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The aim of this paper is to establish non-compactness results
related to the spinorial Yamabe-type problems. Precisely,
concrete analysis is made for two specific models on the
manifold (S™,g) where the solution set of the spinorial
Yamabe-type problem is not compact: 1). the geometric
potential f is constant (say f = 1) with the background metric
g being a C* perturbation of the canonical round metric
ggm, which is not conformally flat somewhere on S™; 2). f
is a perturbation from constant and is of class C?, while the
background metric g = ggm.-
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1. Introduction

On a closed Riemannian m-manifold (M, g) with m > 3, the scalar curvature problem
(or simply known as the Yamabe-type problem) is given by the differential equation

4(m —1 m2
—MAgu + Ryu = f(z)um—2, u>0, (1.1)

m — 2

where A is the Laplace operator with respect to g and R, stands for the scalar curvature
of g. Here, the problem is to decide which function f on M can be the scalar curvature
of a conformal metric § = u*/(m=2) g € [g]. In case f = constant, this problem is referred
to as the classical Yamabe problem, and is completely solved by a series of works of
Yamabe [56], Trudinger [54], Aubin [13] and Schoen [47]. See also the survey paper [42]
by Lee & Parker.
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In the setting of spin geometry there exists a conformally covariant operator, the Dirac
operator, which enjoys analogous properties to the conformal Laplacian. This operator
was formally introduced by M.F. Atiyah in 1962 in connection with his elaboration of
the index theory of elliptic operators.

Let (M, g,0) be an m-dimensional closed spin manifold, m > 2, with a fixed Rieman-
nian metric g and a fixed spin structure o : Pgpin (M) — Pso(M). The Dirac operator
D, is defined in terms of a representation p : Spin(m) — Aut(S,,) of the spin group
which is compatible with Clifford multiplication. Let S(M) := Pspin(M) X, S, be the
associated bundle, which we call the spinor bundle over M, with dimc S(M) = 2[%).
Then the Dirac operator D, is a first order differential operator acting on smooth sec-
tions of S(M), i.e. Dy : C®(M,S(M)) — C*°(M,S(M)). We are concerned with the
spinorial Yamabe-type problem

Dyp = F@IF "0, o : M - S(M) (12)

where |- |, is the hermitian metric on S(A/) induced from g. This equation appears in the
study of different problems from conformal geometry, and has attracted much attention
recently, see for instance [6-8,10,12,15,17,18,25,33,36,46,49,50] and references therein.
We point out here that there are at least two motivations for studying Eq. (1.2). One
of them is that, when f = constant # 0 (say f = 1), Eq. (1.2) is closely related to
the study of a conformal spectral invariant, i.e., the Bdr-Hijazi-Lott invariant (see [28,
Section 8.5] for an overview)
)\+

min

(M, g,0) := inf A} () Vol(M,g)™,
9€l9]

where A () stands for the smallest (i.e. first) positive eigenvalue of D with respect to
g € [g]. In fact, as was pointed out in [6,8,10], the value of the Bar-Hijazi-Lott invariant
for an arbitrary closed spin m-manifold can not be larger than that for the round sphere
(with the same dimension), that is

1

m
A?T’LG (Smagsmvgsm) = gw;"n

(M, g,0) <A}

where ggm is the standard round metric, ogm stands for the unique spin structure on S™
and wy, denotes the volume of (S™, ggm ). In this regard, the next stage would consist
in showing that (1.3) is a strict inequality when (M, g) is not conformally equivalent
to (8™, ggm). And it is important to notice that, if there exists a nontrivial solution
to Eq. (1.2) (with f = 1) such that [}, \w|§m/(m71)dvolg < (%)™wm, then the strict
inequality in (1.3) holds true (see [49,50]). This can be viewed as the spinorial analogue
of the Yamabe problem in geometric analysis. However, the strict inequality in (1.3) is
only verified for some special cases (for instance, if M is locally conformally flat, if D,
is invertible and if the so-called Mass endomorphism is not identically zero [12], and
all rectangular tori [49], and non-locally conformally flat manifolds [50]), but a general
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result is still lacking (cf. [9,28,30]). The methods that can be used are sometimes similar
to the ones of the Yamabe problem, but since we work with Dirac operator and spinors,
the reasoning is more involved as the eigenvalues of the Dirac operator tend to both —oco
and +o0o and there is no adequate replacement for the maximum principle.

Another reason that makes Eq. (1.2) interesting is that, in dimension m = 2, its
solution provides a strong tool for showing the existence of prescribed mean curvature
surfaces in R? (here the function f plays the role of the mean curvature). Special cases
of such surfaces are constant mean curvature (CMC) surfaces (that is f = constant)
which have been studied before by completely different techniques, see for instance [29].
The correspondence between a solution of Eq. (1.2) on a Riemannian surface M and a
periodic conformal immersion (possibly with branching points) of the universal covering
M into R3 with mean curvature f is known as the spinorial Weierstrafl representation.
For details in this direction, we refer to [6,8,26,37,39,40,44,51-53] and references therein.

Although the existence problem for Eq. (1.2) is not settled in full generality, there
are several partial existence results in the literature, see for instance [34,35,55], and it
is often true that many solutions exist for Eq. (1.2). As a first step towards multiple
existence results, consider the problem on the Torus S'(L) x S*(1) with product metric,
there are many non-minimizing solutions if L is large, see [49] (and also see [36] for more
examples in the non-locally conformally flat setting). In this paper, we address a very
fundamental question

Question 1. Let M be a closed oriented spin m-manifold, equipped with the data (g, f)
on M (a metric and a real function), so that either (M, g) is not conformally equivalent
to (8™, ggm) or f : M — R is not a constant. Whether or not the set of all solutions to
the spinorial Yamabe-type PDE (1.2) is compact (in the Ct-topology, say)?

The case of the round sphere (S™, ggm) and f = constant # 0 is exceptional since
(1.2) is invariant under the action of the conformal group on S™, which is not compact.
Let us also mention here that, in the context of the spinorial Weierstrafl representation,
the above question may lead us to think

Question 2. Given a connected closed oriented surface ¥ and arbitrary data (g, f) on ¥, is
it possible to characterize a non-compact family of immersions II; : & — R3 conformally
realizing (g, f), that is

M} (gps) € 9] and Hp, =f, foralli=1,2,...
where Hyy stands for the mean curvature of an immersion I17

Remark 1.1. Usually, a generic immersion is uniquely determined up to a rigid motion by
its first fundamental form and its mean curvature function, but there are some exceptions,
for instance most constant mean curvature immersions. A classical result by Bonnet
states that if there exists a diffeomorphism W : ¥; — Y5 between two closed immersed
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surfaces ¥1, X9 of genus zero in R3 such that ¥ preserves both the metric and the mean
curvature function of the surfaces, then ¥; and X5 are congruent in R? (i.e., they differ
by a rigid motion). Note that in Question 2 we are not assuming that the immersed
surfaces are isometric, which is a critical hypothesis of Bonnet’s result.

Generally speaking, the answer to Question 2 is definitely no. On the one hand, for any
immersion IT of a compact surface in R?, one must have Hyy > 0 somewhere. This means
that the function f cannot be arbitrarily taken. And in fact there are further obstructions,
at least on the sphere ¥ = S2. Indeed, the mean curvature Hy; of a conformal immersion
II: 52 — R3 must satisfy

=0

9Ir3)

/V(Hn)dvoln*(

S2

for any conformal vector field V on 5?2, see [11]. In particular, if 23 : S* — R stands
for the third component of the standard inclusion of S? in R3, then for any ¢ # 0
the function f(z) = 1+ exs cannot be realized as the mean curvature of a conformal
immersion S2 — R3. On the other hand, it is well-known that the round sphere is the
only possible shape of an immersed closed CMC surface in R? having genus 0 (see Hopf
[32]). Therefore, the questions which concern us here are only interesting in the case
where the solution set of Eq. (1.2) is non-empty and having rich characterization to
reflect the geometric interpretations.

Let us point out that a similar non-compactness question has been raised for the
classical Yamabe problem, which is well-known as the Compactness Conjecture, see [48].
And such conjecture has been verified up to dimension 24 and disproved for dimensions
m > 25, see [20,21,38]. So far, to the best of our knowledge, there is no result charac-
terizing the compactness or non-compactness of the solution set for Eq. (1.2). One of
the reasons is that, since the validity of the strict inequality in (1.3) is still open, the
solvability of Eq. (1.2) is far from complete. Moreover, it is also not even clear if the
positive mass theorem (or its variants) can be employed to the study of Eq. (1.2) as the
Schoen-Yau positive energy theorem does for the classical Yamabe problem.

In this paper, we intend to construct specific geometric data on a Riemannian spin
manifold such that the set of solutions to Eq. (1.2) fails to be compact. To be more precise,
we will focus on the case M = S™ and attack the problem from two perspectives. For
starters, let us take f = 1 in (1.2) and consider the effects of the background metric g.
In this case, we are facing with the equation

2

Dy = [¢|g"" 4 on (S™,g) (1.4)

where ¢ is not conformally related to the round metric. It is of particular interest since

2m_
the integral [, [¢|g'~" dvol, of a solution gives an upper bound of the Bér-Hijazi-Lott
invariant. Hence, it would be interesting if one can derive a conformal spectral estimate
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for the Dirac operator D, so that (1.3) is a strict inequality. Another perspective is to
fix ¢ = ggm (that is the canonical round metric) and to consider the problem with a
non-constant function f : S™ — R, so that the effects of the external potential function
can be detected. This leads us to consider the equation

_2

Dygnth = f(@)[Ylgsn 0 on (S, gsm) (1.5)

where f # constant. In this setting, when m = 2, it is of geometric interest to show the
existence of a non-compact collection of immersed spheres in R? with a prescribed mean
curvature function f.

Our first main result reads as

Theorem 1.2. For k > 1 and m > 4k + 2. There exists a Riemannian metric g on
S™ of class C* and a sequence of spinors {1;}52, C C1(S™,S(S™)) with the following
properties:

(1) g is not locally conformally flat;
(2) v is a nontrivial solution of the equation (1.4) for all i € N;

(3) / | é"'_Tldvolg < (%)me foralli € N, and
S’m

tim [ el dvol, = (%) "
S?IL

(4) supgm ;g = +00 as i — 0.

Moreover, the strict inequality in (1.3) holds true for g, i.e.

1

Ah (8™, g,o5m) < %w;ﬁ.

min
Remark 1.3.

(1) Let us point out here that, following from our construction, the metric ¢ in Theo-
rem 1.2 cannot be smooth. But the above result indicates that higher the dimension
is better the regularity of the metric g will be.

(2) Theorem 1.2 provides an example of non-smooth metric ¢ on a spin manifold such
that the strict inequality in (1.3) holds. This is the first result of this kind in the
study of Bér-Hijazi-Lott invariant.

(3) Theorem 1.2 can be considered as a counterpart of Berti-Malchiodi’s result for the
Yamabe problem, see [16, Theorem 1.2]. It is worth noting that, by Hijazi’s inequality
[31], we have
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m
9.0 2 40

Y(M, g)
where Y (M, g) stands for the Yamabe constant of (M, g). Hence, Theorem 1.2 above
implies

Y(S™, g) <m(m— l)wn%,

which played a crucial role in the solvability of the Yamabe problem. From this
point of view, Theorem 1.2 provides an alternative construction of constant scalar
curvature metrics in the conformal class of g. This extends the result of Berti and
Malchiodi by relaxing the starting dimension from 6 instead of 11 as in [16]. Com-
paring Theorem 1.2 with the results of the Yamabe problem, it would be natural to
expect a compactness result for Eq. (1.4) in low dimensions. And it is also interesting
to see if the non-compactness results hold for some C'* smooth background metric.

Our next result is concerned with the external potential function f.

Theorem 1.4. For every m > 2, there exists a non-constant function f € C*(S™), f > 0,
and a sequence of spinors {1;}5°, C C1(S™,S(S™)) with the following properties:

i=1

(1) v is a nontrivial solution of the equation (1.5) for all i € N;
(2) |¥ilggm >0 on S™ and there holds

i ey ma\ ™
Zlggo J(2)|Yi| gem dvoly,, = (5) W

Sm
and
2m m
1 2 m—1 - m )
llggo f(@)*|ilgem dvoly,, = (§> W
Sm
(3) Supsm |¢i|gsm — +00 as 7 — 00.

Remark 1.5.

(1) Theorem 1.4 (2) has its own geometric meaning. In fact, in dimension m = 2, we
can introduce a conformal metric g; = |1/Ji|§s2 gg2 on S for each i. Then, due to the
conformal covariance of the Dirac operator (cf. [27,28]), we see that there is a spinor
field ; on (S2, g;) such that

=1

9; —

Dy i = f(x)p; and |p;
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Hence, by the spinorial Weierstrafl representation, there is an isometric immersion
I; : (S%,9;) — (R3, ggs) with mean curvature Hy, = f. Furthermore, since the
pull-back of the Euclidean volume form under this immersion is IIj(dvoly ) =
|wi|352dvolgR2, the associated Willmore energy W (II;) for this immersion satisfies

W(IT,) :/f(a:)zwi\gszdvolgw <8n
SQ

for all i (large enough). Due to Li-Yau’s inequality [43, Theorem 6], the immersion
II; covers points in R? at most once. Hence II; is actually an embedding.

(2) Theorem 1.4 provides a positive answer to Question 2. Indeed, let us consider the
family of immersions

I= {H : 82 - R3 : I conformally realizes (952, f)}

and discuss its compactness (say, whether the images of S? via elements of Z form
a compact collection of surfaces in R?), we find that {II;} C Z and W(II;) — 4m
as i — oo. Notice that an immersion II : ¥ — R? of a Riemann surface X satisfies
W (II) = 4~ if and only if II(X) is the round sphere. Hence, we see that Z cannot be
compact since the limit of IT;(S?) (even if it exists) will not realize the non-constant
function f as the mean curvature.

Now as an immediate consequence of the above remark, we have
Corollary 1.6. There exists a non-constant function f € C?(S?) such that the family
E={II: S% — R? is an embedding : TI conformally realizes (gge, N}
fails to be compact in the sense that {II(S?) : 11 € £} is not compact in R3.

Let us sketch the main steps involved in the proofs of the Theorems 1.2 and 1.4. In
Section 2, after introducing some basic concepts and notations from the spin geometry,
we will reformulate our problems and work on R™ instead of S™ via stereographic pro-
jection. Our goal is to construct solutions to the spinorial Yamabe-type PDEs (1.4) and
(1.5) on (R™, g) and (R™, ggm ) respectively, where either § = ggm +ch is a perturbation
of the Euclidean metric or f(z) = 14+eH (z) is a perturbation from constant. In Section 3,
we set up a perturbative variational framework so that we can reduce our problems to a
kind of finite dimensional bifurcation problem. This idea has been employed for the study
of classical Yamabe problem (see, e.g., [4,5,16,24]). Here, unlike the scalar cases, the fi-
nite dimensional problem associated to the spinorial Yamabe-type PDEs is degenerate,
that is, any critical point of the main term of the reduced functional is not isolated, and
the collection of these critical points appear as critical manifolds of positive dimension.
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Thus, it is not clear whether critical points of the reduced functional create true solutions
of the original problems. For this reason, the abstract framework in [5,16] can not be
implemented in a straightforward manner, and somehow a delicate handling is required.
In the subsequent sections, i.e., Sections 4 and 5, we check the hypothesis of the abstract
framework in the two cases of our main problems mentioned above, and complete the
proofs of the main results. The Appendix contains some technical computations.

2. Preliminaries
2.1. Projecting the problems to R™

Let us first consider Eq. (1.4) and rewrite it in a more precise manner as

Dy b =1 ;’E‘jw on S™, (2.1)

in which the metric ¢, is a perturbation from the canonical one on S™. Using the stere-
ographic projection wp : S™\ {P} — R™ (for an arbitrarily fixed P € S™), we obtain
the following one-to-one correspondence between g, on S™\ {P} and a metric g, on R™:

2
- R™. 2.2
T ep ° € (2.2)

g =12 (mp") 0 n()
Clearly, if §. = ggm is the canonical Euclidean metric, then the metric g, on S™ \ {P}
can be extended globally to the standard round metric. In what follows, we assume that
g. takes the form §. = ggm + €h where h is a smooth symmetric bilinear form on R™.
In particular, let us consider a specific situation

9. (z) = diag (91, (@), ..., Gy () with  y(2) =1+ ehii(), (2.3)

where h;; : R™ — R, i=1,...,m, are smooth functions. Let us point out here that, for
a general choice of h, the pull-back metric g. on S™\ {P} may be discontinuous at the
point P. Hence, in order to extend g, globally on S™, it is natural to require the entries
hii, i =1,...,m, and their derivatives behave “nicely” at infinity.

We also mention that the Eq. (2.1) on S™ is equivalent to an equation on R™ by

2
¢t on a spin manifold

conformal equivalence. More precisely, the equation Dy = [¢
(M, g) is invariant under conformal changes of the metric. In fact, let g = e2“g for some
function u on M, there is an isomorphism of vector bundles F' : S(M,g) — S(M,7)
(here S(M, g) and S(M, g) are spinor bundles on M with respect to the metrics g and g,
respectively) which is a fiberwise isometry such that
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for ¢ € C*>((M,g),S(M,g)) (for more detailed definitions and facts about Clifford al-

gebras, spin structures on manifolds and Dirac operators, please consult [27,41]). Thus,
_(}"%lw on (M, g), then ¢ := F(e_mTfl“w)
satisfies the same equation on (M, g): Dgp = |g0|fcp on (M, g).

Applying the above observation to Eq. (2.1) with M = S™ and using (2.2)—(2.3), we
find that if v € C1(S™,S(5™)) is a solution then ¢ = u™z F(1) o 7p') satisfies the
equation

when 1 is a solution to the equation D) = [¢

2
Dy = |cp|§f';‘1<p on R™, (2.4)

Conversely, by the regularity theorem and the removal of singularities theorem for Dirac
equations on spin manifolds (see [33, Appendix] and [8, Theorem 5.1]), if ¢ is a solution
to Eq. (2.4) and ¢ € Lo (R™,S(R™)) then it corresponds to a global C'-solution 1)
to Eq. (1.4) on S™. Therefore, the study of Eq. (2.1) is equivalent to the study of Eq.
(2.4).

Now, to characterize the metric g., let us set

+o00
hzx) = Z a;h(z — x;) (2.5)

where a; € R, |z;] = +00 as i = +o0, and h is a smooth symmetric matrix function
with compact support. Roughly speaking, with this choice of A in the definition of metric
9., the Dirac operator in (2.4) becomes

D:ée = DgR'm + R(E’ :I:7 B7 v) (2.6)
where R(e, z, h,V) is a suitable perturbation term. In this way, we expect that Eq. (2.4)
shall be handled by means of a perturbation method in nonlinear analysis. When &
consists of only a finite number of terms, the existence problem of Eq. (2.4) has been
firstly treated in [36]. In particular, a very specific construction of the matrix function
h has been introduced in [36] so that the effect of the perturbation term in (2.6) can be
explicitly computed from a variational point of view. Here, for the sake of completeness,
we present the very formulation for the matrix & in (2.5) as follows.

Definition 2.1. Given a smooth m x m diagonal matrix function
Wz) = diag (h1(2), ..., by (x)) for x € R™, m > 2,
and a point £ = (&1,...,&n) € R™. For k € {1,...,m} and p € [1,00), we say that h

is (k,p)-elementary at &, if £ & supp hgx and, for © = (x1,...,2,) € R™ close to £ and
1 £k,
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hii(w) = hii(§) + ci(wi — &) + cu(vr — &) + o]z — &[P)

where ¢; € R, i = 1,...,m, are constants with particularly ¢, # 0. Moreover, if the
o(]z — &|P) term vanishes identically in the above local expansion of h;;’s, then we say h
is (k, 0o0)-elementary at £. In this way, we call p € [1, 00) U {oc0} the remainder exponent
of h at &.

Remark 2.2. Let us present here a simple example of (1,p)-elementary matrix at the
origin, in dimension 3:

0 0 0
Me)=1[ 0 a+cizi+ caxo 0 +o(|z|”)
0 0 b+ ciwy + c3x3

for |z| < r, where a, b, ¢1, ¢, c3 € R are real constants with particularly ¢; # 0. This
very specific definition is first introduced in [36] for the study of multiple solutions for
the spinorial Yamabe-type problems. More examples and a brief explanation of such
(k, p)-elementary matrices have been given in [36, Appendix]. We mention here that the
main reason we introduce those (k, p)-elementary matrices lies in Proposition 4.3, where
we find such matrices are surprisingly compatible with the perturbed Dirac operator
(2.6) and they guarantee the implementation of our abstract result in Section 3.

It can be seen from Definition 2.1 that “elementary” matrix is a local concept. In the
sequel, if it is clear from the context to which dimension we refer, we will simply use the
name “elementary matrix” to designate a member h (without specifying its tag numbers
k and the location point £). In order to classify the perturbation term in (2.5), let us set

h is a compactly supported elementary matrix

with remainder exponent p,

+oo
H — iL D) = a;h(- — x; >
(p) () ; ( ) {a;} C R and Z la;|” < 400, for some 7 > 1,
i=1

{;} C R™ and |z; — x;| > 4diam(supp h) for ¢ # j
Then Theorem 1.2 is nothing but a direct consequence of the following result.

Theorem 2.3. Let p € [2,00) U {00}, k > 1 and m > 4k + 2. There exist h € H(p) and
g0 > 0 such that for every e € (—eo,20) \ {0} the metric g, in (2.2)~(2.5) is of class C*
on S™, and the following properties hold:

(1) llg. — ggmllex — 0 ase =0, ‘ |
(2) Egq. (2.1) possesses a sequence of solutions {¢§’)};§1 satisfying ||¢£l)||Loo(Sm) — 400
as t© — +o00,
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(3) there holds
L 2m_ m
/ |¢£Z)|§:‘1 dvoly = (%) W + Cimaze? + o(aie?)
Sm

where Cymm < 0 45 a negative constant depending only on h, the dimension m and
1€ N.

Next, in order to study Eq. (1.5), let us focus on the case where the function f takes
the form f(z) =1+ eH(x), i.e.

2

Dyt = (1 +eH(x))[]gel & on (8™, ggm) (2.7)

with € # 0 and some H : S™ — R at least being Holder continuous. As before, denote
by mp, 1 S™\ {po} — R™ the stereographic projection from py (this point will be fixed
later according to our choice of H), we have (7rp_01)*gsm = p?grm. And then, via the
conformal transformation, Eq. (1.5) can be converted to

2

Dgytp = (1 + K (2))[¢lgum ¢ on R™ (2.8)

where K(z) = H (mpo-(x)). We remark here that we shall write it simply « for the
argument of a function when no confusion can arise.

Similarly to the way we handle Eq. (2.4), let us consider a situation where the function
H can be decomposed into a series of components such that each component generates
a solution to Eq. (2.8). In order to do so, for a continuously differentiable function H on
S™ (which plays the role of an individual component of H), let us simply denote Crit[H]
the critical set of H. For later use, we assume the following two standing conditions on
H:

(H-1) H € C*(S™) is a Morse function such that A,
(H-2) H satisfies that

H(p) # 0 for p € Crit[H].

sm
S )Ty
peCrit[H], Aﬂsm H(p)<0
where M (H, p) is the Morse index of H at p € Crit[H|.

Here we mention that condition (H-2) is the well-known index counting condition which
was first introduced in the scalar curvature problem in [14,23].
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Then we collect the following family of continuous functions on S™

H satisfies the conditions (H-1) and (H-2),
po € Crit[H) and A,_,. H(po) > 0,

o0 gsm
T = HZ zH —1 ) =z o0
;a/ (ﬂ-po (Wpo( ) z )) {al} C R and Z ‘a7| < +OO7

i=1

{z:i} CR™ and |z; — z;| > 1 fori #j

It is clear that, when H € C?(S™), HOﬂ';Ol defines a C?-function on R™ and limyy| o Ho
Tpo (y) = H(po). The function H (m, ! (mp,(-) — 2i)) : ™\ {po} — R can be viewed as
a translation of H on S™ with H(py) being fixed. Hence the above family describes
a function that is (approximately) concentrated on the points 7, '(z;) € S™ \ {po},
i =1,2,..., and is well-defined on S™. We remark that the elements in 5# are not
necessarily differentiable at pg and, as was indicated in its geometric background, the
function 1+eH plays a role of mean curvature. Hence, one may expect H to have certain
regularity at the point pg. With all these in mind, let us present the following result that
explains Theorem 1.4.

Theorem 2.4. For every m > 2, there exist H € 7 N C?(S™) and g9 > 0 such that for
€ € (—eo,e0) \ {0} the following properties hold:

(1) Eq. (2.7) possesses a sequence of solutions {1/)9}?21 satisfy ||w£—i)HLoo(Sm) — 400 as
) — +00,
(2) W’El”gsm >0 on S™ provided that |e| is small, moreover,

: 3 i) T my™
Jm [ eA @) dvolyg,, = (5) wm
Sm

and

2m m

i ] 21,,(i) | m-1 m

ihjf}o (1+cH(z)) |¢§Z)|gsm1dvolgsm — (5> W,
S'nt,

We end this subsection by pointing out that the following equation
T
Dy, = [Ylgem ¥ on R™ (2.9)
can be viewed as the unperturbed equation of both Eq. (2.4) and Eq. (2.8). Hence, in the

sequel, our framework will be build upon the study of Eq. (2.9) and its Euler-Lagrange
functional
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1
o) =5 [ 06Dy voly, — / Ul dvoly,  (20)

Rm,

where (-, ) gy and |- |[g.,, are the canonical hermitian product and its induced metric
on the spinor bundle S(R™).

2.2. Configuration spaces

To treat Eq. (2.4) and (2.8) from a variational point of view, it is necessary to set up a
functional framework. Suitable function spaces are H2 (M, S(M)) and 2z (R™,S(R™))
of spinor fields which are introduced in [33,34]. For completeness, we give the definitions
as follows.

Recall that the Dirac operator Dy on a compact spin manifold (M, g) is self-adjoint
on L?(M,S(M)) and has compact resolvents (see [27,41]). Particularly, there exists a
complete orthonormal basis 11,1, ... of the Hilbert space L?(M,S(M)) consisting of
the eigenspinors of Dg: Dgtb, = A\gtby. Moreover, |A;| — co as k — oco.

Now, we define the operator |Dy|*/? : L2(M,S(M)) — L?(M,S(M)) by

(oo}
D[V 20 =" [ el P,

k=1

for ¢ = Y727 aptpy € L2(M,S(M)) and consider its domain
HY2(M,5(M)) = {v Zawk € LA(M,S(M Z Aellag? < oo}

We can equip H/?(M,S(M)) with the inner product

(W, ©)1/2, = Re(|Dy|/?, [Dyg|"?¢)2 + Re(t), 0)o

and the induced norm ||-|1 /2 2, where (-, )2 is the L?-inner product on spinors. It follows
that H/2(M,S(M)) coincides with the usual Sobolev space W/22(M, S(M)) (cf. [1,6]).
In the sequel, we are mainly concerned with the space Hz (M, S(M)) for M = §™. Notice
that the spectrum of D,_,, on S™ is bounded away from 0 and one checks easily that
[¥]l1/2 = |[Dggm \%1/)|2 defines an equivalent norm on Hz(S™,S(5™)).

On R™, a similar function space will also be useful in our argument. For simplicity
of notation, we denote L9 := LI(R™,S(R™)) with the norm [¢[? = [g.. [¢|%dvolg,,,
for ¢ > 1 and denote 2* = % the critical Sobolev exponent of the embedding
HY2(R™ S(R™)) < LI(R™,S(R™)) for 1 < ¢ < 2*. Then, we recall the space
22 (R™,S(R™)) of spinor fields ¢ on R™ such that 1D ggnm 1/2¢|§ < oo with norm
[l == ||Dggn ['?¢],. Here, |Dy,,.["/? is defined via the Fourier transformation:
F 1Dy [V20)(€) = |E[1/2F (0)(€) and || Dy, [V24], = || - [V2F ()], Notice that
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2% (R™,S(R™)) is isomorphic to Hz (5™, S(S™)) via the stereographic projection. The
dual space of 22 (R™,S(R™)) will be denoted by 22 (R™, S(R™)).

2.3. Geometric preliminaries and expansion of the perturbed functional

In this part, we shall collect some basic results that will enable us to expand the
energy functional J; for (2.4) with respect to the small parameter € in (2.2)—(2.3). This
requires comparing spinor fields in spinor bundles associated with different metrics. In
order to carry this out, we recall a construction by Bourguignon and Gauduchon [19]
and some formulas given in [36, Section 4.1] which will be useful for our computations.

To begin with, for the metrics ggm and g on R™, let us consider the unique endomor-
phism A, at each point x € R™ such that

9(v,w) = grm (Azv,w)

for v, w € T,R™. Notice that A, is nothing but a positive definite symmetric matrix, it
has a well-defined square root B,. Let b;;(z), 4,5 = 1,...,m, be the entries of B,, we
have

B:v : (T:L’]Rm = Rmv ng) - (Tsz, ZJCE)

U—kaak — B Z ijk

defines an isometry for each € R™. Then we obtain an isomorphism of SO(m)-principal
bundles: n{vy,...,vm} = {B(v1),...,B(vy)} for an oriented frame {vi,...,v,,} on
(R™, ggm). Note that the map n commutes with the right action of SO(m), it can
be lifted to spin structures:

Ul -
PSpin(Rma g]Rm) I Pspin<Rm7 g)

| |

R — 1, Rm

which induces an isomorphism between the spinor bundles S(R™, gg» ) and S(R™, 9):

S(R™, ggm ) := Pspin(R™, ggm ) Xp S —> S(R™, §) := Pspin(R™, g) X, Sy

~ (2.11)
Y = [5,¢] = b = [7i(s), ¢]

where [s, ] stands for the equivalence class of (s, ¢) under the action of Spin(m). This
identifies the spinor fields.

For the Dirac operators, as was shown by [10, Proposition 3.2], the identification can
be expressed in the following formula



16 T. Isobe et al. / Journal of Functional Analysis 287 (2024) 110472

Dy = Dy 0 + W 50 + X - w+2 i — 0705 3 Vo, b (2.12)

,J

where -5 denotes the Clifford multiplication with respect to the metric g,

Z Z bm(aabm)bgkl 51 ‘g 5j ‘g 5k7

5,k B
i Lkt

with b;jl being the entries of the inverse matrix of B, 9; = B(9;) and

Z szakv

with ffj = Z](@gi d;,0k) being the Christoffel symbols of the second kind.

Remark 2.5. On spin manifolds, since the tangent bundle is embedded in the bundle
of Clifford algebra, vector fields have two different actions on spinors, i.e. the Clifford
multiplications and the covariant derivatives. Here, to distinguish the two actions on a
spinor 1, we denote 0; -4, ¥ the Clifford multiplication of 9; and V9 the covariant
derivative with respect to the metric ggm (respectively, ; ~§1,E the Clifford multiplication
of d; and @@JJ the covariant derivative with respect to the metric g). For functions, we
shall simply denote 0;u for its partial derivative.

Now we collect some formulas given in [36] which are direct consequences of some ele-
mentary computations and will be useful in our framework. It will always be understood
that the metric g, is given by (2.2)~(2.5) and G, stands for the matrix of the coefficients
in g,, expressed in the basis 9;, ¢ = 1,...,m. Then we have

Vet G =1+ Sirht 52(%(tr W2 3 (i) +0(=), (2.13)

B. _I——h+3i712+ o(c2) (2.14)

and

BT —I-I—Eib—g—iZQ-l—O( ). (2.15)

The energy functional associated to (2.4), which is defined for a spinor ¢ in S(R™, 9.),
is given by

TD) =5 [ 3Ds b5, dvoly, ~5 [ 1O v, (216)

Rm™ Rm
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where ¢ is implicitly involved in the formulation. The main point of this section is to
obtain an alternative expression of 75(1/;) by using the aforementioned Bourguignon-
Gauduchon identification S(R™, ggm) 3 b < 1 € S(R™,3.) so that € is explicitly
separated out. This can be summarized by the following lemma, which has been shown

in [36, Lemma 4.3].

Lemma 2.6. Let § be given by (2.2)—(2.5), then

T-() = Jo(¥) + L () + €2 (¢h) + o(?), (2.17)
where

1 1 «

o) =5 [ 00 Do o A0l =5 [ 10, Aol
Rm™ R™
trhrl R 1 e~
T(y) = / 15 8 Do) 1, =5 100 | =5 D i Re (Drrgn Vortho),, dvoly,,,
]Rm K2

and

1 ~ 1 ~ 1 1 «

o) = [ (5leh? = 5 uli)) 300 Dyen),,., 50|
RWL
1 2 -
5 (3B = 2060 )it ) Re(Ds g5, V10, 9) g AVl

for € 23(R™ S(R™)).
3. Abstract settings

The aim of this section is to present a general approach, which is based on a well-
adapted well-known technique in nonlinear analysis: the Lyapunov-Schmidt reduction.
The emphasis here is that the nature of the spinorial Yamabe-type problems prevent
applying known reductions. Here, the general approach has been recently carried out by
Isobe and Xu in [36]. For the sake of completeness, let us sketch the results as follows.

3.1. Lyapunov-Schmidt reduction of the functional

In a general setting, a well adopted Lyapunov-Schmidt reduction technique provides a
powerful tool to study perturbed variational problems, see for instance [45, Chapter 10]
and [22, II, 6] where the reduced problem is compact and [2,3,5] for the case that the
reduced problem is non-compact. Following the monograph [5], we outline the idea as
follows.
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Let (H,{-,-)) be a Hilbert space with the associated norm || - | := (-, ~>1/2. Suppose
that Ly € C*(H,R) and T' € C%(H,R) are given. For ¢ > 0 small, we consider the
perturbed functional

L.(z) = Lo(z) + €I'(2) + o(e). (3.1)
Assume that Lg has a non-degenerate critical manifold M C H, that is,

(A1) M is a d-dimensional C?-submanifold of H such that VLg(z) = 0 for all z € M,
(A2) M is non-degenerate in the sense that for all z € M, we have T, M = ker V?Ly(z),
(A3) V2Lo(2) : H — H is a Fredholm operator with index zero for all z € M.

Set W, := T, M+, where the orthogonal complement is taking with respect to (-, ) in
H. We look for critical points of L. in the form v = z + w where z € M and w € W,.
Let P, : H — W, be the orthogonal projection onto W,, the Euler-Lagrange equation
VL:(z+ w) =0 is equivalent to

{PZVLs(z +w)=0 (auziliary equation) (3.2)

(I = P,)VL:(z+w)=0 (bifurcation equation).

Then, under the conditions (A2) and (A3), the auxiliary equation in (3.2) can be solved
firstly for w by applying the implicit function theorem: for arbitrary z € M there is
a unique small solution w = we(z) € W, for small values of . Furthermore, on any
compact subset M, C M, one can have the uniform estimate (see [5, Chapter 2]):

M. 3z w(z) €W, is C and |Jw.(2)]], ||w.(2)|| = O(¢) uniformly for z € M..
(3.3)
The next step is to consider the bifurcation equation in (3.2). To this end, we introduce
the reduced functional L7 : M — R by

Lr*(2) = Le(z + we(2))
Then we have the following theorem

Theorem 3.1 (Theorem 2.12 in [5]). Suppose (Al)—(A3) are satisfied. Assume that for
a compact subset M. C M and € > 0 small, Lfd has a critical point z. € M. Then
Ue = 2 +we(ze) 18 a critical point of L. on H.

Thanks to the uniform estimate (3.3), the reduced functional L"*? is well approximated
in the sense that

Lged(z) = Lo(z) + eT'(2) + o(e), VLged(z) =eVTI'(z) + o(e) (3.4)
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and Lg(z) is constant on any connected component of M. Thus if z € M is a non-

degenerate critical point of T' in some certain sense (for example, the local degree of VI'

at z is non-zero), then z generates a critical point of L, on H (see [5,22,45] for details).

Remark 3.2.

(1)

Turning back to the problems (2.4) and (2.8), a very natural idea is to apply the
above abstract framework to the functionals given by Ly = Jy and L. = J. on
H = 22(R™,S(R™)) (see Lemma 2.6 for the functionals associated to Bq. (2.4),
while the functionals associated to Eq. (2.8) are much easier to obtain). As was
already shown in [34, Section 5, 6] that Jy satisfies (A1)-(A3) for a critical manifold
M defined as

M= {rey: A>0, EER™, v €S, [y =1}, (3.5)
where
bren(e) = =TT e ) (3.6)
A8, = ™ - - ‘grm .
T el "

for A\ >0, € R™, v €S, with |y| =1 (S, is the spinor module, see [27,41]) and
“gem denotes the Clifford multiplication with respect to the Euclidean metric. Note
that M is diffeomorphic to (0,00) x R™ x 52[%]“*1(8”1) via the canonical map
(A, &, 7) = ¥a g, where Sz[%Hl’l(Sm) stands for the (203171 —1)-dimensional unit
sphere in S,,,. And hence M is a non-compact manifold and the dimension of M is
m + 2L+,

Unfortunately, in the spinorial setting, the reduced functional L*? happens to have
much worse analytic properties than the usual cases, and one of these “bad” behaviors
is the degeneracy on M. This, for instance, can be seen from the explicit formulations
of those perturbation terms in (2.17) where I" and ® do not depend on all variables
of M (in fact, if we substitute (3.5)—(3.6) into (2.17), we find that I" and ® do not
depend on the variable v in M). Hence, critical points of the functional J. can not
be obtained via non-degenerate arguments, in particular, standard methods as in
[4,5,22,45] do not apply.

3.2. Perturbation method with degenerate conditions

Here we recall a recent framework developed in [36, Section 2], which can be employed

to handle spinor field equations like (2.4) and (2.8). To see this, besides the assumptions
(A1)-(A3), we will need the following additional conditions for the critical manifold M:
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(A4) M admits a (globally) trivializable fiber bundle structure over a compact base
space A/ with projection ¥ : M — AN and fiber G. Precisely, there is a fiber pre-
serving diffeomorphism ¢ : G x N' — M such that the following diagram commutes

GxN —— M

pros | |

N— N

(A5) T, N CkerV(T'ou)(g,7) for any (g,7) € G x N, where we have identified T, N as
a subspace of the total tangent space T(, (G x N).

Remark 3.3.

(1) In our application N = 52[%]“’1(87”), G = (0,+00) x R™ and t(g,7) := ¢, for
g = (\E&) € Gand v € N, hence we have a very natural bundle structure on M.
Particularly, we note that there is a continuous action G x M — M such that G
preserves the fibers of M (i.e. if (u,y) € G and ¥ ¢, € M, then ¥y ¢ * (1, y) =
Yap, e4yy € My). Hence the critical manifold in (3.5) is essentially a principal G-
bundle. And since it admits a global section, we easily see that M is trivializable.
This is the reason we introduce condition (A4).

(2) Note that if M is parameterized via the map ¢, condition (A4) makes the variational
problem even clearer: it is equivalent to consider the functional L™ o1 : G x N — R.
Comparing with the standard theory in [5,22,45], the distinct new feature (A5)
describes a certain degenerate situation and, particularly, it implies that T o ¢(g, )
depends only on the variables in the fiber space G. Thus we shall turn to study

T'(g) =T ou(g,~y). For later use, we distinguish (A5) into the following two cases:

ker V(T 01)(g,7) = T(g,)(G x N) forall (g,7) € G x N,
ker V(I 0 ¢)(g,7) # T(g,4)(G X N) for some (g,7) € G x N,

and we will collect two abstract results which are useful in the spinorial Yamabe-type
problems.

Case 1: ker V(I' 0 1)(g,7) = T(4,4)(G x N) for all (9,7) € G x N

In this setting, we have T o 1(g,vy) = constant on G x N and we need to evaluate
further terms in the expansion of L7®. For this purpose, let us develop the expansion
(3.1) in powers of € as

L.(2) = Lo(2) + e'(2) + £2®(2) + o(£?) (3.7

Note that I' o t(g,7) = constant on G x N is equivalent to I'(z) = constant on M.
It follows that VI'(z) € W, := T, M. Recall that w.(z) is the solution to the auxiliary
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equation P,V L.(z+ w) = 0, hence we have VL.(z + w.(z)) € T, M. For a fixed z € M,
using Taylor expansion, one sees

VL. (z 4+ we(2)) = VLo(z +we(z)) +eVI(z + we(2)) + o(e)
= V2Lo(2)[w(2)] + eVI(2) + eV (2)[we (2)] + o(||we (2)]]) + o(e).-

Then, form (3.3) and the fact VL.(z + w.(2)) € T, M, it follows that
V2 Lo(2)[we(2)] + eVT(2) + o(€) € T, M.
And hence, by projecting the above equation into W,, we deduce
we(z) = —e K, (VT (2)) + o(e), (3.8)

where K, stands for the inverse of V2Lo(z) restricted to W,. Now, we can expand
Lre(2) := L.(z + w.(2)) as

L2%4(z) = Lo(2) + 5V Lo(2)we (2), we 2)]
+el'(2) +eVI(2)[we(2)] + £2®(2) + o(e?) (3.9)

= Lo(=) +<T(2) + 2 (2(2) - % (K.(VT(2)), VI()) ) + ofe).

Here, we emphasize that both Lo(z) and T'(z) are constants on M. The following result
is due to [36, Theorem 2.6].

Theorem 3.4. Let Lo, T, ® € C%(H,R) as in (3.7) and suppose that (A1)-(A5) are satis-
fied. If there is an open bounded subset U C G such that

inf ( min &

YEN \ U |19’1(7)_mgmq)|19*1(7)>>0 or sup (max(I)

— ma. i)
~eN \ OU i |”’1(7))<0’

91 ()

where ‘i)’ﬂfl(v) =dou-,7) and

- 1
O(z) :=P(2) — 5 (K.(VT'(2)),VT(z)) forze M.
Then, for |e| small, the functional L. has a critical point on M.

Case 2: ker V(I' 0 1)(g,7) # T(4,)(G x N) for some (g,7) € G x N'

Clearly, in this case, I'(g) = ['ow(g, ) # constant on GxN (evidently, T'(z) # constant
on M). And the existence result is as follows, we refer the reads to [36, Theorem 2.4 and
Remark 2.5].
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Theorem 3.5. Let Lo, I" € C*(H,R) as in (3.1) and suppose that (A1)-(A5) are satisfied.
If T is a Morse function on G and there is an open bounded subset Q C G such that
the topological degree deg(VT,,0) # 0. Then, for |e| small, the functional L' has at
least Cat(N') critical points on M. In particular, for each critical point g of T, there
exist at least Cat(N) critical points (9(7),7) € G x N of L™, each of which satisfies
g(y)=g+o(1) ase — 0.

Here Cat(N\) denotes the Lusternik-Schnierelman category of A/, namely the smallest
integer k such that N” C UF_; Ag, where the sets Ay, are closed and contractible in N

4. The non-compactness caused by the background metric

In this section, let us consider the Eq. (2.4), where the background metric is given by
(2.2) and (2.3). In this setting, our main purpose is to use our abstract result to prove
Theorem 2.3. Here we emphasis that the functional 7j in Lemma 2.6 plays the role of
Ly in our abstract settings.

4.1. Some basic facts

We first report some important properties of the functionals I' and & in
Lemma 2.6, which have been shown in [36]. Recall that since the critical manifold
M c 23 (R™, S(R™)) for Jy is given by (3.5)-(3.6), we have

Lemma 4.1. Assume that we are in the hypotheses of Lemma 2.6, for ¥y ¢ € M with
A>0,£€eR™ andy € 52[?]+1*1(Sm), there hold

D(Yren) =0
and
mmIAm [ t(RD) — (b )2
d = dvol .
(wk,fﬂ) 16 / (>\2 + |.Z' _ §|2)m VO grm
Moreover

(1) lim ®(¥re,,) = Co(tr(R*) — (trB)?)(€) for any € € R™, where

mm—l

1
Cy= / —dvoly., ;
0 16 2 (1 + |I17|2) IR




T. Isobe et al. / Journal of Functional Analysis 287 (2024) 110472 23

(2) for allveW, =T, M+,

1 ~
(VI(2),v) = 1 Re /(V(tr R) - ggm %5 V) ggm dVOlgy ..
Rm,

1 ~
—3 ZRe / hii (05 - ggm V,2,0) ggm A VOl gy,

1 _
1 Z Re / 0ihii (0 ~ g #5V) gm A VOlgg s (4.1)
i gm

(3) lim (Ko, (VT (r64)), VI (Yrey)) = Cl(tf(}f) — (trh)?)(€) for any & € R™,

where
mm—l |Z‘|2
Ci = / —ardvolg,.,
and K, stands for the inverse of V2Jy(z) restricted to W, = T,M*+ C

23 (R™,S(R™)).

Remark 4.2. Let us point out that the aforementioned two constants Cy and C; can be
computed explicitly as

o0
Ly m=ly
Cy = m1/ o M Wm 13(%7%)
0

and

m™ w1 7 rmtl m™ w1 /mom
C) = m dr = m B(—,— 1)
! /(1+r2)m+1 " 8 > "
0

where B(z,y), defined for z,y > 0, is the beta function classified by the first kind of
Euler’s integral. Using the property

1
B(z,z+1) = §B(x,m), for x>0
we find Cy = %Cl.
Next, let 7/ be the Euler functional corresponding to the metric " = ggm +¢ch, where
h is a fixed elementary matrix (see Definition 2.1). Then Lemma 4.1 can be performed

also for J". Let T and ®" be the corresponding functionals appearing in the expansion
of J". A more detailed characterization for the reorganized functional
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d(z) == dM(2) — % (K.(VI'(2)),VI"(2)) for 2 € M (4.2)

can be summarized in the following proposition. We emphasize that, by Lemma 4.1 and
Remark 4.2, there holds

lim " =
)\13}) W’A,&,'y) 0

for any £ € R™ and « € 52[%]“_1(8,”).
Proposition 4.3. For m > 4, assume that we are in the hypotheses of Lemma 2.6. Let

kEe{l,...,m}, p € [2,00] and h = diag(h11,.-., hmm) be (k,p)-elementary at a point
§ € R™ with Oxhii(§) =, #0, fori # k. If

then

‘i’h(%,g,w) = -

m=2(m — 1)(m — 2)c2 §
3m™ ™ (m — 1)(m — 2)cj A2 / 4 dvoly,,, +0(A\?) as A — 0.

128 (1+ [z2)m
]Rm

In particular, <i>h(t/)>\7£ﬁ) < 0 for small values of A. Furthermore,
D'(Pren) =0 as A+ €] = oo

Remark 4.4. The proof of Proposition 4.3 is very technical, we refer to [36, Section 4.2]
for more details. We only point out here that the main ingredient lies in characterizing
the mapping w! : M — TM*, wh(z) = K,(VI"(2)), or equivalently solving the equa-
tion V27 (2)[wl(2)] = VI(2) for z € M. And the (k, p)-elementary matrix makes the
computation more accessible than using general choices of h.

Now, through the perturbation framework introduced in Section 3, we intend to reduce
the problem (2.1) to a finite-dimensional one. Notice that, when h € H(p) (see the
definition above Theorem 2.3), we find the functionals T and ® (in the expansion of T,
see Lemma 2.6) are actually in the form of summing up infinitely many distinguished
terms. For this reason more careful analysis is required.

Lemma 4.5. For m > 2, assume that we are in the hypotheses of Lemma 2.6 with h €
H(p), some p € (2,00) U{o0}. Let 9, ¢ € Qé(Rm,S(Rm)) and z € M. Then, via the
Bourguignon-Gauduchon identification (2.11), there exists a constant C > 0 such that
the following estimates hold for all |e| small:
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T () = To() — eD (W) — £2(1) = o(e?) (112 + [l #7); (4.3)

VT () — VTo() — VT @)|| = OE2) (1] + 0] 75); (4.4)

[VT-(2)]| = O(le]); (4.5)

V27 () = V2T ()| = O(lel) (1+\|w||%>~ (4.6)

T (P + @) — Te@)| < Cllall (Il + llell + el 7= ) (4.7)

VT + @) = VI@)|| < Cllall (1 + [ 7 + ol 7=7); (4.8)

IV + @) — VE@)[| < Cllell (1 + gl + ol 7= ); (4.9)

V220G 45— Pl < {C||<p||(||%f||+lls0||) m=2, w10)
C(lell== +llell) m >3,

uniformly in 1, ¢ and z.

Without breaking the reading, the proof of Lemma 4.5 will be given in Appendix A.1.
Now, as an important consequence, we have

Proposition 4.6. For m > 2, assume that we are in the hypotheses of Lemma 2.0 with
he H(p), some p € (2,00) U{oc}. There exists a C* mapping

(w,x) : (~€0,20) X M — 23 (R™,S(R™)) x 2 (R™,S(R™))
for some g9 > 0, which satisfies

(1) we(z) = w(e,z) € T.M*;

(2) VI-(2 + we(2)) = x(g,2) € T M for all z € M (via the Bourguignon-Gauduchon
identification);

(3) we(z) = —eK,(VI(2)) + O(|€\ ) with =2 for m =2 and p = "2 for yu > 3;

—~—

(4) denoted by Jr°4(z2) = J- (Z—|—w5( ), then Z+w.(z) is a critical point of J. provided
that z € M is a critical point of Jre.

Proof. To obtain the existence of (w,x), let us define a mapping H : M x (—e1,€1) X
23 (R™,S(R™)) x TM = 23 (R™,S(R™)) x TM

H(z,e,w,x) = (VI(2+ @) — x,I — P.)w)

where (—&1,¢1) is an interval such that 7. is well-defined and P, : 22 (R™,S(R™)) —
T. M is the orthogonal projection onto 7, M.

Plainly, we have H(z,0,0,0) = (0,0) for all z € M. And by elementary computation,
we have
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v(wvx)H(Zv 0,0, 0)[907 ¢] = (VQJO(Z)[QP] — (b, (I — Pz)cp)

for ¢ € 22(R™,S(R™)) and ¢ € T.M. Hence, it follows from the invertibility of
V2J0(2) |7, pme that Vi, 1 H(2,0,0,0) is invertible and

||v(w,x)H(Z7OuO7O)_1” <Cy, VzeM (411)
for some Cy > 0. Then, by applying the Implicit Function Theorem, one soon obtains

the existence of (w(e, z), x(g,z)) such that H(z,e,w(e, 2), x(¢,2)) = (0,0). This proves
(1) and (2).

To see (3) we need more careful analysis of the mapping we(z ) = w(e, z). To start with,
let us use the invertibility of V(,, ,)H (2,0,0,0) to define F, . : & ( ,SR™))XT M —
23 (R™,S(R™)) x T, M

Fz,s(@a ¢) = _v(w,X)H(zv 07 Oa 0)_1 (H(Z, g, ¥, ¢) - v(w,X)H(zv Oa 0, 0)[303 ¢]) .
Then we can see that (w(e, 2), x(g, 2)) is a fixed point of F, .. We claim that
Claim. There exist Lo,e9 > 0 such that, for any given L > Lo, F,. is a contraction
mapping on Be := {(@,(ﬁ) S @%(Rm,S(Rm)) X T,M = loll? + [|o))? < L252}, for all

€ € (—€o,%0)-

We only need to show that F, . (¢, ¢) € B. and

HFZ 5(3017¢1) 28(9027¢2)|| <6||(¢17¢1) (@hﬁbl)”

for all (¢1, 1), (w2, P2) € Be, where 6 € (0,1). And, by (4.11), it is enough to show that

VT2 + @) — V2T (2)l¢]|| < Lcl*i‘ (4.12)
and
(VI + ¢1) — V2To(2)]pn]) — (VI(Z + @2) — V2o (2) (2] |
(4.13)

< 2 llpré) — (o100l
0
Here and in the sequel, we will use the expressions given in Lemma 2.6 so that the
gradient map VJ.(+) is appropriately identified in the space 2 2 (R™,S(R™)), and it will
cause no confusion if we make the difference between V.7, and derivatives of Jy. We
shall also adopt such identification for higher order derivatives of 7.
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Using (4.5), (4.6) and (4.10), we find

VT2 + @) = V%o (2)[4]|
= |VI(2+ @) = VI(2) = VPT(2)[0) + VI (2) + (V2 T(2) — V20 (2)) ¢l |

1
< / V27 (2 + 5¢) = V2T(2) | ll¢llds + O(lel) + O(leD |l
0

- {0(1)||s0||2 +OMel® +O(eD) + OleDllell i m=2
— oWlel# +o)llel? + Ol + O(lehllell i m >3

since ||z|| is uniformly bounded for z € M. This proves (4.12) when L is fixed reasonably
large. To see (4.13), we point out that

VI(24 ¢1) — VI(2 + ¢2) — V2 To(2)[p1 — 2]
_ / V2T, (5+ Bo + 5(81 — $2)) (61 — Galds — V(=) 1 — 2]
0

and hence by (4.6) and (4.10) we get

(VI (2 + 1) — V2o (2)e1]) — (VI(Z + $2) — V2To(2)[2]) |

_2
< O(lel) Jnax, (L4 Iz + @2+ s(e1 — @2)[[77) o1 — 2|

o(1) max o2 + s(e1 — e2) 1 (II2]] + 2 + 51 — w2)l)ller — w2l if m =2,

_2 .
O(1) max (Ilpz + s(p1 — @2) |7 + [lo2 + s(p1 — p2)[) l1 — @2 if m > 3.

Therefore, when |¢| is small enough, we obtain (4.13). And the claim is proved.

As an immediate consequence of the above claim, we find that F, . always has a fixed
point in B.. Hence we conclude that ||w:(2)| = ||w(e, z)|| < Le, with L > L being fixed.
Now, in order to prove (3), we write

—_~— —_~—

VI (24 we(2)) = VI (2 + we(2)) — VIo(z + w:(2)) — eV (2 4+ we(z))
+ Vo (2 + we(2)) = V2To(2)[w(2)]
+eVI(z 4+ we(z)) —eVI'(2)
+ V2 J0(2)[we (2)] + e VT (2)

in which we can use (4.4), (4.9) and (4.10) to get

—~—

|VT= (2 + we(2)) = Vo (z + we(2)) — eVI(z + we(2))|| = O(e?),
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1
[V To(z + we(2)) = V2 To(2) [we (2)] S/|\V2~70(2+8ws(2))—V270(2)||Hwe(2)|\d8
0

O(M)|lwe(2)|I* = O(?) if m =2

m—+41

O we ()5 = O(|e|#1) it m >3

and
VI (z + we(2)) = VI (2)|| = O(1)[Jwe(2)]| = O(le]).

Hence, we deduce from (2) that

O(D)||we(2)||? = O(e? ifm =2,
(62 = 2o un(e)] 4 evr(ey + 4 = O
O(D)]jw=(2)

w1 = O(|je|m 1) ifm > 3,

Projecting this equation on 7, M~ and applying the operator K, = (szo(z)\TzML)fl

on both sides, we obtain assertion (3).
Finally (4) is a direct consequence of (1) and (2). This completes the proof. O

Remark 4.7. Comparing with (3.3) and (3.8), though Proposition 4.6 is quite similar to
the framework in Section 3, we carry out the details here mainly because the functional
J. is involved with the infinite series h € ‘H(p). Clearly, Proposition 4.6 suggests that
Theorem 3.4 can be applied to the functional J;.

4.2. Proof of Theorem 2.3

In virtue of Lemma 4.1 and Proposition 4.3, let us denote ._75@) the Euler functional
corresponding to the metric gg) = gpm + €a;h(x — x;), where h is a given compactly
supported elementary matrix satisfying the hypotheses of Proposition 4.3, a; € R and
x; € R™ are fixed. Let T and ®® be the corresponding functionals appearing in the
expansion of js(i). According to the abstract setting in Section 3, we denote w.(z) and
w? (z) the solutions to the auxiliary equations P,V 7. (z+w) = 0 and J A A (z4w) =
0, respectively, where P, : 22 (R™, S(R™)) — T, M= is the orthogonal projection.

It can be seen from Proposition 4.3 that the reorganized functional éh, which is
given by (4.2), possesses some negative minimum and tends to zero at the boundary of
(0, +00) x R™ x SQ[%Hl’l(Sm). Hence, we can find an open bounded subset U C G =
(0,400) x R™ and § > 0 such that U C G and

. . 2h . &R >
;g{[(%@ (.. 7) — min & <w.,.,7>) >0
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where N/ = §2'% B L(S;n). In what follows, we keep this precompact set U being fixed
and denote

={(N§eG: (\{—ux)eU}.
Lemma 4.8.

(1) Let M. be a compact subset of M, then there exists C > 0 such that for |e| small
there hold

ng(z) — wéz)(z)H < C’|8|HVF(z) — VF(i)(z)H

for all z € M..
(2) For z=1¢ € M with (X, &) € U,, there exist C, L > 0 such that if |x; —z;| > L
for all j # i then

— v |aj|
VI (2) — VIO (2)| <CJ§>:1|% T
i7i
Proof. Since the linear operator K, = V2J7(2)"t : T.M+ — T, Mt is uniformly
bounded for z € M (see [36, Lemma 4.11]), we soon obtain from (3.8) and Proposi-
tion 4.6 that

ng(z) — wé”(z)” = |€|HKZ(VF(Z)) K, (VT Z) H +o(e
which proves the assertion (1).

To check (2), let us use Lemma 4.1 (2) (which can be also applied to compute VI'(¥))
to get the estimate: for any v € 2V/2(R™,S(R™))

[ (VL (ne)sv) = <vr“><«m,m>, v)|

ol + [Yrgql - oldvoly,, )

J?ﬁl Q;
)\mz—l
o(Y J|/ 5ol + s oldvoly,,, ),
J#i Q; 75‘ ) (>\2+|$—§| )
where Q; = supp h(- — x;) for j > 1, and in the last inequality we have used the facts
)\m;I )\mgl
|1/})\>§>'Y(x)|ng ~ —1 and |v,l/})\7§7’)’(1.)‘ ~

(2 + o - €?) % 2+ o =) *
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Now, using the Holder and Sobolev inequalities, we know that for (\,&) € U,, there
holds

|<vr(¢xm),v>—<vru>(%,5ﬁ),v>\§o||v|Z(mlaali'm+ Jas| )

provided |z; —x;| > L, j # 4, with L large enough (say L > diam U +1). This completes
the proof. O

The next result will be devoted to compare the values of Jred(2) == Jo(z + we(2))
and jg(l)’re‘i(z) = g (z +wi(2)) for z =1y, € M with (X, &) € U,,.

Proposition 4.9. There exists C > 0 such that for |e| small there holds

T—1

. 1 T
|j6red(z) _ L,]E(z),red(z)| < Cle| <Z (m1>r>

i>1 |z —
iZi

for all z = ¢ € M with (\,€) € Uy,, and |x; — x| > L.

Proof. Following from Lemma 4.8 and the boundedness of V 7. (z + w.(2)), we have
|\75T6d(2) _ \Zi(i),red(z)|
< |Te(z + we(2) = Te(z +wl ()] + [ Te(z + 0l (2)) = T (2 + w0l (2)]

< Cllwe(2) = w ()| + | Tz + w(2)) = T (= + wld) ()]
< [£|C[[VD(z) = VIO @)|| + [ 72z + 0 (2) = IO (= + 0 (=)

aj i i i
<10 Y s 1 0l (3) = IO 0l )
7>1 j
i
By noting that
Te(z+ wl(2)) = T (z + wl)(2)) = eT(z + wl(2)) — TV (2 + wl? () + o(e)
and Ty = '™ | = 0, by using (3.3) and Lemma 4.5, we have
L(z+wl(2)) = VI (2)[wl? (2)] + o(e) = O(e)

and

IOz 4+ wl(2)) = VIO (2)[wl ()] + o(e) = O(e)
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for 2 = Yy ¢, € M with (\,€) € U,,. Then, as long as |z; — x;| > L for all j # i, we
deduce

-1

. . 1 T
7274e) = IO < O T Y <0 ( )

i>1 > Ty — ] T
J#i J#i

provided that

Z la;|” < +o00. O

j=1
Now we are ready to prove our main results:

Complete proof of Theorem 2.3. For a given k > 1, let us fix arbitrarily g € R™ with
|zo| = 1 and take & to be of the form (2.5) with & being a compactly supported elementary
matrix and satisfying the hypotheses of Proposition 4.3, a; = j=P and x; = j%rxq for
j € N, where

Co

r
and Cy > 0 is a constant fixed large enough (see below). With the above choice of a;,
we have 3, [a;|" < +oo since g > 1 > 1. Note also that a > 1, we have |z; — z;| >

4 diam(supp h) for all i # j when |¢| is small enough.
From the expansions in Lemma 2.6 and (3.9), we have that, for a fixed i > 1,

T (2) = Jo(2) + 2af M) (2) + o(e%a})

,red

and, by Proposition 4.3, jsi)
and ~; € M. In particular,

attains a local minimum z; = ¥y, ¢, », With (A, &) € Uy,

inf, (gnUm S, ) = min () > 6

zg

for some ¢ > 0 independent of £ and 1.
If we choose Cj in (4.14) so large that min;, |z; — x;| > L, so Proposition 4.9 holds,
then we have

T—1

. L), 1 '
72446 = 707 42)| £ CFl( 3 e )

=1 [y — ]
i

-1
- ok (Z 1 )
= — (m—1)r
TGS e — e
i#i
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Cle] 1

S pm—1 ’ j(a—1)(m—1)

when i is fixed large, where we have used the inequality (see for instance [16, Lemma 4.4])

1 C

. (m—1)7 — (a—1)(m—1)T
]>1 |.7 —1 | T—1 Z T—1
J#i

for « > 1 and m > 2. By enlarging Cj if necessary, we shall have

C’|5| 5
< —
rm 4
And hence, when
(a=1)(m—1) >2p, (4.15)
we find J;ed has a strict local minimum 2; = wf\l,&,%- “near” z; in the sense that

(A &i) € Uy,

Summing up, we have proved that if (4.15) holds then, for all ¢ large and |e| small,
the functional J7*¢ attains a strict local minimum in U,, x . Hence there are infinitely
many distinct solutions of Eq. (2.4), denoted by {@S)}.

To determine the C*-regularity of the metrics g, at infinity and the pull-back met-
rics g. on S™ using our choice (4.14), let us denote ¢ (z) = g.(x/|z|>) and g( D Ji( ) =
Z]g)(:c/|x|2), for i € N. Since g, is smooth on S™\ {P}, we find that the regularity of g. at
P is the same of g, at infinity, and so it is the same of f]f: at 0. If we set ; = supp h(-—x;),
it follows that g g ﬁ( ) — grm has support Qf = {z € R™: z/|z|* € Q;}. In this setting,

since dlam(ﬂg) ~ |x;|72, we have the following basic estimate
1587% — g llor < Cleaillai|** < C - GFF|e|' 28/ (m=iPha=F

for £k > 1. Let

= grm + Z A (x) — Irm)

we find that if 2ka — 8 < 0 then

188, — 3 llor < _max [5E — gunllcn < € CFHef!=2/(n0)(j 4 1y2e=s

for all j < I. And thus {ggyj }52, is a Cauchy sequence in C*(By), where B stands for
the open ball of radius 1 centered at the origin. Therefore, Z]g can be extended to x = 0 in
the class of C*. And if there holds additionally that 1 —2k/(m — 1) > 0, then 3 — ggm
as e — 0.
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There are three essential inequalities in the above arguments, namely (4.15),
8 >2ka and 2k <m — 1.
They are satisfied with m > 4k + 2,

a—(4k+1)

a>4k+1 and 2ka < < 2ka+ 5

Finally, since the solutions {95,9)} of Eq. (2.4) can be parameterized in the compact
set Uy, x N, via the conformal transformation mentioned in Section 2.1, we find that
the corresponding solutions {1#?)} of Eq. (2.1) blow up at P € S™ in the following sense

||| Lo — +00  as i — +oo.

And standard regularity arguments, see [33, Appendix| and [6, Chapter 3|, imply that
the weak solutions ¢§l) are indeed of class C! on S™. This completes the proof. O

5. The non-compactness caused by the geometric potential

In this section, we intend to prove Theorem 1.4, and our proof will be based upon the
abstract result Theorem 3.5 in Section 3.

Let H € C?(S™) be a given Morse function, satisfying the conditions (H-1) and (H-2)
mentioned in Subsection 2.1. For simplicity, let us assume H > 0 and takes its minimum
at pp € S™ and H(pg) = 0. Denote mp, : S™ \ {po} — R™ the stereographic projection,
we define K (z) = H(n,!(z)) for z € R™. Then K € L*(R™) N C?(R™) and satisfies

Po
the following (see [36, Lemma 3.1])

VK (z)] < Co(1+ |z|*>)™" and |V2K(x)| < Co(1 + |z]?)73/2 (5.1)

for some constant Cy > 0. Taking into account the additional condition H (pg) = 0, we
also have

Lemma 5.1. By suitably enlarging the constant Cy in (5.1) (if necessary), there holds
[K ()] < Co(1+ |2[*)~"
forx e R™.

Proof. Since H(py) =0 and V,_,, H(po) = 0, we have

ggm

K (2)] = [H(m,) () = H(po)| < Clmy () = pol®

Po



34 T. Isobe et al. / Journal of Functional Analysis 287 (2024) 110472

by the Taylor’s formula, for some constant C' > 0. By rotation, we may assume that

po = (0,0,...,1) is the north pole and =, ! (z) = (14_2|—§|2, ‘f:lj;‘%), for x € R™. Then the

assertion follows from a simple calculatlon. O

Remark 5.2. Though the function K is non-negative in this context, we kept the absolute
value symbol in Lemma 5.1 to emphasis that the inequality also holds true for sign-
changing functions and the proof only needs the facts H(py) =0 and V,_,, H(py) = 0.

gsm

To proceed, let {#;}72, C R™ and {a;};2, C R be such that
(1) |z — zj] > 1 for i # j. For reader’s convenience, we may simply take z; = %2z, with

20 €ER™, |z =R>1and a > 1.
(2) a; =4 with 8 > 1.

From K, {z;} and {a;} as above, we define

= ZaiK(:c —2z;).
i=1

Then it follows that the above summation converges uniformly in z so that K is well-
defined and K € L>(R™) N C%(R™). In the sequel, for ¥ ¢, € M (see (3.5)(3.6)), let
us set

s m—1 [ = 2my
F(whéy’y) = _W K(@W&&ﬂgw dVOlng

Rm

And it is clear that T'(¢)) ¢ ) is independent of the factor v € g2 1(Sm). Hence, in
order to study T'(1x ¢ ), it is sufficient to consider (up to multiplication by a constant)

U\ €)= /K(gs)wAm 721 dvol

Rm™

grm *

We will also denote T'), W(®) etc for functions corresponding to K;(z) = a; K (x — z;).
Then we have

= fj v\ ¢)
=1

and

Ket+&—z),

A i
( f m a; 1+‘.’If| grm

Rm™
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where the above formulation comes from a change of variables. The following result is a
direct consequence of the computations in [36, Subsection 3.1], which characterizes the
critical points of each W (hence I')).

Proposition 5.3. Let H € C?(S™) and K = H07r;01 be as above. Then the critical points
of the function ¥ : G = (0,400) x R™ = R,

oo [ KOz +9)
\I’()Hg) =m / (1 + |$|2)de019Rm7
R™

are isolated and there exists a bounded domain Qg C G such that

Qg C G, CritlV] Cc Qg and deg(VV¥,Qp,0) #0,

»”

where the closure of Qy is taken with respect to the standard Euclidean norm and “deg
stands for the topological degree.

As a direct consequence of Proposition 5.3, we can find a bounded domain Qy such
that all critical points of U() are contained in Qp(z;) = {(A\,&) : (N, —2) € Qu}.
Moreover, when z; and z; are located far apart, we have Qg (z;) N Qg (z;) = 0 provided
i .

Next, we intend to apply Theorem 3.5 to prove our second non—compactness result,
i.e., Theorem 2.4. The main ingredient here is to show that ¥ (or equivalently I') has at
1east one critical point in each Qp(z;). By abuse of notation, we continue to use J. for
the Euler functional associated to the perturbed problem (2.8), that is,

T-(¥) = Jo(¥) + el'(¥)

where Jp is as in (2.10) and

L(¢) / K(z)|1] g,;;% dvolyg,, -

We also denote ,,75(1-) the functional
T () = To() + T ()
with

L@ () = /K |¢|;;W3dvolgﬂw.

Following from the abstract settings in Section 3, we will introduce the notation we(z)
and w?(z) for the solutions to the auxiliary equations P,V J.(z+w) = 0 and J AL (z+
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w) = 0, respectively, where P, : 22 (R™,S(R™)) — T.M~ stands for the orthogonal
projection. Then, analogous to Lemma 4.8, we have in the present case

Lemma 5.4.

(1) Let M, be a compact subset of M, then there exists C > 0 such that for |e| small
there hold

|we(2) — wi(z)|| < C|5|HV1:‘(,2) - VF(i)(z)H,
for all z € M..

(2) Forz=1y¢~ € Muwith (N &) € Qu(2;), there exists C, L > 0 such that if |z; —z;| >
L for all j # i then

[P - vro () <03 sl
i1 |2 — zil
JF#i

Proof. Recall that w(z) satisfies P,V J.(z + w-(z)) = 0, via Taylor expansion, we find

VI (2 +w:(2)) = VIo (2 + we(2)) + eV (2 + we(2))
= VJo(2) + V2To(2)[we (2)] + eVI(2) + e V2T (2)[we (2)] + ofJwe(2)]]).

Since VJp(z) = 0 for all z € M, we get
VI (2 +we(2)) = V20(2)[we (2)] + VI (2) + e VT (2) [we (2)] + ol ||we(2)]),
and the equation P,VJ.(z + we(z)) = 0 becomes
P.V2Jo(2)[we (2)] + e P.VT(2) 4+ e P. VT (2)[w:(2)] + o(|we (2)[]) = 0
And a similar equation holds for wi(z). Notice that M is a non-degenerate critical

manifold of Jy and V2Jy(z) is invertible on T, M, we find (1) holds true.
To check (2), let us take arbitrarily ¢ € 22 (R™, S(R™)) with ||¢|| < 1. Then we have

UK (@ - 2)leld vol

[(VEWaen) @) = (VIO (nen) ) | <

ng grm
i>1
2 R
<CY o / e K (o = )l pldvoly,,,

i>1 )\2+|33_€| )

J#i
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77L+1

2
<CY o) / K@)l + 2)ldvoly,,
i1 (A +]e—(E—2)P) *
J#i
A 1
< OZ |a]| / m—+1 : : |SO($ + Z])|dVOIg m
];1 /\2—|—|x— _Zj)lz)T 14+ |z|? R
jFi

where the last inequality follows from Lemma 5.1. To proceed, let us define

m+1
2

A 1
Ij = / mil 2 |90<x + Zj)‘dVOlng
R+l = (§—z)p) 7 THH

for j > 1. By the Holder’s inequality and [|¢|| < 1, we have

Rm

Recall that we have assumed (X, &) € Qg(z;), then we claim that

J / ! L dvol,, < "
j = : @ VOlge, S ——— 5
B e e e N Ok T
for some constant C' > 0 when [§ — z;| > 1.

Assuming (5.2) for the moment, we soon have I; < C|¢ — 2|72, and hence

V(W) — VIO (g eq)| < €3 %L = el < CLQZ - Ia]\
j>1 J
iz J#l

mt1 1 1 et
2 dvol " .
(/(A2+x—(£—zj)l2)m (1+ |z[2)=F " )

37

(5.2)

provided that |z; — z;| > L with L large enough (say L > diam Qg + 1). This proves (2).
Now it remains to prove (5.2). Let us decompose the integral into two parts J; =

ijl + Jj72, where

1 1
iy = / dvoly,,
] o< 12 ()‘2+|$—(§—Zj)\2)m (1+ |z[2)mt "
<=1
and
1 1
Jj1= / - —dvol,. .. .
! S e (€= )P)m 1+ [z2)mis "
|z > =5

Then, via elementary computations, we find
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1 1
Jin € / ———dvol,_,.
J (/\2 + |5—2z;' |2) (1 + |x|2)7§+1 IR
Iw‘<\5*2ﬂ
=" 2
. Clg = 25| i if m >4
¢ rm=Lldr e .
S L 5 < ClE— 2| — 2] ifm=3
(] (1+7r2)mT
Cle = z|™* if m =2
and
1 1
Ji2 < = / dvol,, ..
T e T E
’ jaf > 155731
< ¢ / L vol, < G2
- m VOlggm S T am
€= zglm8r J Q2 [Py e

which directly imply (5.2). And the proof is hereby complete. O

Our next result intends to estimate the diﬁerence of the derivatives of the reduced
functionals J¢4(2) := J.(z + w.(z)) and jc-(l)’md(z) = j,g(l)(z +wi(z)) for z =1Pr e €
M with (A, &) € Qg (z;).

Proposition 5.5. Let {z;} C R™ and {a;} C R be chosen as above, then there exists a
constant C > 0 such that

IVI(z) = VI (z)|| < CR™?

for all z = Py e~ € M with (N, &) € Qu(z;), some i > 1, where R > 1 is given in the
definition of the sequence {z;}. Furthermore, there holds

[VTred(z) — VI (z)|| < CR™2|e] + o(e).

Proof. Since

VJIred(z) = eVI(z) + o(e)
and

VIDred(2) = eV (2) + o(e),

it follows from Lemma 5.4 that
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IVTZe(z) = VIO T(2)| < |€|\\Vf(z) = VIO ()| + o(e)
< Clel Z +o(e). (5.3)

]>1 7'
J#i

Next, we estimate >, |a;[|2; — 2|72 Let us recall z; = j%z, |20/ = R and a; = j=°
for o, 5 > 1 and R > 1. Then we have

|a]| R2
Z|zj—zz o Zjﬁ |‘7 _Za|2

j>1 j>1
J#i J#i

Notice that, for i < j <7 — 1, we have
i =i = > = (- D) > ali - 1)
and similarly for j > ¢ + 1, we have
j& =i = % =i > (i +1)* —i% > ai®™ L.

We thus have for i > 2

1 1 1 1 1
R - .-
DT NS DI T S g

]il |] 1<j<i i>i
j#i

where C'(8) = >_,5, jiﬂ < 400. The case i = 1 is even much easier since we have
X_:jﬁ ljo — 1|2 <O
Hence, by (5.3), we deduce
IVIZe (=) = VI (2)|| < COB)R[e] + ole),
which completes the proof. O
Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Now, by Proposition 5.3, 5.5 and the homotopy invariance of the
topological degree, we can conclude that for R > 1 sufficiently large (this only depends
on the size of ) there exists 9 > 0 (independent of ) such that
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deg(v®7 QH(Zl)a 0) = deg(Vfa QH(ZZ) X {’7}7 0) = deg(vr(l)v QH(ZZ) X {7}3 O)
= deg(VP, Qg (2:),0) # 0
for all € € (—¢eq,&0). Thus, there exists a critical point (A;,&;) € Qg(2;) of the function
U:G =R, (\E) = U\ E). As we will see later in Appendix A2, the function K comes
from a C?-function on S™ provided «, 3 > 1 satisfy 3 > 4a + 1. Then it follows from

[36, Proposition 3.6] that, by approximating K if necessary, we may assume ¥ is a Morse
function. Therefore, by virtue of Theorem 3.5, we can choose ¢;(7) = (Ai(7),&(7)) €
Qp(2;) depending on v € N = 52[%]“_1(87,1) and 7v; € N such that ¢; := (¢:(7:),7) €
G x N is a critical point of J7*?. Then the critical point ¢; = (; +w.((;) of J. are positive
and concentrates at infinity. And, similar to the very last step in proving Theorem 2.3, the
corresponding pull-back spinors {t;} concentrate at pg and ||[¢;]|p — 400 as i — oc.
Thus {1;} is a non-compact family of solutions to Eq. (2.7). The estimates in Theorem 2.4
(2) simply come from some direct computations. O

Data availability

No data was used for the research described in the article.
Appendix A
A.1. Proof of Lemma /.5

Since (4.3) can be obtained by using the identification (2.12) and (2.13)—(2.15), we
start with (4.4).
For ¢, € 22 (R™,S(R™)) N C(R™, S(R™)), there holds

_ 1 _ _ e
(VI.0).6) = 5 Re [ (504,90, + (3. D5, 9)g.voly, —Re [ 20,4, dvol,
Rm™ R™

Using (2.12), we have

Re(, Dy 3)g. + Re(@, Dy )g,
=Re (@, Dy, ), +Re (4, Dyy0), +Rel(@, W -5, 0)3,
+ Re(z/l w ‘g ~)?J + Re<¢>X g "Z})~ + Re&AX A 95)@5

(A1)
+Z iy T 2] Re 90787, 9. Va ¢)

—_~—

+Z ij T zy Re 1/1, zgsva(p)

Notice that X € TR™, we find
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Re(3, X 5. ¥)5. +Re(th, X 5. @), = Re(¢, X 5 ). — Re(X 5.1, 8)5 =0

And using the explicit formula

»J>I>—‘

> bia(Dabis)bsp Oi -5, 9; -3, O,
0,4,k B
i#]# kA

and (2.14)—(2.15), we can see that W = 0 in dimension 2 and

biazfsia_ = zoz"'—zhzlhla 7
3e?

3 Z (8(1;1]'[7”[3 + leaaillﬂ) + 0(52)’
l

2
_ €~ € -
bﬁkl = 5,Bk =+ ihﬁk — g Z hﬁlhlk + 0(62),
l

&xbjg = — a hj5+

for dimension m > 3. Hence

2
e ~ g ~ ~ ~
bia(Oabjp)by = —508k0ialahis + - Oahip (Iprhia = diahsr)

365/651'(152 ~ o~ ~ .
t—g Zl: (aahjlhlﬁ + hjlaahlﬁ) + o(?).

Note that we have assumed ﬁij = 0 for 7 # j, we soon get

bia(Oa bjﬂ)bﬁk = 0(52)

Recalling that the map v — 1) defined in (2.11) is fiberwisely isometric, we obtain

Ro (9, Dyl = Re (6. Dy ), Re (.05, ¥or0), = Re (. 0he Vo),
and
N 1
Re(@’W ‘9 Je Z (Z “1 a b]ﬁ) Bk) Re(al grm a] grm O - "grm 1, )ng'
a,B
175 751

And thus (A.1) can be expanded as

Re(&a D_?/E %5) + Re(@a Tr/))g‘E
= Re(@? Dng w)ng + Re(w7 DQR'"L QO)QRWL

I ~
- 5 Z hzz [RG(QO7 81 ‘grm v@ﬂ/})gwn + Re(?f}, al ‘grm Vai SD)!]R"L]
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3e2 =2
+ ? Z hll [RQ(SO, a’b -ng v8i1/1)g]1§m + Re('l/}a a’L 'g]Rm vazgo)ng:I

+ 0(62)|@|9Rm |¢|ng

where the support of the last o(¢2) term is contained in supp h. Then, by (2.13), the
specific expression of Jy and I' in Lemma 2.6 with h € H(p) and the embedding
22(R™, S(R™)) — L2 (R™,S(R™)), we easily find

‘(VJE ¢) = (VI (), o) —E<VF(¢)7¢>‘ < OE) (Illlell + 11>~ el

and (4.4) is proved by using the fundamental fact that 2z (R™, S(R™))NC*(R™, S(R™))
is dense in 22 (R™, S(R™)).

The estimate (4.5) can be obtained in a similar manner, in particular, we have ||z|| is
uniformly bounded for z € M.

To see (4.6), let us remark that,

v2j€(¢)[¢’ ] 1 /Re(¢7 )g +Re(<,57D§EQ7))§EdV01§€

Rm
“Re / (B2 =24, )5, dvoly
Rm
@ —2) / (D24 Re(#, 3)5, Re(i, §)3, dvol,

for two given spinors ¢, ¢ € 22 (R™,S(R™))NC'(R™, S(R™)). Then, by virtue of (A.1)
and (2.13), we deduce

V2 T()[, 8] = V218, ¢1| < O) (I llllel + Il* 2l ¢l llll)
which proves (4.6) through the density of Zz(R™,S(R™)) N C*(R™,S(R™)) in

23 (R™,S(R™)).
Next, let us turn to (4.8). Notice that there holds

(VI( + ), 6) — (VI(4), $)

+¢

X i i

:5/ Dy _¢)5. + Re(o, Dy_p);, dvol,,

-(re / 104 37204 .90, 70, dol, )
Rm

This implies that
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O)[lell+0(1 (/ ‘Iw+<p|ng (W + ) — 22" dvolng)g:r"'l, (A.2)

Rm

Denoted by f(s) = [¢ + s¢|2 ~2(¢) + s¢), we have

grm

1
6+ g2 20+ ) — B2 = (1) — £(0) = / £(s)ds
0

and

[F()] < @ =)o+ ol5 20l gum -

Using the Holder inequality and Fubini Theorem, we have that

/|f |m+1dvolng < //|f m+1dsdvolng

R™ 0

1
://|f’(s)\ﬂ%nldvolg]Rm ds

0 Rm™
1

§0(1)//\¢+s¢|m; T dvol, . ds

grm grm
0 R™

2”1“ ds

/ 6+ sl |
2m_ 22*
O@)l|ep[|+T max [|¢p + s+
s€[0,1]
So from (A.2) we deduce

[VI.(0+ @) = VD) < 00) (el + el mas 1w+l 77)

which suggests (4.8).

We point out that the estimates (4.7) and (4.9) can be obtained with similar proce-
dures, and hence it remains to check (4.10).

Observe that, for two spinors ¢, ¢ € 22 (R™,S(R™)), we have

V2T (0 + )61, b2) — V2T (V) (1, 62]
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— —Re/ v + ¢|§:‘2(<131,<132)55dvolgs +Re/ W@:_Q(&l,&g)gsdvolgs
R™ Em
— (2 —2) / 1+ §5|§:—4 Re(¢) + @, 61)5. Re(¥) + @, d2) 5. dvol, (A.3)
+(2* - 2) / ‘1/;%:*4 Re(¥, (131)@5 Re(v, ng)ﬁedvolgg,
Rm™

and

‘Re/|7/~)+95|§:72(¢51,<52)@5dV01g5—Re/W%zﬁ(éhéz)yngOIgg
Rm Rm

/’Iwﬂo

o )/(|¢|9R2|¢|9R2 +1005,)101] gga |92 g0 d VOl ,  if =2

22 P12 gl ald voly
(A.4)

1) / ‘¢|§R;2|¢1 |9R7n |¢2|9R7” dVOIQR'm if m Z 3

where we have used the sub-additivity of the function ¢ ~— [|*" =2 for 2* — 2 € (0,1]
(that is m > 3). Thus, we only need to estimate the last two integrals in (A.3). For this
purpose, let us set

/|w|2*72Re '(/)+<Pa¢1) ( +§57¢2)Z]€dvolg
[+ @12, :

and

- o Re( + 3, d1)5. Re(yh + 3, d2);
I, — g 2 9e gsd 1
2 Rl W|g5 W’JFSD@E Vol
_ / |'(/) g*_g (1/1 Qsl)gE ];{e(w ¢ )@Edvolga
S IF,

so that I; 4 I3 is nothing but the last two integrals in (A.3). Clearly, I; can be estimated
similar to (A.4). And for I, let us set Q = {z € R™ : ||, /[0 + @|,. < 2}, then we can
have the decomposition I, = 12(1) + 12(2) with 12(1) and I§2) being the integration on (2
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and R™ \ Q, respectively. Notice that, on R™ \ , we have |7v[~’|95 < 2|@l,, - Hence, there
holds

ER:EWI | ggerm [ D2/ ggm A VOLgy . -

1< 00) [ W, aal, dvol,, < 00) [ 1¢
Rm™

R™\Q

Meanwhile, by using the fact

9+e 9| _ ‘zbliblgs + BlPls, — Pl + 2, 2/¢ly,
|7/’+</~7|g5 |7/’|gE 9 |1/’+85|g5|1/"g5 9. |¢+<ﬁ|g5
and
W) [ o2 Re(® + @, 61)5. Re(yh + ¢, d2)5,
Iy —/W’% ? W)i_(p‘g = d voly,
/|w 2*_2 7/} le)gE Re(w+¢a¢2)g€dvol
|7/}|ga|71’+90|g6 s
/W) oo Re( b, ¢1)95 Re(V + &, ¢2)gEdVO1
[Plg. 19+ @, *
2 s Re(1h, d1)5. Re(9h, d2);
£ Ed 1
/W W’Eva VOlg,
we deduce

o] U+ P “ 7
f“|<2/|w2 |~ g, 9l o,
gE gE €

2 =21~ |1 5
1)/ [ 9e |L‘~0|g€‘iﬁ1|gs|¢2|gfdvolg5 (A.5)
J v+ &g,

D [l
s

ER;3|¢|9R"“ |1 |9Rm ‘¢2‘9Rm dVOlng :

And thus, we obtain

o(1) / (Wloga@lage + 912 )11l gga2lggad Vol if m =2
|I5] < (A.6)

1) / (Plons |61 1gns [ 2] gns d vl it m =3
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Notice that 2* = % < 3 for m > 4, we need to divide € into two parts, i.e. Q = Q1 U,
with Q1 = {z € Q: [V]gp,. > |@lgam } and Qo := {z € Q: [¥]g. < [@lgum }- Then,
from the first and second lines in (A.5), we obtain

) < o) / B
Q

lLligpm P2 gpm grm *
¢|R |¢)|R dVOlR

.?7])1;;2 |¢1 |ng ‘¢2 ‘ grm d VOlng +O(1) / |w|ng

Hence we have

21 <00) [ (¢

]R'rn,

3;;/2 + |¢1) [#1] g [P2] g d VOlgy,,  for m > 4. (A7)

Now, combining (A.3)—(A.7), we find that

om(lwlliell + llel?) if m =2

V2T + ¢) = V2I(P)]| < *
oM (llel* 2+ llell)  ifm >3

which proves (4.10). And the proof is hereby completed.
A.2. The global C? smoothness of the pull-back function K o Tpy 01 S™

Here we show that K comes from a C2-function on S™ when o, 3 > 0 satisfy 3 >
4o+ 1. And this will complete the proof of Theorem 2.4.

Clearly, K is C? on R™, because the series defining K converges uniformly on R™
up to the second derivatives. To prove the differentiability at infinity (which correspond
to the north pole of S™), we need to show that y — K(y/|y|?) is twice continuously
differentiable near y = 0. Without loss of generality, we assume |y| < 1 in the follow-
ing context. And, by Lemma 5.4, we see that K(y/|y|?) converges uniformly in y. In
particular, we have K(y/|y|?) = 0 as y — 0.

To see the convergence of the derivatives, for the function K as before, we define
K (y) =K (l ‘2) Then, an elementary computation shows that derivatives of K can be
estimated as

VE@) < OVE (i) s~

and
i) < (|72 () = + |9 () =
v < ([P ()l + [or () bl ).
Recall (5.1), we notice that

‘VK<| ; _Zi) Co Co

< <
L+ | =z ™ 14| — iRl
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where in the last inequality we used z; = i®2¢ with |29| = R and the triangle inequality
|# — Zi’ > |ﬁ — iO‘R‘. Then, by (A.8) and our choice a; = i~?, we have for i > N
(N € N is arbitrarily large)

ZW ( (I |2fzi))]§0|y|*22i*5~%. (A.9)

SN 14 ‘—;l—zaR

Let us set

:Zi—ﬁ. 1

= 1+|ﬁ—z’aR|Q'

To obtain an uniform estimate of S(N,y) for |y| < 1, we decompose the sum into two
pieces: (i) |y| < 557 and (id) |y| > 55=p5- For (i), we have

1
S(N,y): Z i_ﬂ'ﬁﬁ- Z ’L'_6~

1 1 _ o 2
N<i<(@lylR) & L Iy i>(2ly|R) Lt g — ]

1
a

|Z/| 1 _ g1
<C) =5 > 1i—g§0|y|2N15+C|y|a~
=N >(2ly|R) "=
(A.10)
And, for (i7), we have
S(N.y) <Y+ < ON'H (A.11)

: 1
i>N

Therefore, by additionally requiring § > 2« + 1, we can deduce for the case ()
Y| "2S(N,y) < CN*=P 4 Cly|"= 2 < ON'=F 4 ON-B+20 < oN1-FH2a
and for the case (i7)
ly|2S(N,y) < Cly|2N'=7 < CNT-7H2e

where N is considered arbitrarily large. Thus, the estimates in (A.10) and (A.11) imply
that

sup |y|~2S(N,y) = O(N'F+22) as N — +o0.
ly|<1

And hence, by (A.9), the series defining V(K (y/|y|?)) converges uniformly on |y| < 1.
This suggests that K (y/|y|?) can be extended to y = 0 in the class of C*.

The second derivatives can be estimated in a similar manner. At this stage, instead
of (5.1), we need the following improved estimates
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VK (x)] < Co(1+ |x|2)_% and |V2K(z)| < Co(1 + |z[*) 72 (A.12)
by the choice of py. In fact, we have

VK (z) = VH(mp, (2)) [V, ()],

VK (x) = V?H(r, () [V, (), V! (z)] + VH (m, D[V, ! ()]

Po Po 0

and, as in the proof of Lemma 5.1,
VH () (2))] = [VH (! (2)) = VH(po)| < Cmax [V*H|-|m, ! () —po| < C(1+]af*) 2.
These, together with the facts

Vr (@) < C(L+ |22t and  |V2m,(2)| < O+ |f?)~ %,

we obtain (A.12).
Now, by using the estimate

Y

‘V2K<& - Zz) ly|~* + ’VK(W - Zz) ly|~®
C 1 C 1

3
2

Soae 5o T g
Wt g =Rl WP (| L —ierf)

we find
Z‘ai| VZ(K<L2_21‘>)‘SC|?J|_4Z%' ! 2\ 2
55 ] Sv? (14| —iR[)
1 1 (A.13)
+ C‘y|_3 5" 3
]
where N is arbitrarily large as before. Let us set
- 1 1 ~ 1 1
S1(N,y) = — - : and Sy(N,y) = — - 3
i;v” (1+ |7 —iR[)* i;v’ﬁ (1+ | — iR

then, by performing the same arguments in (A.10) and (A.11), we soon get
Yl ~*S1(N,y) = O(N'=FH4) and  |y|~*S5(N,y) = O(N'~FF4) as N — 400

provided that 8 > 4a+ 1. Thus, in this case, the series defining V2(K (y/|y|?)) converges
uniformly on |y| < 1. This proves that K (y/|y|?) can be extended to y = 0 in the class
of C?, when 8 > 4a + 1.
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