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Fujita exponent for the global-in-time solutions to a semilinear heat
equation with non-homogeneous weights

TATSUKI KAWAKAMI@), YANNICK SIRE AND JIAYI NIKKI WANG

Abstract. We consider a non-homogeneous parabolic equation with degenerate coefficients of the form
ur — Lou = u?, where L, = o1 div(wV). This paper establishes the existence/non-existence of global-
in-time mild solutions based on a critical exponent, known as the Fujita exponent. Similar topics for a
semilinear heat equation with degenerate coefficients are treated in Fujishima (Calc Var Partial Differ Equ
58:25,2019). They considered an equation u; — div(wVu) = u?, which is not self-adjoint, with two types
of homogeneous weights: w(x) = |x1|¢ and w(x) = |x |h where a, b > 0. In this paper we consider the case
of a self-adjoint operator, and extend to more general weights that meet certain restrictions such as being
in the Muckenhoupt class A5, non-decreasing, and where the limits « := limlx’\»oo (log w(x))/(log |x'])
and B = limlx/‘_)o(log w(x))/(log|x’|) exist, where x’ = (x1,...,xp) and 1 <n < N. The main result
establishes that the Fujita exponent is given by pr = 1 + 2/(N + «). This means that the asymptotic
behavior of the weight at infinity affects global existence of solutions and the one at the origin does not.
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1. Introduction

We consider the problem

(1.1)

o — Lyu =uP, xeRY, >0,
u(x,0) = up(x) >0, x € RV,

where 0; := 0/0t, L, := a)’ldiv(a)V), N > 1, and p > 1. Here the weight function
w(x) := w(x’) satisfies the following conditions (A1)—(A3) for x’ € R" with n €
[1, N]:
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(A1) w(x) belongs to the class A, of Muckenhoupt functions, i.e.

" B L
co = B?£N<|B|Lw(x)dx><|3|ﬁw (x)dx) < 00

holds for any ball B C RY (see [22]).

(A2) The limits of kffgal)ffl) exist |x'| — oo and |x’| — 0, respectively. Denote the

limit by

log w(x) . logw(x)
o= — = lim —————.
|x’]—00 lOg |x/| [x/[—0 lOg |x/|

(A3) w(x) is monotonically non-decreasing with respect to the distance from origin
tox* := (x',0,...,0),ie.if x| > |[y|, then w(x) > w(y) forany x, y € RV,
It follows from (A2) that, for any £ > 0, there exist M > 0 and 0 < m < 1 such that

IX'|7f < w(x) < |x/|4 T (1.2)
forall |x'| > M > 1, and
X [P < w(x) < |X/|Pt (1.3)
for all |x’| < m < 1. Furthermore, (A3) implies that
o, B >0.

Notice that

log(w(x)w(1/x)) -0

T W]>oo log |x/|

<logw(x) 10gw(1/x)>
oa—pB= lim —
I/|>o0 \ log x| log(1/|x'])

if and only if lim,/|— 00 @(x)w(1/x) > 1. So the relationship between « and B is
undetermined. Here we provide some examples of weight function in our mind that
satisfy the above set-up (see [19]*Sect. 2). A rather large class of inhomogeneities @
is covered by our assumptions:

1. w(x) = |x1]* witha € [0,1) and w(x) = |x|” with b € [0, N) are homo-
geneous examples, with n = 1 and n = N respectively. Any small enough
non-homogeneous perturbation of those are also satisfying our assumptions.

2. w(x) is a polynomial of |x’| with the highest degree within the interval [0, n),
and o (x) > 0 a.e. in RV, like, e.g., w(x) = 2[x|> + |x'].

More interestingly, it is important to note that no continuity assumption is required
for the weight function w (x). We can allow randomness by defining a weight function
based on a measurable function 6 defined on the unit sphere SV . Let0 <cop <6 < cy I
The weight function on RY \ {0} is given by w(x) = |x|* - 0(x/|x]).

The main objective of the present paper is to establish a theory for the existence of
global-in-time mild solutions to problem (1.1). In particular, we seek to determine a
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critical exponent, known as the Fujita exponent, which plays a pivotal role in determin-
ing the existence/non-existence of global-in-time solutions. The concept of the Fujita
exponent was initially introduced by Fujita [9] in 1966. Beginning with this classical
paper by Fujita, critical exponents for the existence of global-in-time solutions (not
only positive ones but also sign-changing ones) were established for many classes of
evolution problems, which include degenerate parabolic equations, fractional diffu-
sion equations and so on. It seems almost impossible to make complete list of this
topics. So we only refer a part of them for instance [8,10,11,16-18,23-25,31] and
references therein. (See also [26], which includes a nice survey for the semilinear par-
abolic equation.) Among others, in [10] Fujishima and the first two authors consider
the problem

—di =uP N
{atu diviw(x)Vu) =u?, x e RN, t >0, (1.4)

u(x,0) = ug(x) >0, x e RV,

where the coefficient w is either w(x) = |x1|¢ with a € [0, min{l,2/N}) or w(x) =
|x|? with b € [0, 1). They showed that the Fujita exponent of problem (1.4) is pr :=
1+ 2%"‘ with @ = {a, b}, namely, if p < pF, then problem (1.4) has no nontrivial
global-in-time solutions, and if p > ppF, then there exists a global-in-time (mild)
solutions to (1.4).

One of the distinctive points of (1.4) is that the operator div(wV) is not self-adjoint on
LZ(RN , wdx). At the end of [10, Section 1], the authors suggested one can run similar
estimates and exhibit Fujita exponent for (1.1), which includes a self-adjoint operator
L. The aim of the paper is to consider the case of a self-adjoint operator with more
general weights, which satisfies conditions (A1)—(A3), and to determine the Fujita
exponent of problem (1.1). Here we recall that, for the case of w (x) = |x;|%, problem
(1.1) and (1.4) are related to the fractional parabolic equations (3; — A)*u = u? (see,
i.e., [1]) and the nonlocal problem with fractional Laplacian d;u 4+ (—A)u = u? with
s € (0, 1) by Caffarelli-Silvestre extension [3], respectively.

We introduce the definition of a solution to (1.1). Let I' = I'(x, y, ¢) be the funda-
mental solution of

Btv—vazo,xeRN, t >0,

with a pole at (y, 0). For any measurable function f, put

[S() f1(x) = /RN Ty, DfMody, xeRY, 1>0. (1.5)

Then, we define the mild solution of equation (1.1) as follows.

Definition 1.1. Let u( be a nonnegative measurable function in RN . Let T € (0, 00]
and u be anonnegative measurable functionin RN x(0, T)suchthatu € L0, T; L™®
(RM)). Then u is a mild solution of (1.1) in RY x (0, T) if u satisfies

t
u(x,t) =[SE)upl(x) +/ [S( —s)u(s)Pl(x)ds < o0 (1.6)
0
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for almost all x € RY and ¢ € (0, T). In particular, u is called a global-in-time mild
solution of (1.1) if u is a solution of (1.1) in RY x (0, o).

When considering parabolic problems, a natural notion of solution is given by mild
solutions, which incorporate the fundamental solution of the operator. A fundamental
instrument in our argument relies on estimating the fundamental solution of the op-
erator 9; — ™~ 'div(wV). However, the fundamental solution of this parabolic PDE
does not have explicit formula as the operator is not translation-invariant. On the other
hand, by the assumption (A1), the coefficient w(x) belongs to the class A, and it
is easy to check that L., is a self-adjoint operator in L?(R", wdx). Therefore, even
though I" does not have explicit formula, Proposition 2.1 provides us with some useful
properties of the fundamental solution. In this context, the assumption of A, weights
is particularly significant.

Remark 1.1. (i) In studying equations with coefficients, especially for degenerate co-
efficients, it is useful to look at the problem from a geometric perspective. By treating
the equation as a diffusion operator on a weighted manifold, we can invoke the spec-
tral theory and functional calculus of self-adjoint operator, and hence construct the
associated heat semigroup (see, e.g., [13]) and investigate their properties. We refer
the reader to the lecture notes by F. Baudoin [2] for a very nice survey on such an
approach.

(ii) In the realm of degenerate equations, numerous studies have focused on the regular-
ity of both nonlinear and linear equations. We refer, e.g., to the references [21,27-30]
where several variations of the model under consideration here are considered.

Before stating our main results we introduce some notations. For any x € RY and
R > 0, weput Br(x) :={y € RN . |x —y| < R}. Forany 1 <r < oo, we define the
weighted Lebesgue space L] := L" RN, w(x)dx) by

L) :={f: fis measurable in RV, I fller, < oo},

where

1

esssup, crn | f(x)] if r=o0,

namely, || f|lLee = || flLe. Then the weighted Lebesgue space L, is a Banach space.
Let 1{€2} be the characteristic function of the set 2. For any measurable function f
in RV,

() :=/ T{x:|f(x)] > A} o(x)dx, A>0 (1.8)
RN

is the distribution function of f, and we define the non-increasing rearrangement of
/by

) :=inf{A>0:pusrd) <s}, s=>0.
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Then, forany 1 <r < ocoand 1 < o < oo, we define the weighted Lorentz space
L% = L"° (RN, w(x)dx) by

L% :={f : f is measurable in RV, I fllre < oo},

where

1
= Loy ods\o .

sups'l'f*(s) if o =o0.
s>0
The Lorentz L7, is a Banach space and the following holds (see, e.g., [12,14,32]):
(P1) L" =L!ifl <r <ocoand LL>® =1LL:
P2) L' c L ifl<r<ocand 1 <oy <0y < 00;
(P3) (The interpolation) Let I < r9 <r <r; < oo be such that

1 1-0 0
- = + — for 6 €0, 1].
r ro ri
Then it holds that
Iz < Aol f I e, f € LG NLG; (19

(P4) (Holder inequality) Let 1 < r; < oo and r, be the Holder conjugate number of
r1, namely 1/r; + 1/r, = 1. Then it holds that

1 /gl < Iflilgl e, fe LY, ge Ll (1.10)

Now we state the main results of this paper. Put

pro=1+ (1.11)

N+ao
Then we have the following two theorems.

Theorem 1.1. Assume (A1)—(A3). Let 1 < p < ppg. Then (1.1) has no nontrivial
global-in-time solutions.

Theorem 1.2. Assume (A1)—(A3). Let p > pr. Choose € small enough such that

N —
ry = #(p — =1, (1.12)
then the following holds:
T,y

(i) There exists a positive constant § such that, for any ug € L N L™ with
max(lluollzee, lluollprse) < 8, (1.13)

a unique global-in-time solution u of (1.1) exists and it satisfies

Nta—e 1 1
sup(1+1) 2 W@ |u()]| g < 00, ry<q <oc. (1.14)
t>0 @
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(ii) Let1 <r < ry. There exists apositive constant § such that, forany ug € L*°NL?
with

max{|luoll L, lluollz;} < 8, (1.15)

a unique global-in-time solution u of (1.1) exists and it satisfies

Nig—e(l_ 1,
sup(1+1) 2 7 @ u(®)llpg <oo, r =g =o0. (1.16)
t>0

By Theorems 1.1 and 1.2, there does not exist nontrivial global solution if p €
(1, pr), while there exists unique nontrivial global solution under certain condition
of initial data ug and p > pp. This implies that the exponent pr given by (1.11) is
the Fujita exponent of problem (1.1).

We would like to emphasize that the critical case p = pF isleft open. Our conjecture
is that no nontrivial global solution exists in this critical scenario. Specifically, for
p = pr, the strategy is to argue by contradiction to Lemma 3.1 utilizing the already
provided global-in-time solution u, achieved by selecting an appropriate initial data
u(x, T) for sufficiently large T'. In the presence of homogeneous weights such as
w(x) = |x1|* and w(x) = |x|?, we observe that le\<ﬁ u(x,t+ Hw(x)dx blows up
over time. Consequently, for any given constant C*, there exists a 7 > 0 such that
U(x) = u(x, T) satisfies the contradicting condition tﬁ IS U]l > C*. However,
given the current weight assumptions (A1)—(A3), we are unable to achieve the desired
blow-up phenomenon. This suggests the need for alternative methods and approaches
in this context.

Corollary 1.1. Assume (A1)—(A3). Let p > pr. Choose € small enough such that
(1.12) holds. Then there exists a positive constant § such that, if

8

2 Ntate®
1 + |x|p71 N+o—e

0 <up(x) < x eRY, (1.17)

then a unique global-in-time solution u of (1.1) exists and it satisfies (1.14).

Remark 1.2. (i) For v = 1, it is well-known that the decay rate for initial data given
by

)

N
0<up(x) < —, x €RY,

1+ |x|?-T
at spatial infinity is optimal to obtain the global existence of solutions to (1.1) (see,
e.g., [20]). For a more general weight o (x) as we consider, if uo(x) satisfies (1.17),
then it follows that ug € L™ N Lg;"™. As a direct consequence of Theorem 1.2 (i), a
unique global-in-time solution u of (1.1) exists. However if ug(x) = O(|x|~/(P~D)
as [x| — oo, then ug ¢ Ly . This is a clear advantage in using Lorentz spaces in place
of the classical L? spaces.
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(ii) Besides the existence/non-existence theory, A, weights have significant applica-
tions in examining the regularity of degenerate parabolic equations and are ubiquitous
in harmonic analysis. Chiarenza and Serapioni [4,5] emphasize the necessity of as-
suming that the weight belongs to the A, class in order to achieve L? continuity of
the weak solutions. This is one of the reason for choosing w(x) to be A, in (1.1). In
order to upgrade the mild solution to a weak solution and further to a C* solution, we
need a spatial gradient bound, and then the time derivative bound for the fundamental
solution. To be able to derive Holder regularity invoking the results of Chiarenza and
Serapioni, one could try to produce directly a weak solution. We leave this aspect to
possible future work.

2. Preliminaries

We introduce certain properties that are very useful in checking the bounds of the
fundamental solution. Then, we proceed to estimate the heat semigroup, which plays a
key role in the definition of the mild solutions as expressed in (1.6). Finally, we apply
upper estimates of the heat semigroup in the weighted L? space and the weighted
Lorentz space. In what follows, by the letter C we denote generic positive constants
(independent of x and 7) and they may have different values also within the same line.

2.1. Estimates for the fundamental solution I"

In order to apply geometric inequalities from the heat semigroup technique, one has
to assume the coefficient w(x) is an A, weight in the sense of Muckenhoupt class (our
assumption (Al)). Consequently, it follows that w(x) satisfies the volume doubling
and reverse doubling properties, as established in the work of [15]. Here we say w (x)
satisfies the doubling and reverse doubling conditions if there exist positive constants
c1 and ¢; such that

crwy(x) < wy(x) < cawy(x) 2.1

forall x € RY and ¢ > 0, where w;(x) := fB @) w(y) dy. Under the assumptions
t

that w is an A, weight and L, is self-adjoint, we can establish the following properties
(see [2,6,7]).

Proposition 2.1. The fundamental solution T (x, y, t) of (1.1) has the following prop-
erties:

(1) Symmetry of heat kernel and stochastic completeness of heat semigroup:
/ C(x, y, Do) dx =/ Fx, y, Do) dy = 1 2.2)
RN RN

forallx,y e RN andt > 0.
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(2) Chapman-Kolmogorov relation:

Fx,y, 1) = /RN Px, 8,1 —=9TE, y,5)w(§)dE (2.3)

forallx,y e RN andt > s > 0.
(3) Li-Yau inequality: There exist positive constants c, and Cy depending only on
N and cq such that

-1

c; B Ix—ylz)
Jw—mwu—@)p< )=t

<—C*_1 exp<—C Ix—ylz)
~ Vw0V w (y) ot
(2.4)

forallx,y e RN andt > 0.

The properties in Proposition 2.1 allow us to estimate the fundamental solution
if we are able to estimate w,(x). We state the following lemma on upper and lower
estimates of w; (x) based on our choice of w(x) and the doubling and reverse doubling
condition.

Lemma 2.1. Let T > O, and let € > 0 be an arbitrary sufficiently small positive

constant, Then, there exist constants C1 and Co depending only on N and o such that
N
Nta—e |x|““"e 12

if 0<t<|x
Cit 2 <wt(X)<C2{ Nigce
t

if |x|*<t<o0,

2.5)

forall x € RN and t > T. Furthermore, there exists a constant C3 depending only
on N and B such that

N+p+e

wy(x) > C3t™ 2 (2.6)

forallx e RN and0 <t < T.

Proof. Let € > 0 be an arbitrary sufficiently small positive constant. Then, by (1.2)
and (1.3), we can fix constants M > 1 and m < 1. It is sufficient to show (2.5) for
t > AM?and (2.6) for0 < r < m?2, where A is a fixed large number to be chosen later.
Once these are proved, we can apply the doubling property (2.1) to scale the domain.
Indeed, if T < AM?, for T <t < AM?, we scale w; (x) using

k k

1 1
—Wok, (X) < wy(x) < —wok,(x)
c5 S

where k is chosen to be large enough such that 2¢7 > AM?. Similarly, if T > m?, for

m? <t <T,wescale w; (x) using

w; () = cfw (x)
2!
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where k is chosen to be large enough such that r < 25m?.

We first prove (2.5) for t > AM 2. Since w(x) is monotonically non-decreasing
functions with respect to the distance from the origin to x* = (x’, 0, ..., 0), for any
x € RY and ¢t > 0, we see that

wy(x) > w(0). 2.7)

In fact, since w(x) = w(x’) for x’ € R" withn € [1, N1, it holds that w; (x) = w; (xx)
for x, = (x/,0) € RY. Furthermore, we put B; := B /;(xs) \ B 4(0) and B, :=
B ﬁ(O) \B ﬁ(x*). Then, it follows from the monotonicity of w (y) that SUPycp, @ ) <
infyep, @(y). This implies (2.7). Combining with (1.2) and (2.7), we have

W (x) = W, (0) = / 0()dy > / Y%= dy
B /;(0) B (0)\Bwy (0)
= dy” | 1y'1*7“ dy’
/;mm (fy“mn«/ty/l?

-[ |/ ay") Iy =< ay
By (0) \J1y"|von<a/M2—1y'2
N—n

N—n
2 — 2 —
=de”</~ (=P * ey = [ () T yeeay
B /;(0) By (0)
N—n

~ Vi e
:dN_,,|3(Bl(O))|(/ (t —r2> prre—e=l gy
0
M Nen
—/ <M2 - r2> Popnteesl dr)
0
D 1
_ dN_nla;Bl(O))l / (1 _ r) Nz—n rn+g—67] dr([ N+zot—e _ MN+(X7€>
0

- dN*"w;B‘(O))lB ("JFZ —e N —;+2> (zf“i"‘ _MN“’*G) > (2.8)

SN———"

for all x sinRY and t > 2M?, where y = (y', y”) € R¥, | - |y_, denotes the usual
Euclidian norm in R¥ =" B (0) denotes the ball in R” with radius R centered at the
origin, d (B1(0)) denotes the boundary of ball in R” with radius 1 centered at the origin,
d,, denotes the volume of the unit ball in R™, and B(-, -) denotes the Beta function.

On the other hand, since |y'| = |y*| < |y] < |x|++/% forall y € B /;(x), it follows
from (1.2) that

wi(x) = / w(y)dy + / 0(y)dy
B ;(x)\Bym 0) B ;(x)NBy 0)

</ |y’|“+fdy+/ () dy
Bﬁ(x)\BM(O) By (0)

< f (x] + VDT dy + dy MY max o)
Bﬁ(x) x€B(0)

=dy <t§(|x| + /D)% + MY max w(x)>
x€By(0)
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N
Ix|T€r7 if 0 < /1 <|x]|,
SC2 Ntoate .
2 if x| <4/t < o0,

forallx € RN and¢ > AM?, where ) is large enough suchthatA? > maXyep,, 0) ©(x).
Thus (2.5) holds when ¢t > T.
Next we prove (2.5) for0 <t < m?. Similar to (2.8), we have

wi(0) = Wy (0) = / w(y)dy > / 1P dy
B (0) B 4 (0)

dy" | 1y' 1P dy’
/Bw(m </y”|N_n<\/z|y/2

N—n

2
—dvn [ (=) T ay
B ;(0)
1
N+B+e —n ntfte N+p+e
=CIT/ (l—r)N2 r- 2 _ldr2C3t 2
0

forall x € RN and 0 < ¢t < m2. Thus (2.5) holds when 0 < ¢ < T, and Lemma 2.1
follows. O

Applying Lemma 2.1 with the Li-Yau inequality (2.4), we see that

-1 . _ate N _ Nitate . _ate N
D, m1n{|x| 24t 4 }mln{|y| 2t 4t

o2
exp(—Dllx t”) 2.9)

o2
<T'(x,y,1) < Dz_lt*NJrg exp(— D2u>

_ Ntoate
7

and

|, _Ntp+e lx — y|2
L(x,y,0) < D5t 2 exp| — D3 ; (2.10)

forallx, y € RN and T <t < 0o, where D and D, are positive constants depending
only on N, ¢, and «, and D3 is a positive constant depending only on N, ¢y, and B.
By (2.9) and (2.10), we obtain

_1 _Nta—e
1 2

D if T <t < o0,
F()C, y,f) < 2_1 _ N+B+e -
Dyt 2

if 0<r<T,

for all x, y € RV, This together with (1.7) and (2.2) implies that
_ N+§t—e (1_l

") if T <t<oo,
”F(’ yvt)”L:u < _ N+B+e
2

if 0<t<T,
(2.11)

TG, - Dy, < Nopee
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forany ] <r <ooandall x,y € RY, where Cy and Cg are constants depending
only on N, cg, and {«, B}, respectively.

To establish the LZ;OO—LZ;OO estimate for the heat semigroup, we rely on the uti-
lization of (1.9) and (1.10). So, we introduce a lemma that estimate the fundamental
solution in the weighted L"! norm.

Lemma 2.2. Let T > 0, and let € > 0 be an arbitrary sufficiently small positive
constant. Assume (A1)—(A3). Then, forany 1 < r < oo, there exist positive constants
Cy and Cg depending only on'r, N, co, and {c, B} respectively such that

. _Nta—e (171>
Cyt 7 if T <t < oo,
_ N+B+e

ITCe, - Ol <y (1-1)
Cpt~ 2 af 0<t<T,

(2.12)

forx € RV,

Proof. Since L! = L’ for 1 < r < oo (see (P1)), we have

A 00 |
||r(x,~,t)||Lr,l=(/ +/ )srll"*(x,s,t)ds
@ 0 A
A .

k l—1 o 4_ ql o k ’ q
< sup I'(x,s,1) st ds + sr—4ds (T*(x,s,1)? ds
O<s<A 0 A A

1 1_q41
< CAP T, - Dz + CA™ T[T (x, -, Dl g

forany 1 < r < oo, where g isaconstant satisfyingg > r/(r—1) with1/g+1/q" =1
and C depends only on r and g.
Forthecase T <t < oo, weput A = tNﬁEH . Combining with (2.11), we have

Nta—e _ N+a—e M(i_ l) _M( _L)
_ N =< (1) e (1

||F(x,-,t)||Lr,1 <Ct 2 t + Ct

< Cl‘_%o_%)

The proof for 0 < ¢ < T follows the same by letting A = tN+§ -

2.2. Estimates for S(t)¢

In this section, we give several estimates for S(#)¢ as a basis for the proof of the
main theorems.
We first prove the following estimate, which is the lower bound for S(#)¢.

Lemma 2.3. Assume the same conditions as in Lemma 2.2. Let ¢ € L*° be a non-
trivial measurable function such that ¢ > 0in RN . Then there exists a positive constant
C depending only on N, cq, and a such that

N+ta+te

[S(Hel(x) > C 12 / eV o(y)dy
lyl<vt

forall |x| < /tandt > T.
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Proof. Since |x — y|2 < (Ix|+ |y|)2 < 4t for |x|, |y] < +/, it follows from (2.9) that

2
1 _ Nta+e X — 1 _ Ntate
T(x,y,0)> D=2 exp(—D1| ty| )zD1 le=4P1 =73

for all t > T, where D is given in (2.9). Then, combining with (1.5), if t > T, then
we have
N+a+e

[SOP100) = / L.y, Do) w() dy > =4 / o) 0 () dy
Iyl=vt Iyl<vi

for all |x| < +/t. O
Next we give LZ,—LQ, estimate and LZ;OO—LZ;OO estimate for S(¢)¢.

Lemma 2.4. Assume the same conditions as in Lemma 2.2.

(1) Forany ¢ € LLand 1 < q <r < oo, it holds that

gl if T <1 <ol

Cyl
ISl <1 Nagic (1) (2.13)

gl f 0<i<T,

Here ¢y and cg depend only on N, cy, and {a, B}, respectively. In particular, it
holds that

ISOelle;, < lelle;,, t>0. (2.14)

(ii) Forany ¢ € LL™ and 1 < g < o0, it holds that

,M<l,l)
dat” >\ Yl g if T <t <00,

IS0l < pigee(1_1 2.15)

dﬁl

“ f)ngonLgm if 0<1<T,

forany g < r < oo. Here dy and dg depends only on q, N, co, and {a, B},
respectively. In particular, In particular, it holds that

IS@¢llgg= < Cyllpl g, 1> 0. (2.16)

Here dy, dg, and C; are bounded in g € (1 + &, 00) for any fixed ¢ > 0 and
dy,dg,Cy — 00 asq — 1.

Proof. 1t suffices to prove for T < t < oo case, then 0 < ¢t < T case follows the
same argument.
We first prove the assertion (i). Let 7 > 0. Then, applying the Holder inequality
with (2.11), we have
Nta—e¢

IS@ellLe < sup IT(x, DI _a llgllgg < C(N,co,o)t 20 |igllg, =T,
xeRN L
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for any 1 < g < oc. Furthermore, by (2.2) we apply the Jensen inequality and the
Fubini theorem to obtain

q
iswoly < [ ([ e opmiena) owa

5/ (/ r(x,y,r>|<p(y>|‘1w<y>dy> w(x) dx

RN RN

5/ lon1? (/ F(x,y,t)w(X)dx) oMdy =l =T,
RN ]RN %)

forany 1 < g < oo. This implies (2.14). Furthermore, combining the two inequalities
with interpolation, we show

r—q q
ISOellzy, = ISl 5 ISO¢ll 4

r—q m—e(] ])
<C(N,co,a) 7t 2\ "glle, =T,

forany 1 < g <r < oo.

Next we prove the assertion (ii). For the case g = r, the estimate (2.16) holds by
[10]*Lemma 2.3. On the other hand, by (1.7), (1.10) with r, = ¢ and (2.12), for any
1 < g < oo, we have

IS¢l < esssup,ery [TCx, - Dl

=esssupyery TG DI e llellpge
L(U

Nra—e

<C(N,co.q, 0t % |lg|l g 2.17)

forx € RN and 7 > T. Therefore, by (1.9) with (rg, r1) = (g, 00), (2.15) withg = r
and (2.17) we have

ISO@ll i < 1Sl oIS Dl

1—0 _N+Dl—€9 0
< Cllgll g0 C(N, co. g, )t 20 Tl g0

_ Nta—e(1_1
=Cr *? G ')II@IIquc
for some C depending on «, cp, g, and N. 0

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1, which means that problem (1.1) has no
nonnegative nontrivial global-in-time solutions in the case 1 < p < ppr.

To begin with, we present a crucial lemma that plays a key role in determining the
Fujita exponent.
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Lemma 3.1. Let u be a solution of (1.1) in RN x (0, T) with0 < T < oc. Then there
exists a constant C* depending only on p such that, for any t € [0, T), we have

e
tP IS (uoll e < C*.

Proof. Since the fundamental solution I' satisfies (2.2) and (2.3), the proof of this

lemma is almost the same as in the proof of [10, Lemma 3.1] (see also [31, Theorem

5]). So we omit the details here. O
We prove Theorem 1.1 by using Lemma 3.1.

Proof of Theorem 1.1. Suppose by contradiction, u is a global-in-time solution to
(1.1). Since u(-, 1) is a positive measurable function in R", we can find a non-trivial
measurable function U; € L* such that supp U; C B;(0) and

0=<Ui(x) =u(x,1) (3.1

for almost all x € RV . If ¢ > 1, then B1(0) C {x : |x| < 4/7}, and hence it follows
from Lemma 2.3 that

—1 __ N+toate

[SOUIIx) > C 172 f Ui(y) w(y)dy
lyl=v/t

_ N+ta+te

>Cc 73 / Ui() o(y)dy = C™' Mt~
B1(0)

N+ate
2

for any |x| < J/fand t > 1, where M = fBl(O) Ui(y) w(y)dy is bounded. This
together with (3.1) yields

_ Ntoa+te
2

[SOuDIX) = [SOUIx) > C~' Mt (3.2)

for any |x| < +/fand ¢ > 1.
On the other hand, by (1.5), (1.6) and (2.3) we can see that

t+1
ux,r+ 1) =[SOu(D)]x) + / [SE+ 1= s)u(s)’1(x) ds
1
for almost all x € R" and all 7 > 0. This means that if « is a global-in-time solution

to (1.1), then Lemma 3.1 holds for u¢(x) replaced by u(x, 1). Let 1 < p < pfr. Then
we can choose € to be small enough such that

— (N + ),

€ <
p—1

and by (3.2) we have

_1 1 14y, Ntote
tr | S@u(l)||pe >t 1CT "Mt~ 2 — 00 as t — 00.

This contradicts Lemma 3.1, and we see that problem (1.1) does not possess any
nonnegative nontrivial global-in-time solutions. Hence, we have completed the proof
of Theorem 1.1. U
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4. Proof of Theorem 1.2 and Corollary 1.1

In this section, we prove Theorem 1.2 and its Corollary 1.1, which assert the exis-
tence of a unique global-in-time mild solution to problem (1.1) in the case p > pr.
Throughout this section we fixed a € > 0 satisfying (1.12).

We first give the uniqueness property of the solution to problem (1.1).

Lemma 4.1. Assume (A1)—(A3). Let T > 0 and uy, us be solutions to (1.1) in RN x
(0, ) with ug,1, up,2 € L°°. Then, for any n € (0, t), there exists a constant C such
that

sup lu1 () —ua(t)|lpee < Cllug,1 — uo2llLoe.
O<t<n

Here the constant C depends on ||u1|| 1o 0,n:1>) and ||uz|| o ,n:1)-

Proof. The proof of this lemma is almost same as in [10]*Lemma 4.1. So we omit the
details here. O

Remark 4.1. Let T > 0 and u be a solution of (1.1) in RN x (0, 7). If lell .00 (0, 7:1.0)
is bounded, then we can take a constant C independent from 7. Therefore, we can
extend the interval (0, ) where the uniqueness property holds. If T = oo and u is a
global-in-time bounded solution to (1.1), then we see that u is a unique solution to

(1.1).

Next we construct local-in-time mild solutions to (1.1). For any nonnegative function
uo € L°, define {u,} inductively by

ur(x, 1) == [S(Ouol(x) = /RN Lx, y, Duo(y) @(y) dy,

; 4.1)
1 (6. 1) = 101 (. 1) +/ [S(t — $)un ()P 1) ds. n=1.2.....
0
for almost all x € RY and all # > 0. Then we can easily prove that
0 <up(x,1) <upt1(x,1) (4.2)

for almost all x € RN and all + > 0, n € N. In fact, it is clear to obtain ur > u;
since I and u; are nonnegative functions. If there exists a number k € N such that
up(x,t) < upy1(x, ) for almost all x € RN and all ¢ > 0, then

t
ug2(x, 1) = uy(x, 1) +/0 /RN L(x,y, t —)ugs1(y, )’ o(y)dyds

t
> ui(x,t) +/ /N F(x,y, t —s)up(y, ) o(y)dyds = upy1(x, 1)
0 JR
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for almost all x € RN and all # > 0. This means that (4.2) holds true for all n € N.
Therefore, the limit function

Ug(x,t) = nlgrgo uy(x,t) €0, o0] “4.3)

can be defined for almost all x € RY and all 7 > 0. Furthermore, by (2.13) and (2.15)
we can put a constant

¢y = max{l, ¢y, cg, dy, dg, Cp, }

such that

sup w1 (@)llze < cxlluollre,
O<t<oo

4.4)

5 -

N+a—5( 1 _l)
" un @l g < cxlluoll oo,

sup t

T<t<oo

forafixed T > Oand any g € [ry, oo]ifug € L™ N L, where ry is givenin (1.12)
and ¢y, cg, dy, dg, C,, are given in (2.13), (2.15), and (2.16), respectively. Then we
have the following lemma, which implies the local existence of solutions to (1.1).

Lemma 4.2. Assume (A1)—(A3). Let ug € L°°. Then there exists a positive constant
T such that the problem (1.1) possesses a unique solution u of (1.1) in RN x (0, T)

satisfying

sup [[u(®)||Loe < 2cxlluollLoe-
O0<t<T

Proof. This proof follows from [10]*Lemma4.2. Let 7' be a sufficiently small positive
constant to be chosen later. By induction we prove

sup lup (t)l[Loe < 2exllugllLe, n=1,2,.... “4.5)
0<t<T

By (4.4), wehave (4.5)forn = 1. Assume that (4.5) holds trueforn = n, € {1,2,...}.
Then, by (2.13), (4.1) and (4.4) we have
t
lun,+1(O e < lur (@) lze +/ 1St = $)un, (s) || Lo ds
0

! 4.6
SC*||M0||L°°+f i, ()11 e ds (4.6)
0

< cxlluolize + T QexlluollLe)?”
forall r € (0, T). Let T be a sufficiently small constant such that

T27 (cxlluglip<)? ™" < 1. 4.7)
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Then, by (4.6) we have (4.5) for n = n, + 1. Therefore (4.5) holds true for all
n=1,2,....By(4.2),(4.3) and (4.5) we see that the limit function u, satisfies (1.6)
and

sup lux(@)llLee < 2cslluollLoe.
0<t<T

This together with Lemma 4.1 implies that u, is a mild solution of (1.1) in
RN x (0, T). O
Now we are ready to prove Theorem 1.2.

Proof of the assertion (i) of Theorem 1.2. Assume (1.12). Let § be a sufficiently small
positive constant. Assume and (1.13). Fix T < 1 that satisfies (4.7), so u, is a mild
solution to (1.1) in RN x (0, T') and all u,, satisfy (4.5) by Lemma 4.2. By induction
we prove

—€

_ N+ta
lun @l prece < 2¢48,  un(@)llpee < 2¢idt 2, (4.8)

foralln € Nand ¢ > 0. By (2.14), (2.16), and (4.4) we have (4.8) forn = 1. Assume
that (4.8) holds for some n = n, € {1, 2, ...}, thatis,

__ Nta—e
lun, Ol e < 2648, Nun, (D) llLoe < 2¢488 2
for all # > 0. Then by (1.9) we have
% 1_%* 7N+a76(iil)
llun, (lt)”LZ*oo < llun, (I)HLZ:,OOHMH* Ol pe” = 2,6t 2o 4.9)

forany r, < g < ooandallt > 0. So, for any ¢ > 1 with { < r, < ¢{p, by (1.12)
and (4.9) we obtain

_ N+a—e | Nta—e
it 7l g0 = ltn, (o0 < Qend)Ps™ 5 F5T70 @0
and
N+ta—e¢ Nta—e¢
ltn, (Pl = llttn, (DI oe < 2esdt™ T = Qe )T B L (@D

for all + > 0. Combining with (2.14), (2.16), (4.10), and (4.11), we have

t
H/ St — un, (s)P ds
)2

t
< / 1S( = $)ttm, ()7 11 ds
Lo /2

t
< / it ()7 [l dis
2

¢ _N+oc—e_1 _ Ntoa—e
< Cé§? sT 2 ds < C8P1r™ 2
t/2




44 Page 18 of 24 T. KAWAKAMI ET AL. J. Evol. Equ.

and

|

'
/ St — )up, (s)P ds
t/2

t
< / ”S(t - S)Mn*(s)p”ll;*,oc ds
Ly /2

t t
<C [ @ lds=cor [ s7las <o,
/2 @ 12
for all + > 0. On the other hand, to estimate the part of 0 < s < /2 for the Duhamel
term, that is,

12
/ St — $)up, (s)? ds,
0

we need to separate into two cases t > 27 and 0 < t < 2T < 2 in order to avoid
having f in our estimation. For the case 0 < t < 2T < 2, we have (4.5) because of
our choice of T. Combining with (1.9), (2.14), (2.16), and (4.8), we have

t/2 t/2
H / SG = un ()P ds| = / it ()7l dis
0 L>® 0

N+a—e

t/2
5/ 2¢:8)P ds < T (2ce8)P < C8Pt™ 2w,
0
and

t/2
” / St — $)up,(s)P ds
0

t/2
=c / i, (5)7 . dis
Ly 0

12 .
e /0 it () 250 i, (I dis
t/2
< C/ 2c8)P ds < C8P,
0

for all + < 2T < 2. Furthermore, for the case t > 27, combining with (2.13), (2.15),
(4.10) and (4.11) with ¢ < ry < ¢p, we have

/2 /2
H/ S(t — s)up, (s)' ds 5/ 1St — $)up, (s)P||Loe ds
0 Lo 0

l‘/2 _ NHa—e
=C (t—9) % un, ()Pl c00ds
0 ®
t/2
NAta—e N+a—e | N+a—e
<C8Prx / s” o T Tl
0

_ Ntoa—e
< C8Ptr 7

and

t/2
” / St — s)up, (s)P ds
0

12
< / 1S = $)ttm, (57l 7o ds
Lg™ 0
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t/2 _N+a—e(l_i)
=C [ IR ) g ds
0 w

_N+u—5(l_i) 1/2 _N+a—e+N+a—e_1
<C&Pr 2 N s 2w % ds
0

= Cé?,

for any ¢+ > 2T. Then, taking a sufficiently small § if necessary, combining the above
estimates for the Duhamel term with (4.4), we see that

N+a—e
R LURRIO) P < culluoll oo + C8P < c8 + C8P < 2¢48
It +1 (t)”LZj'O"
forallz > 0. Thus we obtain (4.8) forn = n,+1, and (4.8) holds true forn =1, 2, ....
Therefore, applying an argument similarly to the proof of Lemma 4.2, by (4.8) we see
that there exists a unique global-in-time solution « to (1.1) such that

_ N+ta—e
||u(l)||L:u*oo < 2¢4, lu ()| oo < 2cibt 2
This together with Lemma 4.2 implies that
_ NHa—e
lu@llpe < C(A+1)" 2+

for all # > 0. Furthermore, by (1.9) we have

’7* ]7%* N+a—e(i_l)
lu@ll pgoo < NuOl recollu@ll " < CA+1) 2 e 47, ry <q <00,
)

for all + > 0. Thus we have (1.14), and the proof of assertion of Theorem 1.2 is
completed. U

Proof of the assertion (ii) of Theorem 1.2. Assume (1.12).Letd be asufficiently small
constant and assume (1.15). Then, by the assertion (i) of Theorem 1.2 we see that there
exists a unique global-in-time solution u to (1.1) satisfying (1.14).

We prove the existence of a global-in-time solution of (1.1) satisfying (1.16). For
r = ry, it follows from a similar argument as in the proof of the assertion (i) of
Theorem 1.2. So we assume 1 < r < r,. By (4.1) we see that u,, satisfies

t
un(x, 1) =[S — Dun(t)](x) +/ [S(t — $)un—1()P1(x) ds, (4.12)

forall x € RN and ¢t > 7 > 0. On the other hand, by (1.15) and (2.13) we can find a
constant Cy, independent of §, ¢ and r such that

_N+otfe(l_l)
r

IS@uollg < Caxd(1 1) 2 a, t>0, (4.13)

for any g € [r, o0].
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By induction we first prove that
lun (g <2Cid, 0 <t =2, (4.14)
forany g € [r,oolandn = 1,2,.... By (4.13) we have (4.14) for n = 1. Assume
that (4.14) holds for some n = n, that is,
lun, (Dl =2Cs8, 0 <1 =2, (4.15)
for any g € [r, co]. Then, by (4.15), for any ¢ € [r, oc], we have
lun, PNl g = ”un*(l)nizq < (2Cwd)P (4.16)

for all 0 < ¢ < 2. Taking a sufficiently small § if necessary, by (2.13), (4.12), (4.13)
and (4.16) we obtain

t
ltn, 41Ol gg < I1S@uoll g +/ ISt = $)un, ()Pl g ds
0

t
< Cob 4 C1 [, 617l ds
0
< Cysd + C28P < 2C446, 0<r<2, “4.17)

for any g € [r, 0o], where C| and C; are constants independent of n, and §. Thus we
have (4.14) forn = n, + 1, and (4.14) holds foralln = 1,2, .. ..

Let C; be a constant to be chosen later such that C; > 2C 4. Next, by induction
we prove that

, _N+a76(l_l)
lua@llpg < Clor 2 01 >1y2, (4.18)

forany g € [r,00]landn =1, 2, ....By (4.13) we have (4.18) forn = 1. Assume that
(4.18) holds for some n = n,. Then, similarly to (4.17), since r, = % (p—=1) >r,
taking a sufficiently small § if necessary, by (2.13), (4.12) and (4.14) we have

Nta—e (1 1

ltn,+10)llg < C3(t —1/2) 2 <;_5)Ilbtn*Jrl(l/Z)lngo

1/2 Nto—e(l_1,
+c3/ (0 =) Dy (5P 1y ds

_N+ae(1_1) , _ 7e(l_l) o
< CaCuy8t 2\ 1) 4 Cy(CLO)Pr 2 'q/ s” 7 ds
12
t _N+Dt*€(£_l)
+C4(C;8)p/ s 2 \r d)ds
12
_ Nta—e(1_ 1 _ e(l_1Y)_r«
< Cs5Cyydt 2 ( q)+C5(C;3)Pt = (1=3) -+
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for all + > 1, where C3, C4 and Cs are constants independent of n, and §. Let
C ; > 2C5C. Then, taking a sufficiently small § if necessary, we have

, _N+a—e(1_l)
Un,+1 4= s > 1.
lun+1Ollg < Cér 2\ 4/ 1 >1

This together with (4.15) implies (4.18) with n = n, + 1. Thus (4.18) holds for all
n=1,2,....
By (4.15) and (4.18) we can find a constant C such that

7N+a75(17l)
lun@llpe <Co(1+1) 2\ 7). 1>0,

forallg € [r,o0]andn = 1, 2, .... Then, by the same argument as in the proof of the
assertion (i) of Theorem 1.2, we see that there exists a solution u to (1.1) satisfying
(1.16). Thus the assertion (ii) of Theorem 1.2 follows, and the proof of Theorem 1.2
is complete. U

Proof of Corollary 1.1. Let

8
JO) = ———— e
1

T+
1 + |_x|p7 N+a—e

for all x € RV . Then, for A < 8, by (1.8) and (2.5) we see that

w0 = [ 1170 = 3 ot da
RN

=1 Nta—e
) 2 N+a+e
/ 1 x:|x|<(——l) w(x)dx
RN A

P Ng—e (p—1) 5 .
~ Yoo @®=cC <; - 1) =C (X - 1) :

Notice that if it s (1) < F (1) for some function F, then the non-increasing rearrange-
ment of f would satisfies

fr) =inf{x > 0:urd) <s} <inf{rA > 0: F(1) <s}, s > 0.

So we have
N )
ffo)s——, =0
1+ Csr
This implies that
1 1 1)
| fllprecc = sups™ f*(s) < supsr ———— < C8.
@ s>0 s>0 1+ Csr
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Furthermore, it is obvious that || f|z < §. Therefore, there exists a constant C
independent of § such that

max(luoll 7+, luoll=) < C8,

and applying the assertion (i) of Theorem 1.2, we see that if § is sufficiently small,
then a global-in-time solution of (1.1) exists and it satisfies (1.14) O
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