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Let (M, g, σ) be an m-dimensional closed spin manifold, with 
a fixed Riemannian metric g and a fixed spin structure σ; let 
S(M) be the spinor bundle over M . The spinorial Yamabe-
type problems address the solvability of the following equation

Dgψ = f(x)|ψ|
2

m−1
g ψ, ψ : M → S(M), x ∈ M

where Dg is the associated Dirac operator and f : M → R

is a given function. The study of such nonlinear equation is 
motivated by its important applications in Spin Geometry: 
when m = 2, a solution corresponds to a conformal isometric 
immersion of the universal covering M̃ into R3 with prescribed 
mean curvature f ; meanwhile, for general dimensions and f ≡
constant �= 0, a solution provides an upper bound estimate 
for the Bär-Hijazi-Lott invariant.
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The aim of this paper is to establish non-compactness results 
related to the spinorial Yamabe-type problems. Precisely, 
concrete analysis is made for two specific models on the 
manifold (Sm, g) where the solution set of the spinorial 
Yamabe-type problem is not compact: 1). the geometric 
potential f is constant (say f ≡ 1) with the background metric 
g being a Ck perturbation of the canonical round metric 
gSm , which is not conformally flat somewhere on Sm; 2). f

is a perturbation from constant and is of class C2, while the 
background metric g ≡ gSm .

© 2024 Elsevier Inc. All rights reserved.
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1. Introduction

On a closed Riemannian m-manifold (M, g) with m ≥ 3, the scalar curvature problem 

(or simply known as the Yamabe-type problem) is given by the differential equation

−
4(m − 1)

m − 2
∆gu + Rgu = f(x)u

m+2
m−2 , u > 0, (1.1)

where ∆g is the Laplace operator with respect to g and Rg stands for the scalar curvature 

of g. Here, the problem is to decide which function f on M can be the scalar curvature 

of a conformal metric g̃ = u4/(m−2)g ∈ [g]. In case f ≡ constant, this problem is referred 

to as the classical Yamabe problem, and is completely solved by a series of works of 

Yamabe [56], Trudinger [54], Aubin [13] and Schoen [47]. See also the survey paper [42]

by Lee & Parker.



T. Isobe et al. / Journal of Functional Analysis 287 (2024) 110472 3

In the setting of spin geometry there exists a conformally covariant operator, the Dirac 

operator, which enjoys analogous properties to the conformal Laplacian. This operator 

was formally introduced by M.F. Atiyah in 1962 in connection with his elaboration of 

the index theory of elliptic operators.

Let (M, g, σ) be an m-dimensional closed spin manifold, m ≥ 2, with a fixed Rieman-

nian metric g and a fixed spin structure σ : PSpin(M) → PSO(M). The Dirac operator 

Dg is defined in terms of a representation ρ : Spin(m) → Aut(Sm) of the spin group 

which is compatible with Clifford multiplication. Let S(M) := PSpin(M) ×ρ Sm be the 

associated bundle, which we call the spinor bundle over M , with dimC S(M) = 2[ m
2 ]. 

Then the Dirac operator Dg is a first order differential operator acting on smooth sec-

tions of S(M), i.e. Dg : C∞(M, S(M)) → C∞(M, S(M)). We are concerned with the 

spinorial Yamabe-type problem

Dgψ = f(x)|ψ|
2

m−1
g ψ, ψ : M → S(M) (1.2)

where | · |g is the hermitian metric on S(M) induced from g. This equation appears in the 

study of different problems from conformal geometry, and has attracted much attention 

recently, see for instance [6–8,10,12,15,17,18,25,33,36,46,49,50] and references therein.

We point out here that there are at least two motivations for studying Eq. (1.2). One 

of them is that, when f ≡ constant �= 0 (say f ≡ 1), Eq. (1.2) is closely related to 

the study of a conformal spectral invariant, i.e., the Bär-Hijazi-Lott invariant (see [28, 

Section 8.5] for an overview)

λ+
min(M, g, σ) := inf

g̃∈[g]
λ+

1 (g̃) Vol(M, g̃)
1
m ,

where λ+
1 (g̃) stands for the smallest (i.e. first) positive eigenvalue of Dg̃ with respect to 

g̃ ∈ [g]. In fact, as was pointed out in [6,8,10], the value of the Bär-Hijazi-Lott invariant 

for an arbitrary closed spin m-manifold can not be larger than that for the round sphere 

(with the same dimension), that is

λ+
min(M, g, σ) ≤ λ+

min(Sm, gSm , σSm) =
m

2
ω

1
m
m (1.3)

where gSm is the standard round metric, σSm stands for the unique spin structure on Sm

and ωm denotes the volume of (Sm, gSm). In this regard, the next stage would consist 

in showing that (1.3) is a strict inequality when (M, g) is not conformally equivalent 

to (Sm, gSm). And it is important to notice that, if there exists a nontrivial solution 

to Eq. (1.2) (with f ≡ 1) such that 
∫

M
|ψ|

2m/(m−1)
g d volg < (m

2 )mωm, then the strict 

inequality in (1.3) holds true (see [49,50]). This can be viewed as the spinorial analogue 

of the Yamabe problem in geometric analysis. However, the strict inequality in (1.3) is 

only verified for some special cases (for instance, if M is locally conformally flat, if Dg

is invertible and if the so-called Mass endomorphism is not identically zero [12], and 

all rectangular tori [49], and non-locally conformally flat manifolds [50]), but a general 
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result is still lacking (cf. [9,28,30]). The methods that can be used are sometimes similar 

to the ones of the Yamabe problem, but since we work with Dirac operator and spinors, 

the reasoning is more involved as the eigenvalues of the Dirac operator tend to both −∞

and +∞ and there is no adequate replacement for the maximum principle.

Another reason that makes Eq. (1.2) interesting is that, in dimension m = 2, its 

solution provides a strong tool for showing the existence of prescribed mean curvature 

surfaces in R3 (here the function f plays the role of the mean curvature). Special cases 

of such surfaces are constant mean curvature (CMC) surfaces (that is f ≡ constant) 

which have been studied before by completely different techniques, see for instance [29]. 

The correspondence between a solution of Eq. (1.2) on a Riemannian surface M and a 

periodic conformal immersion (possibly with branching points) of the universal covering 

M̃ into R3 with mean curvature f is known as the spinorial Weierstraß representation. 

For details in this direction, we refer to [6,8,26,37,39,40,44,51–53] and references therein.

Although the existence problem for Eq. (1.2) is not settled in full generality, there 

are several partial existence results in the literature, see for instance [34,35,55], and it 

is often true that many solutions exist for Eq. (1.2). As a first step towards multiple 

existence results, consider the problem on the Torus S1(L) × S1(1) with product metric, 

there are many non-minimizing solutions if L is large, see [49] (and also see [36] for more 

examples in the non-locally conformally flat setting). In this paper, we address a very 

fundamental question

Question 1. Let M be a closed oriented spin m-manifold, equipped with the data (g, f)

on M (a metric and a real function), so that either (M, g) is not conformally equivalent 

to (Sm, gSm) or f : M → R is not a constant. Whether or not the set of all solutions to 

the spinorial Yamabe-type PDE (1.2) is compact (in the C1-topology, say)?

The case of the round sphere (Sm, gSm) and f ≡ constant �= 0 is exceptional since 

(1.2) is invariant under the action of the conformal group on Sm, which is not compact. 

Let us also mention here that, in the context of the spinorial Weierstraß representation, 

the above question may lead us to think

Question 2. Given a connected closed oriented surface Σ and arbitrary data (g, f) on Σ, is 

it possible to characterize a non-compact family of immersions Πi : Σ → R
3 conformally 

realizing (g, f), that is

Π∗
i (gR3) ∈ [g] and HΠi

= f, for all i = 1, 2, . . .

where HΠ stands for the mean curvature of an immersion Π?

Remark 1.1. Usually, a generic immersion is uniquely determined up to a rigid motion by 

its first fundamental form and its mean curvature function, but there are some exceptions, 

for instance most constant mean curvature immersions. A classical result by Bonnet 

states that if there exists a diffeomorphism Ψ : Σ1 → Σ2 between two closed immersed 
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surfaces Σ1, Σ2 of genus zero in R3 such that Ψ preserves both the metric and the mean 

curvature function of the surfaces, then Σ1 and Σ2 are congruent in R3 (i.e., they differ 

by a rigid motion). Note that in Question 2 we are not assuming that the immersed 

surfaces are isometric, which is a critical hypothesis of Bonnet’s result.

Generally speaking, the answer to Question 2 is definitely no. On the one hand, for any 

immersion Π of a compact surface in R3, one must have HΠ > 0 somewhere. This means 

that the function f cannot be arbitrarily taken. And in fact there are further obstructions, 

at least on the sphere Σ = S2. Indeed, the mean curvature HΠ of a conformal immersion 

Π : S2 → R
3 must satisfy

∫

S2

V (HΠ)d volΠ∗(g
R3 ) = 0

for any conformal vector field V on S2, see [11]. In particular, if x3 : S2 → R stands 

for the third component of the standard inclusion of S2 in R
3, then for any ε �= 0

the function f(x) = 1 + εx3 cannot be realized as the mean curvature of a conformal 

immersion S2 → R
3. On the other hand, it is well-known that the round sphere is the 

only possible shape of an immersed closed CMC surface in R3 having genus 0 (see Hopf 

[32]). Therefore, the questions which concern us here are only interesting in the case 

where the solution set of Eq. (1.2) is non-empty and having rich characterization to 

reflect the geometric interpretations.

Let us point out that a similar non-compactness question has been raised for the 

classical Yamabe problem, which is well-known as the Compactness Conjecture, see [48]. 

And such conjecture has been verified up to dimension 24 and disproved for dimensions 

m ≥ 25, see [20,21,38]. So far, to the best of our knowledge, there is no result charac-

terizing the compactness or non-compactness of the solution set for Eq. (1.2). One of 

the reasons is that, since the validity of the strict inequality in (1.3) is still open, the 

solvability of Eq. (1.2) is far from complete. Moreover, it is also not even clear if the 

positive mass theorem (or its variants) can be employed to the study of Eq. (1.2) as the 

Schoen-Yau positive energy theorem does for the classical Yamabe problem.

In this paper, we intend to construct specific geometric data on a Riemannian spin 

manifold such that the set of solutions to Eq. (1.2) fails to be compact. To be more precise, 

we will focus on the case M = Sm and attack the problem from two perspectives. For 

starters, let us take f ≡ 1 in (1.2) and consider the effects of the background metric g. 

In this case, we are facing with the equation

Dgψ = |ψ|
2

m−1
g ψ on (Sm, g) (1.4)

where g is not conformally related to the round metric. It is of particular interest since 

the integral 
∫

Sm |ψ|
2m

m−1
g d volg of a solution gives an upper bound of the Bär-Hijazi-Lott 

invariant. Hence, it would be interesting if one can derive a conformal spectral estimate 
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for the Dirac operator Dg so that (1.3) is a strict inequality. Another perspective is to 

fix g = gSm (that is the canonical round metric) and to consider the problem with a 

non-constant function f : Sm → R, so that the effects of the external potential function 

can be detected. This leads us to consider the equation

DgSm ψ = f(x)|ψ|
2

m−1
gSm ψ on (Sm, gSm) (1.5)

where f �≡ constant. In this setting, when m = 2, it is of geometric interest to show the 

existence of a non-compact collection of immersed spheres in R3 with a prescribed mean 

curvature function f .

Our first main result reads as

Theorem 1.2. For k ≥ 1 and m ≥ 4k + 2. There exists a Riemannian metric g on 

Sm of class Ck and a sequence of spinors {ψi}
∞
i=1 ⊂ C1(Sm, S(Sm)) with the following 

properties:

(1) g is not locally conformally flat;

(2) ψi is a nontrivial solution of the equation (1.4) for all i ∈ N;

(3)

∫

Sm

|ψi|
2m

m−1
g d volg <

(m

2

)m
ωm for all i ∈ N, and

lim
i→∞

∫

Sm

|ψi|
2m

m−1
g d volg =

(m

2

)m
ωm;

(4) supSm |ψi|g → +∞ as i → ∞.

Moreover, the strict inequality in (1.3) holds true for g, i.e.

λ+
min(Sm, g, σSm) <

m

2
ω

1
m
m .

Remark 1.3.

(1) Let us point out here that, following from our construction, the metric g in Theo-

rem 1.2 cannot be smooth. But the above result indicates that higher the dimension 

is better the regularity of the metric g will be.

(2) Theorem 1.2 provides an example of non-smooth metric g on a spin manifold such 

that the strict inequality in (1.3) holds. This is the first result of this kind in the 

study of Bär-Hijazi-Lott invariant.

(3) Theorem 1.2 can be considered as a counterpart of Berti-Malchiodi’s result for the 

Yamabe problem, see [16, Theorem 1.2]. It is worth noting that, by Hijazi’s inequality 

[31], we have
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λ+
min(M, g, σ)2 ≥

m

4(m − 1)
Y (M, g)

where Y (M, g) stands for the Yamabe constant of (M, g). Hence, Theorem 1.2 above 

implies

Y (Sm, g) < m(m − 1)ω
2
m
m ,

which played a crucial role in the solvability of the Yamabe problem. From this 

point of view, Theorem 1.2 provides an alternative construction of constant scalar 

curvature metrics in the conformal class of g. This extends the result of Berti and 

Malchiodi by relaxing the starting dimension from 6 instead of 11 as in [16]. Com-

paring Theorem 1.2 with the results of the Yamabe problem, it would be natural to 

expect a compactness result for Eq. (1.4) in low dimensions. And it is also interesting 

to see if the non-compactness results hold for some C∞ smooth background metric.

Our next result is concerned with the external potential function f .

Theorem 1.4. For every m ≥ 2, there exists a non-constant function f ∈ C2(Sm), f > 0, 

and a sequence of spinors {ψi}∞
i=1 ⊂ C1(Sm, S(Sm)) with the following properties:

(1) ψi is a nontrivial solution of the equation (1.5) for all i ∈ N;

(2) |ψi|gSm > 0 on Sm and there holds

lim
i→∞

∫

Sm

f(x)|ψi|
2m

m−1
gSm d volgSm =

(m

2

)m

ωm

and

lim
i→∞

∫

Sm

f(x)2|ψi|
2m

m−1
gSm d volgSm =

(m

2

)m

ωm;

(3) supSm |ψi|gSm → +∞ as i → ∞.

Remark 1.5.

(1) Theorem 1.4 (2) has its own geometric meaning. In fact, in dimension m = 2, we 

can introduce a conformal metric gi = |ψi|4gS2
gS2 on S2, for each i. Then, due to the 

conformal covariance of the Dirac operator (cf. [27,28]), we see that there is a spinor 

field ϕi on (S2, gi) such that

Dgi
ϕi = f(x)ϕi and |ϕi|gi

≡ 1.
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Hence, by the spinorial Weierstraß representation, there is an isometric immersion 

Πi : (S2, gi) → (R3, gR3) with mean curvature HΠi
= f . Furthermore, since the 

pull-back of the Euclidean volume form under this immersion is Π∗
i (d volg

R3 ) =

|ψi|
4
gS2

d volg
R2 , the associated Willmore energy W (Πi) for this immersion satisfies

W (Πi) =

∫

S2

f(x)2|ψi|
4
gS2

d volg
R2 < 8π

for all i (large enough). Due to Li-Yau’s inequality [43, Theorem 6], the immersion 

Πi covers points in R3 at most once. Hence Πi is actually an embedding.

(2) Theorem 1.4 provides a positive answer to Question 2. Indeed, let us consider the 

family of immersions

I =
{

Π : S2 → R
3 : Π conformally realizes (gS2 , f)

}

and discuss its compactness (say, whether the images of S2 via elements of I form 

a compact collection of surfaces in R3), we find that {Πi} ⊂ I and W (Πi) → 4π

as i → ∞. Notice that an immersion Π : Σ → R
3 of a Riemann surface Σ satisfies 

W (Π) = 4π if and only if Π(Σ) is the round sphere. Hence, we see that I cannot be 

compact since the limit of Πi(S
2) (even if it exists) will not realize the non-constant 

function f as the mean curvature.

Now as an immediate consequence of the above remark, we have

Corollary 1.6. There exists a non-constant function f ∈ C2(S2) such that the family

E =
{

Π : S2 → R
3 is an embedding : Π conformally realizes (gS2 , f)

}

fails to be compact in the sense that {Π(S2) : Π ∈ E} is not compact in R3.

Let us sketch the main steps involved in the proofs of the Theorems 1.2 and 1.4. In 

Section 2, after introducing some basic concepts and notations from the spin geometry, 

we will reformulate our problems and work on Rm instead of Sm via stereographic pro-

jection. Our goal is to construct solutions to the spinorial Yamabe-type PDEs (1.4) and 

(1.5) on (Rm, ̃g) and (Rm, gRm) respectively, where either g̃ = gRm +εh̃ is a perturbation 

of the Euclidean metric or f(x) = 1 +εH̃(x) is a perturbation from constant. In Section 3, 

we set up a perturbative variational framework so that we can reduce our problems to a 

kind of finite dimensional bifurcation problem. This idea has been employed for the study 

of classical Yamabe problem (see, e.g., [4,5,16,24]). Here, unlike the scalar cases, the fi-

nite dimensional problem associated to the spinorial Yamabe-type PDEs is degenerate, 

that is, any critical point of the main term of the reduced functional is not isolated, and 

the collection of these critical points appear as critical manifolds of positive dimension. 
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Thus, it is not clear whether critical points of the reduced functional create true solutions 

of the original problems. For this reason, the abstract framework in [5,16] can not be 

implemented in a straightforward manner, and somehow a delicate handling is required. 

In the subsequent sections, i.e., Sections 4 and 5, we check the hypothesis of the abstract 

framework in the two cases of our main problems mentioned above, and complete the 

proofs of the main results. The Appendix contains some technical computations.

2. Preliminaries

2.1. Projecting the problems to Rm

Let us first consider Eq. (1.4) and rewrite it in a more precise manner as

Dgε
ψ = |ψ|

2
m−1
gε

ψ on Sm, (2.1)

in which the metric gε is a perturbation from the canonical one on Sm. Using the stere-

ographic projection πP : Sm \ {P} → R
m (for an arbitrarily fixed P ∈ Sm), we obtain 

the following one-to-one correspondence between gε on Sm \{P} and a metric g̃ε on Rm:

g̃ε = μ−2 · (π−1
P )∗gε, μ(x) =

2

1 + |x|2
, x ∈ R

m. (2.2)

Clearly, if g̃ε = gRm is the canonical Euclidean metric, then the metric gε on Sm \ {P}

can be extended globally to the standard round metric. In what follows, we assume that 

g̃ε takes the form g̃ε = gRm + εh̃ where h̃ is a smooth symmetric bilinear form on Rm. 

In particular, let us consider a specific situation

g̃ε(x) = diag
(
g̃11(x), . . . , g̃mm(x)

)
with g̃ii(x) = 1 + εh̃ii(x), (2.3)

where h̃ii : R
m → R, i = 1, . . . , m, are smooth functions. Let us point out here that, for 

a general choice of h̃, the pull-back metric gε on Sm \ {P} may be discontinuous at the 

point P . Hence, in order to extend gε globally on Sm, it is natural to require the entries 

h̃ii, i = 1, . . . , m, and their derivatives behave “nicely” at infinity.

We also mention that the Eq. (2.1) on Sm is equivalent to an equation on R
m by 

conformal equivalence. More precisely, the equation Dgψ = |ψ|
2

m−1
g ψ on a spin manifold 

(M, g) is invariant under conformal changes of the metric. In fact, let ḡ = e2ug for some 

function u on M , there is an isomorphism of vector bundles F : S(M, g) → S(M, ̄g)

(here S(M, g) and S(M, ̄g) are spinor bundles on M with respect to the metrics g and ḡ, 

respectively) which is a fiberwise isometry such that

Dḡ

(
F (ϕ)

)
= F

(
e− m+1

2 uDg(e
m−1

2 uϕ)
)
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for ϕ ∈ C∞((M, g), S(M, g)) (for more detailed definitions and facts about Clifford al-

gebras, spin structures on manifolds and Dirac operators, please consult [27,41]). Thus, 

when ψ is a solution to the equation Dgψ = |ψ|
2

m−1
g ψ on (M, g), then ϕ := F (e− m−1

2 uψ)

satisfies the same equation on (M, ̄g): Dḡϕ = |ϕ|
2

m−1

ḡ ϕ on (M, ̄g).

Applying the above observation to Eq. (2.1) with M = Sm and using (2.2)–(2.3), we 

find that if ψ ∈ C1(Sm, S(Sm)) is a solution then ϕ = μ
m−1

2 F (ψ ◦ π−1
P ) satisfies the 

equation

Dg̃ε
ϕ = |ϕ|

2
m−1

g̃ε
ϕ on R

m. (2.4)

Conversely, by the regularity theorem and the removal of singularities theorem for Dirac 

equations on spin manifolds (see [33, Appendix] and [8, Theorem 5.1]), if ϕ is a solution 

to Eq. (2.4) and ϕ ∈ L
2m

m−1 (Rm, S(Rm)) then it corresponds to a global C1-solution ψ

to Eq. (1.4) on Sm. Therefore, the study of Eq. (2.1) is equivalent to the study of Eq. 

(2.4).

Now, to characterize the metric gε, let us set

h̃(x) =
+∞∑

i=1

aih(x − xi) (2.5)

where ai ∈ R, |xi| → +∞ as i → +∞, and h is a smooth symmetric matrix function 

with compact support. Roughly speaking, with this choice of h̃ in the definition of metric 

g̃ε, the Dirac operator in (2.4) becomes

Dg̃ε
= Dg

Rm + R(ε, x, h̃, ∇) (2.6)

where R(ε, x, ̃h, ∇) is a suitable perturbation term. In this way, we expect that Eq. (2.4)

shall be handled by means of a perturbation method in nonlinear analysis. When h̃

consists of only a finite number of terms, the existence problem of Eq. (2.4) has been 

firstly treated in [36]. In particular, a very specific construction of the matrix function 

h has been introduced in [36] so that the effect of the perturbation term in (2.6) can be 

explicitly computed from a variational point of view. Here, for the sake of completeness, 

we present the very formulation for the matrix h in (2.5) as follows.

Definition 2.1. Given a smooth m × m diagonal matrix function

h(x) = diag
(
h11(x), . . . , hmm(x)

)
for x ∈ R

m, m ≥ 2,

and a point ξ = (ξ1, . . . , ξm) ∈ R
m. For k ∈ {1, . . . , m} and p ∈ [1, ∞), we say that h

is (k, p)-elementary at ξ, if ξ �∈ supp hkk and, for x = (x1, . . . , xm) ∈ R
m close to ξ and 

i �= k,
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hii(x) = hii(ξ) + ci(xi − ξi) + ck(xk − ξk) + o(|x − ξ|p)

where ci ∈ R, i = 1, . . . , m, are constants with particularly ck �= 0. Moreover, if the 

o(|x − ξ|p) term vanishes identically in the above local expansion of hii’s, then we say h

is (k, ∞)-elementary at ξ. In this way, we call p ∈ [1, ∞) ∪ {∞} the remainder exponent 

of h at ξ.

Remark 2.2. Let us present here a simple example of (1, p)-elementary matrix at the 

origin, in dimension 3:

h(x) =

(
0 0 0
0 a + c1x1 + c2x2 0
0 0 b + c1x1 + c3x3

)
+ o(|x|p)

for |x| < r, where a, b, c1, c2, c3 ∈ R are real constants with particularly c1 �= 0. This 

very specific definition is first introduced in [36] for the study of multiple solutions for 

the spinorial Yamabe-type problems. More examples and a brief explanation of such 

(k, p)-elementary matrices have been given in [36, Appendix]. We mention here that the 

main reason we introduce those (k, p)-elementary matrices lies in Proposition 4.3, where 

we find such matrices are surprisingly compatible with the perturbed Dirac operator 

(2.6) and they guarantee the implementation of our abstract result in Section 3.

It can be seen from Definition 2.1 that “elementary” matrix is a local concept. In the 

sequel, if it is clear from the context to which dimension we refer, we will simply use the 

name “elementary matrix” to designate a member h (without specifying its tag numbers 

k and the location point ξ). In order to classify the perturbation term in (2.5), let us set

H(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

h̃(·) =
+∞∑

i=1

aih(· − xi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h is a compactly supported elementary matrix

with remainder exponent p,

{ai} ⊂ R and

∞∑

i=1

|ai|
τ < +∞, for some τ > 1,

{xi} ⊂ R
m and |xj − xi| > 4 diam(supp h) for i �= j

«
⎪⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪⎪­

.

Then Theorem 1.2 is nothing but a direct consequence of the following result.

Theorem 2.3. Let p ∈ [2, ∞) ∪ {∞}, k ≥ 1 and m ≥ 4k + 2. There exist h̃ ∈ H(p) and 

ε0 > 0 such that for every ε ∈ (−ε0, ε0) \ {0} the metric gε in (2.2)–(2.5) is of class Ck

on Sm, and the following properties hold:

(1) ‖gε − gSm‖Ck → 0 as ε → 0,

(2) Eq. (2.1) possesses a sequence of solutions {ψ
(i)
ε }∞

i=1 satisfying ‖ψ
(i)
ε ‖L∞(Sm) → +∞

as i → +∞,
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(3) there holds

∫

Sm

|ψ(i)
ε |

2m
m−1
gε

d volgε
=
(m

2

)m
ωm + Ci,ma2

i ε2 + o(a2
i ε2)

where Ci,m < 0 is a negative constant depending only on h̃, the dimension m and 

i ∈ N.

Next, in order to study Eq. (1.5), let us focus on the case where the function f takes 

the form f(x) = 1 + εH̃(x), i.e.

DgSm ψ = (1 + εH̃(x))|ψ|
2

m−1
gSm ψ on (Sm, gSm) (2.7)

with ε �= 0 and some H̃ : Sm → R at least being Hölder continuous. As before, denote 

by πp0
: Sm \ {p0} → R

m the stereographic projection from p0 (this point will be fixed 

later according to our choice of H̃), we have (π−1
p0

)∗gSm = μ2gRm . And then, via the 

conformal transformation, Eq. (1.5) can be converted to

Dg
Rm ϕ = (1 + εK̃(x))|ϕ|

2
m−1
g

Rm ϕ on R
m (2.8)

where K̃(x) = H̃(π−1
p0

(x)). We remark here that we shall write it simply x for the 

argument of a function when no confusion can arise.

Similarly to the way we handle Eq. (2.4), let us consider a situation where the function 

H̃ can be decomposed into a series of components such that each component generates 

a solution to Eq. (2.8). In order to do so, for a continuously differentiable function H on 

Sm (which plays the role of an individual component of H̃), let us simply denote Crit[H]

the critical set of H. For later use, we assume the following two standing conditions on 

H:

(H-1) H ∈ C2(Sm) is a Morse function such that ∆gSm H(p) �= 0 for p ∈ Crit[H].

(H-2) H satisfies that

∑

p∈Crit[H], ∆gSm H(p)<0

(−1)M(H,p) �= (−1)m

where M(H, p) is the Morse index of H at p ∈ Crit[H].

Here we mention that condition (H-2) is the well-known index counting condition which 

was first introduced in the scalar curvature problem in [14,23].
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Then we collect the following family of continuous functions on Sm

H =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

H̃ =

∞∑

i=1

aiH
(
π−1

p0
(πp0

(·) − zi)
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H satisfies the conditions (H-1) and (H-2),

p0 ∈ Crit[H] and ∆gSm H(p0) > 0,

{ai} ⊂ R and
∞∑

i=1

|ai| < +∞,

{zi} ⊂ R
m and |zi − zj | > 1 for i �= j

«
⎪⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪⎪­

.

It is clear that, when H ∈ C2(Sm), H◦π−1
p0

defines a C2-function on Rm and lim|y|→∞ H◦

πp0
(y) = H(p0). The function H

(
π−1

p0
(πp0

(·) − zi)
)

: Sm \ {p0} → R can be viewed as 

a translation of H on Sm with H(p0) being fixed. Hence the above family describes 

a function that is (approximately) concentrated on the points π−1
p0

(zi) ∈ Sm \ {p0}, 

i = 1, 2, . . . , and is well-defined on Sm. We remark that the elements in H are not

necessarily differentiable at p0 and, as was indicated in its geometric background, the 

function 1 +εH̃ plays a role of mean curvature. Hence, one may expect H̃ to have certain 

regularity at the point p0. With all these in mind, let us present the following result that 

explains Theorem 1.4.

Theorem 2.4. For every m ≥ 2, there exist H̃ ∈ H ∩ C2(Sm) and ε0 > 0 such that for 

ε ∈ (−ε0, ε0) \ {0} the following properties hold:

(1) Eq. (2.7) possesses a sequence of solutions {ψ
(i)
ε }∞

i=1 satisfy ‖ψ
(i)
ε ‖L∞(Sm) → +∞ as 

i → +∞,

(2) |ψ
(i)
ε |gSm > 0 on Sm provided that |ε| is small, moreover,

lim
i→∞

∫

Sm

(1 + εH̃(x))|ψ(i)
ε |

2m
m−1
gSm d volgSm =

(m

2

)m

ωm

and

lim
i→∞

∫

Sm

(1 + εH̃(x))2|ψ(i)
ε |

2m
m−1
gSm d volgSm =

(m

2

)m

ωm.

We end this subsection by pointing out that the following equation

Dg
Rm ψ = |ψ|

2
m−1
gRm ψ on R

m (2.9)

can be viewed as the unperturbed equation of both Eq. (2.4) and Eq. (2.8). Hence, in the 

sequel, our framework will be build upon the study of Eq. (2.9) and its Euler-Lagrange 

functional
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J0(ψ) =
1

2

∫

Rm

(ψ, Dg
Rm ψ)g

Rm d volg
Rm −

m − 1

2m

∫

Rm

|ψ|
2m

m−1
gRm d volg

Rm (2.10)

where (·, ·)g
Rm and | · |g

Rm are the canonical hermitian product and its induced metric 

on the spinor bundle S(Rm).

2.2. Configuration spaces

To treat Eq. (2.4) and (2.8) from a variational point of view, it is necessary to set up a 

functional framework. Suitable function spaces are H
1
2 (M, S(M)) and D

1
2 (Rm, S(Rm))

of spinor fields which are introduced in [33,34]. For completeness, we give the definitions 

as follows.

Recall that the Dirac operator Dg on a compact spin manifold (M, g) is self-adjoint 

on L2(M, S(M)) and has compact resolvents (see [27,41]). Particularly, there exists a 

complete orthonormal basis ψ1, ψ2, . . . of the Hilbert space L2(M, S(M)) consisting of 

the eigenspinors of Dg: Dgψk = λkψk. Moreover, |λk| → ∞ as k → ∞.

Now, we define the operator |Dg|1/2 : L2(M, S(M)) → L2(M, S(M)) by

|Dg|1/2ψ =
∞∑

k=1

|λk|1/2αkψk,

for ψ =
∑∞

k=1 αkψk ∈ L2(M, S(M)) and consider its domain

H1/2(M, S(M)) :=
{

ψ =

∞∑

k=1

αkψk ∈ L2(M, S(M)) :

∞∑

k=1

|λk||αk|2 < ∞
}

.

We can equip H1/2(M, S(M)) with the inner product

〈ψ, ϕ〉1/2,2 := Re(|Dg|1/2ψ, |Dg|1/2ϕ)2 + Re(ψ, ϕ)2

and the induced norm ‖ ·‖1/2,2, where (·, ·)2 is the L2-inner product on spinors. It follows 

that H1/2(M, S(M)) coincides with the usual Sobolev space W 1/2,2(M, S(M)) (cf. [1,6]). 

In the sequel, we are mainly concerned with the space H
1
2 (M, S(M)) for M = Sm. Notice 

that the spectrum of DgSm on Sm is bounded away from 0 and one checks easily that 

‖ψ‖1/2 =
∣∣|DgSm |

1
2 ψ
∣∣
2

defines an equivalent norm on H
1
2 (Sm, S(Sm)).

On Rm, a similar function space will also be useful in our argument. For simplicity 

of notation, we denote Lq := Lq(Rm, S(Rm)) with the norm |ψ|qq =
∫

Rm |ψ|qd volg
Rm

for q ≥ 1 and denote 2∗ = 2m
m−1 the critical Sobolev exponent of the embedding 

H1/2(Rm, S(Rm)) ↪→ Lq(Rm, S(Rm)) for 1 ≤ q ≤ 2∗. Then, we recall the space 

D
1
2 (Rm, S(Rm)) of spinor fields ψ on R

m such that 
∣∣|DgRm |1/2ψ

∣∣2
2

< ∞ with norm 

‖ψ‖ :=
∣∣|Dg

Rm |1/2ψ
∣∣
2
. Here, |Dg

Rm |1/2 is defined via the Fourier transformation: 

F (|Dg
Rm |1/2ψ)(ξ) = |ξ|1/2F (ψ)(ξ) and 

∣∣|Dg
Rm |1/2ψ

∣∣
2

:=
∣∣| · |1/2F (ψ)

∣∣
2
. Notice that 
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D
1
2 (Rm, S(Rm)) is isomorphic to H

1
2 (Sm, S(Sm)) via the stereographic projection. The 

dual space of D
1
2 (Rm, S(Rm)) will be denoted by D− 1

2 (Rm, S(Rm)).

2.3. Geometric preliminaries and expansion of the perturbed functional

In this part, we shall collect some basic results that will enable us to expand the 

energy functional Jε for (2.4) with respect to the small parameter ε in (2.2)–(2.3). This 

requires comparing spinor fields in spinor bundles associated with different metrics. In 

order to carry this out, we recall a construction by Bourguignon and Gauduchon [19]

and some formulas given in [36, Section 4.1] which will be useful for our computations.

To begin with, for the metrics gRm and g̃ on Rm, let us consider the unique endomor-

phism Ax at each point x ∈ R
m such that

g̃(v, w) = gRm(Axv, w)

for v, w ∈ TxR
m. Notice that Ax is nothing but a positive definite symmetric matrix, it 

has a well-defined square root Bx. Let bij(x), i, j = 1, . . . , m, be the entries of Bx, we 

have

Bx : (TxR
m ∼= R

m, gRm) → (TxR
m, g̃x)

v =
∑

k

vk∂k �→ Bx(v) :=
∑

j

(∑

k

bjk(x)vk

)
∂j

defines an isometry for each x ∈ R
m. Then we obtain an isomorphism of SO(m)-principal 

bundles: η{v1, . . . , vm} = {B(v1), . . . , B(vm)} for an oriented frame {v1, . . . , vm} on 

(Rm, gRm). Note that the map η commutes with the right action of SO(m), it can 

be lifted to spin structures:

PSpin(Rm, gRm)
η̃

PSpin(Rm, g̃)

R
m Id

R
m

which induces an isomorphism between the spinor bundles S(Rm, gRm) and S(Rm, ̃g):

S(Rm, gRm) := PSpin(Rm, gRm) ×ρ Sm −→ S(Rm, g̃) := PSpin(Rm, g) ×ρ Sm

ψ = [s, ϕ] �−→ ψ̃ = [η̃(s), ϕ]
(2.11)

where [s, ϕ] stands for the equivalence class of (s, ϕ) under the action of Spin(m). This 

identifies the spinor fields.

For the Dirac operators, as was shown by [10, Proposition 3.2], the identification can 

be expressed in the following formula
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Dg̃ψ̃ = D̃g
Rm ψ + W ·g̃ ψ̃ + X ·g̃ ψ̃ +

∑

i,j

(bij − δij)∂̃i ·g̃ ∇̃∂j
ψ (2.12)

where ·g̃ denotes the Clifford multiplication with respect to the metric g̃,

W =
1

4

∑

i,j,k
i�=j �=k �=i

∑

³,´

bi³(∂³bj´)b−1
´k ∂̃i ·g̃ ∂̃j ·g̃ ∂̃k,

with b−1
ij being the entries of the inverse matrix of B, ∂̃i = B(∂i) and

X =
1

2

∑

i,k

Γ̃i
ik∂̃k,

with Γ̃k
ij = g̃(∇̃∂̃i

∂̃j , ∂̃k) being the Christoffel symbols of the second kind.

Remark 2.5. On spin manifolds, since the tangent bundle is embedded in the bundle 

of Clifford algebra, vector fields have two different actions on spinors, i.e. the Clifford 

multiplications and the covariant derivatives. Here, to distinguish the two actions on a 

spinor ψ, we denote ∂i ·g
Rm ψ the Clifford multiplication of ∂i and ∇∂i

ψ the covariant 

derivative with respect to the metric gRm (respectively, ∂̃i ·g̃ ψ̃ the Clifford multiplication 

of ∂̃i and ∇̃∂̃i
ψ̃ the covariant derivative with respect to the metric g̃). For functions, we 

shall simply denote ∂iu for its partial derivative.

Now we collect some formulas given in [36] which are direct consequences of some ele-

mentary computations and will be useful in our framework. It will always be understood 

that the metric g̃ε is given by (2.2)–(2.5) and G̃ε stands for the matrix of the coefficients 

in g̃ε, expressed in the basis ∂i, i = 1, . . . , m. Then we have

√
det G̃ε = 1 +

ε

2
tr h̃ + ε2

(1

8
(tr h̃)2 −

1

4
tr(h̃

2
)
)

+ o(ε2), (2.13)

Bε = I −
ε

2
h̃ +

3 ε2

8
h̃

2
+ o(ε2) (2.14)

and

B−1
ε = I +

ε

2
h̃ −

ε2

8
h̃

2
+ o(ε2). (2.15)

The energy functional associated to (2.4), which is defined for a spinor ψ̃ in S(Rm, ̃gε), 

is given by

Jε(ψ̃) =
1

2

∫

Rm

(ψ̃, Dg̃ε
ψ̃)g̃ε

d volg̃ε
−

1

2∗

∫

Rm

|ψ̃|2
∗

g̃ε
d volg̃ε

, (2.16)
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where ε is implicitly involved in the formulation. The main point of this section is to 

obtain an alternative expression of Jε(ψ̃) by using the aforementioned Bourguignon-

Gauduchon identification S(Rm, gRm) � ψ ↔ ψ̃ ∈ S(Rm, ̃gε) so that ε is explicitly 

separated out. This can be summarized by the following lemma, which has been shown 

in [36, Lemma 4.3].

Lemma 2.6. Let g̃ be given by (2.2)–(2.5), then

Jε(ψ̃) = J0(ψ) + εΓ(ψ) + ε2Φ(ψ) + o(ε2), (2.17)

where

J0(ψ) =
1

2

∫

Rm

(ψ, Dg
Rm ψ)g

Rm d volg
Rm −

1

2∗

∫

Rm

|ψ|2
∗

gRm
d volg

Rm ,

Γ(ψ) =

∫

Rm

tr h̃

2

[1

2

(
ψ, DgRm ψ

)
gRm

−
1

2∗
|ψ|2

∗

gRm

]
−

1

4

∑

i

h̃ii Re
(
∂i·gRm ∇∂i

ψ, ψ
)

gRm
d volgRm

and

Φ(ψ) =

∫

Rm

(1

8
(tr h̃)2 −

1

4
tr(h̃

2
)
)[1

2

(
ψ, Dg

Rm ψ
)

g
Rm

−
1

2∗
|ψ|2

∗

g
Rm

]

+
1

16

∑

i

(
3h̃

2

ii − 2(tr h̃)h̃ii

)
Re(∂i ·g

Rm ∇∂i
ψ, ψ)g

Rm d volg
Rm

for ψ ∈ D
1
2 (Rm, S(Rm)).

3. Abstract settings

The aim of this section is to present a general approach, which is based on a well-

adapted well-known technique in nonlinear analysis: the Lyapunov-Schmidt reduction. 

The emphasis here is that the nature of the spinorial Yamabe-type problems prevent 

applying known reductions. Here, the general approach has been recently carried out by 

Isobe and Xu in [36]. For the sake of completeness, let us sketch the results as follows.

3.1. Lyapunov–Schmidt reduction of the functional

In a general setting, a well adopted Lyapunov-Schmidt reduction technique provides a 

powerful tool to study perturbed variational problems, see for instance [45, Chapter 10]

and [22, II, 6] where the reduced problem is compact and [2,3,5] for the case that the 

reduced problem is non-compact. Following the monograph [5], we outline the idea as 

follows.
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Let (H, 〈·, ·〉) be a Hilbert space with the associated norm ‖ · ‖ := 〈·, ·〉1/2
. Suppose 

that L0 ∈ C2(H, R) and Γ ∈ C2(H, R) are given. For ε > 0 small, we consider the 

perturbed functional

Lε(z) = L0(z) + εΓ(z) + o(ε). (3.1)

Assume that L0 has a non-degenerate critical manifold M ⊂ H, that is,

(A1) M is a d-dimensional C2-submanifold of H such that ∇L0(z) = 0 for all z ∈ M,

(A2) M is non-degenerate in the sense that for all z ∈ M, we have TzM = ker ∇2L0(z),

(A3) ∇2L0(z) : H → H is a Fredholm operator with index zero for all z ∈ M.

Set Wz := TzM⊥, where the orthogonal complement is taking with respect to 〈·, ·〉 in 

H. We look for critical points of Lε in the form u = z + w where z ∈ M and w ∈ Wz. 

Let Pz : H → Wz be the orthogonal projection onto Wz, the Euler-Lagrange equation 

∇Lε(z + w) = 0 is equivalent to

{
Pz∇Lε(z + w) = 0 (auxiliary equation)

(I − Pz)∇Lε(z + w) = 0 (bifurcation equation).
(3.2)

Then, under the conditions (A2) and (A3), the auxiliary equation in (3.2) can be solved 

firstly for w by applying the implicit function theorem: for arbitrary z ∈ M there is 

a unique small solution w = wε(z) ∈ Wz for small values of ε. Furthermore, on any 

compact subset Mc ⊂ M, one can have the uniform estimate (see [5, Chapter 2]):

Mc � z �→ wε(z) ∈ Wz is C1 and ‖wε(z)‖, ‖w′
ε(z)‖ = O(ε) uniformly for z ∈ Mc.

(3.3)

The next step is to consider the bifurcation equation in (3.2). To this end, we introduce 

the reduced functional Lred
ε : M → R by

Lred
ε (z) = Lε(z + wε(z))

Then we have the following theorem

Theorem 3.1 (Theorem 2.12 in [5]). Suppose (A1)–(A3) are satisfied. Assume that for 

a compact subset Mc ⊂ M and ε > 0 small, Lred
ε has a critical point zε ∈ Mc. Then 

uε = zε + wε(zε) is a critical point of Lε on H.

Thanks to the uniform estimate (3.3), the reduced functional Lred
ε is well approximated 

in the sense that

Lred
ε (z) = L0(z) + εΓ(z) + o(ε), ∇Lred

ε (z) = ε∇Γ(z) + o(ε) (3.4)
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and L0(z) is constant on any connected component of M. Thus if z ∈ M is a non-

degenerate critical point of Γ in some certain sense (for example, the local degree of ∇Γ

at z is non-zero), then z generates a critical point of Lε on H (see [5,22,45] for details).

Remark 3.2.

(1) Turning back to the problems (2.4) and (2.8), a very natural idea is to apply the 

above abstract framework to the functionals given by L0 = J0 and Lε = Jε on 

H = D
1
2 (Rm, S(Rm)) (see Lemma 2.6 for the functionals associated to Eq. (2.4), 

while the functionals associated to Eq. (2.8) are much easier to obtain). As was 

already shown in [34, Section 5, 6] that J0 satisfies (A1)-(A3) for a critical manifold 

M defined as

M :=
{

ψλ,ξ,γ : λ > 0, ξ ∈ R
m, γ ∈ Sm, |γ| = 1

}
, (3.5)

where

ψλ,ξ,γ(x) =
m

m−1
2 λ

m−1
2

(
λ2 + |x − ξ|2

)m
2

(λ − (x − ξ)) ·gRm γ (3.6)

for λ > 0, ξ ∈ R
m, γ ∈ Sm with |γ| = 1 (Sm is the spinor module, see [27,41]) and 

·g
Rm denotes the Clifford multiplication with respect to the Euclidean metric. Note 

that M is diffeomorphic to (0, ∞) × R
m × S2[ m

2
]+1−1(Sm) via the canonical map 

(λ, ξ, γ) �→ ψλ,ξ,γ , where S2[ m
2

]+1−1(Sm) stands for the (2[ m
2 ]+1 −1)-dimensional unit 

sphere in Sm. And hence M is a non-compact manifold and the dimension of M is 

m + 2[ m
2 ]+1.

(2) Unfortunately, in the spinorial setting, the reduced functional Lred
ε happens to have 

much worse analytic properties than the usual cases, and one of these “bad” behaviors 

is the degeneracy on M. This, for instance, can be seen from the explicit formulations 

of those perturbation terms in (2.17) where Γ and Φ do not depend on all variables 

of M (in fact, if we substitute (3.5)–(3.6) into (2.17), we find that Γ and Φ do not 

depend on the variable γ in M). Hence, critical points of the functional Jε can not 

be obtained via non-degenerate arguments, in particular, standard methods as in 

[4,5,22,45] do not apply.

3.2. Perturbation method with degenerate conditions

Here we recall a recent framework developed in [36, Section 2], which can be employed 

to handle spinor field equations like (2.4) and (2.8). To see this, besides the assumptions 

(A1)-(A3), we will need the following additional conditions for the critical manifold M:
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(A4) M admits a (globally) trivializable fiber bundle structure over a compact base 

space N with projection ϑ : M → N and fiber G. Precisely, there is a fiber pre-

serving diffeomorphism ι : G × N → M such that the following diagram commutes

G × N
ι

P roj

M

ϑ

N
Id

N

(A5) Tγ N ⊂ ker ∇(Γ ◦ ι)(g, γ) for any (g, γ) ∈ G × N , where we have identified Tγ N as 

a subspace of the total tangent space T(g,γ)(G × N ).

Remark 3.3.

(1) In our application N = S2[ m
2

]+1−1(Sm), G = (0, +∞) × R
m and ι(g, γ) := ψλ,ξ,γ for 

g = (λ, ξ) ∈ G and γ ∈ N , hence we have a very natural bundle structure on M. 

Particularly, we note that there is a continuous action G × M → M such that G

preserves the fibers of M (i.e. if (μ, y) ∈ G and ψλ,ξ,γ ∈ Mγ then ψλ,ξ,γ ∗ (μ, y) =

ψλμ, ξ+y,γ ∈ Mγ). Hence the critical manifold in (3.5) is essentially a principal G-

bundle. And since it admits a global section, we easily see that M is trivializable. 

This is the reason we introduce condition (A4).

(2) Note that if M is parameterized via the map ι, condition (A4) makes the variational 

problem even clearer: it is equivalent to consider the functional Lred
ε ◦ ι : G ×N → R. 

Comparing with the standard theory in [5,22,45], the distinct new feature (A5)

describes a certain degenerate situation and, particularly, it implies that Γ ◦ ι(g, γ)

depends only on the variables in the fiber space G. Thus we shall turn to study 

Γ̃(g) = Γ ◦ ι(g, γ). For later use, we distinguish (A5) into the following two cases:

{
ker ∇(Γ ◦ ι)(g, γ) ≡ T(g,γ)(G × N ) for all (g, γ) ∈ G × N ,

ker ∇(Γ ◦ ι)(g, γ) �= T(g,γ)(G × N ) for some (g, γ) ∈ G × N ,

and we will collect two abstract results which are useful in the spinorial Yamabe-type 

problems.

Case 1: ker ∇(Γ ◦ ι)(g, γ) ≡ T(g,γ)(G × N ) for all (g, γ) ∈ G × N

In this setting, we have Γ ◦ ι(g, γ) ≡ constant on G × N and we need to evaluate 

further terms in the expansion of Lred
ε . For this purpose, let us develop the expansion 

(3.1) in powers of ε as

Lε(z) = L0(z) + εΓ(z) + ε2Φ(z) + o(ε2) (3.7)

Note that Γ ◦ ι(g, γ) ≡ constant on G × N is equivalent to Γ(z) ≡ constant on M. 

It follows that ∇Γ(z) ∈ Wz := TzM⊥. Recall that wε(z) is the solution to the auxiliary 
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equation Pz∇Lε(z + w) = 0, hence we have ∇Lε(z + wε(z)) ∈ TzM. For a fixed z ∈ M, 

using Taylor expansion, one sees

∇Lε(z + wε(z)) = ∇L0(z + wε(z)) + ε∇Γ(z + wε(z)) + o(ε)

= ∇2L0(z)[wε(z)] + ε∇Γ(z) + ε∇2Γ(z)[wε(z)] + o(‖wε(z)‖) + o(ε).

Then, form (3.3) and the fact ∇Lε(z + wε(z)) ∈ TzM, it follows that

∇2L0(z)[wε(z)] + ε∇Γ(z) + o(ε) ∈ TzM.

And hence, by projecting the above equation into Wz, we deduce

wε(z) = −εKz(∇Γ(z)) + o(ε), (3.8)

where Kz stands for the inverse of ∇2L0(z) restricted to Wz. Now, we can expand 

Lred
ε (z) := Lε(z + wε(z)) as

Lred
ε (z) = L0(z) +

1

2
∇2L0(z)[wε(z), wε(z)]

+ εΓ(z) + ε∇Γ(z)[wε(z)] + ε2Φ(z) + o(ε2)

= L0(z) + εΓ(z) + ε2
(

Φ(z) −
1

2
〈Kz(∇Γ(z)), ∇Γ(z)〉

)
+ o(ε2).

(3.9)

Here, we emphasize that both L0(z) and Γ(z) are constants on M. The following result 

is due to [36, Theorem 2.6].

Theorem 3.4. Let L0, Γ, Φ ∈ C2(H, R) as in (3.7) and suppose that (A1)-(A5) are satis-

fied. If there is an open bounded subset U ⊂ G such that

inf
γ∈N

(
min
∂U

Φ̂
∣∣
ϑ−1(γ)

− min
U

Φ̂
∣∣
ϑ−1(γ)

)
> 0 or sup

γ∈N

(
max

∂U
Φ̂
∣∣
ϑ−1(γ)

− max
U

Φ̂
∣∣
ϑ−1(γ)

)
< 0,

where Φ̂
∣∣
ϑ−1(γ)

= Φ̂ ◦ ι(·, γ) and

Φ̂(z) := Φ(z) −
1

2
〈Kz(∇Γ(z)), ∇Γ(z)〉 for z ∈ M.

Then, for |ε| small, the functional Lε has a critical point on M.

Case 2: ker ∇(Γ ◦ ι)(g, γ) �= T(g,γ)(G × N ) for some (g, γ) ∈ G × N

Clearly, in this case, Γ̃(g) = Γ ◦ι(g, γ) �= constant on G×N (evidently, Γ(z) �= constant

on M). And the existence result is as follows, we refer the reads to [36, Theorem 2.4 and 

Remark 2.5].
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Theorem 3.5. Let L0, Γ ∈ C2(H, R) as in (3.1) and suppose that (A1)-(A5) are satisfied. 

If Γ̃ is a Morse function on G and there is an open bounded subset Ω ⊂ G such that 

the topological degree deg(∇Γ̃, Ω, 0) �= 0. Then, for |ε| small, the functional Lred
ε has at 

least Cat(N ) critical points on M. In particular, for each critical point ḡ of Γ̃, there 

exist at least Cat(N ) critical points (g(γ), γ) ∈ G × N of Lred
ε , each of which satisfies 

g(γ) = ḡ + o(1) as ε → 0.

Here Cat(N ) denotes the Lusternik-Schnierelman category of N , namely the smallest 

integer k such that N ⊂ ∪k
i=1Ak, where the sets Ak are closed and contractible in N .

4. The non-compactness caused by the background metric

In this section, let us consider the Eq. (2.4), where the background metric is given by 

(2.2) and (2.3). In this setting, our main purpose is to use our abstract result to prove 

Theorem 2.3. Here we emphasis that the functional J0 in Lemma 2.6 plays the role of 

L0 in our abstract settings.

4.1. Some basic facts

We first report some important properties of the functionals Γ and Φ in

Lemma 2.6, which have been shown in [36]. Recall that since the critical manifold 

M ⊂ D
1
2 (Rm, S(Rm)) for J0 is given by (3.5)–(3.6), we have

Lemma 4.1. Assume that we are in the hypotheses of Lemma 2.6, for ψλ,ξ,γ ∈ M with 

λ > 0, ξ ∈ R
m and γ ∈ S2[ m

2
]+1−1(Sm), there hold

Γ(ψλ,ξ,γ) ≡ 0

and

Φ(ψλ,ξ,γ) =
mm−1λm

16

∫

Rm

tr(h̃
2
) − (tr h̃)2

(
λ2 + |x − ξ|2

)m d volg
Rm .

Moreover

(1) lim
λ→0

Φ(ψλ,ξ,γ) = C0

(
tr(h̃

2
) − (tr h̃)2

)
(ξ) for any ξ ∈ R

m, where

C0 =
mm−1

16

∫

Rm

1(
1 + |x|2

)m d volg
Rm ;
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(2) for all v ∈ Wz := TzM⊥,

〈∇Γ(z), v〉 =
1

4
Re

∫

Rm

(∇(tr h̃) ·g
Rm z, v)g

Rm d volg
Rm

−
1

2

∑

i

Re

∫

Rm

h̃ii(∂i ·g
Rm ∇∂i

z, v)g
Rm d volg

Rm

−
1

4

∑

i

Re

∫

Rm

∂ih̃ii(∂i ·gRm z, v)gRm d volgRm ; (4.1)

(3) lim
λ→0

〈
Kψλ,ξ,γ

(∇Γ(ψλ,ξ,γ)), ∇Γ(ψλ,ξ,γ)
〉

= C1

(
tr(h̃

2
) − (tr h̃)2

)
(ξ) for any ξ ∈ R

m, 

where

C1 =
mm−1

4

∫

Rm

|x|2
(
1 + |x|2

)m+1 d volg
Rm

and Kz stands for the inverse of ∇2J0(z) restricted to Wz := TzM⊥ ⊂

D
1
2 (Rm, S(Rm)).

Remark 4.2. Let us point out that the aforementioned two constants C0 and C1 can be 

computed explicitly as

C0 =
mm−1ωm−1

16

∞∫

0

rm−1

(1 + r2)m
dr =

mm−1ωm−1

32
B
(m

2
,

m

2

)

and

C1 =
mm−1ωm−1

4

∞∫

0

rm+1

(1 + r2)m+1
dr =

mm−1ωm−1

8
B
(m

2
,

m

2
+ 1

)

where B(x, y), defined for x, y > 0, is the beta function classified by the first kind of 

Euler’s integral. Using the property

B(x, x + 1) =
1

2
B(x, x), for x > 0

we find C0 = 1
2C1.

Next, let J h
ε be the Euler functional corresponding to the metric g̃h = gRm +εh, where 

h is a fixed elementary matrix (see Definition 2.1). Then Lemma 4.1 can be performed 

also for J h
ε . Let Γh and Φh be the corresponding functionals appearing in the expansion 

of J h
ε . A more detailed characterization for the reorganized functional
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Φ̂h(z) := Φh(z) −
1

2

〈
Kz(∇Γh(z)), ∇Γh(z)

〉
for z ∈ M (4.2)

can be summarized in the following proposition. We emphasize that, by Lemma 4.1 and 

Remark 4.2, there holds

lim
λ→0

Φ̂h(ψλ,ξ,γ) = 0

for any ξ ∈ R
m and γ ∈ S2[ m

2
]+1−1(Sm).

Proposition 4.3. For m ≥ 4, assume that we are in the hypotheses of Lemma 2.6. Let 

k ∈ {1, . . . , m}, p ∈ [2, ∞] and h = diag(h11, . . . , hmm) be (k, p)-elementary at a point 

ξ ∈ R
m with ∂khii(ξ) ≡ ck �= 0, for i �= k. If

⎧
⎪⎪«
⎪⎪¬

p = ∞ m = 4,

p > 2 m = 5,

p ≥ 2 m ≥ 6,

then

Φ̂h(ψλ,ξ,γ) = −
3mm−2(m − 1)(m − 2)c2

k

128
λ2

∫

Rm

|x|2

(1 + |x|2)m
d volgRm +o(λ2) as λ → 0.

In particular, Φ̂h(ψλ,ξ,γ) < 0 for small values of λ. Furthermore,

Φ̂h(ψλ,ξ,γ) → 0 as λ + |ξ| → ∞.

Remark 4.4. The proof of Proposition 4.3 is very technical, we refer to [36, Section 4.2]

for more details. We only point out here that the main ingredient lies in characterizing 

the mapping wh
ε : M → TM⊥, wh

ε (z) = Kz(∇Γh(z)), or equivalently solving the equa-

tion ∇2J0(z)[wh
ε (z)] = ∇Γ(z) for z ∈ M. And the (k, p)-elementary matrix makes the 

computation more accessible than using general choices of h.

Now, through the perturbation framework introduced in Section 3, we intend to reduce 

the problem (2.1) to a finite-dimensional one. Notice that, when h̃ ∈ H(p) (see the 

definition above Theorem 2.3), we find the functionals Γ and Φ (in the expansion of Jε, 

see Lemma 2.6) are actually in the form of summing up infinitely many distinguished 

terms. For this reason more careful analysis is required.

Lemma 4.5. For m ≥ 2, assume that we are in the hypotheses of Lemma 2.6 with h̃ ∈

H(p), some p ∈ (2, ∞) ∪ {∞}. Let ψ, ϕ ∈ D
1
2 (Rm, S(Rm)) and z ∈ M. Then, via the 

Bourguignon-Gauduchon identification (2.11), there exists a constant C > 0 such that 

the following estimates hold for all |ε| small:
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J (ψ̃) − J0(ψ) − εΓ(ψ) − ε2Φ(ψ) = o(ε2)
(
‖ψ‖2 + ‖ψ‖

2m
m−1

)
; (4.3)

∥∥∇Jε(ψ̃) − ∇J0(ψ) − ε∇Γ(ψ)
∥∥ = O(ε2)

(
‖ψ‖ + ‖ψ‖

m+1
m−1

)
; (4.4)

∥∥∇Jε(z̃)
∥∥ = O(|ε|); (4.5)

∥∥∇2Jε(ψ̃) − ∇2J0(ψ)
∥∥ = O(|ε|)

(
1 + ‖ψ‖

2
m−1

)
; (4.6)

|Jε(ψ̃ + ϕ̃) − Jε(ψ̃)| ≤ C‖ϕ‖
(
‖ψ‖ + ‖ϕ‖ + ‖ψ‖

m+1
m−1 + ‖ϕ‖

m+1
m−1

)
; (4.7)

∥∥∇Jε(ψ̃ + ϕ̃) − ∇Jε(ψ̃)
∥∥ ≤ C‖ϕ‖

(
1 + ‖ψ‖

2
m−1 + ‖ϕ‖

2
m−1

)
; (4.8)

∥∥∇Γ(ψ̃ + ϕ̃) − ∇Γ(ψ̃)
∥∥ ≤ C‖ϕ‖

(
1 + ‖ψ‖

2
m−1 + ‖ϕ‖

2
m−1

)
; (4.9)

∥∥∇2Jε(ψ̃ + ϕ̃) − ∇2Jε(ψ̃)
∥∥ ≤

⎧
«
¬

C‖ϕ‖(‖ψ‖ + ‖ϕ‖) m = 2,

C
(
‖ϕ‖

2
m−1 + ‖ϕ‖

)
m ≥ 3,

(4.10)

uniformly in ψ, ϕ and z.

Without breaking the reading, the proof of Lemma 4.5 will be given in Appendix A.1. 

Now, as an important consequence, we have

Proposition 4.6. For m ≥ 2, assume that we are in the hypotheses of Lemma 2.6 with 

h̃ ∈ H(p), some p ∈ (2, ∞) ∪ {∞}. There exists a C1 mapping

(w, χ) : (−ε0, ε0) × M → D
1
2 (Rm, S(Rm)) × D

1
2 (Rm, S(Rm))

for some ε0 > 0, which satisfies

(1) wε(z) = w(ε, z) ∈ TzM⊥;

(2) ∇Jε

(
z̃ + w̃ε(z)

)
= χ(ε, z) ∈ TzM for all z ∈ M (via the Bourguignon-Gauduchon 

identification);

(3) wε(z) = −εKz(∇Γ(z)) + O(|ε|μ) with μ = 2 for m = 2 and μ = m+1
m−1 for μ ≥ 3;

(4) denoted by J red
ε (z) = Jε

(
z̃ + w̃ε(z)

)
, then z̃ + w̃ε(z) is a critical point of Jε provided 

that z ∈ M is a critical point of J red
ε .

Proof. To obtain the existence of (w, χ), let us define a mapping H : M × (−ε1, ε1) ×

D
1
2 (Rm, S(Rm)) × TM → D

1
2 (Rm, S(Rm)) × TM

H(z, ε, w, χ) =
(
∇Jε(z̃ + w̃) − χ, (I − Pz)w

)

where (−ε1, ε1) is an interval such that Jε is well-defined and Pz : D
1
2 (Rm, S(Rm)) →

TzM⊥ is the orthogonal projection onto TzM⊥.

Plainly, we have H(z, 0, 0, 0) = (0, 0) for all z ∈ M. And by elementary computation, 

we have
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∇(w,χ)H(z, 0, 0, 0)[ϕ, φ] =
(
∇2J0(z)[ϕ] − φ, (I − Pz)ϕ

)

for ϕ ∈ D
1
2 (Rm, S(Rm)) and φ ∈ TzM. Hence, it follows from the invertibility of 

∇2J0(z)|TzM⊥ that ∇(w,χ)H(z, 0, 0, 0) is invertible and

‖∇(w,χ)H(z, 0, 0, 0)−1‖ ≤ C0, ∀z ∈ M (4.11)

for some C0 > 0. Then, by applying the Implicit Function Theorem, one soon obtains 

the existence of (w(ε, z), χ(ε, z)) such that H(z, ε, w(ε, z), χ(ε, z)) = (0, 0). This proves 

(1) and (2).

To see (3) we need more careful analysis of the mapping wε(z) = w(ε, z). To start with, 

let us use the invertibility of ∇(w,χ)H(z, 0, 0, 0) to define Fz,ε : D
1
2 (Rm, S(Rm)) ×TzM →

D
1
2 (Rm, S(Rm)) × TzM

Fz,ε(ϕ, φ) = −∇(w,χ)H(z, 0, 0, 0)−1
(

H(z, ε, ϕ, φ) − ∇(w,χ)H(z, 0, 0, 0)[ϕ, φ]
)

.

Then we can see that (w(ε, z), χ(ε, z)) is a fixed point of Fz,ε. We claim that

Claim. There exist L0, ε0 > 0 such that, for any given L > L0, Fz,ε is a contraction 

mapping on Bε :=
{

(ϕ, φ) ∈ D
1
2 (Rm, S(Rm)) × TzM : ‖ϕ‖2 + ‖φ‖2 ≤ L2ε2

}
, for all 

ε ∈ (−ε0, ε0).

We only need to show that Fz,ε(ϕ, φ) ∈ Bε and

‖Fz,ε(ϕ1, φ1) − Fz,ε(ϕ2, φ2)‖ ≤ δ‖(ϕ1, φ1) − (ϕ1, φ1)‖

for all (ϕ1, φ1), (ϕ2, φ2) ∈ Bε, where δ ∈ (0, 1). And, by (4.11), it is enough to show that

∥∥∇Jε(z̃ + ϕ̃) − ∇2J0(z)[ϕ]
∥∥ ≤

L|ε|

C0
(4.12)

and

∥∥(∇Jε(z̃ + ϕ̃1) − ∇2J0(z)[ϕ1]
)

−
(
∇Jε(z̃ + ϕ̃2) − ∇2J0(z)[ϕ2]

)∥∥

≤
δ

C0
‖(ϕ1, φ1) − (ϕ1, φ1)‖.

(4.13)

Here and in the sequel, we will use the expressions given in Lemma 2.6 so that the 

gradient map ∇Jε(·) is appropriately identified in the space D
1
2 (Rm, S(Rm)), and it will 

cause no confusion if we make the difference between ∇Jε and derivatives of J0. We 

shall also adopt such identification for higher order derivatives of Jε.
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Using (4.5), (4.6) and (4.10), we find

∥∥∇Jε(z̃ + ϕ̃) − ∇2J0(z)[ϕ]
∥∥

=
∥∥∇Jε(z̃ + ϕ̃) − ∇Jε(z̃) − ∇2Jε(z̃)[ϕ] + ∇Jε(z̃) + (∇2Jε(z̃) − ∇2J0(z))[ϕ]

∥∥

≤

1∫

0

∥∥∇2Jε(z̃ + sϕ̃) − ∇2Jε(z̃)
∥∥‖ϕ‖ds + O(|ε|) + O(|ε|)‖ϕ‖

≤

⎧
«
¬

O(1)‖ϕ‖2 + O(1)‖ϕ‖3 + O(|ε|) + O(|ε|)‖ϕ‖ if m = 2

O(1)‖ϕ‖
m+1
m−1 + O(1)‖ϕ‖2 + O(|ε|) + O(|ε|)‖ϕ‖ if m ≥ 3

since ‖z‖ is uniformly bounded for z ∈ M. This proves (4.12) when L is fixed reasonably 

large. To see (4.13), we point out that

∇Jε(z̃ + ϕ̃1) − ∇Jε(z̃ + ϕ̃2) − ∇2J0(z)[ϕ1 − ϕ2]

=

1∫

0

∇2Jε

(
z̃ + ϕ̃2 + s(ϕ̃1 − ϕ̃2)

)
[ϕ̃1 − ϕ̃2]ds − ∇2J0(z)[ϕ1 − ϕ2]

and hence by (4.6) and (4.10) we get

∥∥(∇Jε(z̃ + ϕ̃1) − ∇2J0(z)[ϕ1]
)

−
(
∇Jε(z̃ + ϕ̃2) − ∇2J0(z)[ϕ2]

)∥∥

≤ O(|ε|) max
s∈[0,1]

(
1 + ‖z + ϕ2 + s(ϕ1 − ϕ2)‖

2
m−1

)
‖ϕ1 − ϕ2‖

+

⎧
⎪«
⎪¬

O(1) max
s∈[0,1]

‖ϕ2 + s(ϕ1 − ϕ2)‖
(
‖z‖ + ‖ϕ2 + s(ϕ1 − ϕ2)‖

)
‖ϕ1 − ϕ2‖ if m = 2,

O(1) max
s∈[0,1]

(
‖ϕ2 + s(ϕ1 − ϕ2)‖

2
m−1 + ‖ϕ2 + s(ϕ1 − ϕ2)‖

)
‖ϕ1 − ϕ2‖ if m ≥ 3.

Therefore, when |ε| is small enough, we obtain (4.13). And the claim is proved.

As an immediate consequence of the above claim, we find that Fz,ε always has a fixed 

point in Bε. Hence we conclude that ‖wε(z)‖ = ‖w(ε, z)‖ ≤ Lε, with L > L0 being fixed. 

Now, in order to prove (3), we write

∇Jε

(
z̃ + w̃ε(z)

)
= ∇Jε

(
z̃ + w̃ε(z)

)
− ∇J0(z + wε(z)) − ε∇Γ(z + wε(z))

+ ∇J0(z + wε(z)) − ∇2J0(z)[wε(z)]

+ ε∇Γ(z + wε(z)) − ε∇Γ(z)

+ ∇2J0(z)[wε(z)] + ε∇Γ(z)

in which we can use (4.4), (4.9) and (4.10) to get

∥∥∇Jε

(
z̃ + w̃ε(z)

)
− ∇J0(z + wε(z)) − ε∇Γ(z + wε(z))

∥∥ = O(ε2),
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∥∥∇J0(z + wε(z)) − ∇2J0(z)[wε(z)]
∥∥ ≤

1∫

0

∥∥∇2J0(z + swε(z)) − ∇2J0(z)
∥∥‖wε(z)‖ds

≤

⎧
«
¬

O(1)‖wε(z)‖2 = O(ε2) if m = 2

O(1)‖wε(z)‖
m+1
m−1 = O

(
|ε|

m+1
m−1

)
if m ≥ 3

and

∥∥∇Γ(z + wε(z)) − ∇Γ(z)
∥∥ = O(1)‖wε(z)‖ = O(|ε|).

Hence, we deduce from (2) that

χ(ε, z) = ∇2J0(z)[wε(z)] + ε∇Γ(z) +

⎧
«
¬

O(1)‖wε(z)‖2 = O(ε2) if m = 2,

O(1)‖wε(z)‖
m+1
m−1 = O

(
|ε|

m+1
m−1

)
if m ≥ 3.

Projecting this equation on TzM⊥ and applying the operator Kz =
(
∇2J0(z)|TzM⊥

)−1

on both sides, we obtain assertion (3).

Finally (4) is a direct consequence of (1) and (2). This completes the proof. �

Remark 4.7. Comparing with (3.3) and (3.8), though Proposition 4.6 is quite similar to 

the framework in Section 3, we carry out the details here mainly because the functional 

Jε is involved with the infinite series h̃ ∈ H(p). Clearly, Proposition 4.6 suggests that 

Theorem 3.4 can be applied to the functional Jε.

4.2. Proof of Theorem 2.3

In virtue of Lemma 4.1 and Proposition 4.3, let us denote J
(i)
ε the Euler functional 

corresponding to the metric g
(i)
ε = gRm + εaih(x − xi), where h is a given compactly 

supported elementary matrix satisfying the hypotheses of Proposition 4.3, ai ∈ R and 

xi ∈ R
m are fixed. Let Γ(i) and Φ(i) be the corresponding functionals appearing in the 

expansion of J
(i)
ε . According to the abstract setting in Section 3, we denote wε(z) and 

w
(i)
ε (z) the solutions to the auxiliary equations Pz∇Jε(z +w) = 0 and Pz∇J

(i)
ε (z +w) =

0, respectively, where Pz : D
1
2 (Rm, S(Rm)) → TzM⊥ is the orthogonal projection.

It can be seen from Proposition 4.3 that the reorganized functional Φ̂h, which is 

given by (4.2), possesses some negative minimum and tends to zero at the boundary of 

(0, +∞) × R
m × S2[ m

2
]+1−1(Sm). Hence, we can find an open bounded subset U ⊂ G =

(0, +∞) × R
m and δ > 0 such that U ⊂ G and

inf
γ∈N

(
min
∂U

Φ̂h(ψ ·, ·,γ) − min
U

Φ̂h(ψ ·, ·,γ)
)

≥ δ
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where N = S2[ m
2

]+1−1(Sm). In what follows, we keep this precompact set U being fixed 

and denote

Uxi
=
{

(λ, ξ) ∈ G : (λ, ξ − xi) ∈ U
}

.

Lemma 4.8.

(1) Let Mc be a compact subset of M, then there exists C > 0 such that for |ε| small 

there hold

∥∥wε(z) − w(i)
ε (z)

∥∥ ≤ C|ε|
∥∥∇Γ(z) − ∇Γ(i)(z)

∥∥

for all z ∈ Mc.

(2) For z = ψλ,ξ,γ ∈ M with (λ, ξ) ∈ Uxi
, there exist C, L > 0 such that if |xj − xi| ≥ L

for all j �= i then

∥∥∇Γ(z) − ∇Γ(i)(z)
∥∥ ≤ C

∑

j≥1
j �=i

|aj |

|xj − xi|m−1
.

Proof. Since the linear operator Kz = ∇2J0(z)−1 : TzM⊥ → TzM⊥ is uniformly 

bounded for z ∈ M (see [36, Lemma 4.11]), we soon obtain from (3.8) and Proposi-

tion 4.6 that

∥∥wε(z) − w(i)
ε (z)

∥∥ = |ε|
∥∥Kz(∇Γ(z)) − Kz(∇Γ(i)(z))

∥∥ + o(ε),

which proves the assertion (1).

To check (2), let us use Lemma 4.1 (2) (which can be also applied to compute ∇Γ(i)) 

to get the estimate: for any v ∈ D1/2(Rm, S(Rm))

∣∣ 〈∇Γ(ψλ,ξ,γ), v〉 −
〈

∇Γ(i)(ψλ,ξ,γ), v
〉 ∣∣

≤ C
(∑

j �=i

|aj |

∫

Ωj

|∇ψλ,ξ,γ | · |v| + |ψλ,ξ,γ | · |v|d volgRm

)

≤ C
(∑

j �=i

|aj |

∫

Ωj

λ
m−1

2

(
λ2 + |x − ξ|2

)m
2

· |v| +
λ

m−1
2

(
λ2 + |x − ξ|2

)m−1
2

· |v|d volg
Rm

)
,

where Ωj = supp h(· − xj) for j ≥ 1, and in the last inequality we have used the facts

|ψλ,ξ,γ(x)|gRm ∼
λ

m−1
2

(
λ2 + |x − ξ|2

)m−1
2

and |∇ψλ,ξ,γ(x)| ∼
λ

m−1
2

(
λ2 + |x − ξ|2

)m
2

.
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Now, using the Hölder and Sobolev inequalities, we know that for (λ, ξ) ∈ Uxi
there 

holds

∣∣ 〈∇Γ(ψλ,ξ,γ), v〉 −
〈

∇Γ(i)(ψλ,ξ,γ), v
〉 ∣∣ ≤ C‖v‖

∑

j �=i

( |aj |

|xj − xi|m
+

|aj |

|xj − xi|m−1

)

provided |xj − xi| ≥ L, j �= i, with L large enough (say L ≥ diam U + 1). This completes 

the proof. �

The next result will be devoted to compare the values of J red
ε (z) := Jε(z + wε(z))

and J
(i),red
ε (z) := J

(i)
ε (z + wi

ε(z)) for z = ψλ,ξ,γ ∈ M with (λ, ξ) ∈ Uxi
.

Proposition 4.9. There exists C > 0 such that for |ε| small there holds

∣∣J red
ε (z) − J (i),red

ε (z)
∣∣ ≤ C|ε|

(∑

j≥1
j �=i

1

|xj − xi|
(m−1)τ

τ−1

) τ−1
τ

for all z = ψλ,ξ,γ ∈ M with (λ, ξ) ∈ Uxi
, and |xj − xi| ≥ L.

Proof. Following from Lemma 4.8 and the boundedness of ∇Jε(z + wε(z)), we have

∣∣J red
ε (z) − J (i),red

ε (z)
∣∣

≤
∣∣Jε(z + wε(z)) − Jε(z + w(i)

ε (z))
∣∣ +

∣∣Jε(z + w(i)
ε (z)) − J (i)

ε (z + w(i)
ε (z))

∣∣

≤ C
∥∥wε(z) − w(i)

ε (z)
∥∥ +

∣∣Jε(z + w(i)
ε (z)) − J (i)

ε (z + w(i)
ε (z))

∣∣

≤ |ε|C
∥∥∇Γ(z) − ∇Γ(i)(z)

∥∥ +
∣∣Jε(z + w(i)

ε (z)) − J (i)
ε (z + w(i)

ε (z))
∣∣

≤ |ε|C
∑

j≥1
j �=i

|aj |

|xj − xi|m−1
+
∣∣Jε(z + w(i)

ε (z)) − J (i)
ε (z + w(i)

ε (z))
∣∣.

By noting that

Jε(z + w(i)
ε (z)) − J (i)

ε (z + w(i)
ε (z)) = εΓ(z + w(i)

ε (z)) − εΓ(i)(z + w(i)
ε (z)) + o(ε)

and Γ|M = Γ(i)|M ≡ 0, by using (3.3) and Lemma 4.5, we have

Γ(z + w(i)
ε (z)) = ∇Γ(z)[w(i)

ε (z)] + o(ε) = O(ε)

and

Γ(i)(z + w(i)
ε (z)) = ∇Γ(i)(z)[w(i)

ε (z)] + o(ε) = O(ε)
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for z = ψλ,ξ,γ ∈ M with (λ, ξ) ∈ Uxi
. Then, as long as |xj − xi| ≥ L for all j �= i, we 

deduce

∣∣J red
ε (z) − J (i),red

ε (z)
∣∣ ≤ |ε|C

∑

j≥1
j �=i

|aj |

|xj − xi|m−1
≤ |ε|C

(∑

j≥1
j �=i

1

|xj − xi|
(m−1)τ

τ−1

) τ−1
τ

provided that

∑

j≥1

|aj |τ < +∞. �

Now we are ready to prove our main results:

Complete proof of Theorem 2.3. For a given k ≥ 1, let us fix arbitrarily x0 ∈ R
m with 

|x0| = 1 and take h̃ to be of the form (2.5) with h being a compactly supported elementary 

matrix and satisfying the hypotheses of Proposition 4.3, aj = j−´ and xj = j³rx0 for 

j ∈ N, where

r =
C0

|ε|1/m−1
, α > 1, 2αk < β (4.14)

and C0 > 0 is a constant fixed large enough (see below). With the above choice of aj, 

we have 
∑

j |aj |τ < +∞ since β > 1 > 1
τ . Note also that α > 1, we have |xj − xi| >

4 diam(supp h) for all i �= j when |ε| is small enough.

From the expansions in Lemma 2.6 and (3.9), we have that, for a fixed i ≥ 1,

J (i),red
ε (z) = J0(z) + ε2a2

i Φ̂h(·−xi)(z) + o(ε2a2
i )

and, by Proposition 4.3, J
(i),red
ε attains a local minimum zi = ψλi,ξi,γi

with (λi, ξi) ∈ Uxi

and γi ∈ N . In particular,

inf
γ∈N

(
min
∂Uxi

Φ̂h(·−xi)(ψ ·, ·,γ) − min
Uxi

Φ̂h(·−xi)(ψ ·, ·,γ)
)

≥ δ

for some δ > 0 independent of ε and i.

If we choose C0 in (4.14) so large that minj �=i |xj − xi| ≥ L, so Proposition 4.9 holds, 

then we have

∣∣J red
ε (z) − J (i),red

ε (z)
∣∣ ≤ C|ε|

(∑

j≥1
j �=i

1

|xj − xi|
(m−1)τ

τ−1

) τ−1
τ

=
C|ε|

rm−1

(∑

j≥1
j �=i

1

|j³ − i³|
(m−1)τ

τ−1

) τ−1
τ
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≤
C|ε|

rm−1
·

1

i(³−1)(m−1)

when i is fixed large, where we have used the inequality (see for instance [16, Lemma 4.4])

∑

j≥1
j �=i

1

|j³ − i³|
(m−1)τ

τ−1

≤
C

i
(α−1)(m−1)τ

τ−1

for α > 1 and m ≥ 2. By enlarging C0 if necessary, we shall have

C|ε|

rm−1
≤

δ

4
ε2.

And hence, when

(α − 1)(m − 1) ≥ 2β, (4.15)

we find J red
ε has a strict local minimum z̃i = ψλ̃1,ξ̃i,γ̃i

“near” zi in the sense that 

(λ̃i, ξ̃i) ∈ Uxi
.

Summing up, we have proved that if (4.15) holds then, for all i large and |ε| small, 

the functional J red
ε attains a strict local minimum in Uxi

×N . Hence there are infinitely 

many distinct solutions of Eq. (2.4), denoted by {ϕ̃
(i)
ε }.

To determine the Ck-regularity of the metrics g̃ε at infinity and the pull-back met-

rics gε on Sm using our choice (4.14), let us denote g̃�
ε(x) = g̃ε(x/|x|2) and g̃

(i),�
ε (x) =

g̃
(i)
ε (x/|x|2), for i ∈ N. Since gε is smooth on Sm \{P}, we find that the regularity of gε at 

P is the same of ̃gε at infinity, and so it is the same of ̃g�
ε at 0. If we set Ωi = supp h(· −xi), 

it follows that g̃
(i),�
ε (x) − gRm has support Ω�

i :=
{

x ∈ R
m : x/|x|2 ∈ Ωi

}
. In this setting, 

since diam(Ω�
i) ∼ |xi|

−2, we have the following basic estimate

‖g̃(i),�
ε − gRm‖Ck ≤ C|εai||xi|

2k ≤ C · C2k
0 |ε|1−2k/(m−1)i2k³−´

for k ≥ 1. Let

g̃�
ε,j = gRm +

j∑

i=1

(
g̃(i),�

ε (x) − gRm

)

we find that if 2kα − β < 0 then

‖g̃�
ε,j − g̃�

ε,l‖Ck ≤ max
i=j+1,...,l

‖g̃(i),�
ε − gRm‖Ck ≤ C · C2k

0 |ε|1−2k/(m−1)(j + 1)2k³−´

for all j < l. And thus {g̃�
ε,j}∞

j=1 is a Cauchy sequence in Ck(B1), where B1 stands for 

the open ball of radius 1 centered at the origin. Therefore, g̃�
ε can be extended to x = 0 in 

the class of Ck. And if there holds additionally that 1 − 2k/(m − 1) > 0, then g̃�
ε → gRm

as ε → 0.
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There are three essential inequalities in the above arguments, namely (4.15),

β > 2kα and 2k < m − 1.

They are satisfied with m ≥ 4k + 2,

α > 4k + 1 and 2kα < β < 2kα +
α − (4k + 1)

2
.

Finally, since the solutions {ϕ̃
(i)
ε } of Eq. (2.4) can be parameterized in the compact 

set Uxi
× N , via the conformal transformation mentioned in Section 2.1, we find that 

the corresponding solutions {ψ
(i)
ε } of Eq. (2.1) blow up at P ∈ Sm in the following sense

‖ψ(i)
ε ‖L∞ → +∞ as i → +∞.

And standard regularity arguments, see [33, Appendix] and [6, Chapter 3], imply that 

the weak solutions ψ
(i)
ε are indeed of class C1 on Sm. This completes the proof. �

5. The non-compactness caused by the geometric potential

In this section, we intend to prove Theorem 1.4, and our proof will be based upon the 

abstract result Theorem 3.5 in Section 3.

Let H ∈ C2(Sm) be a given Morse function, satisfying the conditions (H-1) and (H-2) 

mentioned in Subsection 2.1. For simplicity, let us assume H ≥ 0 and takes its minimum 

at p0 ∈ Sm and H(p0) = 0. Denote πp0
: Sm \ {p0} → R

m the stereographic projection, 

we define K(x) = H(π−1
p0

(x)) for x ∈ R
m. Then K ∈ L∞(Rm) ∩ C2(Rm) and satisfies 

the following (see [36, Lemma 3.1])

|∇K(x)| ≤ C0(1 + |x|2)−1 and |∇2K(x)| ≤ C0(1 + |x|2)−3/2 (5.1)

for some constant C0 > 0. Taking into account the additional condition H(p0) = 0, we 

also have

Lemma 5.1. By suitably enlarging the constant C0 in (5.1) (if necessary), there holds

|K(x)| ≤ C0(1 + |x|2)−1

for x ∈ R
m.

Proof. Since H(p0) = 0 and ∇gSm H(p0) = 0, we have

|K(x)| = |H(π−1
p0

(x)) − H(p0)| ≤ C|π−1
p0

(x) − p0|2
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by the Taylor’s formula, for some constant C > 0. By rotation, we may assume that 

p0 = (0, 0, . . . , 1) is the north pole and π−1
p0

(x) =
(

2x
1+|x|2 , |x|2−1

1+|x|2

)
, for x ∈ R

m. Then the 

assertion follows from a simple calculation. �

Remark 5.2. Though the function K is non-negative in this context, we kept the absolute 

value symbol in Lemma 5.1 to emphasis that the inequality also holds true for sign-

changing functions and the proof only needs the facts H(p0) = 0 and ∇gSm H(p0) = 0.

To proceed, let {zi}
∞
i=0 ⊂ R

m and {ai}
∞
i=0 ⊂ R be such that

(1) |zi − zj | � 1 for i �= j. For reader’s convenience, we may simply take zi = i³z0 with 

z0 ∈ R
m, |z0| = R � 1 and α > 1.

(2) ai = i−´ with β > 1.

From K, {zi} and {ai} as above, we define

K̃(x) =

∞∑

i=1

aiK(x − zi).

Then it follows that the above summation converges uniformly in x so that K̃ is well-

defined and K̃ ∈ L∞(Rm) ∩ C2(Rm). In the sequel, for ψλ,ξ,γ ∈ M (see (3.5)–(3.6)), let 

us set

Γ̃(ψλ,ξ,γ) = −
m − 1

2m

∫

Rm

K̃(x)|ψλ,ξ,γ |
2m

m−1
g

Rm d volg
Rm

And it is clear that Γ̃(ψλ,ξ,γ) is independent of the factor γ ∈ S2[ m
2

]+1−1(Sm). Hence, in 

order to study Γ̃(ψλ,ξ,γ), it is sufficient to consider (up to multiplication by a constant)

Ψ̃(λ, ξ) :=

∫

Rm

K̃(x)|ψλ,ξ,γ |
2m

m−1
g

Rm d volg
Rm .

We will also denote Γ(i), Ψ(i) etc for functions corresponding to Ki(x) = aiK(x − zi). 

Then we have

Ψ̃(λ, ξ) =

∞∑

i=1

Ψ(i)(λ, ξ)

and

Ψ(i)(λ, ξ) = mmai

∫

Rm

K(λx + ξ − zi)

(1 + |x|2)m
d volg

Rm
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where the above formulation comes from a change of variables. The following result is a 

direct consequence of the computations in [36, Subsection 3.1], which characterizes the 

critical points of each Ψ(i) (hence Γ(i)).

Proposition 5.3. Let H ∈ C2(Sm) and K = H ◦ π−1
p0

be as above. Then the critical points 

of the function Ψ : G = (0, +∞) × R
m → R,

Ψ(λ, ξ) := mm

∫

Rm

K(λx + ξ)

(1 + |x|2)m
d volgRm ,

are isolated and there exists a bounded domain ΩH ⊂ G such that

ΩH ⊂ G, Crit[Ψ] ⊂ ΩH and deg(∇Ψ, ΩH , 0) �= 0,

where the closure of ΩH is taken with respect to the standard Euclidean norm and “deg” 

stands for the topological degree.

As a direct consequence of Proposition 5.3, we can find a bounded domain ΩH such 

that all critical points of Ψ(i) are contained in ΩH(zi) =
{

(λ, ξ) : (λ, ξ − zi) ∈ ΩH

}
. 

Moreover, when zi and zj are located far apart, we have ΩH(zi) ∩ ΩH(zj) = ∅ provided 

i �= j.

Next, we intend to apply Theorem 3.5 to prove our second non-compactness result, 

i.e., Theorem 2.4. The main ingredient here is to show that Ψ̃ (or equivalently Γ̃) has at 

least one critical point in each ΩH(zi). By abuse of notation, we continue to use Jε for 

the Euler functional associated to the perturbed problem (2.8), that is,

Jε(ψ) = J0(ψ) + εΓ̃(ψ)

where J0 is as in (2.10) and

Γ̃(ψ) = −
m − 1

2m

∫

Rm

K̃(x)|ψ|
2m

m−1
gRm d volg

Rm .

We also denote J
(i)
ε the functional

J (i)
ε (ψ) = J0(ψ) + εΓ(i)(ψ)

with

Γ(i)(ψ) = −
m − 1

2m

∫

Rm

Ki(x)|ψ|
2m

m−1
gRm d volgRm .

Following from the abstract settings in Section 3, we will introduce the notation wε(z)

and wi
ε(z) for the solutions to the auxiliary equations Pz∇Jε(z+w) = 0 and Pz∇J

(i)
ε (z+
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w) = 0, respectively, where Pz : D
1
2 (Rm, S(Rm)) → TzM⊥ stands for the orthogonal 

projection. Then, analogous to Lemma 4.8, we have in the present case

Lemma 5.4.

(1) Let Mc be a compact subset of M, then there exists C > 0 such that for |ε| small 

there hold

∥∥wε(z) − wi
ε(z)

∥∥ ≤ C|ε|
∥∥∇Γ̃(z) − ∇Γ(i)(z)

∥∥,

for all z ∈ Mc.

(2) For z = ψλ,ξ,γ ∈ M with (λ, ξ) ∈ ΩH(zi), there exists C, L > 0 such that if |zj −zi| ≥

L for all j �= i then

∥∥∇Γ̃(z) − ∇Γ(i)(z)
∥∥ ≤ C

∑

j≥1
j �=i

|aj |

|zj − zi|2
.

Proof. Recall that wε(z) satisfies Pz∇Jε(z + wε(z)) = 0, via Taylor expansion, we find

∇Jε(z + wε(z)) = ∇J0(z + wε(z)) + ε∇Γ̃(z + wε(z))

= ∇J0(z) + ∇2J0(z)[wε(z)] + ε∇Γ̃(z) + ε∇2Γ̃(z)[wε(z)] + o(‖wε(z)‖).

Since ∇J0(z) = 0 for all z ∈ M, we get

∇Jε(z + wε(z)) = ∇2J0(z)[wε(z)] + ε∇Γ̃(z) + ε∇2Γ̃(z)[wε(z)] + o(‖wε(z)‖),

and the equation Pz∇Jε(z + wε(z)) = 0 becomes

Pz∇2J0(z)[wε(z)] + εPz∇Γ̃(z) + εPz∇2Γ̃(z)[wε(z)] + o(‖wε(z)‖) = 0.

And a similar equation holds for wi
ε(z). Notice that M is a non-degenerate critical 

manifold of J0 and ∇2J0(z) is invertible on TzM⊥, we find (1) holds true.

To check (2), let us take arbitrarily ϕ ∈ D
1
2 (Rm, S(Rm)) with ‖ϕ‖ ≤ 1. Then we have

∣∣∣
〈
∇Γ̃(ψλ,ξ,γ), ϕ

〉
−
〈

∇Γ(i)(ψλ,ξ,γ), ϕ
〉 ∣∣∣ ≤ C

∑

j≥1
j �=i

|aj |

∫

Rm

|ψλ,ξ,γ |2
∗−1

gRm
|K(x − zj)||ϕ|d volg

Rm

≤ C
∑

j≥1
j �=i

|aj |

∫

Rm

λ
m+1

2

(
λ2 + |x − ξ|2

)m+1
2

|K(x − zj)||ϕ|d volgRm
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≤ C
∑

j≥1
j �=i

|aj |

∫

Rm

λ
m+1

2

(
λ2 + |x − (ξ − zj)|2

)m+1
2

|K(x)||ϕ(x + zj)|d volg
Rm

≤ C
∑

j≥1
j �=i

|aj |

∫

Rm

λ
m+1

2

(
λ2 + |x − (ξ − zj)|2

)m+1
2

·
1

1 + |x|2
· |ϕ(x + zj)|d volg

Rm

where the last inequality follows from Lemma 5.1. To proceed, let us define

Ij =

∫

Rm

λ
m+1

2

(
λ2 + |x − (ξ − zj)|2

)m+1
2

·
1

1 + |x|2
· |ϕ(x + zj)|d volg

Rm

for j ≥ 1. By the Hölder’s inequality and ‖ϕ‖ ≤ 1, we have

Ij ≤ C λ
m+1

2

( ∫

Rm

1

(λ2 + |x − (ξ − zj)|2)m
·

1

(1 + |x|2)
2m

m+1

d volgRm

)m+1
2m

.

Recall that we have assumed (λ, ξ) ∈ ΩH(zi), then we claim that

Jj :=

∫

Rm

1

(λ2 + |x − (ξ − zj)|2)m
·

1

(1 + |x|2)
2m

m+1

d volg
Rm ≤

Cλ−m

|ξ − zj |
4m

m+1

(5.2)

for some constant C > 0 when |ξ − zj | � 1.

Assuming (5.2) for the moment, we soon have Ij ≤ C|ξ − zj |−2, and hence

∥∥∇Γ̃(ψλ,ξ,γ) − ∇Γ(i)(ψλ,ξ,γ)
∥∥ ≤ C

∑

j≥1
j �=i

|aj |

|ξ − zj |2
≤ CL2

∑

j≥1
j �=i

|aj |

|zj − zi|2

provided that |zj − zi| ≥ L with L large enough (say L ≥ diam ΩH + 1). This proves (2).

Now it remains to prove (5.2). Let us decompose the integral into two parts Jj =

Jj,1 + Jj,2, where

Jj,1 =

∫

|x|≤
|ξ−zj |

2

1

(λ2 + |x − (ξ − zj)|2)m
·

1

(1 + |x|2)
2m

m+1

d volg
Rm

and

Jj,1 =

∫

|x|≥
|ξ−zj |

2

1

(λ2 + |x − (ξ − zj)|2)m
·

1

(1 + |x|2)
2m

m+1

d volg
Rm .

Then, via elementary computations, we find
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Jj,1 ≤
1

(
λ2 +

∣∣ ξ−zj

2

∣∣2)m

∫

|x|≤
|ξ−zj |

2

1

(1 + |x|2)
2m

m+1

d volg
Rm

≤
C

|ξ − zj |2m

|ξ−zj |

2∫

0

rm−1dr

(1 + r2)
2m

m+1

≤

⎧
⎪⎪«
⎪⎪¬

C|ξ − zj |−m− 4m
m+1 if m ≥ 4

C|ξ − zj |−6 ln |ξ − zj | if m = 3

C|ξ − zj |−4 if m = 2

and

Jj,2 ≤
1

(
1 +

∣∣ ξ−zj

2

∣∣2) 2m
m+1

∫

|x|≥
|ξ−zj |

2

1

(λ2 + |x − (ξ − zj)|2)m
d volgRm

≤
C

|ξ − zj |
4m

m+1

∫

Rm

1

(λ2 + |x|2)m
d volgRm ≤

Cλ−m

|ξ − zj |
4m

m+1

which directly imply (5.2). And the proof is hereby complete. �

Our next result intends to estimate the difference of the derivatives of the reduced 

functionals J red
ε (z) := Jε(z + wε(z)) and J

(i),red
ε (z) := J

(i)
ε (z + wi

ε(z)) for z = ψλ,ξ,γ ∈

M with (λ, ξ) ∈ ΩH(zi).

Proposition 5.5. Let {zi} ⊂ R
m and {ai} ⊂ R be chosen as above, then there exists a 

constant C > 0 such that

‖∇Γ̃(z) − ∇Γ(i)(z)‖ ≤ CR−2

for all z = ψλ,ξ,γ ∈ M with (λ, ξ) ∈ ΩH(zi), some i ≥ 1, where R � 1 is given in the 

definition of the sequence {zi}. Furthermore, there holds

‖∇J red
ε (z) − ∇J (i),red

ε (z)‖ ≤ CR−2|ε| + o(ε).

Proof. Since

∇J red
ε (z) = ε∇Γ̃(z) + o(ε)

and

∇J (i),red
ε (z) = ε∇Γ(i)(z) + o(ε),

it follows from Lemma 5.4 that
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‖∇J red
ε (z) − ∇J (i),red

ε (z)‖ ≤ |ε|‖∇Γ̃(z) − ∇Γ(i)(z)‖ + o(ε)

≤ C|ε|
∑

j≥1
j �=i

|aj |

|zj − zi|2
+ o(ε). (5.3)

Next, we estimate 
∑

j �=i |aj ||zj − zi|−2. Let us recall zj = j³z0, |z0| = R and aj = j−´

for α, β > 1 and R � 1. Then we have

∑

j≥1
j �=i

|aj |

|zj − zi|2
= R−2

∑

j≥1
j �=i

1

j´
·

1

|j³ − i³|2
.

Notice that, for i ≤ j ≤ i − 1, we have

|j³ − i³| = i³ − j³ ≥ i³ − (i − 1)³ ≥ α(i − 1)³−1

and similarly for j ≥ i + 1, we have

|j³ − i³| = j³ − i³ ≥ (i + 1)³ − i³ ≥ αi³−1.

We thus have for i ≥ 2

∑

j≥1
j �=i

1

j´
·

1

|j³ − i³|2
≤

∑

1≤j<i

1

j´
·

1

α2(i − 1)2³−2
+
∑

j>i

1

j´
·

1

α2i2³−2

≤
C(β)

α2(i − 1)2³−2
≤ C(β)

where C(β) =
∑

j≥1
1

jβ < +∞. The case i = 1 is even much easier since we have

∞∑

j=2

1

j´
·

1

|j³ − 1|2
< C(β).

Hence, by (5.3), we deduce

‖∇J red
ε (z) − ∇J (i),red

ε (z)‖ ≤ CC(β)R−2|ε| + o(ε),

which completes the proof. �

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Now, by Proposition 5.3, 5.5 and the homotopy invariance of the 

topological degree, we can conclude that for R � 1 sufficiently large (this only depends 

on the size of ΩH) there exists ε0 > 0 (independent of i) such that
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deg(∇Ψ̃, ΩH(zi), 0) = deg(∇Γ̃, ΩH(zi) × {γ}, 0) = deg(∇Γ(i), ΩH(zi) × {γ}, 0)

= deg(∇Ψ(i), ΩH(zi), 0) �= 0

for all ε ∈ (−ε0, ε0). Thus, there exists a critical point (λi, ξi) ∈ ΩH(zi) of the function 

Ψ̃ : G → R, (λ, ξ) �→ Ψ̃(λ, ξ). As we will see later in Appendix A.2, the function K̃ comes 

from a C2-function on Sm provided α, β > 1 satisfy β > 4α + 1. Then it follows from 

[36, Proposition 3.6] that, by approximating K̃ if necessary, we may assume Ψ̃ is a Morse 

function. Therefore, by virtue of Theorem 3.5, we can choose gi(γ) = (λi(γ), ξi(γ)) ∈

ΩH(zi) depending on γ ∈ N = S2[ m
2

]+1−1(Sm) and γi ∈ N such that ζi := (gi(γi), γi) ∈

G×N is a critical point of J red
ε . Then the critical point ϕi = ζi+wε(ζi) of Jε are positive 

and concentrates at infinity. And, similar to the very last step in proving Theorem 2.3, the 

corresponding pull-back spinors {ψi} concentrate at p0 and ‖ψi‖L∞ → +∞ as i → ∞. 

Thus {ψi} is a non-compact family of solutions to Eq. (2.7). The estimates in Theorem 2.4

(2) simply come from some direct computations. �

Data availability

No data was used for the research described in the article.

Appendix A

A.1. Proof of Lemma 4.5

Since (4.3) can be obtained by using the identification (2.12) and (2.13)–(2.15), we 

start with (4.4).

For ψ, ϕ ∈ D
1
2 (Rm, S(Rm)) ∩ C1(Rm, S(Rm)), there holds

〈
∇Jε(ψ̃), ϕ̃

〉
=

1

2
Re

∫

Rm

(ψ̃, Dg̃ε
ϕ̃)g̃ε

+ (ϕ̃, Dg̃ε
ψ̃)g̃ε

d volg̃ε
− Re

∫

Rm

|ψ̃|2
∗−2

g̃ε
(ψ̃, ϕ̃)gε

d volgε
.

Using (2.12), we have

Re(ψ̃, Dg̃ε
ϕ̃)g̃ε

+ Re(ϕ̃, Dg̃ε
ψ̃)g̃ε

= Re
(
ϕ̃, D̃g

Rm ψ
)

g̃ε

+ Re
(
ψ̃, D̃g

Rm ϕ
)

g̃ε

+ Re(ϕ̃, W ·g̃ε
ψ̃)g̃ε

+ Re(ψ̃, W ·g̃ε
ϕ̃)g̃ε

+ Re(ϕ̃, X ·g̃ε
ψ̃)g̃ε

+ Re(ψ̃, X ·g̃ε
ϕ̃)g̃ε

+
∑

i,j

(bij − δij) Re
(
ϕ̃, ∂̃i ·g̃ε

∇̃∂j
ψ
)

g̃ε

+
∑

i,j

(bij − δij) Re
(
ψ̃, ∂̃i ·g̃ε

∇̃∂j
ϕ
)

g̃ε

.

(A.1)

Notice that X ∈ TR
m, we find
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Re(ϕ̃, X ·g̃ε
ψ̃)g̃ε

+ Re(ψ̃, X ·g̃ε
ϕ̃)g̃ε

= Re(ϕ̃, X ·g̃ε
ψ̃)g̃ε

− Re(X ·g̃ε
ψ̃, ϕ̃)g̃ε

= 0.

And using the explicit formula

W =
1

4

∑

i,j,k
i�=j �=k �=i

∑

³,´

bi³(∂³bj´)b−1
´k ∂̃i ·g̃ε

∂̃j ·g̃ε
∂̃k,

and (2.14)–(2.15), we can see that W ≡ 0 in dimension 2 and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

bi³ = δi³ −
ε

2
h̃i³ +

3 ε2

8

∑

l

h̃ilh̃l³ + o(ε2),

∂³bj´ = −
ε

2
∂³h̃j´ +

3 ε2

8

∑

l

(
∂³h̃jlh̃l´ + h̃jl∂³h̃l´

)
+ o(ε2),

b−1
´k = δ´k +

ε

2
h̃´k −

ε2

8

∑

l

h̃´lh̃lk + o(ε2),

for dimension m ≥ 3. Hence

bi³(∂³bj´)b−1
´k = −

ε

2
δ´kδi³∂³h̃j´ +

ε2

4
∂³h̃j´

(
δ´kh̃i³ − δi³h̃´k

)

+
3δ´kδi³ε2

8

∑

l

(
∂³h̃jlh̃l´ + h̃jl∂³h̃l´

)
+ o(ε2).

Note that we have assumed h̃ij = 0 for i �= j, we soon get

bi³(∂³bj´)b−1
´k = o(ε2).

Recalling that the map ψ �→ ψ̃ defined in (2.11) is fiberwisely isometric, we obtain

Re
(
ϕ̃, D̃g

Rm ψ
)

g̃ε

= Re
(
ϕ, Dg

Rm ψ
)

g
Rm

, Re
(
ϕ̃, ∂̃i·g̃ε

∇̃∂j
ψ
)

g̃ε

= Re
(
ϕ, ∂i·g

Rm ∇∂j
ψ
)

g
Rm

and

Re(ϕ̃, W ·g̃ε
ψ̃)g̃ε

=
1

4

∑

i,j,k
i�=j �=k �=i

(∑

³,´

bi³(∂³bj´)b−1
´k

)
Re(∂i ·g

Rm ∂j ·g
Rm ∂k ·g

Rm ψ, ϕ)g
Rm .

And thus (A.1) can be expanded as

Re(ψ̃, Dg̃ε
ϕ̃)g̃ε

+ Re(ϕ̃, Dg̃ε
ψ̃)g̃ε

= Re(ϕ, Dg
Rm ψ)g

Rm + Re(ψ, Dg
Rm ϕ)g

Rm

−
ε

2

∑

i

h̃ii

[
Re(ϕ, ∂i ·gRm ∇∂i

ψ)gRm + Re(ψ, ∂i ·gRm ∇∂i
ϕ)gRm

]
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+
3ε2

8

∑

i

h̃
2

ii

[
Re(ϕ, ∂i ·g

Rm ∇∂i
ψ)g

Rm + Re(ψ, ∂i ·g
Rm ∇∂i

ϕ)g
Rm

]

+ o(ε2)|ϕ|gRm |ψ|gRm

where the support of the last o(ε2) term is contained in supp h̃. Then, by (2.13), the 

specific expression of J0 and Γ in Lemma 2.6 with h̃ ∈ H(p) and the embedding 

D
1
2 (Rm, S(Rm)) ↪→ L2∗

(Rm, S(Rm)), we easily find

∣∣∣
〈
∇Jε(ψ̃), ϕ̃

〉
− 〈∇J0(ψ), ϕ〉 − ε 〈∇Γ(ψ), ϕ〉

∣∣∣ ≤ O(ε2)
(
‖ψ‖‖ϕ‖ + ‖ψ‖2∗−1‖ϕ‖

)

and (4.4) is proved by using the fundamental fact that D
1
2 (Rm, S(Rm)) ∩C1(Rm, S(Rm))

is dense in D
1
2 (Rm, S(Rm)).

The estimate (4.5) can be obtained in a similar manner, in particular, we have ‖z‖ is 

uniformly bounded for z ∈ M.

To see (4.6), let us remark that,

∇2Jε(ψ̃)[φ̃, ϕ̃] =
1

2

∫

Rm

Re(φ̃, Dg̃ε
ϕ̃)g̃ε

+ Re(ϕ̃, Dg̃ε
φ̃)g̃ε

d volg̃ε

− Re

∫

Rm

|ψ̃|2
∗−2

g̃ε
(φ̃, ϕ̃)g̃ε

d volg̃ε

− (2∗ − 2)

∫

Rm

|ψ̃|2
∗−4

g̃ε
Re(ψ̃, φ̃)g̃ε

Re(ψ̃, ϕ̃)g̃ε
d volg̃ε

for two given spinors ϕ, φ ∈ D
1
2 (Rm, S(Rm)) ∩C1(Rm, S(Rm)). Then, by virtue of (A.1)

and (2.13), we deduce

∣∣∇2Jε(ψ̃)[φ̃, ϕ̃] − ∇2J0(ψ)[φ, ϕ]
∣∣ ≤ O(ε)

(
‖φ‖‖ϕ‖ + ‖ψ‖2∗−2‖φ‖‖ϕ‖

)

which proves (4.6) through the density of D
1
2 (Rm, S(Rm)) ∩ C1(Rm, S(Rm)) in 

D
1
2 (Rm, S(Rm)).

Next, let us turn to (4.8). Notice that there holds

〈
∇Jε(ψ̃ + ϕ̃), φ̃

〉
−
〈
∇Jε(ψ̃), φ̃

〉

=
1

2

∫

Rm

Re(ϕ̃, Dg̃ε
φ̃)g̃ε

+ Re(φ̃, Dg̃ε
ϕ̃)g̃ε

d volgε

−
(

Re

∫

Rm

|ψ̃ + ϕ̃|2
∗−2

g̃ε
(ψ̃ + ϕ̃, φ̃)g̃ε

− |ψ̃|2
∗−2

g̃ε
(ψ̃, φ̃)g̃ε

d volg̃ε

)
.

This implies that
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∥∥∇Jε(ψ̃ + ϕ̃) − ∇Jε(ψ̃)
∥∥

≤ O(1)‖ϕ‖ + O(1)
( ∫

Rm

∣∣∣|ψ + ϕ|2
∗−2

gRm
(ψ + ϕ) − |ψ|2

∗−2
gRm

ψ
∣∣∣

2m
m+1

d volgRm

)m+1
2m

.
(A.2)

Denoted by f(s) = |ψ + sϕ|2
∗−2

gRm
(ψ + sϕ), we have

|ψ + ϕ|2
∗−2

g
Rm

(ψ + ϕ) − |ψ|2
∗−2

g
Rm

ψ = f(1) − f(0) =

1∫

0

f ′(s)ds

and

|f ′(s)| ≤ (2∗ − 1)|ψ + ϕ|2
∗−2

gRm
|ϕ|g

Rm .

Using the Hölder inequality and Fubini Theorem, we have that

∫

Rm

|f(1) − f(0)|
2m

m+1 d volg
Rm ≤

∫

Rm

1∫

0

|f ′(s)|
2m

m+1 ds d volg
Rm

=

1∫

0

∫

Rm

|f ′(s)|
2m

m+1 d volg
Rm ds

≤ O(1)

1∫

0

∫

Rm

|ψ + sϕ|
2

m−1 · 2m
m+1

gRm |ϕ|
2m

m+1
gRm d volg

Rm ds

≤ O(1)

1∫

0

|ψ + sϕ|
22∗

m+1

2∗ |ϕ|
2m

m+1

2∗ ds

≤ O(1)‖ϕ‖
2m

m+1 max
s∈[0,1]

‖ψ + sϕ‖
22∗

m+1

So from (A.2) we deduce

∥∥∇Jε(ψ̃ + ϕ̃) − ∇Jε(ψ̃)
∥∥ ≤ O(1)

(
‖ϕ‖ + ‖ϕ‖ max

s∈[0,1]
‖ψ + ϕ‖

2
m−1

)

which suggests (4.8).

We point out that the estimates (4.7) and (4.9) can be obtained with similar proce-

dures, and hence it remains to check (4.10).

Observe that, for two spinors φ1, φ2 ∈ D
1
2 (Rm, S(Rm)), we have

∇2Jε(ψ̃ + ϕ̃)[φ̃1, φ̃2] − ∇2Jε(ψ̃)[φ̃1, φ̃2]
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= − Re

∫

Rm

|ψ̃ + ϕ̃|2
∗−2

g̃ε
(φ̃1, φ̃2)g̃ε

d volgε
+ Re

∫

Rm

|ψ̃|2
∗−2

g̃ε
(φ̃1, φ̃2)g̃ε

d volgε

− (2∗ − 2)

∫

Rm

|ψ̃ + ϕ̃|2
∗−4

g̃ε
Re(ψ̃ + ϕ̃, φ̃1)g̃ε

Re(ψ̃ + ϕ̃, φ̃2)g̃ε
d volgε

(A.3)

+ (2∗ − 2)

∫

Rm

|ψ̃|2
∗−4

g̃ε
Re(ψ̃, φ̃1)g̃ε

Re(ψ̃, φ̃2)g̃ε
d volgε

,

and

∣∣∣Re

∫

Rm

|ψ̃ + ϕ̃|2
∗−2

g̃ε
(φ̃1, φ̃2)g̃ε

d volgε
− Re

∫

Rm

|ψ̃|2
∗−2

g̃ε
(φ̃1, φ̃2)g̃ε

d volgε

∣∣∣

≤ O(1)

∫

Rm

∣∣∣|ψ̃ + ϕ̃|2
∗−2

g̃ε
− |ψ̃|2

∗−2
g̃ε

∣∣∣|φ1||φ2|d volg
Rm

≤

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

O(1)

∫

R2

(|ψ|g
R2 |ϕ|g

R2 + |ϕ|2g
R2

)|φ1|g
R2 |φ2|g

R2 d volg
R2 if m = 2

O(1)

∫

Rm

|ϕ|2
∗−2

g
Rm

|φ1|g
Rm |φ2|g

Rm d volg
Rm if m ≥ 3

(A.4)

where we have used the sub-additivity of the function ψ �→ |ψ|2
∗−2 for 2∗ − 2 ∈ (0, 1]

(that is m ≥ 3). Thus, we only need to estimate the last two integrals in (A.3). For this 

purpose, let us set

I1 =

∫

Rm

|ψ̃ + ϕ̃|2
∗−2

g̃ε

Re(ψ̃ + ϕ̃, φ̃1)g̃ε
Re(ψ̃ + ϕ̃, φ̃2)g̃ε

|ψ̃ + ϕ̃|2gε

d volgε

−

∫

Rm

|ψ̃|2
∗−2

g̃ε

Re(ψ̃ + ϕ̃, φ̃1)g̃ε
Re(ψ̃ + ϕ̃, φ̃2)g̃ε

|ψ̃ + ϕ̃|2gε

d volgε

and

I2 =

∫

Rm

|ψ̃|2
∗−2

g̃ε

Re(ψ̃ + ϕ̃, φ̃1)g̃ε
Re(ψ̃ + ϕ̃, φ̃2)g̃ε

|ψ̃ + ϕ̃|2gε

d volgε

−

∫

Rm

|ψ̃|2
∗−2

g̃ε

Re(ψ̃, φ̃1)g̃ε
Re(ψ̃, φ̃2)g̃ε

|ψ̃|2gε

d volgε

so that I1 +I2 is nothing but the last two integrals in (A.3). Clearly, I1 can be estimated 

similar to (A.4). And for I2, let us set Ω =
{

x ∈ R
m : |ψ̃|gε

/|ψ̃ + ϕ̃|gε
< 2

}
, then we can 

have the decomposition I2 = I
(1)
2 + I

(2)
2 with I

(1)
2 and I

(2)
2 being the integration on Ω
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and Rm \ Ω, respectively. Notice that, on Rm \ Ω, we have |ψ̃|gε
≤ 2|ϕ̃|gε

. Hence, there 

holds

|I
(2)
2 | ≤ O(1)

∫

Rm\Ω

|ψ̃|2
∗−2

gε
|φ̃1|gε

|φ̃2|gε
d volgε

≤ O(1)

∫

Rm

|ϕ|2
∗−2

g
Rm

|φ1|g
Rm |φ2|g

Rm d volg
Rm .

Meanwhile, by using the fact

∣∣∣ ψ̃ + ϕ̃

|ψ̃ + ϕ̃|gε

−
ψ̃

|ψ̃|gε

∣∣∣
gε

=
∣∣∣
ψ̃|ψ̃|gε

+ ϕ̃|ψ̃|gε
− ψ̃|ψ̃ + ϕ̃|gε

|ψ̃ + ϕ̃|gε
|ψ̃|gε

∣∣∣
gε

≤
2|ϕ̃|gε

|ψ̃ + ϕ̃|gε

and

I
(1)
2 =

∫

Ω

|ψ̃|2
∗−2

g̃ε

Re(ψ̃ + ϕ̃, φ̃1)g̃ε
Re(ψ̃ + ϕ̃, φ̃2)g̃ε

|ψ̃ + ϕ̃|2gε

d volgε

−

∫

Ω

|ψ̃|2
∗−2

g̃ε

Re(ψ̃, φ̃1)g̃ε
Re(ψ̃ + ϕ̃, φ̃2)g̃ε

|ψ̃|gε
|ψ̃ + ϕ̃|gε

d volgε

+

∫

Ω

|ψ̃|2
∗−2

g̃ε

Re(ψ̃, φ̃1)g̃ε
Re(ψ̃ + ϕ̃, φ̃2)g̃ε

|ψ̃|gε
|ψ̃ + ϕ̃|gε

d volgε

−

∫

Ω

|ψ̃|2
∗−2

g̃ε

Re(ψ̃, φ̃1)g̃ε
Re(ψ̃, φ̃2)g̃ε

|ψ̃|2gε

d volgε

we deduce

|I
(1)
2 | ≤ 2

∫

Ω

|ψ̃|2
∗−2

gε

∣∣∣ ψ̃ + ϕ̃

|ψ̃ + ϕ̃|gε

−
ψ̃

|ψ̃|gε

∣∣∣
gε

|φ̃1|gε
|φ̃2|gε

d volgε

≤ O(1)

∫

Ω

|ψ̃|2
∗−2

gε
|ϕ̃|gε

|φ̃1|gε
|φ̃2|gε

|ψ̃ + ϕ̃|gε

d volgε

≤ O(1)

∫

Rm

|ψ|2
∗−3

gRm
|ϕ|gRm |φ1|gRm |φ2|gRm d volgRm .

(A.5)

And thus, we obtain

|I2| ≤

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

O(1)

∫

R2

(|ψ|g
R2 |ϕ|g

R2 + |ϕ|2g
R2

)|φ1|g
R2 |φ2|g

R2 d volg
R2 if m = 2

O(1)

∫

R3

|ϕ|g
R3 |φ1|g

R3 |φ2|g
R3 d volg

R2 if m = 3
(A.6)
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Notice that 2∗ = 2m
m−1 < 3 for m ≥ 4, we need to divide Ω into two parts, i.e. Ω = Ω1 ∪Ω2

with Ω1 :=
{

x ∈ Ω : |ψ|g
Rm > |ϕ|g

Rm

}
and Ω2 :=

{
x ∈ Ω : |ψ|g

Rm ≤ |ϕ|g
Rm

}
. Then, 

from the first and second lines in (A.5), we obtain

|I
(1)
2 | ≤ O(1)

∫

Ω1

|ϕ|2
∗−2

g
Rm

|φ1|g
Rm |φ2|g

Rm d volg
Rm +O(1)

∫

Ω2

|ψ|g
Rm |φ1|g

Rm |φ2|g
Rm d volg

Rm .

Hence we have

|I2| ≤ O(1)

∫

Rm

(
|ϕ|2

∗−2
gRm

+ |ϕ|
)
|φ1|gRm |φ2|gRm d volgRm for m ≥ 4. (A.7)

Now, combining (A.3)–(A.7), we find that

∥∥∇2Jε(ψ̃ + ϕ̃) − ∇2Jε(ψ̃)
∥∥ ≤

⎧
«
¬

O(1)
(
‖ψ‖‖ϕ‖ + ‖ϕ‖2

)
if m = 2

O(1)
(
‖ϕ‖2∗−2 + ‖ϕ‖

)
if m ≥ 3

which proves (4.10). And the proof is hereby completed.

A.2. The global C2 smoothness of the pull-back function K̃ ◦ πp0
on Sm

Here we show that K̃ comes from a C2-function on Sm when α, β > 0 satisfy β >

4α + 1. And this will complete the proof of Theorem 2.4.

Clearly, K̃ is C2 on Rm, because the series defining K̃ converges uniformly on Rm

up to the second derivatives. To prove the differentiability at infinity (which correspond 

to the north pole of Sm), we need to show that y �→ K̃(y/|y|2) is twice continuously 

differentiable near y = 0. Without loss of generality, we assume |y| < 1 in the follow-

ing context. And, by Lemma 5.4, we see that K̃(y/|y|2) converges uniformly in y. In 

particular, we have K̃(y/|y|2) → 0 as y → 0.

To see the convergence of the derivatives, for the function K as before, we define 

K̂(y) = K
(

y
|y|2

)
. Then, an elementary computation shows that derivatives of K̂ can be 

estimated as

|∇K̂(y)| ≤ C
∣∣∣∇K

( y

|y|2

)∣∣∣|y|−2

and

|∇2K̂(y)| ≤ C

(∣∣∣∇2K
( y

|y|2

)∣∣∣|y|−4 +
∣∣∣∇K

( y

|y|2

)∣∣∣|y|−3

)
.

Recall (5.1), we notice that

∣∣∣∇K
( y

|y|2
− zi

)∣∣∣ ≤
C0

1 +
∣∣ y

|y|2 − zi

∣∣2 ≤
C0

1 +
∣∣ 1

|y| − i³R
∣∣2 (A.8)
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where in the last inequality we used zi = i³z0 with |z0| = R and the triangle inequality ∣∣ y
|y|2 − zi

∣∣ ≥
∣∣ 1

|y| − i³R
∣∣. Then, by (A.8) and our choice ai = i−´ , we have for i ≥ N

(N ∈ N is arbitrarily large)

∑

i≥N

|ai|
∣∣∣∇
(

K
( y

|y|2
− zi

))∣∣∣ ≤ C|y|−2
∑

i≥N

i−´ ·
1

1 +
∣∣ 1

|y| − i³R
∣∣2 . (A.9)

Let us set

S(N, y) =
∑

i≥N

i−´ ·
1

1 +
∣∣ 1

|y| − i³R
∣∣2 .

To obtain an uniform estimate of S(N, y) for |y| ≤ 1, we decompose the sum into two 

pieces: (i) |y| ≤ 1
2NαR and (ii) |y| > 1

2NαR . For (i), we have

S(N, y) =
∑

N≤i≤(2|y|R)− 1
α

i−´ ·
1

1 +
∣∣ 1

|y| − i³R
∣∣2 +

∑

i>(2|y|R)− 1
α

i−´ ·
1

1 +
∣∣ 1

|y| − i³R
∣∣2

≤ C
∑

i≥N

|y|2

i´
+

∑

i>(2|y|R)− 1
α

1

i´
≤ C|y|2N1−´ + C|y|

β−1
α .

(A.10)

And, for (ii), we have

S(N, y) ≤
∑

i≥N

1

i´
≤ CN1−´ (A.11)

Therefore, by additionally requiring β > 2α + 1, we can deduce for the case (i)

|y|−2S(N, y) ≤ CN1−´ + C|y|
β−1

α
−2 ≤ CN1−´ + CN1−´+2³ ≤ CN1−´+2³,

and for the case (ii)

|y|−2S(N, y) ≤ C|y|−2N1−´ ≤ CN1−´+2³,

where N is considered arbitrarily large. Thus, the estimates in (A.10) and (A.11) imply 

that

sup
|y|≤1

|y|−2S(N, y) = O(N1−´+2³) as N → +∞.

And hence, by (A.9), the series defining ∇
(
K̃(y/|y|2)

)
converges uniformly on |y| ≤ 1. 

This suggests that K̃(y/|y|2) can be extended to y = 0 in the class of C1.

The second derivatives can be estimated in a similar manner. At this stage, instead 

of (5.1), we need the following improved estimates
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|∇K(x)| ≤ C0(1 + |x|2)− 3
2 and |∇2K(x)| ≤ C0(1 + |x|2)−2 (A.12)

by the choice of p0. In fact, we have

∇K(x) = ∇H(π−1
p0

(x))[∇π−1
p0

(x)],

∇2K(x) = ∇2H(π−1
p0

(x))[∇π−1
p0

(x), ∇π−1
p0

(x)] + ∇H(π−1
p0

)[∇2π−1
p0

(x)]

and, as in the proof of Lemma 5.1,

|∇H(π−1
p0

(x))| = |∇H(π−1
p0

(x))−∇H(p0)| ≤ C max
Sm

|∇2H|·|π−1
p0

(x)−p0| ≤ C(1+|x|2)− 1
2 .

These, together with the facts

|∇π−1
p0

(x)| ≤ C(1 + |x|2)−1 and |∇2π−1
p0

(x)| ≤ C(1 + |x|2)− 3
2 ,

we obtain (A.12).

Now, by using the estimate

∣∣∣∇2K
( y

|y|2
− zi

)∣∣∣|y|−4 +
∣∣∣∇K

( y

|y|2
− zi

)∣∣∣|y|−3

≤
C

|y|4
·

1
(
1 +

∣∣ 1
|y| − i³R

∣∣2)2 +
C

|y|3
·

1
(
1 +

∣∣ 1
|y| − i³R

∣∣2) 3
2

,

we find

∑

i≥N

|ai|
∣∣∣∇2

(
K
( y

|y|2
− zi

))∣∣∣ ≤ C|y|−4
∑

i≥N

1

i´
·

1
(
1 +

∣∣ 1
|y| − i³R

∣∣2)2

+ C|y|−3
∑

i≥N

1

i´
·

1
(
1 +

∣∣ 1
|y| − i³R

∣∣2) 3
2

,

(A.13)

where N is arbitrarily large as before. Let us set

S̃1(N, y) =
∑

i≥N

1

i´
·

1
(
1 +

∣∣ 1
|y| − i³R

∣∣2)2 and S̃2(N, y) =
∑

i≥N

1

i´
·

1
(
1 +

∣∣ 1
|y| − i³R

∣∣2) 3
2

then, by performing the same arguments in (A.10) and (A.11), we soon get

|y|−4S̃1(N, y) = O(N1−´+4³) and |y|−3S̃2(N, y) = O(N1−´+4³) as N → +∞

provided that β > 4α+1. Thus, in this case, the series defining ∇2(K̃(y/|y|2)) converges 

uniformly on |y| ≤ 1. This proves that K̃(y/|y|2) can be extended to y = 0 in the class 

of C2, when β > 4α + 1.
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