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SINGULARITY FORMATION IN THE HARMONIC MAP FLOW WITH
FREE BOUNDARY

By YANNICK SIRE, JUNCHENG WEI, and YOUQUAN ZHENG

Abstract. In the past years, there has been a new light shed on the harmonic map problem with free
boundary in view of its connection with nonlocal equations. Here we fully exploit this link, considering
the harmonic map flow with free boundary

ur = Au inR2 x (0,7),

o1 u(z,0,t) € S! for all (z,0,t) € OR2 x (0,7),
44 (2,0,t) L Ty(z0,nS' forall (,0,t) € IRE x (0,T),
u(+,0) = up in R

for a function w : R%r x [0,T) — R2. Here uy : Ri — R? is a given smooth map and L stands for
orthogonality. We prove the existence of initial data ug such that (0.1) blows up at finite time with a
profile being the half-harmonic map. This answers a question raised by Chen and Lin.

1. Introduction. Let (M,g) be an m-dimensional Riemannian manifold
with boundary M and N be an /-dimensional manifold without boundary. Sup-
pose X is a k-dimensional submanifold in N without boundary. Any continuous
map ug : M — N satisfying uo(0M) C ¥ defines a relative homotopy class in
maps from (M,0M) to (N,X). Amap u: M — N with u(OM) C ¥ is called
homotopic to uy if there exist a continuous homotopy £ : [0,1] x M — N satisfy-
ing h([0,1] x OM) C %, h(0) = ug and h(1) = u. An interesting problem is that
whether or not each relative homotopy class of maps has a representation by har-
monic maps, which is equivalent to the following problem,

—Au =T'(u)(Vu,Vu),
u(OM) C X,
0

Here v is the unit normal vector of M along the boundary OM, A = Ay, is
Laplace-Beltrami operator of M, I is the second fundamental form of N (viewed
as a submanifold in R™), T}, N is the tangent space in R" of N at p and L means
orthogonal in R™. (1.1) is the Euler-Lagrangian equation for critical points of the

(1.1)
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1274 Y. SIRE, J. WEL, AND Y. ZHENG

following energy functional

E(u) = / \Vu|?dM
M
defined on the space of maps
HL(M,N)={uec H (M,N):u(0M) C ©}.

Here H'(M,N) is the usual Sobolev space of maps u: M — N satisfying
Vu € L?. Existence results and partial regularity of energy minimizing maps on
Hé(M ,IN) were established (for example) in [1, 13, 14, 18, 20]. A classical
method for (1.1) is to study the following parabolic problem

Ou— Au=T(u)(Vu,Vu) on M x [0,00),

u(z,t) € onz €M, t>0,
(1.2) 0
a—u(l‘,t) 1 Tu(g: t)Z for x S aM, t 2 O,
y ;
u(+,0) = up on M.

This is the so-called harmonic map flow with free boundary. (1.2) was first studied
by Ma [24] in the case m = dimM = 2, where a global existence and uniqueness
result for finite energy weak solutions were obtained under geometrical hypotheses
on N and Y. Global existence theorem for weak solutions of (1.2) were also estab-
lished by Struwe in [33]. In [19], Hamilton considered the case when ON = ¥ is
totally geodesic and kx < 0. He proved the global existence of a classical solution
for (1.2). When N = RR", (1.2) is the standard heat equation

ug—Au=0 on M x[0,00).

As pointed out in [4, 33], estimates near the boundary for (1.2) are quite difficult
due to the high nonlinearity of the boundary conditions.

In the seminal paper [4] by Chen and Lin, the blow-up phenomenon for har-
monic map flow with free boundary problem was studied, where the authors gave
many blow-up examples in higher dimensions and also a blowing-up theorem. In
low dimensions, they asked the following question: “When M is a smooth domain
in R, N =R" and ¥ a smooth compact submanifold of R", is there is a smooth
initial datum ug such that (1.2) has no global smooth solutions?”. In this paper we
answer this question affirmatively. More precisely we consider the problem (1.2)
when M = Ri and ¥ =S'  R?, i.e. the following parabolic equation

u = Au in R% x (0,7),

u(z,0,t) € S for all (x,0,t) € OR% x (0,T),
(1.3) du

— @(J;,O,t) L TywopS' forall (z,0,t) € OR% x (0,7,

u(-,0) = ug in R%
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for a function u : R3 x [0,7") — R2. Here ug : RZ — R? is a given smooth map and
[ stands for orthogonality.
The stationary solution of (1.3) u : ]R%_ — R? satisfies

Au=0 in R% x (0,7,
du

1 2
- d—y(x,O) L Tye0S" forall (z,0) € IRS.

This is the harmonic extension form of the so-called half harmonic map from R
into S!, which was systematically studied in [27] and the nondegeneracy property
was proved in [30]. In particular, it was proved in [27] that:

PROPOSITION 1.1. Let u € H'*(R,S') be a non-constant entire half-
harmonic map and u® be its harmonic extension to ]Rz+ satisfying (1.4). There exist
deN, 9 eR, {\}¢_, C(0,00) and {ax}¢_, C R such that u®(z) or its complex
conjugate equals to

“9 H )\k Z — CLk
)\k (z—ag)
Furthermore, the energy can be expressed as

1 e
& R) = [y = 5 [, [VuPdz =,
+

This proposition indicates that the map w : R — S!

%:1:

xc+1

(1.5) z - <x2_1>
2241

is a half-harmonic map which corresponds to the case ¥ =0, d =1, \; = 1 and
a1 = 0. The harmonic extension of w takes the form

2z
z2+(y+1)?
22 4y*—1
z2+(y+1)2

w(x,y) =

)

which is a solution to (1.4). Notice that the previous equations involve nonlinear
Neumann boundary conditions. This is a feature of nonlocal problems and as pre-
viously mentioned, we shall exploit this fact in a systematic way. Our main result
is:

THEOREM 1. Given points ¢ = (qi,...,qx) € (OR%)* := (R x {0})* and any
sufficiently small T' > 0, there exists ug such that the solution ug(z,t) of Prob-
lem (1.3) blows-up at exactly those k points as t /T. More precisely, there exist
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numbers ki > 0 and a function u, € H'(R2 )N C(R?) such that

k
uq(x,y,t)—u*(x,y)—z[w(x;i%,/\y)—w(oo)}%0 aSt/‘Ta

7=1

in the H' and uniform senses in ]R2+ where

() = kf ! s(+o(1) ast /T

log(T" 1)

In particular, we have

k
‘V’qu(',',t”zé|VU*|2+27TZ(S% ast/‘T.
j=1

In [21], Jost, Liu and Zhu studied the qualitative behaviour at singularities of
(1.2). More precisely, they showed that nontrivial harmonic maps and nontrivial
harmonic maps with free boundary can split off at interior singularity points and
boundary singularity points respectively, the energy identity and the no-neck prop-
erty holding in the blowing-up process for (1.2). Theorem 1 gives an example of
finite time blow-up in the critical space dimension, which completes the picture of
the singularity analysis for the harmonic map flow with free boundary.

To prove this theorem, we will use the inner-outer gluing scheme which was
proved to be useful in singular perturbation elliptic problems, for example, [9, 10,
11]. This method has also been developed into various parabolic flows, for ex-
ample, the infinite time blowing-up solutions for critical nonlinear heat equation
[6, 12], singularity formation for two dimensional harmonic map flow [8], type II
ancient solution for Yamabe flow [7].

Images of half-harmonic maps are special cases of minimal surfaces (or hyper-
surfaces) with free boundary, which have been extensively studied in recent years
(see for instance [16, 17] and the survey articles [5, 28, 25]). Gluing methods have
been used successfully in the doubling and tripling constructions as well as desin-
gularization constructions of free boundary minimal surfaces (see e.g. [15, 22, 23]).
We believe that the parabolic inner-outer gluing scheme used in this paper can fur-
ther been applied to the constructions in minimal surfaces (or hyper-surfaces) with
free boundary.

Results similar to Theorem 1 have been established by Davila, del Pino and
the second author in [8] in the case of two dimensional harmonic map flow into S2,
see [29] for earlier results in the corrotational case. Comparing with [8], the main
difficulty in this paper is the nonlocality of the problem (1.3). In fact, according to
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[32], we can write problem (1.3) as

G

1 teo -
\/8t—Au:[/ /\u(x,O,t)—u(:r—z,O,t—T)ze ; dzdr | u(z,0,t).
8w 0 R

T

The problem under consideration interpolates between the two-dimensional har-
monic map flow and the half-harmonic map flow. It inherits characteristics from
both problems. In [31] we showed that for the half-harmonic map flow, infinite
time blow-up exists. In this paper we combine techniques from both papers [8, 31]
to prove finite time blow up for (1.3), which is unknown even in the corrotational
case. The flow under consideration is actually a reminiscence of a nonlocal geo-
metric flow involving the operator 1/0; — A described in [32], as previously men-
tioned, and enjoys nice monotonicity properties (see for instance [2] for general
considerations). The techniques used in the present paper can also be used to deal
with infinite-time blow up for the flow

Ut*AU:O in RT—H X (0,00),
ou(.,t
— 11m 4U(7 ) :up*a
y—0F 8?]

where p, is the critical exponent for the Trace Sobolev embedding. The construc-
tion of blowing-up solutions with profiles being high degree half harmonic maps
is also an interesting problem. In this case we expect that there will be no finite
time blow-up and instead infinite-time blow up may occur. This is due to L? inte-
grability of the kernel corresponding to the scaling. We plan to come back to these
problems later.

2. Construction of the approximate solution. From [32], we know that
problem (1.3) is equivalent to

Q2.1
(uy=Au inR2 x(0,7),
u(x,0,t) €S' forall (z,0,t) € IR% x (0,T),

NEL

d 1 e e
——u(x,O,t):— / /\u(x,O,t)—u(x—z,O,t—T)|2e ; dzdr | u(z,0,t)
dy o Jr

8T T
for all (x,0,t) € OR% x (0,T),
u(w,y,t) = ug(r,y) forall (z,y,t) € RL x (—o0,0].

Note that we use the factor 8%( to keep (2.1) agree with the half-harmonic map
equation when u is independent of ¢. Here and in the following, %(:1:,0, t) always

du
means g | (@,0,8)-
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2.1. Setting up the problem. Our aim is to find a solution of (2.1) which
looks like

U(.’L‘,y,t) = U)\,é(xay) :w(l‘;é-’i)

at main order, where
2x
22+ (y+1)?
w(z,y) = ( Pt

2+ (y+1)2

is the extension form of the canonical least energy half-harmonic map (1.5). We
look for parameter functions A(t) and £(t) of class O satisfying

lim A(t) =0, lim&(t) =g € OR?

lim A(t) =0, lim£(t) =g € IRY
and a solution to (2.1) with form u(x,y,t) = U(x,y,t) + ¢(x,y,t) blowing up at
t =T and the point (¢,0). Here ¢ (z,y,t) is a small perturbation term.

Note that problem (2.1) is also equivalent to
1212

\ 8t —Au
4T
= dzdr | u(z,0,t).

(2.2) 1 e 2€
:&r[/o [ 0.0 ~u(a 0.7

for all (x,0,t) € ORZ x (—oo,T'). We refer the interested readers to [32] for the
definition of 1/0; — Au. Since u(x,0,t) € S!, as in [8], we parameterize the ad-
missible perturbation by free small functions ¢ : 8Ri X (—o0, T) — R? with the
following form

p(p) =My +a(llye)U,
where

Hyrp:=9—(p-U)U,

H J_QD 1 ‘g0|2—1— 1—‘1_[ J_g0|2—1,
U U

hence |U + p(p)[> = 1 holds on 9R% x (—eo,T'). Considering the error operator
defined as

S(u) =—+/ 0y —Au
|22

oo — I
— / /\u(x,O,t)—u(x—z,O,t—T)\ze ; dzdr | u(z,0,t),
0 R T

a useful observation is that if ¢ solves

(2.3) S(U +Tl1p+a(Ily )U) +b(x,0,6)U =0

for some scalar function b(,0,¢) and |¢| < %, then u = U + 1o+ a(Il; o) U
satisfies (2.2), that is to say, S(U +II;;1 ¢+ a(I;; )U) = 0. Indeed, since |u| = 1,
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—~b(x,t)U -u = S(u)-u = 0. On the other hand, since |¢| < 1, |a(IT;;10)| < 1,
thus U -u = 1 +a(II;;.¢) > 0 and therefore b = 0. Hence we only need to solve
(2.3). Equivalently, we will find ¢ : Ri — R such that

(U+¢)=AU+¢) inRZx(0,7),
AU+ )
T(%O,t)
|21

—+oo I
= (81 [/ /\u(m,O,t)—u(x—z,O,t—T)lze ; dsz] u(m,O,t))
s 0 R T

(U+¢) +b(z,0,t)U  forall (x,0,t) € OR? x (0,7T)

u=U+¢p

holds. Let us define the error operators as

Si(u) = —us+Au  inRZ x (0,7),

du
SZ(U) = @(%,O,t)
1 Foe e*%
+§ /0 /R‘U(%O,t)—u($—z,0,t—7-)2 = dzdr | u(zx,0,t)

in (x,0,t) € OR2 x (0,T). For each fixed ¢, since U is a half-harmonic map, we
have

AU =0 inR%,
dU

— —(z,0,t
dy(w’ ?)

_ 1z

oo e
/ /]U(a:,O,t)—U(z—z,O,tﬂ s—dzdr
o Jr

— SL U(z,0,t) in ORZ.

™ T

\
Hence S (U) = —U; and

|21

o —ar
SZ(U):{SIWI/O /}R\U(x,o,t)—U(m—z,O,t—T)\z T; dsz]

|21

[ e ol
- / /|U(3370,1t)—U(m—Z,O,t)l2 dzdr
™ Jo R

72

}U(x,O,t).

Now we compute

2.4) 0=5,(U+¢p)=—U,—dpo+Agp
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and

0=5U+¢)=5U+I.p+al)
2.5) d

= gy ?@ 0+ Lu(Mly.9) + No(Ty.9) + by p)U

where

Ly (I )
z\z

1 e ye i
= % /0 /R\U(x,O,t)—U(x—z,O,t—T)\ = dzdr

e

+$ /0+°°/R(U(x,o,t)—U(m—z,o,t—r))

|2

e 4r

-(Tyre(x,0,t) —yro(r —2,0,t — 7)) dzdt |U(x,0,t),

72

Ny (L)

|
— <47r/0 /R(a(x,O,t)U(a:,O,t)—a(x—z,O,t—T)U(x—Z,07t_7'))

(U(2,0,t) + 1 p(2,0,t) —=U(z — 2,0,t —7) = io(x — 2,0,t — 7))

EE

e 47

X dzdT

72

| e
4L /(U(:c,O,t)—U(x—z,O,t—T))
47'[' 0 R

|22

4T
dzdr

(U p(a,0,8) Myl — 2,0, = 7)) —

1

—+oco
v [ [ @Morp0.0) - T 20,t-7)
87T 0 R

|2

4T
dzdt

72

e

' (HULQO(x7Oat) _HULQD(l'_ZaO,t_T))

| e
+— /(a(m,O,t)U(m,O,t) —a(x—2,0,t—7)U(x—2,0,t — 7))
8 0 R

_lz2
(a(z,0,t)U(x,0,t) —a(x — 2,0,t —7)U(x — Z,O,t—T))eT;T dzd7'> I
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and

+oo
b1l ) = (;ﬂ | [1w+Tp a0

=2
—ar
—(U—l—HUup—i-a(HULgo)U)(x—z,O,t—T)|267_2 dyd7>(1+a)
1t
-— /(U(l’,O,t)—U(l’—Z,O,t—T))
47 0 R
e_ﬁ
~(Hyre(x,0,t) —yie(x —2,0,t —7)) dydr

1
8

/ /\U(x,O,t)—U(:r—z,O,t)\z 7 dzdr|.
0 R T

By direct computations, we have

Sl(U> = _Ut = _80(x7y7t) _51 (fl?,y,t)

Here
z(w&g)[gz—ﬁzz"‘()l\l)zz;;\z)] (2520%
N x=€)*+(y+ o T—=E)*+y*+A i
Sy ) = | yyinawermin | F |2y |
(2.6) ((x—€)2+(y+X)?)? (z—€)2+y2+A2
' 2\ @y A€y A—¢)
& (a?,y,t) _ (z—=&)*+(y+1)?) §

—4Az=E)(y+A)
(=8> +(y+1)%)

Since &(z,y,t) is not L? integrable, we shall decompose the correction ¢ into
p = ®* + ® and system (2.4), (2.5) transforms into the following:

2.7) 0=258,(U+¢p)=—U,— 9,0 +AD* — 0,® + AD

and

d
0= —-®"(2,0,7) + Ly (Il @)
(2.8) y

+ @@(x,o,f) + Ly (. ®) + Ny (T (@F + @) + b(,0,1)U.

The correction ®* will be chosen such that the term —& is canceled at main order
away from the blow up point (&,0).

2.2. The definition of ®*. Let us consider the linear problem (2.7),

0=—0,P+AD+E;
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where
Ef = -Up—0,9" + AD".
Our aim is to construct a function ®* such that & is smaller than the largest term

—&p of the initial error —U; given by (2.6) away from the blow-up point q.
As in [8], we decompose ®* into the following form

O* = CI’O[)\,f] + Z*(x,y,t)

where

is a solution of the heat equation
Z*=NZ* in R% x (0,T),
—}QZW%QQIO in 9R% x (0,T),
Z"(2,y,0) = Zg (2,y)

independent of the parameter functions. Further assumptions on Z; will be given
in Section 2.5. ®°[\, £] is an explicit function satisfying

(2.9) —E — 0,9 + AP* ~ 0.

Observe that if ¢° is a solution to

2(z—¢)
R R PO
(=€) +y* A
then 0 = ¢¥ will satisfy (2.9). Set
p(t) = =2A,

Then v (z,t) satisfies
3 t
wt = wzz + wz + ]Lz)
z z
which is the radially symmetric form of an inhomogeneous heat equation in R*.
Then Duhamel’s formula gives the following expression for a weak solution

2

¢@J%:/‘p@M@j—sM& k(o) = ¢

-T 22
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where p(t) is also defined for negative values of ¢ by setting p(t) = —2A(0) for
t € [-T,0). Now we define

and

Now, we compute

- wa/ (1)t — )ds
8 ke sl 9= |

pin=25 [ pls)eks (o).t = s)dsla =6~ AN

_q)g: +

AP

¢ t
3(z— )/ p(s)kzids—i-(:c—ﬁ)/ p(8)k.ds

=T =T

2t
= +(z— 5)/\/ p(s)[k.z — k..2%]ds

! 1
—3y/ p(s)kzds—y/ s)k,.ds — y4/ —k..2%|ds
-T z _

Therefore, we have

—<I>2+A‘I>O =Ro+7Ri,

where

7?,() = ( ) T/\zijp(s)[Zkz_szzz]ds
Yy — 7 [T p(s) (ks — 27k )ds ’

z

(&f <>kds+< Nz =& =M ['pp (s)zkzds>
— Y [(— )€ —A] [pp(s)zkads
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2.3. Estimate of the inner error. Now we compute the inner error &} :=
—¢; + AP* — Uy as

El =D+ AP -V,
—[®°+ Z*); + A[@° 4 Z*] - U,
=Ro+R1—-U;
2
<_($ - g)pg) % ijp(S)[Zkz - szzz}d‘S)

yig) y;} Tp( s)[zk, — 2%k..)ds

z

(5[ 7 0(8)kds + S (@ — )€ — AN [*p(s)zkads
Y[(z— )&= [*p(s)2k.ds

2(z=8[(z— § (2 =) 2A (@ +y+A—E)(z—y—A=E)
_ ((2=8)*+(y+X)?)? S— ((=&)*+(y+X1)?)? ¢
=2y(y+)\)*-2(x %

~

(( —&)*(y+2)) —4A(z=E)(y+})
((x—€)2+(y+X)?)? £)2+H(y+2)?)?
_ (A 0k T pleleh
- < —2y - yz)‘ ( )zk, — 2 kzz |ds )
. (5] (s kzds+( (@~ )¢ M [ ppls)zk ds)
[(z— §)§ /\)\]f p(s) zk: ds

2 —22)] 2A (@ +y+A—E)(z—y—A=§)
(y+>\) )? b ((x—€)2+(y+X)?)? 5
—2y( y+)\ (( £)*(y+2)) —4Mz—&)(y+A , ’

+(y+A)?)?
hence

2a—€)  2z—6)[(z—€)>+(2 -2 2A(z+y+A—E) (z—y—A—£)
s =il * (2 =€ +(y+2))° _¢ (z-8)*+(y+X)?)
! 2y | 2y(y N +2(a—€)>(y+2)) —4A<x—§><y+x§

((x—€)2+(y+X)?)?

;/;p(s)[«zkz—zzku]ds (f’?_—f)
+w ' p(s)zk.ds (1‘—5

2
< -T -y

2z—§)  2@—8)[(x—&)>+(y*—N?)]
Y @+ |
,zy n 2y(y+A)2+2(x—&)* (y+2X)
(x—€)2+(y+2)?)?

p ! =t

N [(x—é)zé;—)\/\]r /_T (5) 2k ds(”’cZ;)Jr/_;p(s)kds <g>

.
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Here we have used the notations 7 = \/(x —&)2+92, p = r/X and r)\?/z* =

. Furthermore, we have

A(pz+1)
2z-8) _ 2(@=9)[(z-&)*+ (= \)] 2A(z+y+A-8(@—y—A=§)
g — 3 2 ((—€)*+(y+A)?)? ¢ ((@—€)*+(y+X)?)?
! 2 W 2 € o) ANz —E)(y+)
(=€) +(y+1)?)? ((@=8&)*+(y+X1)?)?
P ! 2 =
+7)\(p2+1)2 /Tp(s)[zkz—z k..|ds (_’“y>
g ot . .
e 5)52 )\/\]r/ D(5)2hs ds( = >+/ p(s)kds (é)
z -T ; -T 0
— A @ r| 1 . ($_€>2+y2 ]
~% (w—£>2+y2+A2 (2= &2+ + AP
z—€)°+ 2(2—8)[(2—€)’+ (-]
5[ YE +y2$v] ~ - AT
—2y ( E) 2 2N 2=’ (y2))
(=€) +y*+A?)? (=€) +(y+X)?)?
2A(z+y+A—&)(x—y—A—E)
é (=€) +(y+A)?)?
—4AMz—=E)(y+)
((z—=€)>+(y+X)?)?
p ! 2 s
+ )\(p2+1)2 /Tp(s)[zkz_z kzz]ds <_7‘y>
[(fv—ﬁ)é—wr/ (“) /t (5)
+ zkds| 7, |+ p(s)kds
Z2 [ 3l o)+ [ pomas (§
) 2(z—¢)
— Aip 7'2
AMp?+1)2\ -
—€)’+y? 2(z—&)[(2—€)’+(y*~N?)]
W Gl (=3 ie i = T
( E) Tty 2y(y+2)°+2(z—€)* (y+2A)
—2y +
[(z—&)*+y*+M]? (=) +(y+1)%)*
2A(z+y+A—=E)(x—y—A—=E)
_¢ ((z=€)%+(y+X)?)?
—4\(z =€) (y+)
((z—€)*+(y+X)?)?
t
p
S —
[(z —€)E = AN]r 2t ! £
+ . . p(s)zk,ds % + 7Tp(s)k‘ds Nk

2.4. Estimate of the boundary error. Equation (2.8) can be approximated

by the following linear problem
d -
<I>(l‘ 0 7') + LU(HUL(I)) + NU(HUL(q)* + (I))) + b(l’,O,t)U,

0=&+—
2+dy
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where

d
£ = 3@ (5,0,7) + Ly (1.9,

Now we compute the boundary error £ with ®* = ®° + Z*, First, we have

d d
—[@°+ 2] = 9"
dy[ +27] dy

_d ((w =) JLrp(k(a(r).t - s)ds>
dy \ =y ) ;p(s)k(z(r),t—s)ds

B 0

a <— ffTP(S)k(Z(T),t—S)\y—od8>

0
a <_ fpr(S)k( (x—&)2+ Nt — s)ds) :
Then, when T' > 0 is sufficiently small, there holds

d
gg = dié()(x, O,t)
|22

Fee 26 4T
/ /|U(m,0,t)—U(x—z,O,t—T)| s—dzdr
0 R T

Y
+ i I, [@F]
8 vt

e
+— /(U(az,O,t)—U(m—z,O,t—r))
47 0 R

|21

L dzdrU(,0,t)

T

e

(e [@*](2,0,t) — L [ @] (x — 2,0,t — 7))

N< 0 )
T\ k(@ =P+ Rt s)ds) |

2 (y LRV N N = s)ds
1+y? 0

z—§
X

2 1 [2](E+Ay,0,t
21 1(6429,0,1) - b(2,0,0)U (2,0,1)
TP\ 2.0 |
for some scalar function b(x,0,¢) which depends on p(x,0,t).

2.5. Improve error near the blow up point: choice of A and £.  System
(2.7) and (2.8) can be approximated by the following linear problem

(2.10) 0=—0p+Ap+&f
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and
d
(2.11) 0= d—ycp(x,o,t) +Ly(p)+& +b(z,0,t)U, ¢(x,0,t)-U(x,0,t) =0.

A choice of the parameter functions is possible when suitable conditions Z;(x,y)
are assumed. For a point (¢,0) € 9R% and a smooth function

Zo(x,y) = <2°] Ex‘y))

202 xuy)

satisfying

we define

for a fixed but small number § > 0.
If we write

play, ) =oluvt), u="= v="1,
then (2.10) and (2.11) becomes
0=—\0ip+ A+ NE;

and

d
0= di(ﬁ(uao’t)+Lw(¢)+)\5§<+b(u,0,t)w, gbw:()
v
Then an improvement of the approximation can be achieved if the following time-

independent problem

(2.12) 0=Ap+\E;,

2.13) 0= 5(,0) 4 Lu(0) 78S, 6w =0
and

(2.14) ‘(u%&wgf)(u,v) =0inR?

is satisfied approximately. Note that the decay condition (2.14) is needed to not
essentially modify the size of error far away from (g, 0).
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2.5.1. Nondegeneracy of the half harmonic maps. It was proved in [30]
that w is nondegenerate, which is a crucial ingredient in the singularity formation
problem of half-harmonic map flow [31]. Observe that w is invariant under dilation,
translation and rotation, equivalently, for Q = (‘;i’ljg *Cgisna"‘) €0(2),geRand ) €
R, the function

Ow r—q\ (cosa —sina w r—q
A )  \sina cosa A
is still a solution of problem (1.4). Differentiating with «, ¢ and A respectively, then
we set « =0, ¢ = 0, A = 1 and obtain that the following three functions

1—a2? 2(x2—1) 2z (x2—1)
z? (@2+1)2 x2+1)?
zl<m>=<;>, Zo(z)= 07|, za@) = )
z2+1 (a:2+1)2 (12+1)2 )

which satisfy the linearized equation at w of (1.4) defined by

+<71T/R(w(x)—w(|z;))_-;l|)2(fv)—v(y))dy>w($) LR

forv:R — TyS'. Using this harmonic extension (see [3] for generalization), we
have the following extension form of w and Z;(x), Z>(x), Z3(x),

[NT]

(=4)

2z %
241 24(y+1)
w(z) = <x2 ) —w(z,y) = 21 |

z-—1
z2+1 x4 (y+1)?

1—2? 1—z%—y?
2 2
Z1(@) = () = Ziey) = | T

2x R

211 2+ (y+1)2

2(z’ 1) 222 -2(y+1)*

212 x? 2)?
Dia)= | ) = zaeyy = | T,

(@+1)2 (@2 +(y+1)%)?

2a(z’~1) 2oz’ +y’—1)

| @ B (z2+(y+1)2)2

Z3(IL’) - 42 — 73 (:c,y) - 2(y(y+1)2+2%(2+y))

(@2+1)2 (@ (y )22

2.5.2. Choice of \. Testing (2.12) with Z3(x,y) and integrating by parts,
by the Stokes theorem and decay assumption (2.14), it holds that

(2.15) A Sf‘-Z3dudv+/€§-Z3du:O.
R R
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From the computation of Section 2.3, we have

‘ t A2 d
A 5f-Z3z7r)\+7r/ p(s)F( ) i
Ri -T t—s/)t—s

where

= 2 2
F(T):/O W[CKC CKCHC (14p2)dp-

On the other hand, from Section 2.4, we have

/52 73 = /{(zﬂ)/t p(s)k(\/m,t—s)ds}da:—i—%rbz

42?

:/;p(s)rb@(_t)j)fu by

© 82 l—e
I'y(7) :/0 (P2+1)2 ¢ |§:T(1+p2)dp

and b, = 8zza‘z|(q70). Then (2.15) becomes
‘ ¢ N\ ds 1 [t A1)\ ds
A I'f— | —+— T — +2b, =0.
+/Tp(3) (t—s)t—5+ﬂ/Tp(S) b<t—s>t—sJr 2

Hence
. t A2 d
At / (s )Fo< ) S T
_T t— t—s

where T'o(7) = I'(t) + 1T,(7). This function satisfies

where

[p(0)=c#0, To(r)= O<71_> as T — +oo.

t 2
A[)\,f] = )\+/_Tp(s)]?0(t>\_s> tciss +2b;.

Now we claim that by the simple ansatz

Denote

k|logT|

M) =- log?(T —1t)

for some constant k > 0, then

(2.16) AN(t) = o(1)

1289
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will be achieved, here o(1) vanishes at ¢ = 7" and is uniformly small with 7". Denote
b A2 ds
BIX(t) := A(s) Lol — | —.
el = [ aem( )2
Similar arguments as [8] show that

log([logTY)

BIVE)(1) —en] < 55

Therefore
AN €& =cx(1+0(1)) +2b,.

Then we assume that %zéz(q, 0) < 0, (2.16) is satisfied by choosing
2d
Ko = _E@ZOZ((I’O)'
Define
- ko|logT|
2.17 () =——F—7".

2.5.3. Choice of .  Similarly, testing (2.12) with Z,(z,y) we get
(2.18) )\/ 5T-szy:/5§-Z2dy.
R2 R
By direct computations, we have

)\/ E - Zy~—€ | Za(u,v) - Za(u,v)dudy = —7€
R R

/5;-22:0.
R

and

Therefore (2.18) becomes

—71'5 =~ 0.
This can be achieved by simply choosing
(2.19) §o(t) = (4,0).

2.6. The final ansatz. Fix \o(¢) defined in (2.17) and &y(¢) in (2.19). We
write

At) = Xo() +Ai(t),  £(1) = &olt) + & (1)

We are looking for a small solution ¢ of

(2.20) 0=_E —do+Ap
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and
d
221) 0=&+ @cp(x,o,t) + Ly (i) + Ny(y (9 4 ) + b(z,0,¢)U.

where
O =D\ &+ 27

In terms of problem (1.3), we let
u=U+P +¢
solves the problem

up=Au  in R x (0,7),
u(r,0,t) €S' forall (z,0,t) € IRZ x (0,T),

|2[2

d 1 tee r
—d—Z(w,O,t)—— [/0 R]u(a?,O,t)—u(x—z,O,t—v-)]zeT; dzdr | u(x,0,t)

87
for all (x,0,t) € OR? x (0,7T),
\U($7yat) =wup(x,y) forall (z,y,t) € ]Ri X (—o0,0].

3. The outer-inner gluing scheme. By possibly modifying b(z,0,t), sys-
tem (2.20)—(2.21) can be rewritten as

(3.1 0=, —dp+Ap inRE x(0,7),
and
. d
0282+d7y90(l‘707t)
2
— 11
T wop v
+1[/(U(%,O,t)—U(.T—Z,O,t))(HULQO(.T,O,t)—HULQD(.T—Z,O,t))dz:|
2
(3.2) T JR 2|
U(z,0,t)
Edl
1 [t ,e 2
+|:87T/0 R‘U(.T,O,t)—U(LU—Z,O,t—T)‘ 7'2d2d7—_1—|—’(u71))’2:|
Uy

+ Ny (T (@ +¢)) +b(2,0,t)U  in ORZ x (0,T).
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Here and in the rest of this paper, we use the notation u = x;é()t) and v = /\( ik Let

10(s) be a smooth cut-off function with 7jg(s) = 1 for s < I and = 0 for s > 3.
Consider an increasing function R(t) satisfying

R(t) >0, R(t)—oeast T

and define
x—&(t) tods
t = — Q0 t =
n(a,) no(R(t))\(t)>7 0 =n+ [ 5
such that
1 log*(T —1t)
T/\NTOJF)\T)W

We decompose the function ¢ (z,y,t) into the following form

=& vy

(3.3) <p($,y, ) 7]¢< ( ) )\(t) aT)\(t)) +w($ayvt)

with ¢(u,v,7) =0 for 7 € (—oo, 79] and ¢(u,0,7) -w(u,0) =0 forall T € (79, +o0).
Then ¢(x,y,t) given by (3.3) solves (3.1)—(3.2) if the pair (¢,)) satisfies the fol-
lowing system of evolution equations

(0.6 =Adp+ XDZRW* in R2 X (79, +90),

UJR w(1,0)—w(u— zO))‘(q‘ﬁguvoﬁ)—wu‘zvof))dz]w(u,o)

(3.4) TXD,pN(OR2 x (10, +20)) ()‘le-g; + W#Izﬂwld})

TXD, gN(IR x (r,+0))

ER

( Jp, GOzt O WLw(“’O’T)_HwW(“‘Z’O’T))dz)w(uao)

in 8Ri X (70, 400),

¢=0 inR2 x (—oo,79]
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and
( A £do
o = Ay — X(uav) ’ V(u,v)(b_ X%
+ [An¢—|— %anqﬁ— amqﬁ] +(I—n)& in R%r x (0,7),
d
— —(z,0
35) dyw(x, 1)
2\ .
= (1 —U)m¢+ (1 =)y &
+ (jyn) (2,0,t)p+ Ny (I (" +¢)) in 8]12& x (0,7,
=1y inRE X (—e,0].

Here 1) is a small function which will be determined later, x 4 is the characteristic
function of the set A, i.e., x(z) =1if z € A, x(z) =01if z € A, ¥ is defined by

ea[ A €] = (oo = U) = Mprs [ "] + @ (ueo = U, s [7]),

 Zy(xy)+e L (0
D= gy v )

Here a(-,-) is determined by the following nonlinear equation
Iy [p] = (ueo = U) = iy [9"] + a(Myye [9*] + 1 [0]) U
Here we also define the set
Dyr = {(u,v,7) | T € (10,+00), (u,v) € R%r, |(u,v)] <R} for~y>0.
(3.4) is the so-called inner problem and (3.5) is the outer problem. This is a
highly nonlinear system, we will apply Schauder’s fixed point theorem to solve it.

To this aim, we need a linear theory of the following equation

(0,6 = A+ x,, € inRY x (10, +00),

2
_d ¢(u7077—) 1+|u|2¢
1] [ @00~ wlu=2,0) - ($w0.7) ~du—20m) ]
= EE w0

+G[)\7§a¢](%0,7) in ﬁRi X (7’074—00)7

¢=0 inRZ x (—oo,7]
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where

GIA &Y
« 2
= XDZRﬁ(aR%rX(TOH"”)) <AHWL(€2 + l +7|u’2 HWL¢>

+ XD, g (OR2 x (79,40))

" (1/R(w(u,O)—w(u—z,O))-(HWLw(u,O,T)—ku,b(u—z,O,T))dZ>w(u,0).

m |22

In Section 4, we will construct a solution ¢ of the following equation

0-6 = Ap+g(u,v,7) in R x (70, +20),
d 2 o
(36) — %¢(U,0,T) = W¢+A[¢] + h(U,T) mn 3R+ X (7'(),+ ),
$=0 in R% x (—oo, 79,

which defines a bounded linear operator of the functions g (with compact support
in D, ) and h (with compact support in Dy N (AR x (10, +0))) satisfying good
L~-weight estimates when certain further orthogonality conditions hold. Here and
in the following, we use the notation

Alg] = 1 [/}R (w(u,0) —w(u—2,0)) -’(Zgi|)2(u,0,7') fgb(ufz,O,T))dZ w(1,0).

s

In Section 5, we use Schauder’s fixed point theorem to prove the existence of so-
lution for (3.4) and (3.5). This provides a solution to (1.3) and Theorem 1 is con-
cluded.

4. Linear theory for the inner problem. In this section, we consider (3.6).
Our aim is to construct a solution for (3.6) which defines a bounded linear oper-
ator of g, h and satisfies good bounds in suitable weighted norms. We divide the
discussion into two cases.

e Case 1. The first component of the vector-valued function ¢(u,v,7) is odd
in the variable u, the second component of the vector-valued function ¢(u,v,7)
is even in the variable u. Correspondingly, we assume the first components of the
vector-valued functions g(u,v,7) and h(u,7) are odd in the variable u, the second
components of the vector-valued functions g(u,v,7) and h(u,7) are even in the
variable u.

e Case 2. The first component of the vector-valued function ¢(u,v,7) is even
in the variable u, the second component of the vector-valued function ¢(u,v,7)
is odd in the variable u. Correspondingly, we assume the first components of the
vector-valued functions g(u,v,7) and h(u,T) are even in the variable u, the second
components of the vector-valued functions g(u,v,7) and h(u,7) are odd in the
variable u.
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4.1. Casel. This subsection is devoted to construct a solution to the initial
value problem

87¢:A¢+g(u,v,7') in B;R(T) X (T()a+°°)a

d .
— 0= Lulol+ h(uT) in (Bl % (0, +22)) N (ORE (10, +22),
o(u,v,7) =0 in B;—R(T) X (—o0,70),

(p-w=0 in (Bypy) X (10, 400)) N (RZ. X (70, +2)).

4.1

for any given functions g, h with || g4, < 4o, ||h]|q,, < +oo, the first components
of g and h are even in the u variable, we use the idea from [6, 8].

PROPOSITION 4.1. Let 1 < a < 2 and v > 0 be given positive numbers. Then,
for any g, h with ||g||q,, < 4o,
odd in the u variable, the second components of g and h are even in the u variable,

h|la,p < oo, the first components of g and h are

and satisfying

4.2) /B

2R
g(u,v,7) - Z3(u,v)dudv +/ h(u,7) - Z3(u)du =0
—2R

forall T € (19,00)

+
2R

there exist ¢ = ¢[g,h] solving (4.1) which defines a bounded linear operator of
g, h. Furthermore, the following estimate holds

Hh ‘a,u R2a||g||a,l/>

W] < TYR%1o 2R<
[9la, k]| S 77 R log R{ {7 + e 5

Here
[Alla:= sup  77(1+[ul*)|h(u,T)]
|u|<2R(7),m>79
and
lglla,n == sup (1 +|(u,v)|*)|g(u, v, 7).
(uvv)EB;R(T)aTZTO

Proof of Proposition 4.1. We divide the proof into two steps. First, we con-
struct a solution to (4.1) with zero boundary condition on Ri \ B; R() and for g,
h not necessarily satisfying condition (4.2). Then, we use of this construction to
solve (4.1).
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Step 1. We claim that for any G, H satisfying ||G|[p, < 4o, || H||¢,p < oo,
be (—1,2),ce(—1,1), there exists ¢ = ¢(u,v,7) solving

0:¢ = Ao+ G(u,v,T) in B;R(T) x (70, +00),
d .
- %qb:Lw[qS]—i—H(u,T) mn (B;_R(T) X (TOa +°°)) N (8Ri X (7—07 +°°))7

»=0 on (R? \ B;R(T) (0)) x (70, +20),

é(u,v,7) =0 in B;FR(T) X (—o0,70]

4.3)

and satisfying

(1+|(u, )V (u,v,7) [+ |¢(u,v,7)|
ST VR 0g’ R(RT Gy + R Hlc)-
Let n(s) be a smooth cut-off function, for a fixed but large number ¢ indepen-

dent from R, we define 1, (u,v) = n(|(u,v)| — ¢). From standard parabolic theory,
there exists a unique solution ¢.[G, H] of

8’7’¢ = A¢+ G(U7U7T) in B;_R(T) X (TO’ +oo)’
—i®=Lo[(1=n0)¢] + H(u,7) in (B, % (10,+00)) N (IRL. X (19, +00)),
=0 on (Ri\B;R(T)(O)) X (10, 400),

d)(u,'U,T) =0 in B;R(T) X (—00,7-0]-

The first component of ¢, [G, H] is even in the u variable and satisfies

|6:[G. H]| S 77 (R*°| Gl + R H

c,l/)-
Setting ¢ = ¢, [G, H] + ¢, then (4.3) is reduced to the following problem
0r ¢ = Adp+G(u,v,7) in B;R(T) X (70, +00),
— 0= Lo[0]+Ho(u,7) in (B X (70, 40)) N (IR X (10, +0)),

i on (B2 \ B (0)) (. 422,
(u71)77') — 0 in B;R(T) X (_0077—0]7

4.4)

1 T

where Hy = ﬁmgb* (G, H]. Notice that the first component of Hy is even in u
variable and it is compactly supported with size controlled by G and H. Hence, for
any m > 0, we have

4

| S ————— [ sup 7] [G, H](-,7)]]
ws T+ (o) LoD

(RGlyp + R Hlle)-
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Testing (4.4) against ¢ and integrating, we obtain

o [ Fvaid= [ ci [ i
Big Bag —2R
here ( is the quadratic form defined by
Q.00 = [ 1VoPaudo— [ 2 iopau
+ g L+ [uf?

2R

It is easy to check that there exists a constant S > 0 such that, for any ¢ with
fB;R ¢+ Z3dudv =0 and ¢ = 0 on R% \ Bj;, we have

B 2
Q(¢a¢) > RlegR/B;R¢ dudv.

Thus for some /3’ > 0, thereholds

- I 72 2 2 R
(4.6) aT/ P+ #* < R’logR G? + a2).
Bf, R*logR Jp;, B, Y

Set
K := [ sup 7"[|6.[G, H](-,7)|| =]

T>T)

On the other hand, using estimate (4.5) for a large m, we obtain

2R
< / G*+ / ﬁ&) STVER
By —2R

By the fact that 43(, 70) = 0 and Gronwall’s inequality, we obtain from (4.6) that
||<l~5('aT)HL2(BZ+R) <7 VKRlogR,
for all 7 > 7. From standard parabolic estimates, we get
¢, T) | z=(Bay) ST VK R*logR  forall 7 > 7.
Therefore,

(1+](u, ) )| VP(u,0,7)| + [B(u,v,7)]
< T*”Rzlong[ sup TV|¢*[G,H](-,T)|].

T>T0

From this estimate and (4.5), the function ¢o[G, H] := ¢ + ¢.[G, H] solves (4.3)
and satisfies
(1+ [(u,v)) Vo (u,v,7)| + o (u, v, 7)|
ST VR log” R(R*||Gllow+ R Hlc)-
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Step 2. For bounded functions g = g(u,v), h = h(u) in B, whose first com-
ponents are even in the u variable and

J

Let us extent h as zero outside B; 1, and still denote the extended function as h.
From standard elliptic estimate, the equation

2R
g(u,v,T) -Zg(u,v)dudv—i—/ h(u,7) - Z3(u)du = 0.

+
R —2R

T2
A¢ = g(u,v,T) in R7,

— d%gz) = Ly[¢] +h(u,7) inORZ,
lim  ¢(u,v)=0.

|(u,0)|[ oo

has a solution H =: L;'[g, h] satisfying

_ 1
0 S (g s +

0] T eler)
Let @ be the unique solution in Bj, of the problem
0r¢=Ad+ H(u,v,7) in B;“R(T) X (710, +00),
= Lulg]+ HOw0,7) in (B x (r0,-40)) N (TBS x (o, +29)),

¢ =0 on (Ri \ B;R(T) (0>) X (TO7 +°°)7

d(u,v,7) =0 in B;R(T) X (—o0,7p)].

From Step 1, ®[H] defines a bounded linear operator of H and satisfies the esti-
mate

|@o(u,v,7)| S 77 R*log® R(R*“|| H (u,v,7)l| a2, + B[ H (u,0,7) [la-1,)-

Now let us fix a vector e with |e| = 1, a large number p > 0 with p < 2R and
71 > 7p. Consider the following change of variables

B, (2,t) 1= Do(pe+ pz, 71 + p’t),
Gplz,t) = p*H(pe + pz,11 + p’t),
H,(z,t) := pH(pe+ pz,0,71 + pt).

Then ®,(z,t) satisfies
0:®, =N, 0,4+ B,(2,6)®,+ G,(2,t), (z,t) € B (0)x(0,2),

o d62l,2¢ = Cp(z7t)q>P+Hp(zat)7 (Z,t) € (—1, l) X {O} X (0,2)
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with B, = O(p~2), C, = O(p~?) uniformly in B (0) x (0,°). From standard
parabolic estimates, we have

IV=@oll =5t (0) < (1,2))
2

S ol =B 0)x(02) T 1Goll L=(B: (0) % 0.2)) F IHpll L=((=1,1) % {0} x(0,2))-
Furthermore, there holds
1Goll (B ) x0.2)) S 271 | H oo
IHpll = ((=1,1)x {0y x (0,2) S P T Y Hl gy ||(I)p||L°°(Bl+(0)x(o,2)) S "K(p)
with
(4.7) K(p) = R*log” R(R*~*||h[lan + R**|lgllav)-

Hence
pIV®o(pe, i+ p*)| STV K (p).

Choose 7y > R?, then we have
(1 +[(u,0))[V®o(u,v,7)| S 77" K(|(u,v)])

for any 7 > 279 and |(u,v)| < 3R.
Since H is of class C! and |VH||q—1,, < ||Alla,y + [|9]la,v» We obtain

(1+](w,0) ) D*®o(u,v,7)| < 77K (|(u,v)])
for all 7 > 79, |(u,v)| < 2R with K being defined in (4.7). Thus we have

(14 [(w, )| D*®o(u,v,7)| + (14| (u,0) ) Vo (u, v, 7) |+ | Po(u, v, 7)]
S VR og” R(R*|[Blaw + R *(lgllay)-
Therefore

Rz_aHh ‘a,V R4_aH9 ‘a7u>
L+ [(w,0)] 14 [(uw,0)2 )

\Lo[@](-, )| S 7R 10g2R(

Define
dolg, h] := Lo[Po].
Then ¢y, h| satisfies (4.1) and the proof is completed. O
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4.2. Case2. The following proposition is valid.

PROPOSITION 4.2. Let 1 < a <2, v > 0 be given positive numbers. Then, for
R > 0 sufficiently large and any g = g(u,v,7), h = h(u,T) with ||g/q., < oo,
||| a, < oo, the first components of g(u,v,T) and h(u,T) are even in the u vari-
able for all T, the second components of g(u,v,7) and h(u,T) are odd in the u
variable for all T, and satisfying

J

there exists ¢ = ¢|g, h] solving (3.6), which defines a linear operator of g and h
satisfying

2R
g(u,v,7)- Zz(u,v)duvar/ h(u,T)-Z2(u,0)du=0 forall T € (19,°0),

;—R(‘r) 2R

6w, 0,7) S 77 (1+|(w,0) )" (BT gllaw + BT |]lap)
for some o € (0,1).

To prove this proposition, first we consider the following problem in the whole

half space
4.8)
(87¢:A¢+g(uav77-) in R%— X (7—07_'_00)7
d 2 - .
- %Gﬁ = mqﬂ‘ A[¢] +h(u,T) in (Ri X (10,40)) N (8Ri X (10, 400)),
o(u,v,7) =0 in Ri X (—o0, 79,
p-w=0 in (R% x (79, 400)) N (ORZ X (79, +00)).

Then we have:

LEMMA 4.1. Let 0 < o0 < 1, v > 0 be given positive numbers. Then, for
R > 0 sufficiently large and any g = g(u,v,7), h = h(u,T) with ||g||2+0., < oo,
|h]l140 < oo, the first components of g(u,v,T) and h(u,T) are even in the u
variable for all T, the second components of g(u,v,T) and h(u,T) are odd in the u
variable for all T, and satisfying

J

Then for sufficiently large T > T, the solution of (4.8) satisfies

g(u,v,T)-Zz(u,v)dudv—i—/ h(u,T) - Z2(u,0)du =0 forall T € (19,0).

2 R

4.9 H¢(U,’U,7')”o,n S HgHZJrU,Tl + ||h||1+U,T|'

Here,

9llb.ry = SUPrery ) TN+ 1 (1, 0) )9l 12



Project MUSE (2024-06-09 01:53 GMT) JHU Libraries

[10.248.5.166]

SINGULARITIES IN THE HARMONIC MAP FLOW WITH FREE BOUNDARY 1301

Proof. First, we claim that ||¢||, -, < +oo holds for any given 71 > 7. Given
R > 0 there exists a K = K(R,7;) > 0 such that

’¢<U,U,T)’§K inBR(O)X(T(),Tl].

Fix R > 0 and K > 0 sufficiently large, K;p~ 7 (p = |(u,v)|) is a super-solution
for (4.8). Therefore |¢| <2Kp~ 7 and ||¢||4,r, < +oo for any 71 > 0. We claim that

(4.10) / d(u,v,7) - Zr(u,v)dudv =0 forall T € (19, 71).
R

Indeed, test the equation against

Zom,  n(u,v) = 770(%)

with 79 being a smooth cut-off function satisfying 79(r) = 1 forr < 1 and r =0
for r > 2, R is a large constant. We obtain

¢(,7) Zom = /T ( <Z5A(77Z2)dudv+/ g-nszudv>
Ri R%r

[ [or (L )i [

On the other hand, we have

- A(nZy)dudv + / g-nZrdudv

2
R+

d 1 .
+/R¢'(dv(”22)+1+y |217Z2>du+/h nZydu = O(R™°)

2
R+

uniformly on 7 € (0, 7). Letting R — oo, we then have (4.10).
Now we claim that for 7 > 7p large enough, any solution ¢ of (4.8) with
|¢]|o,7, < +oo and (4.10) satisfies the estimate

(4.11) [@llom S [1All140,m + lgll20m-

Therefore (4.9) is valid.
To prove (4.11), by contradiction, we assume that there exist sequences le —
~+o0 and ¢y, gi, hi satisfying

Ordr = Ag + gi in RZ x (79, +),
d 2 .
— gtk = e ‘2¢k + Alge] +hi in (RE x (70,400)) N (ORZ X (70, +20)),

/ or(u,v,7) - Zo(u,v)dudv =0 forall T € (T(),le),
RZ

or(u,v,7)=0 for (u,v,7) € ]Rz+ X (—e0, 70]
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and

(412) H¢k||a,7'lk = 17 ”ng2+0,le - 07 ||h/€||1+0,7']k — 0.

First we claim that

(4.13) sup  77|op(u,v,7)] =0

T()<T<le

holds uniformly on compact subsets of R?. If not, for some |(u,vy)| < M and
T0 < Tzk < T{“ , there holds

(75" (1 (s 0) )0 i 75| > 5.

Clearly, 7% — +oo. Define

¢n(’u,,'l),7') = (7—2’§>V¢n(u71}77—2k +T)
Then we have
87'95]6 = A&k +§k in Ri X (TO - TZk’O]

d - 2 . - .
—%Cf’kz = Wﬁbk + Algr] + hy in (Ri x (70 —7'216?0]) N (ORi X (To—TzkaO])

where hj, — 0 uniformly on compact subsets of R x (—eo,0] and

- 1 .
|k (u,v,7)| < = 1n]Ri><(7'0—7'2k,0].

1+ |(u,v)|

By parabolic estimates and passing to a subsequence, ¢;, — ¢ uniformly on com-
pact subsets of R2 x (—o,0], ¢ # 0 and

Ordp = Ao in R% x (—o0,0],
d. 2 . .
—%Qﬁ— W¢+A[¢] in R x (—e0,0],
/ b (u,v,7) - Zy(u,v)dudv =0 for all 7 € (—o0,0],
RY
1

< in R2 x (—eo,0].

|p(u,v,7)| < T o)l in R7. x (—e0,0]

We prove that ¢ = 0 from which we get a contradiction. From standard parabolic
regularity theory, ¢(u,v,7) is smooth. Testing the first equation above with ¢ we
have

1 72 T T\ _
zaT/Ri’(bT| +B(¢T>¢T)_O
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where )
B(¢,9) :/RZ |Vg5|2dudv—/ T [ ’2625 (u,0)du

Clearly, B(¢,¢) > 0 and there holds

[ 16 = 30.56.9) -
R

0
aT/ 6. <o, /d/ 1P < oo
R? - Jr

and hence ¢, = 0. Thus ¢ is independent of 7 and

Therefore

Ap=0 in R% x (—o0,0],

d- 2
f%gf,

Since ¢ is bounded, the nondegeneracy result in [30] implies that ¢ = ¢Z, for some
constant c. Since fRz &+ Zrdudv = 0, ¢ = 0, which is a contradiction. Thus (4.13)
+

holds. From (4.12), for a certain (u,, v, ) with |(uy,v,)| — oo there holds

NM—*

(le) |(U]€,’Uk»)‘ ‘¢k(ukavka72)|>
Define

On(2,7) = (73)" | (e, &) i (e, 0) + [ (e, vk )| 2, | (e, 0) |7 + 7).

we have p
0r . = Ay + i (2,7), —%ékzakiﬁm-ﬁk(zﬁ)
with

hi(2,7) = (T8)Y | (ugey o) |7 e (g, o) + | (e, 1) | 2, | (i, vg) |74 72).

By the assumption on hj, we obtain
ez, )| S o) () + 27177 ((75) ™ (ur ve) I+ 1)

with
o (ug, k) .
(i, 04) = 2
| (uk, v
and |é| = 1. Thus h4(2,7) — 0 on compact subsets of R\ {€} x (—oco,0] uniformly.
The same property holds for a,,. bie| > % and

|6k (2,7 < [, o) + 2177 ((75) ™ (uw ve) [T+ 1)
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Therefore, ¢, — ¢ # 0 uniformly over compact subsets of R\ {¢} x (—c0,0] and

(4.14) 0r0=Ao in R% x (—oo,0],
(4.15) —d%g?s:o inR\ {&} x (—e,0],
(4.16) (2,7 <[z —2&]77 inRZ\ {e} x (—oo,0].

Note that ¢ is of form ¢ = (g;) = (‘7;’)1 ) and ¢ is odd in the u variable. By Lemma
4.2, functions é satisfying (4.14)—(4.16) is zero, which is a contradiction. This
completes the proof. O

LEMMA 4.2. Let ¢ = ¢(u,v,7) be a scalar solution of
Oy =A¢ in R% x (—o,0],
d
(4.17) —26=0 in OR% \ {(0,0)} x (—eo,0],
v
[é(u,0,7)| < |(w,0)| 7 in RIN\{(0,0)} x (—e0,0],
for 0 < o < 1 small enough, ¢(u,v,T) is odd in the variable u for all v and T, then
¢=0o0nR2 x (—o0,0].
Proof. Inspired by the proof of Lemma 4.2 in [26], we set
v €V

P —
(u,v,7) (u2+0v2+471)8 +u2+v2’

v€(0,1), 28-y=o0.

Then
—o, +Ad
=02 (r+u+07) P (= (r P+ ) (U + (4B + 1)07))
+ 07 (14wt + vz)_ﬁ_z (sz((4,8 +1)(u? + %) =37) + 2 (7 +ul + vz)z)
< B4B =4 + 1) (141> 407 P
=BRo+2y =4+ 1) (r+u*+0H) P <0
if we choose o sufficiently small and v € (0, 1) sufficiently close to 1. Then the

function ®(u,v,7+ M) is a positive super-solution of equation (4.17) in ]R%F X
[—M,0]. Hence |¢p(u,v,7)| < ®(u,v, 7+ M). Letting M — +oo we have

v
p(u,v,7)| < IR

Since ¢ is arbitrary, ¢ = 0. U

Proof of Proposition 4.2. Let ¢ be the unique solution of (4.8), from Lemma
4.1, for any 71 > 0, we have

[, v,7)| < O (14 [(u,0) )" (llgll2+0.m + 1All14+0.m)-
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Since [|glq,0 < 400, we get
lg(u, v, 7)| < CT77(1+|(u,0)[) (|9l a,w

and

lgll240,m < BZ7|glla,v-
Similarly, we have

Al 4o < RFT Al

Therefore
¢ (u,0,7)] < CT77 (1 +|(u,0) )" (R gllaw + R hlay). O

4.3. The whole linear theory. Combine Propositions 4.1 and 4.2, we ob-
tain the main result of this section.

PROPOSITION 4.3. Let 1 < a <2, v > 0 be given positive numbers. Then, for

any g, h with ||g|q,, < 400, |||, < 4o and satisfying
2R
/ g(u,v,7) - Zr(u,v)dudv +/ h(u,7) - Zy(u)du =0
(4.18) B, —2R
Sforall T € (19,0)
2R
/ g(u,v,7) - Z3(u,v)dudv —l—/ h(u,7) - Z3(u)du =0
(4.19) B, 2R

forall T € (19,00)

there exist ¢ = ¢|g, h| solving (3.6) which defines a bounded linear operators of g
and h. Furthermore, for some o € (0, 1), we have the following estimate

Rz_aHhoHau R4_a||90HaV
olout]) £ 7 1o ’ )
1+ [(u,0)] (14 [(u,v)])?

T <Rl+gath Ha,v Rzﬂriaugl ”a,V>.
(1+Jul)? (1+[(u,v)[)7

Here g = ¢° + g', the first component of ¢° and the second component of g' are
odd in the u variable, the second component of ¢° and the first component of g
are even in the u variable. We decompose h = h® + h! similarly.

Remark 4.1. If conditions (4.18) and (4.19) are not satisfied, by the same ar-
gument of Step 1 in Proposition 4.1, we find a solution ¢ of (3.6) satisfying

(14 |(w,v) D[V (u,v,7) |+ |o(u,v,7)]
ST VR log” R(R*“||gllaw + (14 [ul) “[lllap)-

We will use this fact in Section 5.
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5. Solving the inner-outer gluing system. We separate the proof of Theo-
rem 1 into the following steps.

Step 1. We formulate the inner-outer system (3.4)—(3.5) into a fixed point prob-
lem in a suitable space.

e The inner problem. Define

Gy P\;fﬂﬂ (u,’U,T) = XDzR)‘zg;F in R2+ X (TO7+°°)7
GZP\,fﬂb] (U,O,T)

2
= XD, r0(OR2 x (19, +)) <)\HwL52 1o Tl wﬂﬂ)

+ XD, rN(OR2 x (79,40))

" (1/ (w(u,O)—w(u—z,O))~(HWLw(u,O,T)—lew(u—z,O,T))dZ>
R

™ 2|2
x w(u,0),
N6 Yl(r) = :

fB+ XZZ+f 2R XZ3

2R
X </ Gl[)\,g,’LZJ]-szudUJr Gz[A,f,Q/)]-szu),
Bin 2R
1
d[X,&,¥](r) =
fB+ XZ2+f 2rXZ3
2R
x (/ CiINE, W] Zadudo + Gz[)\,g,w]-%du),
Bin -2R
GiN & Y)(w,v,7) = (1) x Za(u, v) +d(T)x Z3(u, v),

Q)

2N &) (u, ) = e(T)x Za(u) + d(7) X Z3(u).
Here x(u,v) = W Then ¢ solves equation (3.4) if ¢; and ¢, solve

drd1 = Ad1 + (G —@)[A,s,w] (u,0,7) inR3 x (70, +e0),

d
—%le(uaoﬂ') 1+| ’2¢1
1 w(u,0) —w(u—2,0)) - u,0,7) — P (u—2,0,7
L] [ ofes0)utu=20): (0(u05) = D a0

+ (G2 = Ga) [\ &, 9] (u,0,7) i IR X (70, +2),
¢1=0 inR% x (—oo, 79
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and
a”r¢2 = A¢2 +él [)‘7571” (U,U,T) in R%’- X (7-07 +°°)7

d 2
-4 D
dv@(u7 /7) 1+ |u]2¢2

+1[/ (w(u,o)—W(U_Z’O))‘(¢72(U>077)_¢2(“_Z7077—))d2 w(u,0)
R

m EE
+ G\ &](u,0,7)  in ORZ x (79, +o0),

$2=0 inR% x (—oo,79)],

respectively. Let ¢ =: T [g, h] be the bounded linear operator constructed in Propo-
sition 4.3, then (3.4) is equivalent to the following fixed point problem

{¢1 = T[(Gl _él)(Avgﬂb)u (GZ _62)(A75’¢)]7
¢)2 = T[al ()‘ang)?aZ()‘vgaw)]
e The outer problem. Rewrite equation (3.5) as

Op = A+ Hi [, 6,1, €] (2,0,1) inR% x (0,7),
(5.1) d

— @w(x,o,t) = M1, d,\, €] (2,0,t) in IR% x (0,T),
where
U6\ E1(0.0.0) = ~3n(0:0)- V=1 2
A6+ V6~ dne] +(1- ],
2\

H2[¢7¢7>\7§]($,07t):(1—77) |21/}+(1_’r/)]'_‘[Uig;<

Az — (1)

+ (cZ”) (,0,8)¢ + Ny (Lo (7 + ).

To solve (5.1), we first consider the corresponding linear problem

(v = Av+ f(2,,) inR2 x (0,7,
d
Y= ,t), eR O,T ,
w(q70’T) :O,
J/’(l“vy,()) = (c1e1+cpe3)n; in Ri.

for suitable constants ¢y, co, where

() ()



Project MUSE (2024-06-09 01:53 GMT) JHU Libraries

[10.248.5.166]

1308 Y. SIRE, J. WEL, AND Y. ZHENG

and 7, is a smooth cut off function with compact support and 77; = 1 in a neighbor-
hood of (g¢,0). For a function f(z,y,t), define the L-weighted norm as follows:

3 -1
Ifli= s (143 0] ol
=1

R2 x(0,T")

Here o, := A?’ZR*ax{KZR,\O}, 0 :=T77(1 —n)ﬁ‘&%, 03:=1,00and © >0

are small. Also, for v € (0, 1), we define
(5.3)

1
||,(7Z}||0«7@7’Y = sup WJ(JT,y,t)’

Ao(0)9R(0)>“|log T| R2 x(0,T)
1

+ sup —a W(%y»t)—¢($a?/,T)|
R x(0,7) 20 (1) O R(t)>*[log(T — )]
1
+ sup - — [Vib(z,y,1)|
R2 x(0,T") )\O(t)e LR(0)!
1
+ sup — _ |V¢($7y7t)_v¢(l‘7va)‘
®2 x(0,7) M ()9 R(E)!
+ sup 1 \V¢($,y7t)—v¢($/>y/,t)\
B x(0,r) O)OTITIRE) (2 y) = (2 y) 7
1 ’V@b(%yvh)_v@b(l‘,yatl)’
T BT R (-t |

where the last supremum is taken over (z,y) € R2,0<t; <t, <Tandt, —t; <
1‘—0 (T —t,). Then by minor modifications of [8], we have:

PROPOSITION 5.1. For T, € > O, there exists a linear operator mapping func-
tions f :R% x (0,T) — R?, g: IR2 x (0,T) — R with || f||sx < o0, ||g|lss < o0
into 1, ¢y, ¢y so that (5.2) is satisfied and the following estimate holds

H%Z’ |a,®,v < C(Hf”** + ||g||**)

Let ¢ = S[f, g] be the operator defined in Proposition 5.1, then (5.1) is equiv-
alent to

1][) = S[H15H27¢°°](¢7w’>‘7€)'

e The choice of A. To make d(7) as small as possible, we solve the following
equation approximately,

2R
(5.4) G\ - Zydudv + Gy - Z3du = 0.
B;R —2R
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This is the case o = 0 of A-a system in [8], hence (5.4) is equivalent to the fixed
point problem

A= Al(¢7/\>£)
We refer the readers to [8] for details.

e The choice of £. To make ¢(7) as small as possible, we solve the following
equation

2R
(5.5 Gy - Zrdudv + Gy Zrdu=0
B, ~2R

which is equivalent to a nonlinear ODE for form

1 2R

$= S5, 72+ Zadudv

</ (Gl + £Zz) - Zrdudv + Gy - szu> .
By

2R
This can be rewritten as a fixed point problem
f = A2(¢a )‘75)

Combine the above arguments, the inner-outer system (3.4)—(3.5) is equivalent
to the following fixed point problem

(5.6) Y = S[H1, Ha, Y] (¥, 0, A, €),

(5.7) ¢1 = TG —G1)(A&,9), (G2 —G2) (N, &),
(5.8) ¢ =TI[G (A RONCIONROIE

(5.9) A=A (¥, A,9),

(5.10) = A (P, A,€).

Step 2. To set up the fixed point problem (5.6)-(5.10), we give a description
of the relevant functional space. First, set

R() = ()P, p=7+o

and
a=2—o0,

for a small but fixed number o > 0. Take ¢ in the following space

X(CL?V) = {¢ S C(@zR) :Vo e C(§2R)a ||¢||X(a,u) < oo}’

where

||¢”X(a,u) = sup VRTIngR[(l+|(uvv)|>lv¢(uvv77)|+‘(Z)(uava)H?

(Uv'UvT)EDZR )\0 W
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a € (1,2)iscloseto2and v € (0,1) is close to 1. Also we take v in the space
Y(d,0,7)={y e CRLx[0,T)): Ve CR: x[0,T)), |¢|la0- <}

for parameters a’ < a and 7' < ~. Note that the norm || - |40 4 is weaker than
| - lla,0,y> and the inclusion Y (a,v,y) < Y (a’,v,~") is compact.

We assume that the parameter ) is in the space of C'![—T,T] functions satis-
fying A(T") = 0 with norm

lgllu= sup (T —1t)"*[g(t)]
te[-T,T]

for p € (0,1) small, while ¢ is in the space C'([0,T]) satisfying &(T') = q with
norm

I€lle = sup (T —1)~7(t)],

te(0,T
for some o > 0 fixed.
For R; > 0 small but fixed, let us define the set

A={(¥,61,¢2,1.6) €Y (¢, 0,7) x X (a,v) x X (a,1) x O[T, T]xC'[0,T] |
1611l x(a,0) + 102l x(0,0) + 18]y (r,0.77) + I+ 11€lle < T+ Ry}
Let (1,0, A, &) — F (1,0, A, &) be the map defined by (5.6)—(5.10).

Step 3. We show that F maps the set A into itself and it is a compact operator.
To this aim, we should estimate (5.6)—(5.10) respectively.

Estimations for (5.6). We claim if R > 0 is fixed and small, there holds
(5.11) 1H1 (1,6, \,6) [+ < C(T+ Ry).

First we consider the term (1 — U)Wi\g(mﬂb' Since 1(q,0,7") = 0 and from the
definition of || |76, we have

W(%Ovtﬂ < (’1/)(33,0,15) —1/1(3770aT)’ + W(UC,O»T) —w(q,O,T)’
< (r A () R()* “[log(T — 1))

a0
Hence
27
U e —ewr”
2
< (1=0) oy ((@,0.0) =@, 0. 1)+ [(2,0,T) (a0, 7))

< 001 =n) 2 -+ AT (ORWP og(T =) [0

< C(o2+03)||Y]lar0,v
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and
2\
R R L
Next we consider An¢. From the definition of [ I (a,v)> when R < [(u,v)| <2R,
we have

|6 (w0, )|+ (14 (u,0))[Vo(u,0,7) < 6]l x (0, Ag R “log” R.

Hence
|Ang| < )\%RZX{\(I,;L/)*(&O)‘S2)\R}|¢(yvT)’
< CX§ 2 RY “log® RX{|(x.)— (0.0)| <Cro R} Bl X (0
< OA 2R X ()00 <cror) 10l x ()
<Coil9llx(aw)
and

HAU¢H** < CH¢HX(0,,I/)'
Similarly, we have

|Gr)oe

For the term —%n(u,v) Viup)®— %n%, since |A\| < C, we have

@)l + IN'VIVE s < ClllIx (a1

*k

A
’)\n(uvv)v( )d)' < CAV 1R4 alog RX{\x q|<2X0(t) }HQZ)HX (a,v)
< Cpilloll x(a)-

Similarly,

5 d¢ —1 p4—a
')\Udu < C)\ R 10g RX{\x q|<200(t) }||¢”X (a,v)
< 0101||¢HX(Q,V)'

Therefore,

§ dg
A du

A
H—)\U(U,’U)'V(u,v)ﬁb— SCvH¢HX(a,I/)'

For (1 —n)II;1 &, we have

. Ao
‘(1 _W)HUl52| S (1 _W)r2+>\(2)»
hence
[(1 =) & e < CT.
Similarly,

[(L=n)&f [ < CT.
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The proof of the estimate

IN(" + 9 +1Qad) | < CllPllar0.4 + 9l x (a,))

is analogous as the previous terms, so we omit the details. From the above esti-
mates, we obtain (5.11). By (5.11) and Proposition (5.1), there holds

(512) HS[HI7H27¢°°](¢7w7)\ag)Ha’,@;}/ < CR]

Estimations for (5.7). Now we consider (5.7). By Lemma 3.2 in [31], there

holds
Ao

1+ p?
Fix a; € (a,2) and v; € (v,1), which implies

Ao

Loyl <C e

Tg”w”Y(a’,zz,’y’)'

V=< C

1G1NE,30) oy .y <OTVM +CTOR,

and
1G2(N &) lag oy < OT'™ +CTOR,.
Therefore

(5.13) [ TIGIAE ), Go(A & )]y < CT' ™+ CT ARy,

Estimations for (5.8). From the choice of £, ¢(7) = 0 and from the result of

(81,
()] < Co(T = )7 R(1)' ™ (lla() = a(T) |z + |a() = a(T) l7m.2)

and
la(-) = a(T) s+ lla(-) — a(D)|ly mi < CllYlla 0 < CRy.

Hence we have

(5.14) 1021l x (ar,01) = I T Teig (O(N . §,9), )X Zi] | x (ay 1) < C R,
which holds since the decay of xZ3 is ﬁ and v is close to v depending on o.
Here

lgllua="sup (T —)H[log(T —1)|'lg(t)],
te[-T,T)

—m t)—J(s
= sp (e og(r -y OO
~T<s<t<T, t—s< 5 (T—1) (t—s)

/1

pe (0,1),me(0,1),l€Rand o’ > 0.
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Estimations for (5.9). From Proposition 6.1 in [8], we obtain
(5.15) Al < Cllog 7|1
for u=p(a' —1).

Estimations for (5.10). The definition of ||+/||,/ o, implies that
(5.16) €]l < CRy

forpu;=v—1+p3(a—1).

From the estimates (5.12), (5.13), (5.14), (5.15), (5.16) and standard parabolic
estimates, J is compact from the set A into itself. The existence of a solution
follows then from Schauder’s fixed point theorem, which completes the proof of
Theorem 1.
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