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Abstract. We consider a non-homogeneous parabolic equation with degenerate coefficients of the form

ut − Lωu = u p , where Lω = ω−1div(ω∇). This paper establishes the existence/non-existence of global-

in-time mild solutions based on a critical exponent, known as the Fujita exponent. Similar topics for a

semilinear heat equation with degenerate coefficients are treated in Fujishima (Calc Var Partial Differ Equ

58:25, 2019). They considered an equation ut − div(ω∇u) = u p , which is not self-adjoint, with two types

of homogeneous weights:ω(x) = |x1|a andω(x) = |x |b where a, b > 0. In this paper we consider the case

of a self-adjoint operator, and extend to more general weights that meet certain restrictions such as being

in the Muckenhoupt class A2, non-decreasing, and where the limits ³ := lim|x ′|→∞(logω(x))/(log |x ′|)
and ´ := lim|x ′|→0(logω(x))/(log |x ′|) exist, where x ′ = (x1, . . . , xn) and 1 ≤ n ≤ N . The main result

establishes that the Fujita exponent is given by pF = 1 + 2/(N + ³). This means that the asymptotic

behavior of the weight at infinity affects global existence of solutions and the one at the origin does not.
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1. Introduction

We consider the problem

{

∂t u − Lωu = u p, x ∈ R
N , t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ R
N ,

(1.1)

where ∂t := ∂/∂t , Lω := ω−1div(ω∇), N ≥ 1, and p > 1. Here the weight function

ω(x) := ω(x ′) satisfies the following conditions (A1)–(A3) for x ′ ∈ R
n with n ∈

[1, N ]:
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(A1) ω(x) belongs to the class A2 of Muckenhoupt functions, i.e.

c0 := sup
B⊂RN

(

1

|B|

∫

B

ω(x) dx

) (

1

|B|

∫

B

ω−1(x) dx

)

< ∞

holds for any ball B ⊂ R
N (see [22]).

(A2) The limits of
logω(x)

log |x ′| exist |x ′| → ∞ and |x ′| → 0, respectively. Denote the

limit by

³ := lim
|x ′|→∞

logω(x)

log |x ′|
, ´ := lim

|x ′|→0

logω(x)

log |x ′|
.

(A3) ω(x) is monotonically non-decreasing with respect to the distance from origin

to x∗ := (x ′, 0, . . . , 0), i.e. if |x ′| ≥ |y′|, then ω(x) ≥ ω(y) for any x, y ∈ R
N .

It follows from (A2) that, for any � > 0, there exist M > 0 and 0 < m < 1 such that

|x ′|³−� < ω(x) < |x ′|³+� (1.2)

for all |x ′| > M > 1, and

|x ′|´+� < ω(x) < |x ′|´−� (1.3)

for all |x ′| < m < 1. Furthermore, (A3) implies that

³, ´ ≥ 0.

Notice that

³ − ´ = lim
|x ′|→∞

(

logω(x)

log |x ′|
−

logω(1/x)

log(1/|x ′|)

)

= lim
|x ′|→∞

log(ω(x)ω(1/x))

log |x ′|
≥ 0

if and only if lim|x ′|→∞ ω(x)ω(1/x) ≥ 1. So the relationship between ³ and ´ is

undetermined. Here we provide some examples of weight function in our mind that

satisfy the above set-up (see [19]*Sect. 2). A rather large class of inhomogeneities ω

is covered by our assumptions:

1. ω(x) = |x1|a with a ∈ [0, 1) and ω(x) = |x |b with b ∈ [0, N ) are homo-

geneous examples, with n = 1 and n = N respectively. Any small enough

non-homogeneous perturbation of those are also satisfying our assumptions.

2. ω(x) is a polynomial of |x ′| with the highest degree within the interval [0, n),

and ω(x) ≥ 0 a.e. in R
N , like, e.g., ω(x) = 2|x ′|2 + |x ′|.

More interestingly, it is important to note that no continuity assumption is required

for the weight function ω(x). We can allow randomness by defining a weight function

based on ameasurable function θ definedon the unit sphereS
N . Let 0 < c0 ≤ θ < c−1

0 .

The weight function on R
N \ {0} is given by ω(x) = |x |a · θ(x/|x |).

The main objective of the present paper is to establish a theory for the existence of

global-in-time mild solutions to problem (1.1). In particular, we seek to determine a
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critical exponent, known as the Fujita exponent, which plays a pivotal role in determin-

ing the existence/non-existence of global-in-time solutions. The concept of the Fujita

exponent was initially introduced by Fujita [9] in 1966. Beginning with this classical

paper by Fujita, critical exponents for the existence of global-in-time solutions (not

only positive ones but also sign-changing ones) were established for many classes of

evolution problems, which include degenerate parabolic equations, fractional diffu-

sion equations and so on. It seems almost impossible to make complete list of this

topics. So we only refer a part of them for instance [8,10,11,16–18,23–25,31] and

references therein. (See also [26], which includes a nice survey for the semilinear par-

abolic equation.) Among others, in [10] Fujishima and the first two authors consider

the problem

{

∂t u − div(ω(x)∇u) = u p, x ∈ R
N , t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ R
N ,

(1.4)

where the coefficient ω is either ω(x) = |x1|a with a ∈ [0,min{1, 2/N }) or ω(x) =
|x |b with b ∈ [0, 1). They showed that the Fujita exponent of problem (1.4) is pF :=
1 + 2−³

N
with ³ = {a, b}, namely, if p ≤ pF , then problem (1.4) has no nontrivial

global-in-time solutions, and if p > pF , then there exists a global-in-time (mild)

solutions to (1.4).

Oneof the distinctive points of (1.4) is that the operator div(ω∇) is not self-adjoint on

L2(RN , ωdx). At the end of [10, Section 1], the authors suggested one can run similar

estimates and exhibit Fujita exponent for (1.1), which includes a self-adjoint operator

Lω. The aim of the paper is to consider the case of a self-adjoint operator with more

general weights, which satisfies conditions (A1)–(A3), and to determine the Fujita

exponent of problem (1.1). Here we recall that, for the case of ω(x) = |x1|a , problem
(1.1) and (1.4) are related to the fractional parabolic equations (∂t − 
)su = u p (see,

i.e., [1]) and the nonlocal problem with fractional Laplacian ∂t u + (−
)su = u p with

s ∈ (0, 1) by Caffarelli–Silvestre extension [3], respectively.

We introduce the definition of a solution to (1.1). Let � = �(x, y, t) be the funda-

mental solution of

∂tv − Lωv = 0, x ∈ R
N , t > 0,

with a pole at (y, 0). For any measurable function f , put

[S(t) f ](x) :=
∫

RN

�(x, y, t) f (y) ω(y) dy, x ∈ R
N , t > 0. (1.5)

Then, we define the mild solution of equation (1.1) as follows.

Definition 1.1. Let u0 be a nonnegative measurable function in R
N . Let T ∈ (0,∞]

andu be anonnegativemeasurable function inR
N ×(0, T ) such thatu ∈ L∞(0, T ; L∞

(RN )). Then u is a mild solution of (1.1) in R
N × (0, T ) if u satisfies

u(x, t) = [S(t)u0](x) +
∫ t

0

[S(t − s)u(s)p](x) ds < ∞ (1.6)
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for almost all x ∈ R
N and t ∈ (0, T ). In particular, u is called a global-in-time mild

solution of (1.1) if u is a solution of (1.1) in R
N × (0,∞).

When considering parabolic problems, a natural notion of solution is given bymild

solutions, which incorporate the fundamental solution of the operator. A fundamental

instrument in our argument relies on estimating the fundamental solution of the op-

erator ∂t − ω−1div(ω∇). However, the fundamental solution of this parabolic PDE

does not have explicit formula as the operator is not translation-invariant. On the other

hand, by the assumption (A1), the coefficient ω(x) belongs to the class A2, and it

is easy to check that Lω is a self-adjoint operator in L2(RN , ωdx). Therefore, even

though � does not have explicit formula, Proposition 2.1 provides us with some useful

properties of the fundamental solution. In this context, the assumption of A2 weights

is particularly significant.

Remark 1.1. (i) In studying equations with coefficients, especially for degenerate co-

efficients, it is useful to look at the problem from a geometric perspective. By treating

the equation as a diffusion operator on a weighted manifold, we can invoke the spec-

tral theory and functional calculus of self-adjoint operator, and hence construct the

associated heat semigroup (see, e.g., [13]) and investigate their properties. We refer

the reader to the lecture notes by F. Baudoin [2] for a very nice survey on such an

approach.

(ii) In the realmof degenerate equations, numerous studies have focused on the regular-

ity of both nonlinear and linear equations. We refer, e.g., to the references [21,27–30]

where several variations of the model under consideration here are considered.

Before stating our main results we introduce some notations. For any x ∈ R
N and

R > 0, we put BR(x) := {y ∈ R
N : |x − y| < R}. For any 1 ≤ r ≤ ∞, we define the

weighted Lebesgue space Lr
ω := Lr (RN , ω(x)dx) by

Lr
ω := { f : f is measurable in R

N , ‖ f ‖Lr
ω

< ∞},

where

‖ f ‖Lr
ω

:=

⎧

⎪

«

⎪

¬

( ∫

RN

| f (x)|r ω(x) dx

)
1
r

if 1 ≤ r < ∞,

ess supx∈RN | f (x)| if r = ∞,

(1.7)

namely, ‖ f ‖L∞
ω

= ‖ f ‖L∞ . Then the weighted Lebesgue space Lr
ω is a Banach space.

Let 1{�} be the characteristic function of the set �. For any measurable function f

in R
N ,

μ f (λ) :=
∫

RN

1 {x : | f (x)| > λ} ω(x) dx, λ ≥ 0 (1.8)

is the distribution function of f , and we define the non-increasing rearrangement of

f by

f ∗(s) := inf{λ > 0 : μ f (λ) ≤ s}, s ≥ 0.
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Then, for any 1 ≤ r ≤ ∞ and 1 ≤ σ ≤ ∞, we define the weighted Lorentz space

Lr,σ
ω := Lr,σ (RN , ω(x)dx) by

Lr,σ
ω := { f : f is measurable in R

N , ‖ f ‖L
r,σ
ω

< ∞},

where

‖ f ‖L
r,σ
ω

:=

⎧

⎪

⎪

«

⎪

⎪

¬

(∫ ∞

0

[

s
1
r f ∗(s)

]σ ds

s

)
1
σ

if 1 ≤ σ < ∞,

sup
s>0

s
1
r f ∗(s) if σ = ∞.

The Lorentz Lr,σ
ω is a Banach space and the following holds (see, e.g., [12,14,32]):

(P1) Lr,r
ω = Lr

ω if 1 < r ≤ ∞ and L1,∞
ω = L1

ω:

(P2) L
r,σ1
ω ⊂ L

r,σ2
ω if 1 ≤ r ≤ ∞ and 1 ≤ σ1 ≤ σ2 ≤ ∞;

(P3) (The interpolation) Let 1 ≤ r0 ≤ r ≤ r1 ≤ ∞ be such that

1

r
=

1 − θ

r0
+

θ

r1
for θ ∈ [0, 1].

Then it holds that

‖ f ‖L
r,∞
ω

≤ ‖ f ‖1−θ

L
r0,∞
ω

‖ f ‖θ

L
r1,∞
ω

, f ∈ Lr0,∞
ω ∩ Lr1∞

ω ; (1.9)

(P4) (Hölder inequality) Let 1 ≤ r1 ≤ ∞ and r2 be the Hölder conjugate number of

r1, namely 1/r1 + 1/r2 = 1. Then it holds that

‖ f g‖L1
ω

≤ ‖ f ‖
L

r1,1
ω

‖g‖
L

r2,∞
ω

, f ∈ Lr1,1
ω , g ∈ Lr2,∞

ω . (1.10)

Now we state the main results of this paper. Put

pF := 1 +
2

N + ³
. (1.11)

Then we have the following two theorems.

Theorem 1.1. Assume (A1)–(A3). Let 1 < p < pF . Then (1.1) has no nontrivial

global-in-time solutions.

Theorem 1.2. Assume (A1)–(A3). Let p > pF . Choose ε small enough such that

r∗ :=
N + ³ − ε

2
(p − 1) > 1, (1.12)

then the following holds:

(i) There exists a positive constant δ such that, for any u0 ∈ L∞ ∩ L
r∗,∞
ω with

max(‖u0‖L∞ , ‖u0‖L
r∗,∞
ω

) < δ, (1.13)

a unique global-in-time solution u of (1.1) exists and it satisfies

sup
t>0

(1 + t)
N+³−ε

2 ( 1
r∗ − 1

q
)‖u(t)‖L

q,∞
ω

< ∞, r∗ ≤ q ≤ ∞. (1.14)
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(ii) Let1 ≤ r ≤ r∗. There exists a positive constant δ such that, for any u0 ∈ L∞∩Lr
ω

with

max{‖u0‖L∞ , ‖u0‖Lr
ω
} < δ, (1.15)

a unique global-in-time solution u of (1.1) exists and it satisfies

sup
t>0

(1 + t)
N+³−ε

2 ( 1
r
− 1

q
)‖u(t)‖L

q
ω

< ∞, r ≤ q ≤ ∞. (1.16)

By Theorems 1.1 and 1.2, there does not exist nontrivial global solution if p ∈
(1, pF ), while there exists unique nontrivial global solution under certain condition

of initial data u0 and p > pF . This implies that the exponent pF given by (1.11) is

the Fujita exponent of problem (1.1).

Wewould like to emphasize that the critical case p = pF is left open.Our conjecture

is that no nontrivial global solution exists in this critical scenario. Specifically, for

p = pF , the strategy is to argue by contradiction to Lemma 3.1 utilizing the already

provided global-in-time solution u, achieved by selecting an appropriate initial data

u(x, T ) for sufficiently large T . In the presence of homogeneous weights such as

ω(x) = |x1|a and ω(x) = |x |b, we observe that
∫

|x |≤
√

t
u(x, t + 1)w(x)dx blows up

over time. Consequently, for any given constant C∗, there exists a T > 0 such that

U (x) = u(x, T ) satisfies the contradicting condition t
1

p−1 ‖S(t)U‖∞ > C∗. However,
given the current weight assumptions (A1)–(A3), we are unable to achieve the desired

blow-up phenomenon. This suggests the need for alternative methods and approaches

in this context.

Corollary 1.1. Assume (A1)–(A3). Let p > pF . Choose ε small enough such that

(1.12) holds. Then there exists a positive constant δ such that, if

0 ≤ u0(x) ≤
δ

1 + |x |
2

p−1
N+³+ε
N+³−ε

, x ∈ R
N , (1.17)

then a unique global-in-time solution u of (1.1) exists and it satisfies (1.14).

Remark 1.2. (i) For ω ≡ 1, it is well-known that the decay rate for initial data given

by

0 ≤ u0(x) ≤
δ

1 + |x |
2

p−1

, x ∈ R
N ,

at spatial infinity is optimal to obtain the global existence of solutions to (1.1) (see,

e.g., [20]). For a more general weight ω(x) as we consider, if u0(x) satisfies (1.17),

then it follows that u0 ∈ L∞ ∩ L
r∗,∞
ω . As a direct consequence of Theorem 1.2 (i), a

unique global-in-time solution u of (1.1) exists. However if u0(x) = O(|x |−2/(p−1))

as |x | → ∞, then u0 /∈ L
r∗
ω . This is a clear advantage in using Lorentz spaces in place

of the classical L p spaces.
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(ii) Besides the existence/non-existence theory, Ap weights have significant applica-

tions in examining the regularity of degenerate parabolic equations and are ubiquitous

in harmonic analysis. Chiarenza and Serapioni [4,5] emphasize the necessity of as-

suming that the weight belongs to the A2 class in order to achieve L2 continuity of

the weak solutions. This is one of the reason for choosing ω(x) to be A2 in (1.1). In

order to upgrade the mild solution to a weak solution and further to a C³ solution, we

need a spatial gradient bound, and then the time derivative bound for the fundamental

solution. To be able to derive Hölder regularity invoking the results of Chiarenza and

Serapioni, one could try to produce directly a weak solution. We leave this aspect to

possible future work.

2. Preliminaries

We introduce certain properties that are very useful in checking the bounds of the

fundamental solution. Then, we proceed to estimate the heat semigroup, which plays a

key role in the definition of the mild solutions as expressed in (1.6). Finally, we apply

upper estimates of the heat semigroup in the weighted L p space and the weighted

Lorentz space. In what follows, by the letter C we denote generic positive constants

(independent of x and t) and they may have different values also within the same line.

2.1. Estimates for the fundamental solution �

In order to apply geometric inequalities from the heat semigroup technique, one has

to assume the coefficient ω(x) is an A2 weight in the sense of Muckenhoupt class (our

assumption (A1)). Consequently, it follows that ω(x) satisfies the volume doubling

and reverse doubling properties, as established in the work of [15]. Here we say ω(x)

satisfies the doubling and reverse doubling conditions if there exist positive constants

c1 and c2 such that

c1wt (x) ≤ w2t (x) ≤ c2wt (x) (2.1)

for all x ∈ R
N and t > 0, where wt (x) :=

∫

B√
t (x)

ω(y) dy. Under the assumptions

thatω is an A2 weight and Lω is self-adjoint, we can establish the following properties

(see [2,6,7]).

Proposition 2.1. The fundamental solution �(x, y, t) of (1.1) has the following prop-

erties:

(1) Symmetry of heat kernel and stochastic completeness of heat semigroup:

∫

RN

�(x, y, t)ω(x) dx =
∫

RN

�(x, y, t)ω(y) dy = 1 (2.2)

for all x, y ∈ R
N and t > 0.
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(2) Chapman-Kolmogorov relation:

�(x, y, t) =
∫

RN

�(x, ξ, t − s)�(ξ, y, s) ω(ξ) dξ (2.3)

for all x, y ∈ R
N and t > s > 0.

(3) Li-Yau inequality: There exist positive constants c∗ and C∗ depending only on

N and c0 such that

c−1
∗√

wt (x)
√

wt (y)
exp

(

− c∗
|x − y|2

t

)

≤ �(x, y, t)

≤
C−1

∗√
wt (x)

√
wt (y)

exp

(

− C∗
|x − y|2

t

)

(2.4)

for all x, y ∈ R
N and t > 0.

The properties in Proposition 2.1 allow us to estimate the fundamental solution

if we are able to estimate wt (x). We state the following lemma on upper and lower

estimates ofwt (x) based on our choice of ω(x) and the doubling and reverse doubling

condition.

Lemma 2.1. Let T > 0, and let ε > 0 be an arbitrary sufficiently small positive

constant, Then, there exist constants C1 and C2 depending only on N and ³ such that

C1t
N+³−ε

2 < wt (x) < C2

{

|x |³+ε t
N
2 if 0 < t ≤ |x |2,

t
N+³+ε

2 if |x |2 ≤ t < ∞,
(2.5)

for all x ∈ R
N and t ≥ T . Furthermore, there exists a constant C3 depending only

on N and ´ such that

wt (x) > C3t
N+´+ε

2 (2.6)

for all x ∈ R
N and 0 < t < T .

Proof. Let ε > 0 be an arbitrary sufficiently small positive constant. Then, by (1.2)

and (1.3), we can fix constants M > 1 and m < 1. It is sufficient to show (2.5) for

t > λM2 and (2.6) for 0 < t < m2, where λ is a fixed large number to be chosen later.

Once these are proved, we can apply the doubling property (2.1) to scale the domain.

Indeed, if T < λM2, for T ≤ t ≤ λM2, we scale wt (x) using

1

ck
2

w2k t (x) ≤ wt (x) ≤
1

ck
1

w2k t (x)

where k is chosen to be large enough such that 2k t > λM2. Similarly, if T > m2, for

m2 ≤ t ≤ T , we scale wt (x) using

wt (x) ≥ ck
1w t

2k
(x)
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where k is chosen to be large enough such that t < 2km2.

We first prove (2.5) for t > λM2. Since ω(x) is monotonically non-decreasing

functions with respect to the distance from the origin to x∗ = (x ′, 0, . . . , 0), for any
x ∈ R

N and t > 0, we see that

wt (x) ≥ wt (0). (2.7)

In fact, since ω(x) = ω(x ′) for x ′ ∈ R
n with n ∈ [1, N ], it holds that ωt (x) = ωt (x∗)

for x∗ = (x ′, 0) ∈ R
N . Furthermore, we put B1 := B√

t (x∗) \ B√
t (0) and B2 :=

B√
t (0)\B√

t (x∗). Then, it follows from themonotonicity ofω(y) that supy∈B2
ω(y) ≤

inf y∈B1 ω(y). This implies (2.7). Combining with (1.2) and (2.7), we have

wt (x) ≥ wt (0) =
∫

B√
t (0)

ω(y) dy ≥
∫

B√
t (0)\BM (0)

|y′|³−ε dy

=
∫

B̃√
t (0)

(

∫

|y′′|N−n<
√

t−|y′|2
dy′′

)

|y′|³−ε dy′

−
∫

B̃M (0)

(

∫

|y′′|N−n<
√

M2−|y′|2
dy′′

)

|y′|³−ε dy′

= dN−n

( ∫

B̃√
t (0)

(

t − |y′|2
)

N−n
2 |y′|³−ε dy′ −

∫

B̃M (0)

(

M2 − |y′|2
)

N−n
2 |y′|³−ε dy′

)

= dN−n |∂(B̃1(0))|
( ∫

√
t

0

(

t − r2
)

N−n
2

rn+³−ε−1 dr

−
∫ M

0

(

M2 − r2
)

N−n
2

rn+³−ε−1 dr

)

=
dN−n |∂(B̃1(0))|

2

∫ 1

0

(1 − r)
N−n
2 r

n+³−ε
2 −1 dr

(

t
N+³−ε

2 − M N+³−ε

)

=
dN−n |∂(B̃1(0))|

2
B

(

n + ³ − ε

2
,

N − n + 2

2

)(

t
N+³−ε

2 − M N+³−ε

)

≥ C1t
N+³−ε

2 (2.8)

for all x sinR
N and t > 2M2, where y = (y′, y′′) ∈ R

N , | · |N−n denotes the usual

Euclidian norm in R
N−n , B̃R(0) denotes the ball in R

n with radius R centered at the

origin, ∂(B̃1(0)) denotes the boundary of ball inR
n with radius 1 centered at the origin,

dm denotes the volume of the unit ball in R
m , and B(·, ·) denotes the Beta function.

On the other hand, since |y′| = |y∗| ≤ |y| ≤ |x |+
√

t for all y ∈ B√
t (x), it follows

from (1.2) that

wt (x) =
∫

B√
t (x)\BM (0)

ω(y) dy +
∫

B√
t (x)∩BM (0)

ω(y) dy

<

∫

B√
t (x)\BM (0)

|y′|³+ε dy +
∫

BM (0)

ω(y) dy

≤
∫

B√
t (x)

(|x | +
√

t)³+ε dy + dN M N max
x∈BM (0)

ω(x)

= dN

(

t
N
2 (|x | +

√
t)³+ε + M N max

x∈BM (0)
ω(x)

)
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≤ C2

{

|x |³+ε t
N
2 if 0 <

√
t ≤ |x |,

t
N+³+ε

2 if |x | ≤
√

t < ∞,

for all x ∈ R
N and t > λM2,whereλ is large enough such thatλ

N
2 > maxx∈BM (0) ω(x).

Thus (2.5) holds when t ≥ T .

Next we prove (2.5) for 0 < t < m2. Similar to (2.8), we have

wt (x) ≥ wt (0) =
∫

B√
t (0)

ω(y) dy >

∫

B√
t (0)

|y′|´+ε dy

=
∫

B√
t (0)

(

∫

|y′′|N−n<
√

t−|y′|2
dy′′

)

|y′|´+ε dy′

= dN−n

∫

B√
t (0)

(

t − |y′|2
)

N−n
2 |y′|´+ε dy′

= Ct
N+´+ε

2

∫ 1

0

(1 − r)
N−n
2 r

n+´+ε
2 −1 dr ≥ C3t

N+´+ε
2

for all x ∈ R
N and 0 < t < m2. Thus (2.5) holds when 0 < t < T , and Lemma 2.1

follows. �

Applying Lemma 2.1 with the Li-Yau inequality (2.4), we see that

D−1
1 min

{

|x |−
³+ε
2 t−

N
4 , t−

N+³+ε
4

}

min
{

|y|−
³+ε
2 t−

N
4 , t−

N+³+ε
4

}

exp

(

− D1
|x − y|2

t

)

< �(x, y, t) < D−1
2 t−

N+³−ε
2 exp

(

− D2
|x − y|2

t

)

(2.9)

and

�(x, y, t) < D−1
3 t−

N+´+ε
2 exp

(

− D3
|x − y|2

t

)

(2.10)

for all x, y ∈ R
N and T ≤ t < ∞, where D1 and D2 are positive constants depending

only on N , c0, and ³, and D3 is a positive constant depending only on N , c0, and ´.

By (2.9) and (2.10), we obtain

�(x, y, t) <

{

D−1
2 t−

N+³−ε
2 if T ≤ t < ∞,

D−1
3 t−

N+´+ε
2 if 0 < t < T,

for all x, y ∈ R
N . This together with (1.7) and (2.2) implies that

‖�(·, y, t)‖Lr
ω

<

⎧

«

¬

C³t
− N+³−ε

2

(

1− 1
r

)

if T ≤ t < ∞,

C´ t
− N+´+ε

2

(

1− 1
r

)

if 0 < t < T,

‖�(x, ·, t)‖Lr
ω

<

⎧

«

¬

C³t
− N+³−ε

2

(

1− 1
r

)

if T ≤ t < ∞,

C´ t
− N+´+ε

2

(

1− 1
r

)

if 0 < t < T,

(2.11)
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for any 1 ≤ r ≤ ∞ and all x, y ∈ R
N , where C³ and C´ are constants depending

only on N , c0, and {³, ´}, respectively.
To establish the L

q,∞
ω –Lr,∞

ω estimate for the heat semigroup, we rely on the uti-

lization of (1.9) and (1.10). So, we introduce a lemma that estimate the fundamental

solution in the weighted Lr,1 norm.

Lemma 2.2. Let T > 0, and let ε > 0 be an arbitrary sufficiently small positive

constant. Assume (A1)–(A3). Then, for any 1 < r < ∞, there exist positive constants

C̃³ and C̃´ depending only on r, N , c0, and {³, ´} respectively such that

‖�(x, ·, t)‖
L

r,1
ω

<

⎧

«

¬

C̃³t
− N+³−ε

2

(

1− 1
r

)

if T ≤ t < ∞,

C̃´ t
− N+´+ε

2

(

1− 1
r

)

if 0 < t < T,

(2.12)

for x ∈ R
N .

Proof. Since Lr
ω = Lr,r

ω for 1 < r ≤ ∞ (see (P1)), we have

‖�(x, ·, t)‖
L

r,1
ω

=
( ∫ A

0

+
∫ ∞

A

)

s
1
r
−1�∗(x, s, t) ds

≤ sup
0<s<A

�∗(x, s, t)

∫ A

0

s
1
r
−1 ds +

(∫ ∞

A

s
q
r
−q ds

)
1
q
(∫ ∞

A

(�∗(x, s, t))q ′
ds

)
1
q′

≤ C A
1
r ‖�(x, ·, t)‖L∞ + C A

1
r
−1+ 1

q ‖�(x, ·, t)‖
L

q′
ω

for any 1 < r < ∞, where q is a constant satisfying q > r/(r −1)with 1/q+1/q ′ = 1

and C depends only on r and q.

For the case T ≤ t < ∞, we put A = t
N+³−ε

2 . Combining with (2.11), we have

‖�(x, ·, t)‖
L

r,1
ω

< Ct
N+³−ε

2r t−
N+³−ε

2 + Ct
N+³−ε

2

(

1
r
−1+ 1

q

)

t
− N+³−ε

2

(

1− 1
q′

)

≤ Ct
− N+³−ε

2

(

1− 1
r

)

The proof for 0 < t < T follows the same by letting A = t
N+´+ε

2 . �

2.2. Estimates for S(t)ϕ

In this section, we give several estimates for S(t)ϕ as a basis for the proof of the

main theorems.

We first prove the following estimate, which is the lower bound for S(t)ϕ.

Lemma 2.3. Assume the same conditions as in Lemma 2.2. Let ϕ ∈ L∞ be a non-

trivial measurable function such that ϕ ≥ 0 in R
N . Then there exists a positive constant

C depending only on N, c0, and ³ such that

[S(t)ϕ](x) > C−1t−
N+³+ε

2

∫

|y|≤
√

t

ϕ(y) ω(y) dy

for all |x | ≤
√

t and t ≥ T .
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Proof. Since |x − y|2 ≤ (|x |+ |y|)2 ≤ 4t for |x |, |y| ≤
√

t , it follows from (2.9) that

�(x, y, t) > D−1
1 t−

N+³+ε
2 exp

(

−D1
|x − y|2

t

)

≥ D−1
1 e−4D1 t−

N+³+ε
2

for all t ≥ T , where D1 is given in (2.9). Then, combining with (1.5), if t ≥ T , then

we have

[S(t)ϕ](x) ≥
∫

|y|≤
√

t

�(x, y, t)ϕ(y) ω(y) dy > C−1t−
N+³+ε

2

∫

|y|≤
√

t

ϕ(y) ω(y) dy

for all |x | ≤
√

t . �

Next we give L
q
ω–Lr

ω estimate and L
q,∞
ω –Lr,∞

ω estimate for S(t)ϕ.

Lemma 2.4. Assume the same conditions as in Lemma 2.2.

(i) For any ϕ ∈ L
q
ω and 1 ≤ q ≤ r ≤ ∞, it holds that

‖S(t)ϕ‖Lr
ω

<

⎧

«

¬

c³t
− N+³−ε

2

(

1
q
− 1

r

)

‖ϕ‖L
q
ω

if T ≤ t < ∞,

c´ t
− N+´+ε

2

(

1
q
− 1

r

)

‖ϕ‖L
q
ω

if 0 < t < T .

(2.13)

Here c³ and c´ depend only on N, c0, and {³, ´}, respectively. In particular, it

holds that

‖S(t)ϕ‖Lr
ω

≤ ‖ϕ‖Lr
ω
, t > 0. (2.14)

(ii) For any ϕ ∈ L
q,∞
ω and 1 < q < ∞, it holds that

‖S(t)ϕ‖L
r,∞
ω

<

⎧

«

¬

d³t
− N+³−ε

2

(

1
q
− 1

r

)

‖ϕ‖L
q,∞
ω

if T ≤ t < ∞,

d´ t
− N+´+ε

2

(

1
q
− 1

r

)

‖ϕ‖L
q,∞
ω

if 0 < t < T,

(2.15)

for any q ≤ r ≤ ∞. Here d³ and d´ depends only on q, N , c0, and {³, ´},
respectively. In particular, In particular, it holds that

‖S(t)ϕ‖L
q,∞
ω

≤ Cq‖ϕ‖L
q,∞
ω

, t > 0. (2.16)

Here d³ , d´ , and Cq are bounded in q ∈ (1 + ε,∞) for any fixed ε > 0 and

d³, d´ , Cq → ∞ as q → 1.

Proof. It suffices to prove for T ≤ t < ∞ case, then 0 < t < T case follows the

same argument.

We first prove the assertion (i). Let T > 0. Then, applying the Hölder inequality

with (2.11), we have

‖S(t)ϕ‖L∞ ≤ sup
x∈RN

‖�(x, ·, t)‖
L

q
q−1
ω

‖ϕ‖L
q
ω

< C(N , c0, ³)t
− N+³−ε

2q ‖ϕ‖L
q
ω
, t ≥ T,
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for any 1 ≤ q ≤ ∞. Furthermore, by (2.2) we apply the Jensen inequality and the

Fubini theorem to obtain

‖S(t)ϕ‖q

L
q
ω

≤
∫

RN

(∫

RN

�(x, y, t)|ϕ(y)| ω(y) dy

)q

ω(x) dx

≤
∫

RN

(∫

RN

�(x, y, t)|ϕ(y)|q ω(y) dy

)

ω(x) dx

≤
∫

RN

|ϕ(y)|q
(∫

RN

�(x, y, t) ω(x) dx

)

ω(y) dy = ‖ϕ‖q

L
q
ω
, t ≥ T,

for any 1 ≤ q ≤ ∞. This implies (2.14). Furthermore, combining the two inequalities

with interpolation, we show

‖S(t)ϕ‖Lr
ω

≤ ‖S(t)ϕ‖
r−q

r

L∞ ‖S(t)ϕ‖
q
r

L
q
ω

< C(N , c0, ³)
r−q

r t
− N+³−ε

2

(

1
q
− 1

r

)

‖ϕ‖L
q
ω
, t ≥ T,

for any 1 ≤ q ≤ r ≤ ∞.

Next we prove the assertion (ii). For the case q = r , the estimate (2.16) holds by

[10]*Lemma 2.3. On the other hand, by (1.7), (1.10) with r2 = q and (2.12), for any

1 < q < ∞, we have

‖S(t)ϕ‖L∞ ≤ ess supx∈RN ‖�(x, ·, t)ϕ‖L1
ω

≤ ess supx∈RN ‖�(x, ·, t)‖
L

q
q−1

,1

ω

‖ϕ‖L
q,∞
ω

< C(N , c0, q, ³)t
− N+³−ε

2q ‖ϕ‖L
q,∞
ω

(2.17)

for x ∈ R
N and t ≥ T . Therefore, by (1.9) with (r0, r1) = (q,∞), (2.15) with q = r

and (2.17) we have

‖S(t)ϕ‖L
r,∞
ω

≤ ‖S(t)ϕ‖1−θ

L
q,∞
ω

‖S(t)ϕ‖θ
L∞

ω

< C‖ϕ‖1−θ

L
q,∞
ω

C(N , c0, q, ³)t
− N+³−ε

2q
θ‖ϕ‖θ

L
q,∞
ω

= Ct
− N+³−ε

2

(

1
q
− 1

r

)

‖ϕ‖L
q,∞
ω

for some C depending on ³, c0, q, and N . �

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1, which means that problem (1.1) has no

nonnegative nontrivial global-in-time solutions in the case 1 < p < pF .

To begin with, we present a crucial lemma that plays a key role in determining the

Fujita exponent.
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Lemma 3.1. Let u be a solution of (1.1) in R
N × (0, T ) with 0 < T ≤ ∞. Then there

exists a constant C∗ depending only on p such that, for any t ∈ [0, T ), we have

t
1

p−1 ‖S(t)u0‖L∞ ≤ C∗.

Proof. Since the fundamental solution � satisfies (2.2) and (2.3), the proof of this

lemma is almost the same as in the proof of [10, Lemma 3.1] (see also [31, Theorem

5]). So we omit the details here. �

We prove Theorem 1.1 by using Lemma 3.1.

Proof of Theorem 1.1. Suppose by contradiction, u is a global-in-time solution to

(1.1). Since u(·, 1) is a positive measurable function in R
N , we can find a non-trivial

measurable function U1 ∈ L∞ such that supp U1 ⊂ B1(0) and

0 ≤ U1(x) ≤ u(x, 1) (3.1)

for almost all x ∈ R
N . If t ≥ 1, then B1(0) ⊂ {x : |x | ≤

√
t}, and hence it follows

from Lemma 2.3 that

[S(t)U1](x) > C−1t−
N+³+ε

2

∫

|y|≤
√

t

U1(y) ω(y) dy

≥ C−1t−
N+³+ε

2

∫

B1(0)

U1(y) ω(y) dy = C−1M̃t−
N+³+ε

2

for any |x | ≤
√

t and t ≥ 1, where M̃ :=
∫

B1(0)
U1(y) ω(y) dy is bounded. This

together with (3.1) yields

[S(t)u(1)](x) ≥ [S(t)U1](x) > C−1M̃t−
N+³+ε

2 (3.2)

for any |x | ≤
√

t and t ≥ 1.

On the other hand, by (1.5), (1.6) and (2.3) we can see that

u(x, t + 1) = [S(t)u(1)](x) +
∫ t+1

1

[S(t + 1 − s)u(s)p](x) ds

for almost all x ∈ R
N and all t > 0. This means that if u is a global-in-time solution

to (1.1), then Lemma 3.1 holds for u0(x) replaced by u(x, 1). Let 1 < p < pF . Then

we can choose ε to be small enough such that

ε <
2

p − 1
− (N + ³),

and by (3.2) we have

t
1

p−1 ‖S(t)u(1)‖L∞ > t
1

p−1 C−1M̃t−
N+³+ε

2 → ∞ as t → ∞.

This contradicts Lemma 3.1, and we see that problem (1.1) does not possess any

nonnegative nontrivial global-in-time solutions. Hence, we have completed the proof

of Theorem 1.1. �
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4. Proof of Theorem 1.2 and Corollary 1.1

In this section, we prove Theorem 1.2 and its Corollary 1.1, which assert the exis-

tence of a unique global-in-time mild solution to problem (1.1) in the case p > pF .

Throughout this section we fixed a ε > 0 satisfying (1.12).

We first give the uniqueness property of the solution to problem (1.1).

Lemma 4.1. Assume (A1)–(A3). Let τ > 0 and u1, u2 be solutions to (1.1) in R
N ×

(0, τ ) with u0,1, u0,2 ∈ L∞. Then, for any η ∈ (0, τ ), there exists a constant C such

that

sup
0<t≤η

‖u1(t) − u2(t)‖L∞ ≤ C‖u0,1 − u0,2‖L∞ .

Here the constant C depends on ‖u1‖L∞(0,η:L∞) and ‖u2‖L∞(0,η:L∞).

Proof. The proof of this lemma is almost same as in [10]*Lemma 4.1. So we omit the

details here. �

Remark 4.1. Let τ > 0 and u be a solution of (1.1) in R
N × (0, τ ). If ‖u‖L∞(0,τ :L∞)

is bounded, then we can take a constant C independent from η. Therefore, we can

extend the interval (0, τ ) where the uniqueness property holds. If τ = ∞ and u is a

global-in-time bounded solution to (1.1), then we see that u is a unique solution to

(1.1).

Nextwe construct local-in-timemild solutions to (1.1). For anynonnegative function

u0 ∈ L∞, define {un} inductively by

u1(x, t) := [S(t)u0](x) =
∫

RN

�(x, y, t)u0(y) ω(y) dy,

un+1(x, t) := u1(x, t) +
∫ t

0

[S(t − s)un(s)
p](x) ds, n = 1, 2, . . . ,

(4.1)

for almost all x ∈ R
N and all t > 0. Then we can easily prove that

0 ≤ un(x, t) ≤ un+1(x, t) (4.2)

for almost all x ∈ R
N and all t > 0, n ∈ N. In fact, it is clear to obtain u2 ≥ u1

since � and u1 are nonnegative functions. If there exists a number k ∈ N such that

uk(x, t) ≤ uk+1(x, t) for almost all x ∈ R
N and all t > 0, then

uk+2(x, t) = u1(x, t) +
∫ t

0

∫

RN

�(x, y, t − s)uk+1(y, s)p ω(y) dy ds

≥ u1(x, t) +
∫ t

0

∫

RN

�(x, y, t − s)uk(y, s)p ω(y) dy ds = uk+1(x, t)
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for almost all x ∈ R
N and all t > 0. This means that (4.2) holds true for all n ∈ N.

Therefore, the limit function

u∗(x, t) := lim
n→∞

un(x, t) ∈ [0,∞] (4.3)

can be defined for almost all x ∈ R
N and all t > 0. Furthermore, by (2.13) and (2.15)

we can put a constant

c∗ = max{1, c³, c´ , d³, d´ , Cr∗}

such that

sup
0<t<∞

‖u1(t)‖L∞ ≤ c∗‖u0‖L∞ ,

sup
T ≤t<∞

t
N+³−ε

2

(

1
r∗ − 1

q

)

‖u1(t)‖L
q,∞
ω

< c∗‖u0‖L
r∗,∞
ω

,
(4.4)

for a fixed T > 0 and any q ∈ [r∗,∞] if u0 ∈ L∞ ∩ L
r∗,∞
ω , where r∗ is given in (1.12)

and c³, c´ , d³, d´ , Cr∗ are given in (2.13), (2.15), and (2.16), respectively. Then we

have the following lemma, which implies the local existence of solutions to (1.1).

Lemma 4.2. Assume (A1)–(A3). Let u0 ∈ L∞. Then there exists a positive constant

T such that the problem (1.1) possesses a unique solution u of (1.1) in R
N × (0, T )

satisfying

sup
0<t<T

‖u(t)‖L∞ ≤ 2c∗‖u0‖L∞ .

Proof. This proof follows from [10]*Lemma 4.2. Let T be a sufficiently small positive

constant to be chosen later. By induction we prove

sup
0<t<T

‖un(t)‖L∞ ≤ 2c∗‖u0‖L∞ , n = 1, 2, . . . . (4.5)

By (4.4),wehave (4.5) forn = 1.Assume that (4.5) holds true forn = n∗ ∈ {1, 2, . . . }.
Then, by (2.13), (4.1) and (4.4) we have

‖un∗+1(t)‖L∞ ≤ ‖u1(t)‖L∞ +
∫ t

0

‖S(t − s)un∗(s)
p‖L∞ ds

≤ c∗‖u0‖L∞ +
∫ t

0

‖un∗(s)‖
p
L∞ ds

≤ c∗‖u0‖L∞ + T (2c∗‖u0‖L∞)p

(4.6)

for all t ∈ (0, T ). Let T be a sufficiently small constant such that

T 2p(c∗‖u0‖L∞)p−1 ≤ 1. (4.7)



J. Evol. Equ. Fujita exponent for the global-in-time solutions Page 17 of 24    44 

Then, by (4.6) we have (4.5) for n = n∗ + 1. Therefore (4.5) holds true for all

n = 1, 2, . . . . By (4.2), (4.3) and (4.5) we see that the limit function u∗ satisfies (1.6)
and

sup
0<t<T

‖u∗(t)‖L∞ ≤ 2c∗‖u0‖L∞ .

This together with Lemma 4.1 implies that u∗ is a mild solution of (1.1) in

R
N × (0, T ). �

Now we are ready to prove Theorem 1.2.

Proof of the assertion (i) of Theorem 1.2. Assume (1.12). Let δ be a sufficiently small

positive constant. Assume and (1.13). Fix T < 1 that satisfies (4.7), so u∗ is a mild

solution to (1.1) in R
N × (0, T ) and all un satisfy (4.5) by Lemma 4.2. By induction

we prove

‖un(t)‖L
r∗,∞
ω

≤ 2c∗δ, ‖un(t)‖L∞ ≤ 2c∗δt
− N+³−ε

2r∗ , (4.8)

for all n ∈ N and t > 0. By (2.14), (2.16), and (4.4) we have (4.8) for n = 1. Assume

that (4.8) holds for some n = n∗ ∈ {1, 2, . . . }, that is,

‖un∗(t)‖L
r∗,∞
ω

≤ 2c∗δ, ‖un∗(t)‖L∞ ≤ 2c∗δt
− N+³−ε

2r∗ ,

for all t > 0. Then by (1.9) we have

‖un∗(t)‖L
q,∞
ω

≤ ‖un∗(t)‖
r∗
q

L
r∗,∞
ω

‖un∗(t)‖
1− r∗

q

L∞ ≤ 2c∗δt
− N+³−ε

2

(

1
r∗ − 1

q

)

(4.9)

for any r∗ ≤ q ≤ ∞ and all t > 0. So, for any ζ > 1 with ζ ≤ r∗ < ζ p, by (1.12)

and (4.9) we obtain

‖un∗(t)
p‖

L
ζ,∞
ω

= ‖un∗(t)‖
p

L
ζ p,∞
ω

≤ (2c∗δ)
pt

− N+³−ε
2r∗ + N+³−ε

2ζ −1
(4.10)

and

‖un∗(t)
p‖L∞ = ‖un∗(t)‖

p
L∞ ≤ (2c∗δt

− N+³−ε
2r∗ )p = (2c∗δ)

pt
− N+³−ε

2r∗ −1 (4.11)

for all t > 0. Combining with (2.14), (2.16), (4.10), and (4.11), we have

∥

∥

∥

∥

∫ t

t/2

S(t − s)un∗(s)
p ds

∥

∥

∥

∥

L∞
≤

∫ t

t/2

‖S(t − s)un∗(s)
p‖L∞ ds

≤
∫ t

t/2

‖un∗(s)
p‖L∞ ds

≤ Cδ p

∫ t

t/2

s
− N+³−ε

2r∗ −1
ds ≤ Cδ pt

− N+³−ε
2r∗ ,
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and

∥

∥

∥

∥

∫ t

t/2

S(t − s)un∗ (s)
p ds

∥

∥

∥

∥

L
r∗,∞
ω

≤
∫ t

t/2

‖S(t − s)un∗ (s)
p‖L

r∗,∞
ω

ds

≤ C

∫ t

t/2

‖un∗ (s)
p‖L

r∗,∞
ω

ds ≤ Cδ p

∫ t

t/2

s−1 ds ≤ Cδ p,

for all t > 0. On the other hand, to estimate the part of 0 < s < t/2 for the Duhamel

term, that is,

∫ t/2

0

S(t − s)un∗(s)
p ds,

we need to separate into two cases t ≥ 2T and 0 < t < 2T < 2 in order to avoid

having ´ in our estimation. For the case 0 < t < 2T < 2, we have (4.5) because of

our choice of T . Combining with (1.9), (2.14), (2.16), and (4.8), we have

∥

∥

∥

∥

∫ t/2

0

S(t − s)un∗(s)
p ds

∥

∥

∥

∥

L∞
≤

∫ t/2

0

‖un∗(s)
p‖L∞ ds

≤
∫ t/2

0

(2c∗δ)
p ds ≤ T (2c∗δ)

p ≤ Cδ pt
− N+³−ε

2r∗ ,

and

∥

∥

∥

∥

∫ t/2

0

S(t − s)un∗(s)
p ds

∥

∥

∥

∥

L
r∗,∞
ω

≤ C

∫ t/2

0

‖un∗(s)
p‖L

r∗,∞
ω

ds

≤ C

∫ t/2

0

‖un∗(s)‖L
r∗,∞
ω

‖un∗(s)‖
p−1
L∞ ds

≤ C

∫ t/2

0

(2c∗δ)
p ds ≤ Cδ p,

for all t < 2T < 2. Furthermore, for the case t ≥ 2T , combining with (2.13), (2.15),

(4.10) and (4.11) with ζ < r∗ < ζ p, we have

∥

∥

∥

∥

∫ t/2

0

S(t − s)un∗(s)
p ds

∥

∥

∥

∥

L∞
≤

∫ t/2

0

‖S(t − s)un∗(s)
p‖L∞ ds

≤ C

∫ t/2

0

(t − s)
− N+³−ε

2ζ ‖un∗(s)
p‖

L
ζ,∞
ω

ds

≤ Cδ pt
− N+³−ε

2ζ

∫ t/2

0

s
− N+³−ε

2r∗ + N+³−ε
2ζ −1

ds

≤ Cδ pt
− N+³−ε

2r∗ ,

and

∥

∥

∥

∥

∫ t/2

0

S(t − s)un∗(s)
p ds

∥

∥

∥

∥

L
r∗,∞
ω

≤
∫ t/2

0

‖S(t − s)un∗(s)
p‖L

r∗,∞
ω

ds
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≤ C

∫ t/2

0

(t − s)
− N+³−ε

2 ( 1
ζ
− 1

r∗ )‖un∗(s)
p‖

L
ζ,∞
ω

ds

≤ Cδ pt
− N+³−ε

2 ( 1
ζ
− 1

r∗ )

∫ t/2

0

s
− N+³−ε

2r∗ + N+³−ε
2ζ −1

ds

≤ Cδ p,

for any t ≥ 2T . Then, taking a sufficiently small δ if necessary, combining the above

estimates for the Duhamel term with (4.4), we see that

t
N+³−ε
2r∗ ‖un∗+1(t)‖L∞

‖un∗+1(t)‖L
r∗,∞
ω

}

≤ c∗‖u0‖L
r∗,∞
ω

+ Cδ p ≤ c∗δ + Cδ p ≤ 2c∗δ

for all t > 0. Thuswe obtain (4.8) for n = n∗+1, and (4.8) holds true for n = 1, 2, . . . .

Therefore, applying an argument similarly to the proof of Lemma 4.2, by (4.8) we see

that there exists a unique global-in-time solution u to (1.1) such that

‖u(t)‖L
r∗,∞
ω

≤ 2c∗δ, ‖u(t)‖L∞ ≤ 2c∗δt
− N+³−ε

2r∗

This together with Lemma 4.2 implies that

‖u(t)‖L∞ ≤ C(1 + t)
− N+³−ε

2r∗

for all t > 0. Furthermore, by (1.9) we have

‖u(t)‖L
q,∞
ω

≤ ‖u(t)‖
r∗
q

L
r∗,∞
ω

‖u(t)‖
1− r∗

q

L∞ ≤ C(1 + t)
− N+³−ε

2 ( 1
r∗ − 1

q
)
, r∗ ≤ q ≤ ∞,

for all t > 0. Thus we have (1.14), and the proof of assertion of Theorem 1.2 is

completed. �

Proof of the assertion (ii) of Theorem 1.2. Assume (1.12). Let δ be a sufficiently small

constant and assume (1.15). Then, by the assertion (i) of Theorem 1.2 we see that there

exists a unique global-in-time solution u to (1.1) satisfying (1.14).

We prove the existence of a global-in-time solution of (1.1) satisfying (1.16). For

r = r∗, it follows from a similar argument as in the proof of the assertion (i) of

Theorem 1.2. So we assume 1 ≤ r < r∗. By (4.1) we see that un satisfies

un(x, t) = [S(t − τ)un(τ )](x) +
∫ t

τ

[S(t − s)un−1(s)
p](x) ds, (4.12)

for all x ∈ R
N and t > τ ≥ 0. On the other hand, by (1.15) and (2.13) we can find a

constant C∗∗ independent of δ, q and r such that

‖S(t)u0‖L
q
ω

≤ C∗∗δ(1 + t)
− N+³−ε

2 ( 1
r
− 1

q
)
, t > 0, (4.13)

for any q ∈ [r,∞].
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By induction we first prove that

‖un(t)‖L
q
ω

≤ 2C∗∗δ, 0 < t ≤ 2, (4.14)

for any q ∈ [r,∞] and n = 1, 2, . . . . By (4.13) we have (4.14) for n = 1. Assume

that (4.14) holds for some n = n∗, that is,

‖un∗(t)‖L
q
ω

≤ 2C∗∗δ, 0 < t ≤ 2, (4.15)

for any q ∈ [r,∞]. Then, by (4.15), for any q ∈ [r,∞], we have

‖un∗(t)
p‖L

q
ω

= ‖un∗(t)‖
p

L
pq
ω

≤ (2C∗∗δ)
p (4.16)

for all 0 < t ≤ 2. Taking a sufficiently small δ if necessary, by (2.13), (4.12), (4.13)

and (4.16) we obtain

‖un∗+1(t)‖L
q
ω

≤ ‖S(t)u0‖L
q
ω

+
∫ t

0

‖S(t − s)un∗(s)
p‖L

q
ω

ds

≤ C∗∗δ + C1

∫ t

0

‖un∗(s)
p‖L

q
ω

ds

≤ C∗∗δ + C2δ
p ≤ 2C∗∗δ, 0 < t ≤ 2, (4.17)

for any q ∈ [r,∞], where C1 and C2 are constants independent of n∗ and δ. Thus we

have (4.14) for n = n∗ + 1, and (4.14) holds for all n = 1, 2, . . . .

Let C
′
∗ be a constant to be chosen later such that C ′

∗ ≥ 2C∗∗. Next, by induction

we prove that

‖un(t)‖L
q
ω

≤ C ′
∗δt

− N+³−ε
2

(

1
r
− 1

q

)

, t > 1/2, (4.18)

for any q ∈ [r,∞] and n = 1, 2, . . . . By (4.13) we have (4.18) for n = 1. Assume that

(4.18) holds for some n = n∗. Then, similarly to (4.17), since r∗ = N+³−ε
2

(p−1) > r ,

taking a sufficiently small δ if necessary, by (2.13), (4.12) and (4.14) we have

‖un∗+1(t)‖L
q
ω

≤ C3(t − 1/2)
− N+³−ε

2

(

1
r
− 1

q

)

‖un∗+1(1/2)‖Lr
ω

+ C3

∫ t/2

1/2

(t − s)
− N+³−ε

2 ( 1
r
− 1

q
)‖un∗(s)

p‖Lr
ω

ds

+ C3

∫ t

t/2

‖un∗(s)
p‖L

q
ω

ds

≤ C4C∗∗δt
− N+³−ε

2

(

1
r
− 1

q

)

+ C4(C
′
∗δ)

pt
− N+³−ε

2

(

1
r
− 1

q

)
∫ t/2

1/2

s− r∗
r ds

+ C4(C
′
∗δ)

p

∫ t

t/2

s
− N+³−ε

2

(

p
r
− 1

q

)

ds

≤ C5C∗∗δt
− N+³−ε

2

(

1
r
− 1

q

)

+ C5(C
′
∗δ)

pt
− N+³−ε

2

(

1
r
− 1

q

)

− r∗
r

+1
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for all t > 1, where C3, C4 and C5 are constants independent of n∗ and δ. Let

C ′
∗ ≥ 2C5C∗∗. Then, taking a sufficiently small δ if necessary, we have

‖un∗+1(t)‖L
q
ω

≤ C ′
∗δt

− N+³−ε
2

(

1
r
− 1

q

)

, t > 1.

This together with (4.15) implies (4.18) with n = n∗ + 1. Thus (4.18) holds for all

n = 1, 2, . . . .

By (4.15) and (4.18) we can find a constant C such that

‖un(t)‖L
q
ω

≤ Cδ(1 + t)
− N+³−ε

2

(

1
r
− 1

q

)

, t > 0,

for all q ∈ [r,∞] and n = 1, 2, . . . . Then, by the same argument as in the proof of the

assertion (i) of Theorem 1.2, we see that there exists a solution u to (1.1) satisfying

(1.16). Thus the assertion (ii) of Theorem 1.2 follows, and the proof of Theorem 1.2

is complete. �

Proof of Corollary 1.1. Let

f (x) :=
δ

1 + |x |
2

p−1
N+³+ε
N+³−ε

for all x ∈ R
N . Then, for λ < δ, by (1.8) and (2.5) we see that

μ f (λ) =
∫

RN

1 {x : | f (x)| > λ} ω(x) dx

=
∫

RN

1

⎧

«

¬

x : |x | <

(

δ

λ
− 1

)

p−1
2

N+³−ε
N+³+ε

«

¬

­

ω(x) dx

= w
( δ

λ
−1)

(p−1) N+³−ε
N+³+ε

(0) ≤ C

(

δ

λ
− 1

)
N+³−ε

2 (p−1)

= C

(

δ

λ
− 1

)r∗
.

Notice that if μ f (λ) ≤ F(λ) for some function F , then the non-increasing rearrange-

ment of f would satisfies

f ∗(s) = inf{λ > 0 : μ f (λ) ≤ s} ≤ inf{λ > 0 : F(λ) ≤ s}, s ≥ 0.

So we have

f ∗(s) ≤
δ

1 + Cs
1

r∗
, s ≥ 0

This implies that

‖ f ‖L
r∗,∞
ω

= sup
s>0

s
1

r∗ f ∗(s) ≤ sup
s>0

s
1

r∗
δ

1 + Cs
1

r∗
< Cδ.
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Furthermore, it is obvious that ‖ f ‖L∞ ≤ δ. Therefore, there exists a constant C

independent of δ such that

max(‖u0‖L
r∗,∞
ω

, ‖u0‖L∞) < Cδ,

and applying the assertion (i) of Theorem 1.2, we see that if δ is sufficiently small,

then a global-in-time solution of (1.1) exists and it satisfies (1.14) �
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