G4, a proxy will be351

created to wrap f . In place where f is called, the call is handled by the wrapper, which352

first casts the argument from G3 to G1, calls f with the cast argument, and casts the return353

value of f from G2 to G4. As such, a function cast induces two kinds of overheads: (1) the354

overhead that creates the proxy and (2) the overhead that casts the arguments and returned355

values. We refer to these two kinds of overheads as creation overhead and invocation overhead,356

respectively. The creation overhead should be similar across different proxy wrappers because357

type differences in casts do not cause the creation behavior to change much. As such, we358

assign F c to represent a proxy creation overhead.359

One challenge with invocation overheads is that they are incurred when the cast functions360

are invoked, not where the function casts appear. However, it is unclear when cast functions361

are invoked by looking at (neither with some standard static analysis) the translated program,362

because cast functions may be assigned to other variables, stored in data structures, and363

passed over to other functions, and call sites can be very distant from where proxies are364

created. Our solution to this problem is to gauge the invocation overhead for each cast and365

directly add it to its creation overhead. This is very simple to implement: no complex alias366

analysis is needed.367

Interestingly, this approach works well for predicting runtimes of configurations. Intuit-368

ively, the function cast created at the same program location will have the same invocation369

sites across different configurations since two configurations only differ by type annotations.370

Thus, if two casts that cast the same function and have the same invocation overhead across371

two configurations, then they induce the same cast overheads. Of course, if the arguments to372

the cast functions in different configurations are cast differently, then the invocation takes373

different times to complete. However, such differences should be reflected through overhead374

differences of casts on the argument. Similarly, if the function cast in the first configuration375

has larger invocation overhead than that in the second configuration, then the cast function376

in the first configuration has more runtime overheads at invocation sites. We leave it to the377

machine learning algorithm that we use to train our model to figure out the relation between378

symbolic difference and the runtime difference for different configurations.379

Another challenge in gauging invocation overheads is that unlike creation overheads that380

are similar across different function casts, invocation overheads can vary significantly, based381

on the types involved. For example, the cast f1 : Int → Int ⇒ Dyn → Dyn should have a382

much smaller invocation overhead than f2 : [Int] → Int ⇒ Dyn → Dyn because the cast for the383

argument for f1 is Dyn ⇒ Int and that for f2 is Dyn ⇒ [Int]. As we have seen earlier, the384

cast Dyn ⇒ Int is very lightweight while the cast Dyn ⇒ [Int] involves the creation of another385

proxy over the argument (We will discuss casts involve lists later in this subsection), which386

will be treated as a list. Therefore, a plausible idea to accurately gauge invocation overheads387

is to assign different symbols for denoting different invocation overheads to different casts,388

based on their argument types and return types. The problem with this idea is that, however,389

we need to introduce a lot of different symbols for invocation overheads because within a390

program we could have many casts involving function types with different arities and different391

argument and return types. As we wanted to train our model with as few instances as392

possible, having too many symbols will negatively affect machine learning performance.393

Our solution to this challenge is to break invocation overheads down and represent them394

with symbols we have already introduced. Our main insight is that an invocation overhead395

is originated from creating further casts at runtime. Thus, an invocation overhead can be396

ECOOP 2024

23:12 Learning Gradual Typing Performance

approximated as a sum of all the creation overheads of the argument types and the return397

type. For example, for f3 : (Int → Bool) → Dyn ⇒ Dyn → Int, the invocation overhead is398

creating a new function proxy for the argument to f3, which we have already introduced a399

symbol F c, and another cast for the Dyn ⇒ Int, which we used Up to represent the overhead.400

Since the created function cast for the argument also introduces invocation overhead, we401

recursively apply this idea to the argument cast Dyn ⇒ Int → Bool and calculate the its402

invocation overhead as U i + Up. Overall, the invocation overhead for the function cast403

f3 : (Int → Bool) → Dyn ⇒ Dyn → Int is F c + 2 · Up + U i. We give an algorithm for calculating404

cast overheads in Figure 5.405

Casts involving list types A cast involving list types, such as l : Dyn ⇒ [Bool], also406

can not be verified where it appears because this cast ensures that future write accesses407

to l should add elements of type Bool only and future read accesses should get elements of408

Bool type. As such, similar to casts on function types, a proxy will be created for l and the409

proxy will make sure accesses to l have expected types. Therefore, the overhead of a list cast410

includes the creation overhead and access overhead. For the creation overhead, we use the411

symbol Lc to denote it.412

For gauging access overheads, we face a challenge of locating where lists are accessed in413

the program, some to what we had for gauging invocation overheads for function casts. We414

adapt the solution there by gauging access overheads and add them to list creation overheads.415

For gauging access overheads themselves, the main insight is that list accessing can often416

be reduced to function calls [38; 46]. For example, for a list of type [Bool], the function for417

ensuring that the element read from the list is Bool has the type Int → Bool, where Int is418

the type of the parameter (list index) and Bool is the return type. The function for ensuring419

that the element added to the list is Bool has the type Int → Bool → Unit, where Int is the420

index type, Bool is the type of the element to be added to the list, and Unit is the return421

type of the function.422

Based on this idea, the read access to the list l with the cast l : Dyn ⇒ [Bool] can be423

reduced to the function cast Int → Dyn ⇒ Int → Bool, and the write access can be reduced424

to the cast Int → Dyn → Unit ⇒ Int → Bool → Unit. Thus, the access cost is approximated to425

be the cost of these two function casts. In practice, other operations may be performed on a426

list, such as insertion, extension, popping, and obtaining the length. However, read and write427

accesses are good representatives of access overheads because they are used frequently while428

others may not need function casts. Moreover, as we did in gauging invocation overheads, we429

only need to figure out the symbolic difference of list casts for the same list across different430

configurations, and let the machine learning algorithm scale that difference to appropriate431

runtime differences.432

4.2 An Algorithm for Gauging Individual Casts’ Overheads433

We present an algorithm for gauging cast overheads in Figure 5. The algorithm is more434

general than our description in Section 4. For example, the algorithm deals with function casts435

that have multiple parameters. The algorithm is defined using the idea of pattern matching,436

and we assume that the most specific matching rule is used to handle the computation.437

The main entry of the algorithm is the function overHd, which consists of eight cases. In438

the first case, the two types being cast are the same. Standard gradual typing implementations439

simply drop such casts, and so we assign 0 as its overhead. Cases two and three deal with440

casts between Dyn and function types, and we extend Dyn into a function type with the same441

arity as the function on the other side and delegate the computation to case six of overHd.442

Cases four and five deal with casts between two function types that have different number443

Wahid Khan, Sheng Chen, and Yi He 23:13

overHd (G ⇒ G) = 0
overHd (Dyn ⇒ G1 → · · · → Gr) = overHd (Dyn → · · · → Dyn ⇒ G1 → · · · → Gr)
overHd (G1 → · · · → Gr ⇒ Dyn) = overHd (G1 → · · · → Gr ⇒ Dyn → · · · → Dyn)
overHd (G1 → · · · → Gi → Dyn ⇒ G′

1 → · · · → G′
i+j → G′

r)
= overHd (G1 → · · · → Gi → Dyn → · · · → Dyn ⇒ G′

1 → · · · → G′
i+j → G′

r)
overHd (G1 → · · · → Gi+j → Gr ⇒ G′

1 → · · · → G′
i → Dyn)

= overHd (G1 → · · · → Gi+j → Gr ⇒ G′
1 → · · · → G′

i → Dyn → · · · → Dyn)
overHd ([G] ⇒ Dyn) = overHd ([G] ⇒ [Dyn])
overHd (Dyn ⇒ [G]) = overHd ([Dyn] ⇒ [G])
overHd (G1 ⇒ G2) = createOH (G1 ⇒ G2) + callOH (G1 ⇒ G2)
createOH (Dyn ⇒ U) = Up

createOH (U ⇒ Dyn) = U i

createOH (G1 → · · · → Gr ⇒ G′
1 → · · · → G′

r) = F c

createOH ([G1] ⇒ [G2]) = Lc

callOH (Dyn ⇒ U) = 0
callOH (U ⇒ Dyn) = 0
callOH (G1 → · · · → Gn → Gr ⇒ G′

1 → · · · → G′
n → G′

r)
=

∑n
1 overHd (G′

i ⇒ Gi) + overHd (Gr ⇒ G′
r)

callOH ([G1] ⇒ [G2])
= overHd (Int → G1 ⇒ Int → G2) + overHd (Int → G1 → Unit ⇒ Int → G2 → Unit)

Figure 5 An overhead gauging algorithm.

of parameters. We assume that corresponding parameter types (such as G1 and G′
1) and444

return types are consistent [39]. We extend the type with fewer parameter types by padding445

it with Dyns. Cases six and seven deal with casts between Dyn and list types and are similarly446

delegated to case eight. Case eight deals with all cases not matched by earlier cases. It says447

that the overhead is an addition of the creation overhead, returned from createOH, and the448

call overhead, returned from callOH.449

The definition of createOH is straightforward: it assigns a corresponding symbolic450

overhead to each kind of cast. The function callOH implements the idea of invocation451

overheads and access overheads discussed in Section 4. For casts involving base types, the452

call overhead is 0 because they can not be invoked or no elements may be accessed from453

them. The call overhead for a function cast is the overhead of casting all parameter types454

plus that of casting the return type. The call overhead for a list cast is the total overhead of455

read access and write access.456

The following example illustrates the calculation process for gauging the overhead for the457

ECOOP 2024

23:14 Learning Gradual Typing Performance

cast Dyn ⇒ [Bool].458

overHd (Dyn ⇒ [Bool])459

=overHd ([Dyn] ⇒ [Bool])460

=createOH ([Dyn] ⇒ [Bool]) + callOH ([Dyn] ⇒ [Bool])461

=Lc + callOH ([Dyn] ⇒ [Bool])462

=Lc + overHd (Int → Dyn ⇒ Int → Bool) + overHd (Int → Dyn → Unit ⇒ Int → Bool → Unit)463

=Lc + F c + overHd (Int ⇒ Int) + overHd (Dyn ⇒ Bool) + overHd (Int → Dyn → Unit ⇒ Int → Bool → Unit)464

=Lc + F c + 0 + Up + F c + overHd (Int ⇒ Int) + overHd (Bool ⇒ Dyn) + overHd (Unit ⇒ Unit)465

=Lc + F c + 0 + Up + F c + U i
466

=Lc + 2 · F c + Up + U i
467468

Due to the limited space, the algorithm in Figure 5 deals with base types, function types,469

and list types only. Our implementation supports many more types, including dictionary470

types, tuples, objects, records, and several others, with the same idea.471

4.3 Representing Overheads for a Program472

Without the loss of generality, we assume that a program consists of a few functions and473

top-level statements. When the program is translated, casts are inserted into function474

definitions and top-level statements. To extract the feature vector for a program, we repeat475

the following for each function. For each cast inserted in the function, we use Figure 5 to476

calculate the overhead. We then sum the overheads for all casts together. If a cast appears477

in a loop, then we automatically instrument the loop, obtain the number of times the loop is478

executed, and multiplies the cast overhead by that number. For example, if a function has479

two casts that are outside of loops and have the overheads F c + Up and Lc + F c + Up + U i,480

then the total overhead for that function is Lc + 2 · F c + 2 · Up + U i. The feature vector for481

that function is the coefficients of all overhead symbols, represented as 1, 2, 2, 1 in this case.482

The machine learning algorithm will turn these coefficients into runtime predictions.483

Similarly, for the casts inserted in top-level statements, we calculate the overhead of each484

cast and sum them together.485

Finally, we concatenate representations for all functions and top-level statements, forming486

a list of coefficients. This list will be the feature representation of the whole program.487

4.4 Assessing Feature Effectiveness488

Our approach LearnPerf is developed using cast overheads as features. For all the benchmarks489

we used to evaluate the performance, the DR is always less than 4% except for one benchmark490

whose DR is 5.3% (We will present the results in more detail in Section 5). In general, this491

means that our predicted time is in average within 4% of difference compared to the real492

measured time. We view this as a significant improvement over the performance of bit-string493

based solution, where DR is often higher than 30% and can be as high as 90%.494

We have performed a PCA analysis [1] to understand the effectiveness of both bit495

strings and cast overheads. Figure 6 presents the analysis results for Nbody. In the figure,496

axes represent values of PCA components and colored circles represent configurations. In497

particular, configurations with similar running times get the same color. The running times498

of Nbody are roughly in three groups: those less than 7.5s (seconds), between 12.5s and499

15s, and more than 20s (see Figure 7 for more details). From Figure 6, we can observe500

Wahid Khan, Sheng Chen, and Yi He 23:15

Figure 6 3D PCA analysis for Nbody using bit strings (left) and cast overheads (right). Both
figures are generated with elevation of 10.0 and use azimuth angle 50.

that bit strings fail to separate configurations while cast overheads successfully separate501

configurations according to their runtimes. Intuitively, clear separations of configurations502

according to their runtimes mean fewer prediction errors. This shows the usefulness of using503

cast overheads as features.504

5 Performance Evaluation505

We have implemented LearnPerf in Python. The main components are type addition, feature506

extraction, model training. Some of evaluated benchmarks are adopted from earlier work in507

gradual typing [8; 46], which already have type information. For other benchmarks, we use508

HiTyper [31], a state-of-the-art deep learning approach, to infer types that may be added.509

One issue with HiTyper is that some inferred types are erroneous, as noted by Yee and510

Guha [52]. We remove a type annotation whenever adding it causes static type conflicts.511

We generate a new, more precisely typed program after merging the type annotations from512

HiTyper into the original program. From the new program, we generate a desired number of513

configurations for each benchmark (Table 5).514

We implemented feature extractions on top of Reticulated Python [46; 48; 47]. To515

test the generality of our approach, we have implemented feature extractions for both the516

guarded semantics [46] and transient semantics [48]. Since these two semantics lead to517

different translated programs, we have different feature extraction codes. However, both518

implementations are based on the idea of gauging cast overheads, discussed in Section 4. Our519

feature extraction, which totals about 1,850 lines of code, supports the most commonly used520

Python types, including lists, functions, dictionary types, tuples, iterables, objects, classes,521

and many others.522

The model training component is implemented on top of the scikit-learn [30] package, a523

frequently used machine learning Library in Python. We use scikit-learn’s various models,524

its training-testing data split package, and its metrics package. This component includes less525

than 200 LOC.526

5.1 Benchmarks527

To evaluate the performance of LearnPerf, we adopted nine benchmarks that were commonly528

used in gradual typing research in Python [48; 47; 8]. These programs are relatively small,529

often below 500 LOC. In addition, we adopted three large benchmarks, including Zebrafy530

(a Python program for creating PDF files) and CPU Benchmark and BenchFirst (two531

performance bench-marking programs). For each benchmark, we present the name, lines532

ECOOP 2024

23:16 Learning Gradual Typing Performance

Table 3 Python benchmarks used for performance evaluation. The last column gives the number
of configurations generated for the corresponding benchmark.

Benchmark LOC # of functions # of pars # of typed pars # of configurations

Monte Carlo 90 4 9 9 385
Meteor 238 8 26 14 1024
CPU 2824 32 39 23 2897
Zebrafy 1578 28 72 38 4000
Pascal 70 7 19 15 5184
chaos 271 22 42 29 6000
Richard 455 21 94 67 6000
BenchFirst 1017 27 76 54 6000
Sieve 56 9 22 21 15361
Nbody 195 4 21 18 16384
Scimark 65 5 22 17 25088
Raytrace 254 37 67 38 33904

of code, number of functions, number of parameters, number of parameters that are typed533

originally or with the help of HiTyper, and total number of configurations we generated for534

evaluating our performance in Table 5. The number of configurations generated for each535

benchmark is mainly determined by two factors: the number of parameters in the benchmark536

and the time required to run each configuration. For example, each configuration in Zebrafy,537

CPU Benchmark, and BenchFirst takes more than 100 seconds to finish. As a result, we538

generate about only 4000 configurations for such benchmarks. The configurations for each539

benchmark for evaluating performance are generated follow the insights from [17] to ensure540

that they are representative.541

The running times in this paper are measured on a machine equipped with Intel(R)542

Core(TM) i9-9900K CPU @ 3.60GHz, 8 Core(s), and 16GB RAM. Each measured time is an543

average of 10 runs.544

Figure 7 gives an idea of how execution times look as a certain number of parameters545

are typed. The figure shows that while the running times of some benchmarks are clustered,546

others are scattered. We believe that these benchmarks serve the evaluation purpose well.547

Our evaluation focus on Scenarios 1 and 3 only. The result for Scenario 2 is similar to548

that for Scenario 3, and we omit it in the paper.549

5.2 Supporting Scenario 1550

To simulate the real development scenario, we randomly selected 40 instances from all551

generated configurations as training instances, and we use linear regression to train a time552

prediction model. Compared to standard machine learning applications, our approach uses553

significantly fewer data instances for training.554

To ensure that the model correctly learns patterns from the data and doesn’t pick up too555

much noise, we used k-fold cross-validation technique. As is standard in machine learning556

practice, our results are averaged over all k trials to get the overall performance of the model.557

We set k to 5 in our evaluation. Experiments were run on the same machine we used for558

generating benchmark’s configurations.559

Table 4 describes the performance of LearnPerf on all evaluated benchmarks. Columns560

Wahid Khan, Sheng Chen, and Yi He 23:17

Figure 7 Benchmark’s configurations description: Run Time vs Number of parameters typed for
each benchmark.

three through five of the table show that even when the model is trained with only 40561

instances, our prediction result is very accurate, with DR (defined in Section 3.2) less than562

3% for nine benchmarks, between 3% and 4% for two benchmarks, and is 5.26% for one563

benchmark. Intuitively, this means that our predicted times are very close to measured times.564

Columns six and seven of Table 4 present the ratios of configurations whose DR are less565

and greater than 10%, respectively. The result shows that there are fewer configurations that566

have large difference ratios.567

Figure 8 presents a closer investigation of the evaluation result. Specifically, we divide each568

benchmark into five groups in terms of their measured running time of different configurations569

of the benchmark. Next, we predict the performance (running time) and measure the DR of570

all configurations within each group. For every group, green represents a DR of less than571

5%, cyan represents 5 to 10%, blue represents 10 to 15%, violet represents 15 to 20%, and572

red represents more than 20% of DR. The figure reveals that, in general, the configurations573

that have smaller running times tend to experience higher DRs. There are two potential574

reasons behind this. First, a small variance in predicted time for such configurations can lead575

ECOOP 2024

23:18 Learning Gradual Typing Performance

Table 4 The performance of LearnPerf on evaluated benchmarks. The model for each benchmark
is trained with forty randomly selected configurations. The second column gives the number of
testing instances (configurations). Columns three through five gives the average performance of all
testing instances. Columns six and seven give the ratios of instances whose DR are less than and
greater than 10%, respectively.

Benchmark # testing MAE MSE DR <10% >10%

Monte Carlo 344 0.05 ± 0.01 0.07 ± 0.01 3.597% 93.77% 6.23%
Meteor 984 0.32 ± 0.01 0.39 ± 0.02 2.70 % 97.35% 2.65%
CPU 2857 1.56 ± 0.01 2.07 ± 0.08 1.91% 99.80% 0.2%

Zebrafy 3960 2.70 ± 0.00 3.63±0.00 1.57% 92.88% 7.12%
Pascal 5144 0.37 ± 0.03 0.460 ± 0.04 2.10% 95.55% 4.45
Chaos 5960 2.37 ± 0.07 2.92 ± 0.09 3.56% 97.09% 2.91%

Richard 5960 0.55 ± 0.00 0.71 ± 0.00 0.91% 100% 0.0%
BenchFirst 5960 17.12 ± 0.03 25.06 ± 0.7 5.26% 86.04% 13.96%

Sieve 15321 0.17 ± 0.01 0.23 ± 0.01 2.18% 89.06% 10.94%
Nbody 16344 0.21 ± 0.01 0.25 ± 0.01 1.84% 99.86% 0.14%

Scimark 25048 0.14 ± 0.04 0.193 ± 0.05 0.97% 98.92% 1.08%
Raytrace 33864 0.26± 0.06 0.330 ± 0.09 1.73% 94.46% 5.54%

to a higher DR. Second, even averaged over ten runs, each measured time includes a small576

randomness due to computer execution dynamics, and the randomness in such configurations577

has a more conspicuous impact.578

5.3 Supporting Scenario 3579

Scenario 3 aims to find the neighbor with best performance for any given configuration.580

This is particularly helpful when the current configuration has poor performance and the581

user wants to find a neighbor with good performance. To evaluate how well LearnPerf can582

support this scenario, we randomly choose a certain number of configurations, and find the583

most performant neighbor of it using our model.584

We present the detailed result for this scenario in Table 5, which includes the number of585

configurations considered as the current configuration (the second column) and three metrics586

to measure the performance of LearnPerf. To simplify our discussion below, we refer to a587

configuration and all its neighbors as a region. Each region includes at least 100 neighbors or588

includes all neighbors that add types to up to seven parameters. The first metric (column589

three in the table) is the accuracy. For any given configuration, if the most performant590

neighbor identified by LearnPerf is among the three neighbors with least execution times,591

then we classify this as a correct identification. We consider top three neighbors because it is592

common for many neighbors to have very small difference in execution times. The accuracy593

is calculated by dividing the number of correct identifications over all regions considered for594

that benchmark. For example, for Scimark, we considered 500 regions, and for 408 regions595

LearnPerf made correct identifications. As a result, the accuracy is 81.6%.596

The second metric (column four in the table) is the average differences between the597

execution times of the real and the identified most performant neighbors. For example,598

if the real most performant neighbor for a region has an execution time of 4.73s and the599

identified neighbor has an execution time of 4.75s, then the time difference is 0.02s. This600

Wahid Khan, Sheng Chen, and Yi He 23:19

Figure 8 LearnPerfdetailed benchmark’s performance based on different measured run time
groups.

column records the average of differences of all regions for that benchmark. The third metric601

(column five in the table) calculates the time difference in percentage.602

Again, the table shows that our approach is very accurate in identifying the most603

performant neighbors, with the difference ratio always below 1% except for Pascal that has a604

2.4% DR.605

5.4 Training and Prediction Times606

Table 6 presents times needed for generating and measuring 40 configurations for training607

the model, the time for training the model once these 40 configurations are ready, and the608

average feature extraction time for each program. We do not present the prediction time609

because that is less than 1ms for each configuration. From the table, we can see that the610

most time in our approach is spent on measuring the running times for training the model.611

For some benchmarks, measuring the times is relatively fast, such as for Monte Carlo,612

Meteor, Sieve, Nbody, Scimark, and Raytrace. However, it takes significantly longer to613

ECOOP 2024

23:20 Learning Gradual Typing Performance

Table 5 LearnPerf’s performance on finding the most performant neighbor to migrate for each
benchmark

Benchmark # of regions Accuracy Average difference(s) difference ratio

Monte Carlo 42 100% 0.0 0%
Meteor 500 77.0% 0.032 0.338%
CPU 38 94.74% 0.004 0.998%

Zebrafy 89 98.88% 0.007 0.087%
Pascal 500 44.80% 0.171 2.388%
chaos 297 83.16% 0.059 0.88%

Richard 98 100% 0 0%
BenchFirst 113 93.81% 0.004 0.058%

Sieve 500 63.6% 0.020 0.685%
Nbody 500 34.60% 0.116 1.246%

Scimark 500 81.6% 0.021 0.344%
Raytrace 385 96.88% 0.007 0.034%

measure the times for some benchmarks, including CPU, Zebrafy, Chaos, Richard, and614

BenchFirst. The reason is that each configuration from these benchmarks takes a long time615

to complete. Usually, this large amount of measuring time will lead to a long response time.616

Also, it looks like this long waiting time is hard to avoid.617

Fortunately, with the help of type migration tools, we can significantly shorten the618

response time. The idea is that we start to measure the runtimes way before the user needs619

the migration support. We tested this idea by automating the process of generating type620

information for parameters with HiTyper, merging the generated type information into the621

original program, randomly generating configurations for training, running all generated622

configurations to measure their runtime duration, extracting features for these configurations,623

and training a time prediction model based on the collected times and extracted features.624

We tested this idea on three large benchmarks, including CPU, Zebrafy, and BenchFirst.625

Once the model has been trained, predicting the running time is very fast. Since feature626

generation is also very efficient, we can quickly provide migration support with the model.627

For example, for any given configuration, LearnPerf is able to find the most performant628

neighbor within a few seconds.629

5.5 Different Machine Learning Methods630

We used linear regression to train our model. During the development of LearnPerf, we also631

explored other machine learning algorithms, including random forest regression, decision tree632

regression, and AdaBoost regression. We decided to use linear regression for the following633

reasons. First, linear regression usually does not need too many training instances. In our634

case, 40 training instances yield good performance. Second, training and prediction with liner635

regression is very fast than other models. Third, linear regression yields good performance636

across all benchmarks. For example, while random forest achieves 1.38% and 1.19% DRs for637

Monte and Sieve, respectively, the DRs for Raytrace and Scimark are above 13%.638

We also tried some other famous Machine learning models, such as support vector machine639

regression and MLP regression, but they either need more training instance or take more640

times for training and prediction. Also, they do not outperform linear regression for our641

Wahid Khan, Sheng Chen, and Yi He 23:21

Table 6 Training and Prediction time of Each benchmark

Benchmark Measuring 40 configurations (s) Training(s) Feature extraction (ms)

Monte Carlo 53.27 1.00 10.98
Meteor 490.06 0.99 23.38
CPU 2997.87 3.3 1001.96

Zebrafy 7394.38 4.75 1012.30
Pascal 580.05 1.01 40.89
Chaos 2654.87 1.03 29.15

Richard 2462.77 1.99 1013.33
BenchFirst 21816.94 3.89 1112.32

Sieve 373.33 1.02 19.67
Nbody 488.94 0.99 25.86

Scimark 555.68 0.99 27.73
Raytrace 623.55 2.98 26.17

problem.642

5.6 Evaluation of Transient Semantics643

In addition to evaluating the performance of LearnPerf on the guarded semantics, we have644

also evaluated it on the transient semantics [48] using the same benchmarks. In our feature645

extraction code for transient semantics, we set all the return values of callOH (·) in Figure 5646

to 0 because transient casts do not introduce proxies.647

Figure 9 presents the runtime distributions for six benchmarks under transient semantics.648

We omit the other six because their distributions are similar. Comparing this figure to649

Figure 7 we observe that the runtimes in transient semantics are several magnitudes smaller650

than in guarded semantics. Also, the runtimes have smaller variations across different651

configurations.652

Table 7 presents the performance of LearnPerf for the transient semantics. We can653

observe that the DR is much higher than that for guarded semantics. Meanwhile, we observe654

that the MAE and MSE are close to 0. This indicates that a possible reason that DR is655

relatively high because the runtime of each configuration is very smaller, usually below 0.1656

seconds. A small randomness in measured time can lead to a high DR in this case.657

Overall, our approach works pretty well for transient semantics also. The main insight658

is that the algorithm in Figure 5 derives coefficients of cast overheads rather than the real659

runtime overhead of casts. The overhead of a transient cast (checking type tags) can also be660

estimated using coefficients.661

5.7 Threats to Validity662

It may be possible that the results observed in our evaluation do not transfer to other Python663

programs. We have done the following to reduce this possibility. (1) We chose the benchmarks664

that are commonly used in the literature for evaluating gradual typing performance as well665

as three large Python programs (details in Section 5.1). (2) The evaluated programs cover666

most commonly used language features in Python, including control structures such as667

conditionals and loops, functions, classes with inheritance, tuples, dictionaries, nested lists,668

ECOOP 2024

23:22 Learning Gradual Typing Performance

Figure 9 The relation between run times and the number of parameters that have type annotations
for six benchmarks for transient semantics.

etc. (3) The amount of typed parameters can have a big impact on the results. As shown in669

Table 5, the percentages that parameters have types are quite diverse, ranging from about670

50% (Meteor and Zebrafy) to about 100% (Monte Carlo, Sieve, and Nbody). (4) The kinds of671

casts in translated programs could also affect the performance of LearnPerf. After checking672

the translated programs, we observed the presence of simple casts (about 63% of all casts)673

between basic types as well as higher-order casts (about 37% of all casts) between function674

types, list types, and object types. (5) Each time is an average of 10 runs and each machine675

learning experiment is averaged over 5 trials.676

6 Related Work677

Understanding performance changes during migration While a lot of work has been678

done to automatically migrate dynamic programs toward more static, little work has been679

done to aid the performance aspect during program migration except for a few efforts.680

Our work is closely related to the work by Campora et al. [8]. They developed Herder681

to help navigate the performance landscape during migration. However, there are many682

differences between LearnPerf and Herder. First, LearnPerf is able to precisely predict683

a time for any configuration while Herder is able to find only a symbolic overhead for684

each configuration. There is no direct mapping from these symbolic values to real runtimes685

and so the relation between two symbolic values often does not carry over to the real686

runtimes. For example, two configurations from a single benchmark have symbolic values687

2 ∗ ℓ3 ∗ ℓ4 and 67 ∗ ℓ3 ∗ ℓ4, respectively, while their corresponding runtimes are 24.79 and 37.38688

seconds, respectively. As a result, several migration supports are possible with LearnPerf689

but not Herder, such as classifying neighbors of a certain configuration based on their690

speedup/slowdown ratios.691

Another difference is that, since our approach is based on machine learning, we only need692

to extract approximate values for features. Herder, however, is based on static analysis693

and needs to be very accurate. For example, in LearnPerf, the overhead for a function cast694

is a simple addition of creation overhead and invocation overhead. In Herder, a function695

cast needs to be transformed to an intermediate language to simulate the creation of proxies.696

Wahid Khan, Sheng Chen, and Yi He 23:23

Table 7 Overall performance of LearnPerf for the transient semantics

Benchmark # training # testing MAE MSE DR

Monte Carlo 40 344 0.002 ± 0.0 0.004 ± 0.0 31.43%
Meteor 40 984 0.005 ± 0.01 0.006 ± 0.0 25.09 %
CPU 40 2857 0.01 ± 0.0 0.02 ± 0.08 18.91%

Zebrafy 40 3960 0.001 ± 0.0 0.003±0.0 27.77%
Pascal 40 5144 0.01 ± 0.0 0.013 ± 0.0 18.549%
Chaos 40 5960 0.02 ± 0.0 0.06 ± 0.0 34.38%

Richard 40 5960 0.027 ± 0.0 0.033 ± 0.0 24.93%
BenchFirst 40 5960 0.033 ± 0.0 0.087 ± 0.0 25.88%

Sieve 40 15321 0.002 ± 0.0 0.001 ± 0.0 29.07%
Nbody 40 16344 0.003 ± 0.0 0.005 ± 0.01 21.78%

Scimark 40 25048 0.001 ± 0.0 0.001 ± 0.0 27.129%
Raytrace 40 33864 0.001± 0.0 0.002 ± 0.0 25.497%

As a result, it is easier to support more language features in LearnPerf than in Herder. For697

example, we support object and class types, but they were missing in Herder.698

Greenman et al. [16] also investigated the performance problem during program migration699

but from a very different perspective. Through a large-scale empirical study, the authors700

studied how outputs from profilers may be exploited for proving migration supports. They701

considered seventeen strategies for how to avoid configurations with unacceptable performance702

and navigate to configurations to acceptable performance. Through the study, they generated703

three useful lessons for developers and one lesson for language designers for how to deal with704

the performance problem. Their focus is very different from our work in that we aim to705

predict the runtime for each configuration, and provide other migration supports, such as706

finding the best performing configuration among the neighbors, on top of that.707

Assessing and Optimizing Gradual Typing Performance Takikawa et al. [42] evaluated708

the performance of Typed Racket, focusing on the areas mixing untyped and typed code. The709

evaluation revealed significant runtime overhead in sound gradual typing. In evaluating the710

performance of a gradual type system, [17] conducted a thorough analysis by fully annotating711

a series of benchmarks in Typed Racket. Absolute performance calculations were derived712

by generating a significant subset of configurations from the complete lattice of possible713

configurations. Performance ratios for each configuration were then compared against base714

configurations to identify K-step and D-deliverable configurations.715

Since the report of the performance problem in gradual typing, a lot of work has been716

done to solve this problem, ranging from designing new type systems or new languages,717

inferring more types to reduce casts, to developing more efficient cast languages.718

Rastogi et al. [35] introduced a type inference algorithm for existing gradually typed code,719

especially focusing on the inflow and outflow of types. Their approach supports open-world720

soundness to enable sound interactions with unseen code. Instead, Nguyen et al. [28] used721

static analysis to remove casts that always succeed without considering open-world soundness.722

The idea of developing new languages to avoid expensive interactions has been explored723

by Muehlboeck et al. [27]. Several approaches have been developed to exploit compilers or724

JITs to improve gradual typing performance [36; 37; 5]. Another important line of improving725

gradual typing performance is through the design of new or change cast constructs [12; 21]726

The work by Allende et al. [4] designed confined gradual typing, allowing users to control727

ECOOP 2024

23:24 REFERENCES

the flowing of type information through type annotations for reducing expensive boundary728

crossings.729

Our approach is complementary to these approaches in that they do not try to compare730

the performance of different configurations and identify performant configurations. Also,731

while these approaches optimize the performance of gradual programs, they often do not732

fully reduce the overheads due to runtime type checks. This paper shows that our approach733

works well for both the guarded and transient semantics. It looks promising in applying our734

idea to the translated programs from these approaches to predict the performance of these735

optimized programs.736

Machine Learning for Programming Many machine learning based approaches have737

been developed for solving programming language and software engineering problems [50; 2].738

A main trend is using deep models, such as large language models, to automatically extract739

code features. Interestingly, our exploration shows that deep learning approach does not740

produce a good model for performance prediction for our problem. Vo and Nguyen [49]741

observed a similar phenomenon for vulnerability detection.742

7 Conclusion743

With gradual typing, developers enjoy the benefits of both static and dynamic typing. A744

major obstacle of adopting gradual typing is that the runtime overhead when going from745

less typed regions to more typed regions is often high and unpredictable. To address this746

issue, we developed a machine learning-based solution named LearnPerf that approximates747

runtime overheads due to inserted casts. We have evaluated our approach on 12 Python748

benchmarks, with each of the three large benchmarks having more than 1000 LOC. The749

evaluation results demonstrated that LearnPerf is able to precisely predict the execution750

time of each configuration. On top of that, we can develop further migration supports, such751

as finding the most performant neighbor of a configuration when it has poor performance.752

Our approach works well for both guarded and transient semantics. In the future, we would753

like to extend our approach to support a more macro level gradually-typed language, such754

as Typed Racket. It is also interesting to investigate if our approach can be employed to755

predict the performance of optimized gradual programs.756

References757

1 Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary758

reviews: computational statistics, 2(4):433–459, 2010.759

2 Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey760

of machine learning for big code and naturalness. ACM Comput. Surv., 51(4), jul 2018.761

doi:10.1145/3212695.762

3 Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. Typilus: neural763

type hints. In Proceedings of the 41st ACM SIGPLAN Conference on Programming764

Language Design and Implementation. ACM, jun 2020. URL: https://doi.org/10.765

1145%2F3385412.3385997, doi:10.1145/3385412.3385997.766

4 Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter. Confined gradual767

typing. In Proceedings of the 2014 ACM International Conference on Object Oriented768

Programming Systems Languages & Applications, OOPSLA ’14, pages 251–270, New769

York, NY, USA, 2014. ACM. URL: http://doi.acm.org/10.1145/2660193.2660222,770

doi:10.1145/2660193.2660222.771

https://doi.org/10.1145/3212695
https://doi.org/10.1145%2F3385412.3385997
https://doi.org/10.1145%2F3385412.3385997
https://doi.org/10.1145%2F3385412.3385997
https://doi.org/10.1145/3385412.3385997
http://doi.acm.org/10.1145/2660193.2660222
https://doi.org/10.1145/2660193.2660222

REFERENCES 23:25

5 Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt.772

Sound gradual typing: Only mostly dead. Proc. ACM Program. Lang., 1(OOPSLA):54:1–773

54:24, October 2017. URL: http://doi.acm.org/10.1145/3133878, doi:10.1145/774

3133878.775

6 John Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. Migrating gradual776

types. In Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Program-777

ming Languages, POPL ’18, New York, NY, USA, 2018. ACM.778

7 John Peter Campora and Sheng Chen. Taming type annotations in gradual typing. Proc.779

ACM Program. Lang., 4(OOPSLA), nov 2020. doi:10.1145/3428259.780

8 John Peter Campora, Sheng Chen, and Eric Walkingshaw. Casts and costs: Har-781

monizing safety and performance in gradual typing. Proc. ACM Program. Lang.,782

2(ICFP):98:1–98:30, July 2018. URL: http://doi.acm.org/10.1145/3236793, doi:783

10.1145/3236793.784

9 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. Gradual785

typing: A new perspective. Proc. ACM Program. Lang., 3(POPL), January 2019.786

doi:10.1145/3290329.787

10 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Srid-788

haran, Frank Tip, and Youngil Choi. Type inference for static compilation of javascript.789

In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented790

Programming, Systems, Languages, and Applications, OOPSLA 2016, pages 410–429, New791

York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/2983990.2984017,792

doi:10.1145/2983990.2984017.793

11 Fernando Cristiani and Peter Thiemann. Generation of typescript declaration files from794

javascript code. In Proceedings of the 18th ACM SIGPLAN International Conference on795

Managed Programming Languages and Runtimes, MPLR 2021, page 97–112, New York,796

NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3475738.3480941.797

12 Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent798

St-Amour. Collapsible contracts: Fixing a pathology of gradual typing. Proc. ACM799

Program. Lang., 2(OOPSLA), oct 2018. doi:10.1145/3276503.800

13 Ronald Garcia and Matteo Cimini. Principal type schemes for gradual programs. In801

Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles802

of Programming Languages, POPL ’15, pages 303–315, New York, NY, USA, 2015.803

ACM. URL: http://doi.acm.org/10.1145/2676726.2676992, doi:10.1145/2676726.804

2676992.805

14 Ben Greenman and Matthias Felleisen. A spectrum of type soundness and performance.806

Proc. ACM Program. Lang., 2(ICFP):71:1–71:32, July 2018. URL: http://doi.acm.807

org/10.1145/3236766, doi:10.1145/3236766.808

15 Ben Greenman, Matthias Felleisen, and Christos Dimoulas. How profilers can help809

navigate type migration. Proc. ACM Program. Lang., 7(OOPSLA2), oct 2023. doi:810

10.1145/3622817.811

16 Ben Greenman, Matthias Felleisen, and Christos Dimoulas. How profilers can812

help navigate type migration. Proceedings of the ACM on Programming Languages,813

7(OOPSLA2):544–573, 2023.814

17 Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan815

Vitek, and Matthias Felleisen. How to evaluate the performance of gradual type systems.816

Journal of Functional Programming, 29:e4, 2019. doi:10.1017/S0956796818000217.817

18 Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder:818

ECOOP 2024

http://doi.acm.org/10.1145/3133878
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3428259
http://doi.acm.org/10.1145/3236793
https://doi.org/10.1145/3236793
https://doi.org/10.1145/3236793
https://doi.org/10.1145/3236793
https://doi.org/10.1145/3290329
http://doi.acm.org/10.1145/2983990.2984017
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3475738.3480941
https://doi.org/10.1145/3276503
http://doi.acm.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
http://doi.acm.org/10.1145/3236766
http://doi.acm.org/10.1145/3236766
http://doi.acm.org/10.1145/3236766
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3622817
https://doi.org/10.1145/3622817
https://doi.org/10.1145/3622817
https://doi.org/10.1017/S0956796818000217

23:26 REFERENCES

Unified cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850,819

2022.820

19 Sergiy Kolesnikov, Norbert Siegmund, Christian K’́astner, Alexander Grebhahn, and Sven821

Apel. Tradeoffs in modeling performance of highly configurable software systems. Software822

& Systems Modeling, 18:2265–2283, 06 2019. doi:10.1007/s10270-018-0662-9.823

20 Erik Krogh Kristensen and Anders Møller. Type test scripts for typescript testing. Proc.824

ACM Program. Lang., 1(OOPSLA):90:1–90:25, October 2017. URL: http://doi.acm.825

org/10.1145/3133914, doi:10.1145/3133914.826

21 Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. Toward efficient827

gradual typing for structural types via coercions. In Proceedings of the 40th ACM828

SIGPLAN Conference on Programming Language Design and Implementation, PLDI829

2019, page 517–532, New York, NY, USA, 2019. Association for Computing Machinery.830

doi:10.1145/3314221.3314627.831

22 Andréa Matsunaga and José A.B. Fortes. On the use of machine learning to predict the832

time and resources consumed by applications. In 2010 10th IEEE/ACM International833

Conference on Cluster, Cloud and Grid Computing, pages 495–504, 2010. doi:10.1109/834

CCGRID.2010.98.835

23 Zeina Migeed and Jens Palsberg. What is decidable about gradual types? Proc. ACM836

Program. Lang., 4(POPL), December 2019. doi:10.1145/3371097.837

24 Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. Type4py:838

practical deep similarity learning-based type inference for python. In Proceedings of the839

44th International Conference on Software Engineering, pages 2241–2252, 2022.840

25 Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. Dynamic type inference for841

gradual hindley–milner typing. Proc. ACM Program. Lang., 3(POPL):18:1–18:29, January842

2019. URL: http://doi.acm.org/10.1145/3290331, doi:10.1145/3290331.843

26 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn. Corpse844

reviver: Sound and efficient gradual typing via contract verification. Proc. ACM Program.845

Lang., 5(POPL), jan 2021. doi:10.1145/3434334.846

27 Fabian Muehlboeck and Ross Tate. Sound gradual typing is nominally alive and well.847

In OOPSLA, New York, NY, USA, 2017. ACM. URL: http://www.cs.cornell.edu/848

~ross/publications/nomalive/, doi:https://doi.org/10.1145/3133880.849

28 Phúc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Soft850

contract verification for higher-order stateful programs. Proc. ACM Program. Lang.,851

2(POPL):51:1–51:30, December 2017. URL: http://doi.acm.org/10.1145/3158139,852

doi:10.1145/3158139.853

29 Francisco Ortin, Miguel Garcia, and Seán McSweeney. Rule-based program specializa-854

tion to optimize gradually typed code. Knowledge-Based Systems, 179:145–173, 2019.855

URL: https://www.sciencedirect.com/science/article/pii/S0950705119302199,856

doi:https://doi.org/10.1016/j.knosys.2019.05.013.857

30 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,858

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,859

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.860

Journal of Machine Learning Research, 12:2825–2830, 2011.861

31 Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael862

Lyu. Static inference meets deep learning: A hybrid type inference approach for python.863

In Proceedings of the 44th International Conference on Software Engineering, ICSE ’22,864

page 2019–2030, New York, NY, USA, 2022. Association for Computing Machinery.865

doi:10.1145/3510003.3510038.866

https://doi.org/10.1007/s10270-018-0662-9
http://doi.acm.org/10.1145/3133914
http://doi.acm.org/10.1145/3133914
http://doi.acm.org/10.1145/3133914
https://doi.org/10.1145/3133914
https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1145/3371097
http://doi.acm.org/10.1145/3290331
https://doi.org/10.1145/3290331
https://doi.org/10.1145/3434334
http://www.cs.cornell.edu/~ross/publications/nomalive/
http://www.cs.cornell.edu/~ross/publications/nomalive/
http://www.cs.cornell.edu/~ross/publications/nomalive/
https://doi.org/https://doi.org/10.1145/3133880
http://doi.acm.org/10.1145/3158139
https://doi.org/10.1145/3158139
https://www.sciencedirect.com/science/article/pii/S0950705119302199
https://doi.org/https://doi.org/10.1016/j.knosys.2019.05.013
https://doi.org/10.1145/3510003.3510038

REFERENCES 23:27

32 Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha.867

Solver-based gradual type migration. Proc. ACM Program. Lang., 5(OOPSLA), oct 2021.868

doi:10.1145/3485488.869

33 Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and Nikos870

Mastorakis. Multilayer perceptron and neural networks. WSEAS Transactions on871

Circuits and Systems, 8(7):579–588, 2009.872

34 Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. Typewriter: Neural873

type prediction with search-based validation, 2020. arXiv:1912.03768.874

35 Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual type875

inference. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on876

Principles of Programming Languages, POPL ’12, pages 481–494, New York, NY, USA,877

2012. ACM. URL: http://doi.acm.org/10.1145/2103656.2103714, doi:10.1145/878

2103656.2103714.879

36 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagiotis Vekris.880

Safe & efficient gradual typing for typescript. In POPL, 2015.881

37 Gregor Richards, Ellen Arteca, and Alexi Turcotte. The vm already knew that: Lever-882

aging compile-time knowledge to optimize gradual typing. Proc. ACM Program. Lang.,883

1(OOPSLA):55:1–55:27, October 2017. URL: http://doi.acm.org/10.1145/3133879,884

doi:10.1145/3133879.885

38 Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order886

casts. In Giuseppe Castagna, editor, Programming Languages and Systems, pages 17–31,887

Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.888

39 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In In Scheme889

and Functional Programming Workshop, pages 81–92, 2006.890

40 Jeremy G. Siek and Manish Vachharajani. Gradual typing with unification-based inference.891

In Proceedings of the 2008 Symposium on Dynamic Languages, DLS ’08, pages 7:1–892

7:12, New York, NY, USA, 2008. ACM. URL: http://doi.acm.org/10.1145/1408681.893

1408688, doi:10.1145/1408681.1408688.894

41 Dagmar Stumpfe and Jürgen Bajorath. Exploring activity cliffs in medicinal chemistry.895

Journal of Medicinal Chemistry, 55(7):2932–2942, 2012. PMID: 22236250. arXiv:https:896

//doi.org/10.1021/jm201706b, doi:10.1021/jm201706b.897

42 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias898

Felleisen. Is sound gradual typing dead? In Proceedings of the 43rd Annual ACM899

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16,900

pages 456–468, New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/901

2837614.2837630, doi:10.1145/2837614.2837630.902

43 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From scripts to903

programs. In Companion to the 21st ACM SIGPLAN Symposium on Object-oriented904

Programming Systems, Languages, and Applications, OOPSLA ’06, pages 964–974, New905

York, NY, USA, 2006. ACM. URL: http://doi.acm.org/10.1145/1176617.1176755,906

doi:10.1145/1176617.1176755.907

44 Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman,908

Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa.909

Migratory Typing: Ten Years Later. In Benjamin S. Lerner, Rastislav Bodík, and910

Shriram Krishnamurthi, editors, 2nd Summit on Advances in Programming Languages911

(SNAPL 2017), volume 71 of Leibniz International Proceedings in Informatics (LIPIcs),912

pages 17:1–17:17, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer913

ECOOP 2024

https://doi.org/10.1145/3485488
http://arxiv.org/abs/1912.03768
http://doi.acm.org/10.1145/2103656.2103714
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2103656.2103714
http://doi.acm.org/10.1145/3133879
https://doi.org/10.1145/3133879
http://doi.acm.org/10.1145/1408681.1408688
http://doi.acm.org/10.1145/1408681.1408688
http://doi.acm.org/10.1145/1408681.1408688
https://doi.org/10.1145/1408681.1408688
http://arxiv.org/abs/https://doi.org/10.1021/jm201706b
http://arxiv.org/abs/https://doi.org/10.1021/jm201706b
http://arxiv.org/abs/https://doi.org/10.1021/jm201706b
https://doi.org/10.1021/jm201706b
http://doi.acm.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/2837614.2837630
https://doi.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/1176617.1176755
https://doi.org/10.1145/1176617.1176755

23:28 REFERENCES

Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7120, doi:10.914

4230/LIPIcs.SNAPL.2017.17.915

45 Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi.916

The behavior of gradual types: A user study. In DLS, number ICFP, page (to appear),917

2018.918

46 Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and919

evaluation of gradual typing for python. In Proceedings of the 10th ACM Symposium920

on Dynamic Languages, DLS ’14, pages 45–56, New York, NY, USA, 2014. ACM. URL:921

http://doi.acm.org/10.1145/2661088.2661101, doi:10.1145/2661088.2661101.922

47 Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. Optimizing and evaluating923

transient gradual typing. In Proceedings of the 15th ACM SIGPLAN International924

Symposium on Dynamic Languages, DLS 2019, pages 28–41, New York, NY, USA, 2019.925

ACM. URL: http://doi.acm.org/10.1145/3359619.3359742, doi:10.1145/3359619.926

3359742.927

48 Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime:928

Open-world soundness and collaborative blame for gradual type systems. In Proceedings929

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL930

2017, pages 762–774, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.931

1145/3009837.3009849, doi:10.1145/3009837.3009849.932

49 Hieu Dinh Vo and Son Nguyen. Can an old fashioned feature extraction and a light-933

weight model improve vulnerability type identification performance? arXiv preprint934

arXiv:2306.14726, 2023.935

50 Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Hongyu Zhang, Yulei Sui, Guandong936

Xu, Hai Jin, and Philip S Yu. Deep learning for code intelligence: Survey, benchmark937

and toolkit. arXiv preprint arXiv:2401.00288, 2023.938

51 Jun Xia, Lecheng Zhang, Xiao Zhu, and Stan Z. Li. Why deep models often cannot beat939

non-deep counterparts on molecular property prediction? In ICML 3rd Workshop on940

Interpretable Machine Learning in Healthcare (IMLH), 2023. URL: https://openreview.941

net/forum?id=hJG8xgj2Y5.942

52 Ming-Ho Yee and Arjun Guha. Do machine learning models produce typescript types943

that type check? arXiv preprint arXiv:2302.12163, 2023.944

http://drops.dagstuhl.de/opus/volltexte/2017/7120
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
http://doi.acm.org/10.1145/2661088.2661101
https://doi.org/10.1145/2661088.2661101
http://doi.acm.org/10.1145/3359619.3359742
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3359619.3359742
http://doi.acm.org/10.1145/3009837.3009849
http://doi.acm.org/10.1145/3009837.3009849
http://doi.acm.org/10.1145/3009837.3009849
https://doi.org/10.1145/3009837.3009849
https://openreview.net/forum?id=hJG8xgj2Y5
https://openreview.net/forum?id=hJG8xgj2Y5
https://openreview.net/forum?id=hJG8xgj2Y5

	1 Introduction
	1.1 Performance Problem in Type Migration
	1.2 A Machine Learning Based Solution
	1.3 Workflow and Contributions of This Work

	2 Background
	3 Feature Engineering
	3.1 First Attempt: Global Model with Deep Learning
	3.2 Second Attempt: Individual Models with Bit Strings

	4 Third and Successful Attempt: Gauging Cast Overheads
	4.1 Overheads for Individual Casts
	4.2 An Algorithm for Gauging Individual Casts' Overheads
	4.3 Representing Overheads for a Program
	4.4 Assessing Feature Effectiveness

	5 Performance Evaluation
	5.1 Benchmarks
	5.2 Supporting Scenario 1
	5.3 Supporting Scenario 3
	5.4 Training and Prediction Times
	5.5 Different Machine Learning Methods
	5.6 Evaluation of Transient Semantics
	5.7 Threats to Validity

	6 Related Work
	7 Conclusion

