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1 Introduction and basic objects

Heisenberg groups H", n = 1, are connected, simply connected Lie groups whose Lie algebra is a one-dimen-
sional central extension of b; = R,

h = hl @ hZ) Wlth hZ =R = Z(h): (11)

with bracketh; ® h; — b, = R being a nondegenerate skew-symmetric 2-form. Due to its stratification (1.1), the
Heisenberg Lie algebra admits a one-parameter group of automorphisms &,

(St =t on hl) (St = tz on f’)z,

which are counterparts of the usual Euclidean dilations in RY. The stratification of the Lie algebra b yields a
lack of homogeneity of de Rham’s exterior differential with respect to group dilations &,. The so-called Rumin
complex is meant precisely to bypass the lack of homogeneity of de Rham complex through a new complex
that is still homotopic to de Rham complex. In Appendix A, we shall provide a more exhaustive description of
Rumin complex.

In this article, we investigate several properties of the heat kernel associated with the Rumin complex on
Heisenberg groups, i.e., of the distributional kernel of the “heat operator”

L=0;+Ayp In RixH",
where A4y, , is the homogeneous Hodge Laplacian associated with Rumin complex (1.2), and derive a natural

reproducing formula in the spirit of Calderdn reproducing formula. Beside this application, which has its own
interest, we collect several basic results on the heat kernel, which seem to be not all available in the literature
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(in this spirit, we quote the studies by Albin and Quan [1] and Rumin [46] for the heat kernel in contact
manifolds, as well as the study by Dave and Haller [19] in filtered manifolds).

This project grew out of understanding compensation—compactness phenomena for differential forms on
nilpotent groups. Several div-curl lemma have been proved in the setting of Heisenberg groups by the second
author jointly with different co-authors in previous studies [8,10,11,29]. The present article stems from the
following observation: in a very interesting article, Lou and McIntosh [40] introduced Hardy spaces of exact
differential forms for the De Rham complex on Euclidean spaces and generalized the foundational work of
Coifman et al. [17]. The work of Lou and McIntosh contains several ideas around the use of differential forms
with coefficients in a suitable Hardy spaces (and their atomic decompositions) but also their analysis via a
reproducing formula a la Calderdn. Thanks to the works of the second author with Baldi et al. [4-7], several
important functional inequalities are now available for the Rumin complex. However, as mentioned, the full
generalization to the Rumin complex of div-curl lemma of Lou and McInstosh requires the introduction of
Hardy spaces and their atomic decomposition. At this point, the theory of such spaces for the Rumin complex
departs from the Euclidean setting, even if every Heisenberg group is a space of homogeneous type, because of
the structural properties inherent to the Rumin complex. In a subsequent article, we will address the con-
struction of such spaces and the applications to compensated compactness on the Rumin complex. This
application to div-curl lemmas is also the motivation behind our choice to present the Calderén reproducing
formula in the space L'. However, we must stress that, unlike in [2], our reproducing formula is not associated
with a semigroup with finite speed of propagation, and therefore, following the study by Lou and McIntosh
[40], we are lead to work with a decomposition in molecules, replacing the usual decomposition in atoms of the
functions in real Hardy spaces.

Classically, approximation on groups or manifolds can be done through the heat operator. The scalar case,
i.e,, the heat operator associated with a subelliptic Laplacian on stratified nilpotent Lie groups is nowadays
well understood. We refer to previous studies [25,33,49] and to the historical introduction of the study by
Bramanti et al. [15]. On the contrary, much less is known for the heat kernel on differential forms in both the
Riemannian and the non-Riemannian setting. We refer to the previous study Coulhon et al. [18] and to the
reference therein. In particular, the literature is rather poor on the properties of the heat kernel for differ-
ential forms in Heisenberg groups for the Rumin Laplacian. The primary goal of the present work is to fill in
this gap and provide several ready-to-use properties of the heat equation on the Rumin complex. As an
application, we use this heat kernel to prove a general Calderdén reproducing formula on Rumin forms. Our
contribution can then be seen as a further expansion of the noncommutative harmonic analysis of differential
complexes on the Heisenberg group.

To state our main results, we first recall some basic notations related to the Heisenberg group and the
Rumin complex of differential forms. The subsequent sections introduce all the necessary tools and the
appendices expand on more details on the geometry and analysis on Heisenberg together with the Rumin
complex. We refer the reader to those for a more detailed account.

In this section, we present some basic notations and introduce both the structure of Heisenberg groups
together with the formulation of the Rumin complex. We denote by H" the (2n + 1)-dimensional Heisenberg
group, identified with R?**! through exponential coordinates. A point p € H" is denoted by p = (x, y, t), with
both x,y ER™ and t € R. If p and p’ € H", the group operation is defined by

1 n
P =X,y Y, EZ(XIY;' - ¥X)).
j=1
Notice that H" can be equivalently identified with C"* x R endowed with the group operation
1 -
@ OG0 = |2+ ( t+ 7= JIm@E0)

The unit element of H" is the origin, which will be denoted by e. For any q € H", the (left) translation
7, : H" — H" is defined as follows:

P~ Tp=q-p.
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We denote by h the Lie algebra of the left invariant vector fields of H". The standard basis of j is given, for
i=1,..,n,by

1 1
Xi =0y~ Eyiaz, Yi=0y + Exiat: T =0,

The only nontrivial commutation relations are [Xj, ¥;] = T, for j = 1,..., n. The horizontal subspace b, is the
subspace of ) spanned by X,,..., X, and Y3,..., Y;: by = spang {X;, ... Xp, 11, ..., Y}

Denoting by b, the linear span of T, the two-step stratification of iy is expressed by

h="bh & bh.

The stratification of the Lie algebra h induces a family of nonisotropic dilations &, : H® - H", A > 0 as

follows: if p = (x,y, t) € H", then
Si(x,y, ©) = (Ax, Ay, A2t).
Throughout this article, we also write
Wi=X;,, Win=Y and Wyu=T, fori=1,., n.

The dual space of b is denoted by Alh. The basis of Alh, dual to the basis {X, ..., ¥;, T}, is the family of

covectors {dx, ...,dxy, dy,, ...,dy,, 6}, where

1 n
0 :=dt - E};(deyj - y,dx)
is called the contact form in H". We also denote by (-,) the inner product in A'h that makes (dx;, ...,dy,, ) an
orthonormal basis, and we set

wi=dx, wup=dy, and wyw =0, fori=1,..,n
We put Agh = A’ =R and, for1 < h <2n +1,
N = spangfwi A = A wg, 1S < <ip<2n+ 1}
We shall denote by 6" the basis of A'h defined by
O ={wy A - Awy 1 1S <-<ip<2n+1}.

The inner product {-,-) on Alh yields an inner product {-,-) on A'h making 6" an orthonormal basis. The
elements of Ah are identified with left invariant differential forms of degree h on H™.

The same construction can be performed starting from the vector subspace h; C b, obtaining the hori-
zontal h-covectors

Nthy = spanfw;, A =+ A Wy, 1 1S4 < <iy < 2n}.
It is easy to see that
;= 0" n Ath

provides an orthonormal basis of A'h;.

Keeping in mind that the Lie algebra f can be identified with the tangent space to H" at x = e, the neutral
element (see [31], Proposition 1.72), starting from N, we can define by left translation a fiber bundle over H"
that we can still denote by /A"h. We can think of h-forms as sections of A'h. We denote by Q" the vector space of
all smooth h-forms on H™.

As we stressed earlier, the stratification of the Lie algebra § yields a lack of homogeneity of de Rham’s
exterior differential with respect to group dilations . Thus, to keep into account the different degrees of
homogeneity of the covectors when they vanish on different layers of the stratification, we introduce the
notion of weight of a covector as follows. This is at the core of Rumin construction of the differential complex.
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Definition 1.1. If n # 0, n € Alhy, we say that  has weight 1, and we write w(n) = 1. If n = 0, we say w(n) = 2.
More generally, if n €A, n # 0, we say that nj has pure weight p if n is a linear combination of covectors
Wy A 0 A wy, with w(wy) +-+ w(wy,) = p.

The following result holds (see [8], formula (16)):
Np = Nt @ Nv* 1 = Ntgy @ (N71hy) A 6,

where APh denotes the linear span of the h-covectors of weight p and a basis of AUPh is given by
P = @ NAMPH (such a basis is usually called an adapted basis). Consequently, the weight of a h-form is
either h or h + 1, and there are no h-forms of weight h + 2, since there is only one 1-form of weight 2. Starting
from APh, we can define by left translation a fiber bundle over H that we can still denote by A%Ph. Thus, if we
denote by QP the vector space of all smooth h-forms in H" of weight p, i.e., the space of all smooth sections of
NLPh, we have

Qh - Qh,h D Qh,h+1_

Starting from the notion of weight of a differential form, it is possible to define a new complex of
differential forms (Eg, d.) that is homotopic to the de Rham complex and respects the homogeneities of the
group. This is the Rumin complex. A crucial feature of (E;, d.) is that the “exterior differential” d. is an
operator of order 1 with respect to group dilations when acting on forms of degree h # n, but of order 2 on
n-forms.

Following [44], we define the operator Ay ; on EX by setting

ddy +dlrd, if h#nn+1;
Myp =10dd? +drd. if h=n; 1.2)
ddr + (d¥d)* if h=n+1.
We point out that Rumin Laplacian 4y j is an operator of order 2 with respect to group dilations when acting
on forms of degree h # n, but of order 4 on n-forms.

We stress also that Rumin Laplacian differs from the “Riemannian” Hodge Laplacian in H" [42] associated
with de Rham complex, which fails to be homogeneous.

1.1 Main results

Consider now the heat operator associated with the Rumin Laplacian 4y, , associated with the complex (Ey, d.),
ie,

L=0;+Ay, in RixH",

where 9; stands for 8,1, I; being the identity N, x N, matrix, where N, = dim E({l. Our first result is
Theorem 1.2. The operator L is hypoelliptic on R+ x H".
Building on the latter, we also prove the following basic properties of the heat kernel:

Theorem 1.3. If 0 < h < 2n + 1, the operators —Ay , : D(H", EX) C I2(H™, E{) - L2(H", EY) are densely defined,
selfadjoint and dissipative, and therefore generate strongly continuous analytic semigroup (eXp(—SAn n))s=0
in LA(H™, ED).
Furthermore, there exists a matrix-valued kernel
h = h(s, p) = (hy(s, P)ij=1,..,n, € (D (HM)) WM

such that
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exp(-sAn p)a = a * h(s,*) for a € DMH", ED).

The kernel constructed in the previous statement has the following crucial properties.

Theorem 1.4. We have:
D Lh=0in (DR, x HY))MwMu je,

(Lh|A(s,y)) =0 for all A € D((0, ) x HM),
where the action of the heat operator £ on h must be understood as the formal matrix product
Lh = (LY, v (higij=t, . Ny

defined in the sense of distributions.
(ii) the matrix-valued distribution h is smooth on (0, ) x H". In particular, if ¢ = ngbj € D[R, x H", E}), we
can write

(hig) =Y

i

[ hijts. s, pydsdpé;

R xH"

({i)) ifr>0
h(r%s,y) = rOn(s, §1;;y) for s>0andy € H".

We now finally state how we use the heat kernel to build a reproducing formula. Denote a € LY(H", E}),
such that d.a = 0 and define the map
s

*a
2

F(s,x) = dc*[h[ (x) s>0.

We then have

Theorem 1.5. If a € LY(H", EY) is a d.-closed form, we have:

a= —]Oidc[h[%, ] « (s, ~)]ds.

1.2 Notations

We refer the reader to the Appendices for notations that are used in the article.

This article is organized as follows: in Section 2, we introduce currents on Heisenberg groups. Section 3 is
the core of the article and is devoted to a thorough investigation of the heat kernel associated with the Rumin
complex and its application to the reproducing formula. In the subsequent appendices, we recall the necessary
tools from the construction of Rumin and the Heisenberg groups (Appendix A) and from the analysis on groups
as developed by Folland and Stein (Appendix B).

2 Currents on Heisenberg groups

Let U C H" be an open set. We shall use the following classical notations: E(U) is the space of all smooth
function on U, and D(U) is the space of all compactly supported smooth functions on U, endowed with the
standard topologies [53]. The spaces &'(U) and D’(U) are their dual spaces of distributions.
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Definition 2.1. If Q C H" is an open set, we say that T is a h-current on Q if T is a continuous linear functional
on D(Q, EY) endowed with the usual topology. We write T € D(Q, EL). The definition of &(Q, E}) is given
analogously.

IfT € D(Q) and ¢ € D(Q), we shall denote the action of T on ¢ by (T|¢). An analogous notation will be
used for currents versus differential forms.

Proposition 2.2. If Q CH" is an open set, and T € D’(Q) is a (usual) distribution, then T can be identified
canonically with a 2n + 1-current T € D'(Q, EZ"*Y) through the formula

(Tlay = (T|*a) @1
for any a € D(Q, E{™"). Reciprocally, by (2.1), any n-current T can be identified with an usual distribu-
tion T € D'(Q).
Proof. See [21], Section 17.5, and [9], Proposition 4. O

Following [22], 4.1.7, we give the following definition.
Definition 2.3. If T € D'(Q, E™Y), and ¢ € &(Q, EX), with0 < k < 2n + 1, we define T | ¢ € D'(Q, EZ**175)
by the identity
(T L gla) =Tla A ¢)

for any a € D(Q, EZV17F).

The following result is taken from the study by Baldi et al. [9], Propositions 5 and 6, and Definition 10, but
we refer also to the study by Dieudonné et al. [21], Sections 17.3, 17.4, and 17.5.

Proposition 2.4. Let Q CH" be an open set. If 1< h<2n+1, N = dim EJ' and £ = {&", ... &} } is a left
invariant basis of Eé‘ and T € D'(Q, Eé‘ ), then
()) There exist (uniquely determined) Ti,..., Ty, € D’(Q) such that we can write

T=21 L (),
J

with T; € D(Q, EF™") constructed from T; as in Proposition 2.2.
(i) Ifa € &, E{), then a can be identified canonically with a h-current T, through the formula

(Tlp) = [+anp 22)

Q

for any B € D(Q, Ef"). Moreover, if a = 3a;l", then

T,o=2a | (+5),
J

where d; is the 2n + 1-current associated with a; € D(Q).
(i) Wesay thatT is smooth in Q whenT,,..., Ty, are (identified with) smooth functions. This is clearly equivalent

to saying that there exists B € &(Q, E{) such that

(Tia) = [¢, v
Q

for any a € D(Q, Ef"™) (in fact, we choose B = 3, T;EM.
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Remark 25.If1<h <2n +1, let
E6 = {&l' - &h)
be a left invariant basis of El. Then the linear maps on E
a~ (@) =*(@r*gh
belong to (EX)* (the dual of EP) and
EVED =* (& Axgh = 8% AV = &,
ie, E* = {(&)*, ....(&5 )} is a left invariant dual basis of (Ej)*.
Remark 2.6. Let us remind the notion of distribution section of a finite-dimensional vector bundle ¥: a

distribution section is a continuous linear map on the space of compactly supported sections of the dual
vector bundle 7* [53, p. 77].

Let T be a current on EJ,
T=2T L (),
j
where T,..., Ty, € D'(Q). Then T can be seen as a section of (E{)*. Indeed, if a = Y;a:§"' € D(Q, EY)
(Tlay = §<T, L (Pl

= Z(lea A (€M)
j

= Z(leaj) = Y (TIEN (aEM)
j

]

= X(TIEH @),
]

where the dualities in the first line are meant as dualities between currents and test forms, while the dualities
in the second line are meant as dualities between distributions and test functions. Thus, we can write formally

T =2 TiEH 23)
j
and we can identify T with a vector-valued distribution (T, ..., Ty,).
We notice also that, if a = Z]-ajfjh € &(Q, ED), then

T, = YD
]

Definition 2.7. If T;; € D'(H™) for i,j = 1,..., Ny, we shall refer to the matrix T = (T;);j=1,..,n, @S to matrix-
valued distribution

(Tjij=1,...m : DMH" ES - Ef!
defined through the identity
(Tlay = Y ) (T layél 2.4)
ij

ifa = Y0 € DQ EP.
A matrix-valued distribution T = (T;); j=1,..., n, can also be seen as a distribution section of the fiber bundle
(H™, E} ® (E!*) ([52], p. 76) through the action

(TIA) = 2 (TijlAiy)
LJ

for A = 3, 4i;(EM* ® & € DM, (E))* ® E).
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As we did in Remark 2.6, we can write

T=2TL4"® )"
L

3 Rumin Laplacian and heat operator in E;

This section is our main contribution. After a brief introduction on the Rumin Laplacian, we derive several
basic properties of the associated heat operator. The last section is then devoted to an application to the
construction of a Calderén formula in this setting.

3.1 Rumin Laplacian and its fundamental solution

Definition 3.1. In H", following the study by Rumin [44], we define the operator 4y ; on EJ by setting

dd}+dfd. ifh#nn+1
Ay ={ddH? + dFd. if h=n;
ddr + (d¥d)* if h=n+1

Notice that -4y ¢ is the usual positive sub-Laplacian of H".

Definition 3.2. (Laplacian of a current) In the sequel, when T is a h-current identified with its components
(T3, ..., Ty,) with respect to a fixed basis (&)*, ...,(§y,)* of (EX)* as in Remark 2.6, it will be useful to think of Ay

as a matrix-valued differential operator (A[,ﬂ”: n)ij=1..,n, acting as follows (again with the notations of
Remark 2.6):

BT = My (XTHE = T M THE* 3.
] ]

It is easy to see that

Lemma 3.3. I the basis &, ..., &, of E! is orthonormal with respect to the scalar product used to define d, then
D) = A, (3.2)
where (A[,:’{ ¥ is the formal adjoint of Auﬂ’{ non DH", ED).

Definition 3.4. (The Laplacian of a matrix-valued distribution) If T = (T; ;) j=1,.., s, iS @ matrix-valued distribu-
tion, we shall denote by Ay 4 T the matrix-valued distribution defined by

(A nTIA) = 'Z€<n,,-m[.:’f’hAe,,-> = AZ€<A[.3’:';[1;,,-|A€,,-> (33
i, ij,

for all test matrices A = (Ay)).
Remark 3.5. We stress that the notation (4 5, T|A) may conflict with the notation (T|a) of (2.6) ifa = ZjajE}‘ isa

test form. If there is no way to misunderstanding, we shall use this ambiguous notation, using Greek lower case
characters for forms and capital Latin characters for matrices.
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In addition, if T = (T; ) j=1,...,n, and S = (S;;);j=1,..., v, are matrix-valued distributions, then the convolution

T * S is defined by

(T * S)ijet,.omy = 2. Te * Sej (3.4)
2

provided all convolutions in (3.4) are well defined.

Theorem 3.6. ([12], Theorem 3.1) If0 < h < 2n + 1, then the differential operator Ay, j, is homogeneous of degree a
with respect to the group dilations, wherea = 2 if h # n,n+1anda =4 ifh = n,n + 1. We have:

®

(D)

(iii)

(iv)

)

By [44], [43], Ay, is a Rockland operator and hence is maximal hypoelliptic (in particular hypoelliptic), in
the sense of [35], i.e., if @ C H" is a bounded open set, then there exists C = Cq such that for any p € (1, )
and for any multi-index I with|I| = a, we have

IWallpgin gy < CUlAn pallregin gy + llallpgin gy) (3.5

for any a € D(Q, EF) and where W! are defined in (A6).
For j =1,..., Ny there exists

1(]' = (1(1]1 "':KNhj)J j= 1: Nh (36)

with Kj € D (H™) N EMH"\{e}), i,j = 1,..., N such that ¥ ,A5K,; = 0 ifi # j and ¥ ,A);%K,; = 6, (where &,
denotes the Dirac mass at p = e);

Ifa < Q, then the K;’s are kernels of type a in the sense of Definition B.7 (and hence belong to K%~ in the
sense of Definition B.9) fori,j = 1,..., Ny. In particular, K; j are tempered distributions. If a = Q, then the K’s
satisfy the logarithmic estimate |Ky(p)| < C(1 + |Inp(p)|) and hence belong to LL.(H™). Moreover, their
horizontal derivatives W,Kj;, € = 1,..., 2n, are kernels of type Q — 1. In particular, the K;’s belong to S'(H")
fora<Qfori,j=1,.., Ny

When a = 3a;; € D(H™, E), if we set

A[,fha = Z(aj * i,j)Ei =q * (Ki,j)i,j (Definition 5.2), 3.7)
L

then
My pditha = a. (3.8)

Moreover, ifa < Q, also Ap'y 0w na = a. Thus, if we identify the operator A"y, with its distributional kernel,
we can write

(Kipij = Dyi'p-
With the notation of (3.3), (3.8) can be written as follows:
B ndyitn = Se s (3.9)

where &, , is the matrix-valued distribution (a;;); j=1,..,n, where a;; = 0 ifi # j, and a;; = & fori =1,..., Ny,
so that

Sentt = u(e) for all u € DH", EM);
Ifa = Q, then for any a € D(H", R™), there exists B, = (B, ...,By,) € R™, such that
Appypa - a = B, (3.10)

This situation arises only whenn =1and h =1, 2.

The following vector-valued Liouville type theorem has been proved in [12], Proposition 3.2.
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Proposition 3.7. Suppose L is a left invariant hypoelliptic differential operator which is formally self-adjoint.
Suppose also that £ is homogeneous of degree a < Q. If T = (Ti, ..., Ty) € S‘(H™M)V satisfies LT =0, thenT is a
(vector-valued) polynomial.

In particular, by Theorem 3.6, (i), the proposition applies to L = Ay p.

As a consequence, the following results can be proved as in the study by Bonfiglioli et al. [13], Propositions
5.3.10 and 5.3.11.

Theorem 3.8. Suppose Q > a. We have:
) iIfK = (&) withK;; € S'H™) N EH "\{e}),i,j = 1,..., Ny, vanishes at infinity and satisfies 39), then K = 4;%;
(i) Ap'y = VA (identity among convolution kernels).

Proof. Let us prove (i). SetT = K — A;/;. By Theorem 3.6, (iii) I belongs to Lj}... In addition, Ay »I' = 0, so that, by
Proposition 3.7, T is a vector-valued polynomial. But, by Theorem 3.6, (iii), I' has at most a logarithmic behavior
at infinity and hence vanishes.

Let us prove (ii). Take ¢ = qu)jfj € D(H, EP), and set

u(p) = dun * itn(p) = ¥ ¥ | [4996,(@)Kea(q p)dq [

k j,e

Arguing on the entries, it turns out that the matrix-valued distribution u is well defined and smooth. In
addition, if h # n, n + 1, by Lemma B.8,

u(p) =0(lp 9) as p - . 311
Analogously, ifh=n,n+1landn>1,
u(p) = O0(lp I*'9) as p - =, (3.12)
and, eventually,
u(p) =0(nlp|) asp-— (3.13)

when n =1 and h = 1,2. Take now ¢ = ;1§ € D(H", Eg"). We have

A w(p)dp

[, apyip = > ]_,ZBI[IAui’:’A¢,(q)1<g,k<q-1p>dq
- jzejdqﬂu:’z’;@,-(q)jdp Y Ker@ DA UP) (3.14)
- j%jdqz\ui’:’mj(q)jdp T Ko PP,
Now, putting ¢”)p = n, and keeping in mind that 4y, , is left invariant,
L2 ACR O RDROR M ROEIICT)
= [y S Kk (8 * D) (315)

= (U (¥ © 19)e(e) = Yy(q),
by Theorem 3.6, (iv), provided h # 1,2 ifn = 1. If n = 1 and h = 1, 2, the last line must be replaced by



DE GRUYTER On the heat kernel of the Rumin complex and Calderdn reproducing formula = 11

U@ + B,

where 3, B,&x is a constant coefficients form (depending on ).
Plugging (3.15) in (3.14), we obtain

[ aw3dp = 3 [daao, @) = B, v),
j.e
i.e, Ay p® = Ay pu in the sense of distributions. On the other hand,

(4n 9, B) = 0,

and the conclusion still holds whenn=1and h =1, 2.
We can conclude that Ay 4(¢ — u) = 0, so that, by Proposition 3.7. ¢ — u is a polynomial form. On the other
hand, by (3.13), ¢ - u has at most a logarithmic behavior at infinity, so that ¢ — u = 0. In particular,

0(e) = u(e) = 3 Y (AP @Ko x(@ NG = ¢ * Ay

k je
Since A"y satisfies the assumptions of (i), we obtain “Ag', = Ag'. O
The aim of the following result is the characterization of some integer order Sobolev spaces of forms in E;

in terms of integer powers of Rumin Laplacian. More precisely, we prove that
Proposition 3.9. Ifk € N, a € LXH", E¢") N D(4fx ), then

ledlzzqm gy + HA[Iﬁ,ha”LZ([I-I",Eé‘)
is equivalent to the norm of a in W2(H", E}) (we remind thata =2 ifh #n,n+1anda =4 ifh = n,n + 1).
Proof. For the sake of simplicity, we take n > 1. The case n = 1 can be handled in the same way.

Obviously, we have just to show that
”a”Lz(ﬂ—l",EUh) + ||Au]4(,ha||L2(u-|",Eg‘) zc ”a”W"k’z(lH",Eg’)-
Suppose first a € So(H™, E{). By Proposition B.10, 4% : So(H™, EJ") = So(H™", E), so that we can write
a= (43K e A pa
Notice now that, by Proposition B.15 and Theorem 3.6, (i)
(AWK = Og(Kk),  with Kj € K*0,
Moreover, by Lemma B.11, if d(I) = ak
XA K = O(X'Ky), where X'K; € K©.
Thus, keeping in mind Theorem B.12, taking d(I) = ak,
”a”W“k’Z(IH",E({l) ES C(||X1a||L2(H",E(§1) + ||a||L2(|H",E§))
= C(||00(X1Kk>4u5,ha||L2([H",E[{1) + |lallzzgim g2y)
s C(||A[|£{|,h‘1||L2(H",EU") + |lallzzgm gly)-

Then the assertion follows by density, thanks to Lemma B.18. O

3.2 Heat equation on E

We consider now the heat operator associated with the Rumin Laplacian 4y p, i.e.,

L£=0+ Ay, in R, xH,
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where 9, stands for d;ly, I; being the identity N, x Nj, matrix. Arguing as in (7), £ can be written as a matrix-
valued operator of the form

(805 *+ M nijet,.. v = (L)ij=1,. N (3.16)

where §;; is the Kronecker symbol, so that, arguing as in (3.1), if T3, .., Ty, € D(R+ x H"), with the convention
of Remark 2.6,

L

1

J

- Z[Zﬁf@

2 Ti(E)* (&)* = Y (BT + (U n T(E), (3.17)
b 1
where & € D(R, x HM).

The following results are basically contained in [25], Chapter 4.B and [43] (in particular Lemma 5.4.9).
However, we point out that the arguments of Folland [24,25] rely on the fact that the heat kernel is nonnegative
(Hunt’s theorem). Clearly this is not the case in the present situation, since h is a vector-valued kernel.

Arguing as in [25], Chapter 4.B and keeping in mind that Ay » is a Rockland operator (Theorem 3.6, (i)
above), we have:

Theorem 3.10. The operator L is hypoelliptic on R, x H™.

Proposition 3.11. If 0 < h < 2n + 1, the operators -4y, : D(H", E}) C [2(H", E}) - L*H", El) are densely

defined, self-adjoint, and dissipative, and therefore generate strongly continuous analytic semigroup (exp(—S4u 1))s=0

in L2(H", ED).

In addition,

(i) for any s > 0, the operator exp(-s4y p) is left invariant,

(i) if I C [0, =) is a compact interval, then
sup || exp(=sdu,w)l ze2@im gy, 2aim gy = G < (3.18)
NS

(i) for any s > 0, if a € D(H", E}), then exp(—sAy p)a € EMH™, EY);

(iv) for any s > 0,

exp(—sly p) : DH", EY) - D(HY, ED). (3.19)

Proof. By a density argument, 4y, , is symmetric since is formally self-adjoint in D(H", EF). In addition,
arguing as in the study by Franchi and Tesi [30], Proposition 6.18, 4y, is self-adjoint and dissipative, so
that generates an analytic semigroup (exp(—s4u,»))s>0 ([36], Example 1.25). Thus, by Lunardi [41], Proposition
2.1.4, exp(-s4y p) is strongly continuous on [0, ).

Assertion (i) follows straightforwardly by the left invariance of Ay », whereas assertion (ii) follows by
Banach-Steinhaus’ Theorem. As for (iii), take now k > Q/2a and S € (0, min{l, ak - Q/2}), so that, by [24],
Theorem 5.15 and Proposition 5.10,

WK2(HM) < Ty(H™),
where the Folland-Stein Holder spaces I's(H™") will be defined in Section B.2. If s € I,
llexp(=sAu,n)all,pim £y < Cll €XP(=$An 1)l lwakzgn gl
< C{||Af » exp(=sAu,nallzgm gy + |[€XP(=SAn nallr2gm gy} (420

by Proposition 3.9. Let us consider the first term, the second one can be handled in the same way. By Lunardi
[41], Proposition 2.1.1, and (3.18)
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k _ k
141, nexp(=sAu,n)all2gn gy = || €XP(=SAn, Ak nall2mm gl

s CIHA[II-‘I’,ha“LZ(ﬂ-I",Eg‘) < Gllalwaxzgn gy < .

Thus, (iii) is proved. Finally, (iv) follows trivially from (iii). O
Remark 3.12. Suppose a € D(H", EF). The arguments of the proof of (iii) in Proposition 3.1 (with the same
notations) yield also that, if s, s’ 2 0, then

I[(h(s, Dlay = (h(s’, Hla)] < Cllexp(=sdy,n) a = exp(=sAp,n) Al £
< C{|lexp(-=sAn, A%, 'a - eXp(_S/A[I-I,h)A[II-(I,hva”Lz([H",th)
+ |lexp(=sAu,n)"a - exp(=s"du ) allpzgn g} = 0 as s = s,
since the semigroup is strongly continuous. This proves that
the map s — (h(s, -)|a) is continuous. (3.21)

In particular, if I C [0, ) is a compact interval, then

sup|¢h(s, la)| < . (3.22)
SEJ
In addition, if k > Q/2a,
supl¢h(s, la)| < Cl[*allyazgn gy (3.23)

NS

Proposition 3.13. For any s > 0, by Proposition 3.11, (i), and (iv), there exists a matrix-valued kernel

h = h(s, p) = (hy(s, p))ij=1,...5 € (D'HM)NMy, (3.24)
such that

exp(-sAn p)a = a * h(s,*) for a € DMH", ED).

Here, ifa = Z,-ajfj, then a * h = Zi(Zjaj * hyj)éi.
In addition,
@ Ifs >0,

(h(s, la) = (exp(-sdu n)("a))(e), (3.25)
(i) Ifs >0,

9
(R(s, DI “Bnpa) = =5 (s, ). (3.26)

Proof. Since the convolution maps D x D’ into & (see [53], Theorem 27.3), keeping in mind Proposition 3.11
and (B6), for all a € D(H", EY), we have

(h(s, la) = Z(hij(s: Nayé; = Z(Vh,j(s, apé = lplgg ‘a * h(s, )(p)
ij L

(3.27)
= })igel(eXp(-sAH,h)(Va))(p) = (exp(-sdp n)("@))(e).

This proves (i). On the other hand, since both exp(-s4y n)’a and exp(=s4y z) YA pa are smooth functions, it
follows from the identity

0
s exp(—sdn,n) = exp(=sAn n)Au, n

that the same identity holds at e. Then (ii) follows. O
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Proposition 3.14. For i,j = 1,..., Ny, we have "hi!]- = h;;, Le,
Yh = th.

Proof. By the spectral theorem, exp(—s4y 1) is self-adjoint in L*(H", E}") for s > 0. Thus, if ¢ and i are arbitrary
test functions, then, by (B5),

J = hodp= [(@ + hipwap = [(exp(-stu 1)(95), WE)dp
= [(exp(-stu )W), (98))dp
= [ « moedp.
Thus,
Y*"hj =9 xRy
Take now ¥ = ¥, where (¥ )ken is a sequence in D(H") supported in a fixed neighborhood of e and con-
vergent in &’ to the Dirac 6§ concentrated at p = e (see [53], Theorem 28.2). Taking the limit as k — o, by [50],
Théoréme V, p. 157, *h;; = 8 * 'h;; = & » hj; = h;;, and the assertion follows. O
Definition 3.15. The kernel h = h(s, p) can be identified with a matrix-valued distribution
h € (D/((0, @) x H)MW
as follows: first, we notice that by [53], Theorem 39.2, a distribution in (0, «) x H" can be defined by its action
on D(R) ® D(HM). Thus, arguing on the entries of h, if v € D((0, ©)) and a € D(H", E}), we can set
(v @ @) = [u(s)h(s, Hlayds = F([vis)hyls, la)ds)é. (3.28)
I U
Keeping in mind (3.22), (3.28) defines a distribution.
Proposition 3.16. We have:
(D Lh=0in (DR, x HY)MWw N je,
(LhlA(s,y)) =0 for all A € D((0, ) x HM), (3.29)
where the action of the heat operator L on h must be understood as the formal matrix product
Lh= (LY)ijo, . neMiij=a,.. N (3.30)

defined in the sense of distributions.
(ii) the matrix-valued distribution h is smooth on (0, ©) x H™. In particular, if ¢ = Zj¢1- € D(R, x H", E}), we

can write
o)=Y ([ hijts, ) (s. p)dsdp)é 3:31)
LR yxH"
Gid) ifr > 0,
h(r%s,y) = rOh(s, §;;,y) for s>0and y € H"; (3.32)

(iv) combining (ii) and (i), it follows that

Oshij = 2 Mup)hej=0, 1,j=1..., Ny (3.33)
€

Proof. To prove assertion (i), by [53], Theorem 39.2, we check the identity on forms
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Y ® A€ DR) @ DMH", (EH)* ® EP).

We have:
(@ + Bl ® A)=(hI(=0; + My )W © A))
=(R-Y(s) ® A+ (s) ® Ay pA)
= - 3 Jdsps)ylasy) + 3 [dspis)hian )iy
1] L]
Put

P = ZAe,jfe, sothat Agj = (®)),.
¢

Now we have

2 (hifl (@ nAig) = 2 3 (hijldsinAcy)
)

ij ¢

= 2 (RiglA 5 (@)e) = Y (hijl(An n®))y)

ij e ij

= Z<hj,i| V(u,n®pi) = Z(exp(_SA[l—l,h)A[l-l,hq)j(e))j
ij j

0o
= Z(exp(—sﬂH,h)‘I’j(e))i'
j

Integrating by parts,

3 [dsws)(hi\ @ nd)ig) = 3 [dsy(s)(exp(-sau n)Bi(e));
8] J

On the other hand,

J

Z(hi,j|Ai,j> = 2(@7)1' * Ry i(e) = Y (exp(~sdy n)®i(e));,
1,j 5]

and the assertion is proved.
To prove (ii), let us consider the currents Hy = 3 ,h, &7, for A = 1,..., Nj. We want to show that

(0s + A[H,h)HA =0.
Ifa = Ja,&, is a test form and ¥ € D(R), this means that
(s + A)H|Y ® a) = 0.

Now

(@5 + My DHIY. (W ® ap)éry= (HIY (=05 + AW ® ap)) = Y (hial(=0s + AW ® ap))
¢ j.e i

= 2 (hiyl(=0s + 47D @ Gijan) =0
i),
by (@), if we choose Agj) = G .
Thus, by Theorem 3.10, H; is smooth for A = 1,..., N;, and hence, the h; /s are smooth for i,j = 1,..., N
Finally, to prove (iii), let us consider the case a = 2. The case a = 4 can be handled in the same way.
Keeping in mind (3.31) and [53], Theorem 39.2, by density, it will be enough to prove that, if
u =Y € D(H", EJ) and v € D(0, ®), then
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[ migrs, yuay

ij o \un

(s, )y © u)= le v(s)ds]a-

(3.39)

-ro3f

Ihi,;'(S, 61/ry)u;(y)dy
i,} 0

H"

=17 %h(s, Sylv © u).

v(s)ds’g‘i

Now, if we put v.(s) = v(r™%s),

z[f

ijlo

- Z[T

ijlo

[ hijos. yundy

H"

v(s)ds]&

[ hijts, yuaypeisyase

H"

=r%hjv, ® u)
= 72 [u(s)(exp(-s ) *u)(e)ds
0

[

= [vs)exp(-ristu 1) "u)(e)ds
0

o0

= [v(s)exp(-stun)(u * 8))e)ds
0
(since exp(-sdy ) commutes with group dilations)

=(hjve u-é)

-3

ij

©

I

0

s

ijl o

| nés, yuysy)ay|psiasfe

H"

[ 1es, suuay

H"

V(S)dS’Ei,

and (3.34) follows. |

Theorem 3.17. Denote by f the matrix-valued function on R x H" defined continuing h by zero for s < 0. Then
(i) keeping in mind (3.31), h defines a matrix-valued distribution

h € (DR x HY)N<Mn

by the identity

©

(v ® u) = [w(s)h(s, lu)ds (3.35)
0

when v € D(-, ©) and u € D(H", E});
(i) Lh =8, ® &, where 8, is the matrix-valued distribution (@ij)ij=1,..,np Wherea;j = 0ifi # j, and a;; = &,
fori=1,.., Ny, so that

St = u(e) for all u € DH", EY);

(ii)) 7t € C*(R x HY\(0, e)).
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Proof. Again by [53], Theorem 39.2, identity (3.35) defines a distribution. This proves (i).
Let us prove (i). Arguing as in (3.29),

©

(LAY @ uy = (A - 0 ® U + v ® Ay utt) = =[O0 )h(s, ) + [v(s)(hCs, )ldw pu)ds.
0 0

By (3.23), the integrals

[hsyueay and [ nes,yyaau(ay
H" H"

are both bounded for s € supp v N [0, ©), and hence,

ov(s) [ (s, y)yyudy and  v(s) [ (s, ) nu(y)dy
H" H"

belong to L'([0, «)), and we can write

)

+ Iv(s)

0

ds

- Jow(s)| [ s, yyu(y)dy [ 16,y nu()dy
0 H" H"

©

+ Iv(s)

&

= lim dsp = lim{I; + J.}.
-0 -0

~[aw(s)| [ hts, yyuy)dy [ 16, )t nuyay
€ H" H"

Since
(s,y) = 9sv(s)u(y) belongsto L([e, o) x H™),

we have

I = - [aws)| [ (s, yyu(y)dy
e H"

- Ju(y) Th(s, ¥)d,v(s)ds [dy

[HH

dy.

Iu(y)[jash@,y)v(s)ds

H

- v(e)_[u(y)h(&)’)dy +
[Hn

Thus, keeping in mind Proposition 24 (iii)(2),

Ie + ], = v(e) [ uh(e, y)dy = v(e)(exp(-edy 1) “w)(e).
[HVI

Arguing as in Remark 3.12, if we take k > Q/2a
|(exp(=edu,n) “u)(e) - u(e)| = [(exp(~edyn) “u)(e) = "u(e)] < Cl|(exp(~ey,n) = DA 4(Wl2gm gy = O

as e — 0, since s — exp(—s4n ) is a strongly continuous semigroup. This proves (ii). Finally, (iii) follows
straighforwardly from (ii) and Theorem 3.10. O

Theorem 3.18. For any s, g > 0, we have
(l) hi,j(S) ) € S(Hn)a l)] = 1;-'-) Nh:
(@) h(s,-) * h(a, -) = h(a, *) * h(s, -) = h(s + g, *).

Proof. By the very definition of &, k, £ € N U {0}, then the map (s,y) = s 8%h;;(s, y) is continuous away
from (0, e).
Thus, if K C H" is a compact set, e € K,
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sup|skahij(s, )| » 0 as s— 0.
K

Then the proof of (i) can be carried out as in [25], Proposition 1.74. In addition, (i) implies that the convolutions
in (ii) well defined and so (ii) follows from the semigroup property of s — exp(—s4y »)- O

Thanks to the density of D(H") in D’(H"), the following lemma holds ([53], p. 272).

Lemma 3.19. If T € D'(H"), and there exist C > 0 and N € N such that
[TI@)| < C sup sup(l + [p))"|D(p)

m+|a|<NpEH"
forallg € DH"), then T € S'(H").
Combining the previous lemma with Theorem XIII p. 74 of [50], we have
Proposition 3.20. Let (Tj)jen a sequence in S'(H™) C D'(H™) such that
() (Tj)jen is bounded in S'(H™), i.e., there exist C > 0 and N € N such that
(Tj$) < C sup sup(1+ [p])y"D*¢(p)] (336

m+|a|SNpEH"

forallg € DH™) and j €EN;
(i) the sequence ((Tj|¢))jen has a limit (T|¢) as j — » for all ¢ € D(H"),

thenT € S‘H") and T; » T in D'(H") as j — .

Proof. By Theorem XIII p. 74 of [50], T € D’(H™). On the other hand, (3.36) still holds for T, and the assertion
follows from Lemma 3.19. O

Proposition 3.21. If ¢ € D(H") and i,j = 1,..., Ny, we have
() by (3.21), the function s — (h;(s, -)|¢) is continuous for s = 0, and the identity

M
<IhU®,ods
0

defines a tempered distribution for all M > 1;
(i) the function s — (h;(s, -)|¢) belongs to IX([0, )
(ifi) the identity

M
¢>=ﬁm@m@w (337)

0

<]ihi’j(5, -)ds
0

defines a tempered distribution. Thus,

M
¢>=MJmﬁnmw (338)
M-oo 0

Th(s, ds = Thi,]-(s, -)ds
0 0

i,j=1,...,Nh

is a matrix-valued tempered distribution. Notice that, by Proposition 3.20, we can write also

0 M

[ists. ds = tim [ni6s,2as i Dm). (339)
M—co

0 0
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Proof. Let us prove the following statement: there exist C > 0 and N > 0 independent of s > 0 and ¢ such that

I(hi (s, )Ig)] < € minfl, s/} sup sup(1 + |p)™|D?¢(p)- (3.40)

m+|a|sNpeH™

Then (i), (ii), and (iii) will follow by Proposition 3.20.
First of all, we prove that, if M > 1, there exist G,y > 0 and N € N such that, if 0 < s < M,

Khis(s. )I9) < Gy sup sup(l + [p)"DG(p)| (3.41)

m+|al|sNpEH™
for all ¢ € D(H™). Indeed, by (3.23), if k > Q/2a and I C [0, ») is a compact interval, then

sup|(h(s, Hla)| < G ||"allyaxzgyn). (3.42)

SEI

On the other hand, if J is a multi-index with d(J) < ak there exists a family of polynomials P;, |g| < ak, such
that for any function u € S(H")

Wl < Y [IB(pIDoU Pdp
|

alsakyn

<cfa+ipymdp- ¥ sup(i+ p)>Ip°(p)F
Hil

|o|<akpEH™

=C ) sup(l+|p)*™D7¢(p)P

|ol<akpEH™

for m large enough. This proves (3.36).
On the other hand, keeping in mind (3.32) and Theorem 3.18, if s > 1, then

[Khij(s, @ < [ 1his, p)o(p)ldp
[Hn

= g0la _[lhi,;(l, 8ep)p(p)ldp
H'l

(3.43)
< 5709 sup|hy (1, PPl gam gy
pEH"
< Cs7Q/% sup|hy (1, p)l sup (1 + [p))*"*2|p(p)I.
pEH" PEHM
Then, combining (3.41) and (3.43), (3.40) follows. O
Theorem 3.22. We have
Ih(s, s = 45k, (3.44)
0
(identity between convolution kernels).
Proof. First, let us prove that
A[H,hj'h(s, ds = 8o (3.45)
0

To this end, let ¢ € D(H", E}) be a test form. Suppose that supp ¢ C K, where K C H" is a compact set. We
notice first that

1
[ncs, i agdlds < o (3.46)
0
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(the integral is well defined by Remark 3.12). Then by (3.39), Proposition 3.21, (ii), (3.33), and (3.46), we have

) M
By Jis, dsig) = lim [ (s, ldn9)ds
’ N ;
= lim [(h(s, )l a@)ds + lim [Ch(s, )l ng)ds
M- 1 -0 .

M 1
=~ lim I(ash(s, Igyds - lim I(ash(s, Hlg)ds
M- 1 -0 p
= -Alliirc}o(h(M, Ng) + 1813(}(}1(8, o)
= iigg(eXp(—eﬂy,h)qﬁ)(e) = ¢(e).

Thus, (3.45) holds, and then
[nts. s € (er\gepyret:
0
since Ay  is hypoelliptic, by Theorem 3.6, (i). Thus, by keeping into account Proposition 3.21, (ii), we have
Jh(s, )ds € (S'(H", Ej) N EMH "\{e}))thNh.
0
and (3.44) follows from Proposition 3.8, provided we prove that

tim [h(s, p)ds = 0. (347)
0

p-o

But, thanks to (3.32), it follows easily that

©

Ih(s, -)ds is a (vector-valued) kernel of type a
0

(Definition B.7), which vanishes at infinity since Q > a. This completes the proof of the theorem. O

Corollary 3.23. By Theorems 3.22 and 3.8,

©

By [h(s, )ds = By YOG = By = o
0

Lemma 3.24. If a € L'(H", E;) C S(H", E;) and s > 0, then

F(s, ) = h[% ] * d¥a = d;‘[h[%, |+ a| € oumn, E) € 8Mn, E) 0 SHM E) (3.48)
(we recall that Oy denotes the space of the smooth functions slowly increasing at infinity: see the study by Treves
[53], Theorem 25.5, p. 275 or [50], p. 243).

*Q

Proof. Since L!(H") C S’(H™) then both h[%, ] * d¥a and d,j"[h[%, . belong to Oy, (see [50], p. 248). On the

other hand, given ¢ € D(H", E;), we have
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e y
] . dc¢> - <a|d "h ]>
o)l D

*a

S
— Vil =
<a|h2,

= <dc*a|"h

Remark 3.25. Again by [50], p. 248, for any s > 0,

h[% ] * F(s, ) € Oy C EMH™, Ej) N S'(HY, Ep).
Lemma 3.26. The function

s - <dc[h[§,

belongs to L'([0, ®)) for all ¢ € DH", E;). In particular, for all ¢ € D(H", E;), there exists

M
lim <dc[[
M—oo

Proof. If s > 0, keeping in mind Theorem 3.18, we have

‘ <d[h[§ ] . (s, -)] ‘ ¢> ‘ ‘ <h[§ ] . (s, -)‘ d:‘¢>‘

[l ) o -] o - )
=|(dFa|’h(s, -) * d¥¢)| (by Theorem 3.8 and (91))

=al*h(s, -) * ddZ9)|

< [ia, "h(s, -) * dedzg)ldp

< lalliqn gy 1l Yded D * h(s, llm@in ;-

| * F(s, -)] ‘ ¢>

* (s, ) ‘¢>

On the other hand, by (3.23),

sup ||Vddle * h(s, ll=mngy < Cp
[0,1]

whereas, if s > 1, by (3.32),

19 * hs, lli=arzy < CllR(s, lz=arr.ep
< Cps Y (L, e k-

Since a < Q, the assertion is proved. O
Thanks to Lemma 3.26 and Theorem XIII p. 74 of [50], we can define the following distribution:

Definition 3.27. We set

0 M
S . N
_!dc[h[a, ] « E(s, -)]ds = lim _!'dclh[g, ] * E(s, ~)]ds
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in D'(H", E;), where

M

(et o3 e

0

for all ¢ € DH™M, Ey).

3.3 The Caldero6n reproducing formula
Ifa € L\(H", ED), d.a = 0, let us set

*al(x) s>0. (3.49)

F(s, x) = d:‘[h[%, :

By (3.48), for any s > 0 F(s, ) € Oy C EMH", EZ™™) N S’ (H", EZ"™). In particular, F(s, -) is smooth for any
s > 0. In addition, again by (3.48), we can write

FGs, ") = h[% |+ dara.

Ifa = Zjajflh € LY(H", EP), there exist homogeneous differential operators in the horizontal derivative P; o, say
of order 1 or 2 according to the degree of the forms, such that (with the formal notation of (5))

dra =Y (Pea)E "
jie

Theorem 3.28. If a € L'(H", E}) is a d.-closed form, we have

a= —]idC[h[%, ] « E(s, ~)]ds. (350)
0

Proof. Since both a and J: dC[h[%, ] * F(s, ~)]ds belong to D(H", E}) (see Definition 3.27), it will be enough to
show that, if ¢ € D(H", E}), then

(alg) = - <Id[h[§ | res ')]ds ¢>
. (351)
=~ lim 0 <dc[h[§, ] * F(s, -)] ‘ d)>ds.

Suppose first that a € D(H", EP). If h # n + 1, we have
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ot -]}

o )ore )

F(s, ‘)Ivh[g, ] * dc*¢>d3 (by (89))

e > ds

h[i |*xa

vh[ % ’ ] * ddX¢ > ds  (by(55))

a|"h[—, ] : h[% ] : dcdc*¢>ds (again by (89))

T~ T /.

= |{al'h(s, -) * (ddfF + d¥d;)p)ds (since d.a = 0)
J(alvh(s, ) * Ay p¢)ds  (since d.a = 0)
0

M
= [[(a *h(s, ) * a n)dpas,
oH"

-_ 23

(3.52)

since a € L(H", E}) and “h(s, )*Ay n¢ € S(H™, E}) (if h = n + 1, we must replace d*d, with (d*d.)* to obtain

the homogeneous Laplacian).
We notice now that, arguing as in the proof of Lemma 3.26,

(@, h(s, -) * My n@) € LY([0, @) x H™),

since

[ [1anés, -y*an npldpds < .

OH"

Thus, by Fubini’s theorem,

M
[ [ (@ "h(s, ) * v np)dpas =
oH"

M
.[ <a’ ,[vh(s’ ) * AH,h¢ds>dp

H" 0

M
- < [Fnes, )+ dunpds

0

Let us write (61) in terms of components. We obtain

M
Y [afhics. )« 2l ¢,dsdp.

SR TLI
We want to prove that

M

[hij6s, s

0

* A 0,dp,

M
Iaijvhi,j(S, ) * A“ﬂ‘,i,¢€d8dp = Jai
H" 0 H"

all integrals in (3.57) being well defined.
For any s > 0, since h;;(s, -) € S(H"), we can write

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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Chy(s, ) * 8550)(0) = [y, @450, p)g
[Hll

= [*hyyts, @ Y590 g

H"

= ["hij(s, @) *@5@, © T @dg.

H"

Now, by (3.42), if k > Q/2a,

M
[as[i'n, s, 1 v@d @, © T 0@ldg
0

IN

j.6
CMI|(45 (8, © Tr)llwekqrm

CM Y 19, ° Tpillzum
|I|I<k+a

CM Y I9llzgmy < e
|I|sk+a

IN

Thus, combining (3.58) and (3.59), the map
(5,p) = Chyj(s, ) * A58 (P)
belongs to L([0, M] x supp a;) and, by Fubini theorem,

M
Jao)[enyys, ) = adfdprdsdp
0

H"

M
[ [his, 0) @, « 1,0)@dqdsdp

H" OH"

M
Iai(p)I

[y, s
H" H"(0
M
Johusts. -)ds] « a5,

0

M
<lJ'VhU(s, ds

0

Y@5(@, © T,))(@)dqdp

(p)dp

[ap)

H"

j.€
* A[H,h¢€ al > .

Thus, (3.55) becomes

M M
[ J @ *hes, ) = dungrapds = { {[*hes, Jas| +au 9 |a
OH" 0
On the other hand, by Proposition 3.21, we know that
M 00
J"’h(s, Yds - I"h(s, yds in DH™ ED).
0 0

DE GRUYTER

(3.58)

(3.59)

(3.60)

(3.6D)

But the map T — T * ¥ is continuous from D’'(H") to D’(H™) for fixed Y € D(H™) (this is a special instance of

Théoréme V, p. 157 of [50]), so that
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M

th(s, ds

0

©

th(s, ds

0

*Mnola )— * Ao |a (3.62)

as M — o, Thus, combining (3.52), (3.61), and (3.62), the reproducing formula (3.50) is proved whena € D(H", th).
Eventually, let us consider the case a € L}(H", E}"). Suppose for a while we are able to prove the reprodu-
cing formula (3.50) when «a is replaced by a form & € L2(H", E}) N E'(H", E}). We argue as follows: if
a= Zjaj(fj and N € N, we set
a.
a,; = min{|ajlxpe x> N} ﬁ, where a # 0
J
and

ay = ZaN’jEj.
J

Since ay,; is compactly supported and bounded, then ay € L(H", E¢). In addition, a.e. ay; » @ as N - e, and
layj| < lajl, j = 1,..., Ny

In addition, set
(x) s>0. (3.63)

Fy(s, x) = dg"[h S v ay

2)

By our temporary assumption, if ¢ is a test form, arguing as in (58), we obtain

(v, 9) = - <J’dc[h[§, -
0

* Fy(s, ~)]ds, ¢>

© (3.64)
= [ [ <aw. *n(s, ) * av n)apds.
OH"
Since |ay| < |al, we can take the limit in (3.64) as N — «, and we obtain (3.50).
Thus, we are left with the case
a=Yyaf with g € [2HY) N EMHM).
J
If (we)e>o are the (usual) Friedrichs’ mollifiers, we set
Clj,g = Clj * We
and
A = ) ;.
J
Denote now by y € E the Rumin form
Y (Ma; )&,
j
where M is the Hardy-Littlewood maximal function. It is well known that
|l < )y ae in H* for j=1, ..., Np. (3.65)

Moreover, since a € LX(H", El), then
y € LAH™, E).

Let us prove now that
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VI*h(s, ) * Aungl € L1([0, @) x H™). (3.66)

Indeed, we have:

[Jwincs, yan plapds
0H"

< Wllzarezy: JIPAGS, ) * A ndllzare sy ds
0

1 00
= Wlhsarsy|[ -~ ds + [+ as).
0 1
Now
1 1
JIrnGs, <) i nllzarn.cayds = [l exp(-su 1) Ay nllznsyds < Co - by (24),
0 0

whereas, keeping in mind that h(1, -) € S,
JIrnGs, ) + s nllzgrn pyds = suplhc, 1[50y 2 gy ds < o,
1 H" 1

Then we can write (3.50) for a, € D(H", E}') and (by dominate convergence theorem) take the limit as & — 0.
This completes the proof of the theorem. O
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Appendixes
A Rumin complex on Heisenberg groups

In this appendix, we present some basic notations and introduce both the structure of Heisenberg groups
together with the formulation of the Rumin complex. We denote by H" the (2n + 1)-dimensional Heisenberg
group, identified with R?**! through exponential coordinates. A point p € H" is denoted by p = (x, y, t), with
both x,y € R" and t € R. If p and p’ € H", the group operation is defined by

1 n
PP XX y+y et + E;(Xﬂ’/' ~ x|
Notice that H" can be equivalently identified with C" x R endowed with the group operation

(@ 0Q 0 =@+ {4 7= 3 I @),

For any q € H", the (left) translation 7, : H" — H" is defined as follows:
P Tp*=q"p.

For a general review on Heisenberg groups and their properties, we refer to [34,51,54]. See also [27] for
notations.

The Heisenberg group H" can be endowed with a homogeneous norm (Cygan-Kordnyi norm): if
p = (x,y,t) € H", then we set

o(p) = (X% + y?)* + 16214, (A1

and we define the gauge distance (a true distance, see [51], p. 638, with a different normalization in the group
law), that is left invariant, i.e., d(zp, 7,p") = d(p, p) for all p, p’ € H") as follows:

aip, q) = o(p™ - @). (A2)

Notice that d is equivalent to the Carnot-Carathéodory distance on H" ([13], Corollary 5.1.5). Finally, the balls
for the metric d are the so-called Cygan-Koranyi balls

B(p,r)={q €H"; d(p,q) <r}. (A3)

Notice that Cygan-Kordnyi balls are convex smooth sets. A straightforward computation shows that, if
p(p) <1, then

Ipl < p(p) < |p|M2. (A4)

It is well known that the topological dimension of H" is 2n + 1, since as a smooth manifold it coincides with
R¥*1 whereas the Hausdorff dimension of (H?, d) is Q = 2n + 2 (the so-called homogeneous dimension of H").

We denote by h the Lie algebra of the left invariant vector fields of H". The standard basis of f is given, for
i=1..,n by

1 1
Xi =0y, — Eyiat, Yi=0y+ Exiat, T = 9.

The only nontrivial commutation relations are [X;, ;] = T, for j = 1,..., n. The horizontal subspace b, is the
subspace of j spanned by Xi,..., X, and V3,..., ¥,: by = span {X, ....X,, 43, ..., Y3}

Coherently, from now on, we refer to X, ..., X, ¥4, ..., ¥; (identified with first order differential operators)
as the horizontal derivatives. Denoting by b, the linear span of T, the two-step stratification of b is expressed by

h="h & bh.

The stratification of the Lie algebra h induces a family of nonisotropic dilations &, : H® - H", A > 0 as
follows: if p = (x,y, t) € H", then
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&(x,y, t) = (Ax, Ay, 2%t). (A5)

Remark A.1. Heisenberg groups are special instance of the so-called Carnot groups. A graded group of step K is
a connected, simply connected Lie group G whose Lie algebra g is the direct sum of x subspaces g;
g = 9,9 ® g,, satisfying

lg5 9] C gy for 1<ij<k,
where g; = 0 for i > k. The group is called stratified if it is generated by the first layer g,. We denote as n the
dimension of g and as n; the dimension of g;, for 1 <j < k.

A Carnot group G of step k is a graded group of step g, where g, generates all of g. That is, [g,, g;] = g;,,, for
i =1,.., K. We refrain from dealing with such generality.

Going back to Heisenberg groups, the vector space § can be endowed with an inner product, denoted by
(-,), making X,,..., X, ¥3,..., ¥, and T orthonormal.
Throughout this article, we also write

W=X;, Wun=Y and Wy, =T, fori=1,..,n. (A6)

Following [25], we also adopt the following multi-index notation for higher-order derivatives. If I = (i, ...,I,) is
a multi-index, we set

WI = Wi win (A7)

Remark A.2. By the Poincaré-Birkhoff-Witt theorem ([14], 1.2.7), the differential operators W’ form a basis for
the algebra of left invariant differential operators on G. Furthermore, we denote by|I| = i +---+ i, the order of
the differential operator W, and by d(I) := dyi; + -+ d,i, its degree of homogeneity with respect to group
dilations. From the Poincaré-Birkhoff-Witt theorem, it follows, in particular, that any homogeneous linear
differential operator in the horizontal derivatives can be expressed as a linear combination of the operators
W! of the special form above. Thus, often we can restrict ourselves to consider only operators of the special
form W'

The dual space of b is denoted by Alh. The basis of Alh, dual to the basis {Xi, ...,¥;, T}, is the family of
covectors {dx, ...,dx,, dy;, ...,dy,, 0}, where

1 n
0=dt - ];(deyj - y,dx) (A8)

is called the contact form in H". We also denote by (-,) the inner product in Al that makes (dx, ...,dy,, ) an
orthonormal basis.
Coherently with the previous notation (A6), we set

wi=dx, Wup=dy, and wyy =0, fori=1,..,n
We put Agh = A’h =R and, for1<h<2n+1,
N = spanfwi A - A wg, 1S E < <ip<2n+ 1}
In the sequel, we shall denote by 8" the basis of A'h defined by
O ={wy A Awy i 1<i<-<ip<2n+1L
To avoid cumbersome notations, if I = (iy, ...,i,), We write
W= Wy A A Wy,

The inner product -,-) on Alh naturally yields an inner product (-,-) on A" making 8" an orthonormal basis.
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The volume (2n + 1)-form wy A - A W41 Will be also written as dV.
Throughout this article, the elements of A'h are identified with left invariant differential forms of degree h
on H™.

Definition A.3. A h-form a on H" is said left invariant if

T#

@ =a forany g €H".

The pull-back of differential forms is well defined as follows ([31], Proposition 1.106);

Definition A.4. If U,V are open subsets of H", and f: U — V is a diffeomorphism, then for any differential
form a of degree h, we denote by f#a the pull-back form on % defined by

Fra(p)lvy, ...,vr) = (a(f(p)Idf (p)vy, ...,df (p)Ivr)

for any h-tuple (v, ...,vy) of tangent vectors at p.

The same construction can be performed starting from the vector subspace h; C b, obtaining the hori-
zontal h-covectors

Ny = spanfw;, A - A w;, 2 1< i < --<iy < 2n}.
It is easy to see that
0f = 8" Ny

provides an orthonormal basis of A'h;.

Keeping in mind that the Lie algebra h can be identified with the tangent space to H" at x = e ([31],
Proposition 1.72), starting from N we can define by left translation a fiber bundle over H" that we still denote
by A'h. We can think of h-forms as sections of A'h. We denote by Q" the vector space of all smooth h-forms.

The stratification of the Lie algebra h yields a lack of homogeneity of de Rham’s exterior differential with
respect to group dilations &,. Thus, to keep into account the different degrees of homogeneity of the covectors
when they vanish on different layers of the stratification, we introduce the notion of weight of a covector as
follows.

Definition A.5. If  # 0, n €A\lh;, we say that n has weight 1, and we write w(n) = 1. If p = 6, we say w(n) = 2.
More generally, if n €A, n = 0, we say that n has pure weight p if i is a linear combination of covectors
wi, A o A oy, With w(w;) +--+ w(w;,) = p.

Notice that, if n, { €AYy and w(n) = w({), then (n,) =0 ([8], Remark 2.4). Also, we point out that
w(dO) = w(6), since, if a is a left invariant h-form of weight p and da # 0, then w(da) = w(a) ([47], Section 2.1).

We stress that generic covectors may fail to have pure weight: It is enough to consider H! and the covector
dy + 0 EAh. However, the following result holds ([8], formula (16)):

Nth = Nty @ NU1h = Nty @ (A7) A 6, (A9)

where N'Ph denotes the linear span of the h-covectors of weight p. By our previous remark, the decomposition
(A9) is orthogonal. In addition, since the elements of the basis ®" have pure weights, a basis of A*Ph is given by
ehP = @ NAMPh (such a basis is usually called an adapted basis).

We notice that, according to (A9), the weight of a h-form is either h or h + 1, and there are no h-forms of
weight h + 2, since there is only one 1-form of weight 2. Something analogous happens in H" x R, but it fails
already in the case of general step 2 groups with higher dimensional center.
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As mentioned earlier, starting from NvPh, we can define by left translation a fiber bundle over H" that we
can still denote by A“Ph. Thus, if we denote by Q"? the vector space of all smooth h-forms in H" of weight p, i.e.,
the space of all smooth sections of NPh, we have
Qh - Qh,h @ Qh,h+1. (AlO)
Starting from the notion of weight of a differential form, it is possible to define a new complex of
differential forms (Ey, d.) that is homotopic to the de Rham complex and respects the homogeneities of the
group.
We sketch here the construction of the Rumin complex. For a more detailed presentation, we refer to

Rumin’s papers [47]. Here, we follow the presentation of the study by Baldi et al. [8]. The exterior differential d
does not preserve weights. It splits into

d=dy+d+dy,

where d, preserves weight, d; increases weight by 1 unit, and d, increases weight by 2 units.
More explicitly, let @ € Q™" be a smooth h-form of pure weight h. We can write

a= Z apwy, with ar € CW([HH)_

w;E@E‘

Then

2n
da= ) > (WaDwj Awr+ ) (Waaan)b A wp = dia + doa,

w€B}] j=1 w €O}
and doa = 0. On the other hand, if « € Q""*1 has pure weight h + 1, then

a= Z C(]G/\(/J],

cu]E@[}]"l
and
2n
da= ) qddAw+ ) ) (Wapwj A A w =doa + dia,
weef weoelj=1
and dya = 0.

It is crucial to notice that d is an algebraic operator, in the sense that for any real-valued f € C*(H"), we
have

do(fa) = fdoa,

so that its action can be identified at any point with the action of a linear operator from A to N**1h (that we
denote again by d,).

Following Rumin [45,47], we give the following definition:
Definition A.6. If 0 < h < 2n + 1, keeping in mind that Ah is endowed with a canonical inner product, we set

E} =kerdy N (Im dp)*.

Straightforwardly, E? inherits from A the inner product.

As mentioned earlier, E; defines by left translation a fiber bundle over H", that we still denote by E;. To

avoid cumbersome notations, we denote also by E; the space of sections of this fiber bundle.
Let L : At - A'*2p, the Lefschetz operator defined by

LE=dO A& (A11)

Then the spaces E; can be defined explicitly as follows:
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Theorem A.7. (See [44,46]) We have:
@ Eg =Nby;
(i) if 2 < h <n, then E} = Nthy N (N2, A dO)* (ie., ER is the space of the so-called primitive covectors
of Nihy);
(i) ifn<h<2n+1,thenEl={a=B A0, BEN T, BAdO=0}=6 A kerL;

2n |,

(iv) if1 < h < n, then N, = dimEg' = [2}7] _ [h_z :

(v) if * denotes the Hodge duality associated with the inner product in N4 and the volume form dV,
then *EJ = EZ"'°h,

Notice that all forms in E} have weight h if 1 < h < n and weight h + 1 ifn <h < 2n + 1.

A further geometric interpretation (in terms of decomposition of h and of graphs within H") can be found
in [28].
Notice that there exists a left invariant basis

Bh =g L ELY (A12)

of El that is adapted to the filtration (A9). Such a basis is explicitly constructed by induction in [3,55]. To avoid
cumbersome notations, if there is no risk of misunderstandings and the degree h of the forms is evident or
uninfluential, we write & for &'

The core of Rumin’s theory consists in the construction of a suitable “exterior differential” d : E} — E
making & = (E;, d.) a complex homotopic to the de Rham complex.

Let us sketch Rumin’s construction: first the next result ([8], Lemma 2.11 for a proof) allows us to define a
(pseudo) inverse of dy:

h+1
0

Lemma A.8. If1 < h < n, then kerdy =Nh;. Moreover, if B €/N'1b, then there exists a unique y €N'h N (kerdy)*
such that

doy - B € R(do)*.

With the notations of the previous lemma, we set

y = do'p.

We notice that d;! preserves the weights.
The following theorem summarizes the construction of the intrinsic differential d.. (for details, see [47] and
[8], Section 2).

Theorem A.9. The de Rham complex (', d) splits into the direct sum of two sub-complexes (E*, d) and (F*, d),
with
E = kerd,' N ker(dy’d) and F = R(dyY) + R(ddy?).
Let IIg be the projection on E along F (that is not an orthogonal projection). We have
() Ify € E, then
s My =y-dy'dyifl<hs<n

* Igy=yifh>n.
(i) IIg is a chain map, Le.,

dHE = HEd
(it)) Let I, be the orthogonal projection from N on E;, then
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Mg, =1-dy'dy - dody’, Tt =dy'do + dody™. (A13)
@iv) HEUHEHEO = HE[] and HEHEOHE = IIg.
Set now
de=Tgd I : E} > EF*Y, h=0,..,2n
We have:
() d?=0;

(vi) the complex & = (E, d.) is homotopic to the de Rham complex;

ii) d. : E} - EF*' is a homogeneous differential operator in the horizontal derivatives of order 1 if h # n,
whereas d. : E}' - El*! is a homogeneous differential operator in the horizontal derivatives of order 2.

Remark A.10. The construction of Rumin complex can be carried out on general Carnot groups; we refer for

instance to [8, 47,48]. The starting point is a notion of weight of a covector in term of homogeneity with respect

to group dilations. For an alternative presentation, we refer to the previous studies [20,23,28,39].

Since the exterior differential d. on EJ can be written in coordinates as a left invariant homogeneous
differential operator in the horizontal variables, of order 1 if h # n and of order 2 if h = n, the proof of the
following Leibniz’ formula is easy.

Lemma A.11. If { is a smooth real function, then
* if h # n, then on E} we have

[d(," (] = P(;lx
h+1

where P : El » E}*'is a linear homogeneous differential operator of degree zero, with coefficients depending
only on the horizontal derivatives of (;
s ifh = n, then on EJ' we have

[d(.‘)(] =P1n +P61:

where P! : E} > E}*! is a linear homogeneous differential operator of degree 1, with coefficients depending

only on the horizontal derivatives of {, and where P} : E} —» E}*' is a linear homogeneous differential

operator in the horizontal derivatives of degree 0 with coefficients depending only on second-order horizontal
derivatives of (.

B Kernels in Carnot groups and Folland-Stein spaces

B.1 Convolution in H"

If f:H" = R, we set “f(p) = f(p™D), and, if T € D'(H"), then {'T|@) = (T|"p) for all ¢ € D(H"). Obviously,
the map T — *T is continuous from D'(H™) to D’(H™).

Following [25], p. 15, we can define a group convolution inH™: if, for instance, f € D(H") and g € L .(H"),
we set

f+e®) = [f@g@? -paq for qemn )

We recall that, if, say, g is a smooth function and P is a left invariant differential operator, then



DE GRUYTER On the heat kernel of the Rumin complex and Calderén reproducing formula =—— 33

P(fxg)=[*Pg.

We also recall that the convolution is well defined when f, g € D’(H"), provided at least one of them has
compact support.
In this case, the following identities hold

®
(f=glp)=1(glf=¢) and (f=gl¢)=<(flp* “g) (B2)
for any test function ¢. Analogously, for any function @ € D(H"),
f*glp) =gl f+¢) if fE€SH") and g€ SH"), (B3)

([50], p. 248) S H™*S(H™) C Oy C EMH™) N S'H™) and SHM*DH") C S(H™), where Oy, denotes the
space of the smooth functions slowly increasing at infinity ([53], Theorem 25.5, [50], p. 243). Analogously,

f*glp)=1(glf+¢) if f€SMH") and g€ S'(H") (B4)

(notice that S(H™) * D(H™) C S(HH)*S(H") C S(H™)). Indeed, by [53], Remark 28.3, there exists a
sequence (g ken In D(H™) such that g, — g in S'(H"), so that f* g, — f* g in D'(H") as k — «. Since
f* ¢ € S(H™), the assertion follows from (B2);
@) If ¥ € DH™) CEMH") and h € EMH) C D'(HM), then (Y|h) = (h|Y), so that, if ¢, € DH") and
g € D'(HM), (B2) yields

¥ * "glg) = (Pl * “g) = (b * “gly). (BS)

(iii) if the convolution g * f is well defined, then
frVg="g*f) (B6)

The notion of convolution can be extended by duality to currents.

Definition B.1. Let ¢ € D(H") and T € E'(H", EY) be given, and denote by Y¢ the function defined by
Yo(p) = ¢(p™) (f S is a distribution, then VS is defined by duality). Then we set

(¢ * Tla) =(T| '¢ * a)
for any a € D(H", ED).

Definition B.2. Let h = 1,..., 2n + 1 be fixed, and let &',..., &} be an orthonormal basis of E{'. If
¢ = (Dpij=1,..., Ny
is a matrix-valued distribution, and a = 2;a;§; € D(H", EM), we set

=@ 98
Lj

Obviously, this notion still makes sense whenever all convolutions ¢ij * q; are well defined.

B.2 Folland-Stein-Sobolev spaces and homogeneous kernels

The following sections deal with Sobolev spaces (the so-called Folland-Stein-Sobolev spaces: see [24,25]), and
with the calculus for homogeneous kernels [16] in the more general setting of Carnot groups. Heisenberg
groups will provide a special instance. We refer to the previous studies [24,25] for the standard definitions of
Sobolev spaces and their Holder counterpart Ip(H™). Recall that we adopt the following multi-index notation
for higher-order derivatives: if I = (i, ...,1,) is a multi-index, we define
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W= Wyt Wi,

Definition B.3. We denote by Ay the positive sub-Laplacian

Definition B.4. Let 1 < p < @ and m € N, W,?(U) denotes the usual Sobolev space.

Definition B.5. If U C H" is an open set, 1 < p < o and m € N, then the space W™P(U) is the space of all
u € LP(U) such that, with the notation of (A7),

Wiy € LP(U) for all multi-indices I with d(I) < m,

endowed with the natural norm

| oy = 2 Wl
dh<m

Folland-Stein Sobolev spaces enjoy the following properties akin to those of the usual Euclidean Sobolev
spaces [24,26].

Theorem B.6. IfU CH", 1< p < o, and k € N, then
(i) WrP(U) is a Banach space.
In addition, if p < o,
(i) WkP(U) N C*(U) is dense in W*P(U);
(ii)) ifU =MH", then D(H") is dense in wkp(U);
(iv) if1< p < o, then WrP(U) is reflexive.

Definition B.7. Following [24,25], a kernel of type a is a homogeneous distribution of degree a — Q (with respect
to the group dilations §,), that is smooth outside of the origin.

The following estimate has been proved in [9], Lemma 3.7. It will turn useful in the sequel.

Lemma B.8. Let g be a kernel of type u > 0. Then, if f € D(H") and R is a homogeneous polynomial of degree
¢ 2 0 in the horizontal derivatives, we have

R(f*g)Xp)=0(p 9% asp— .
In addition, let g be a smooth function inH "\{e} satisfying the logarithmic estimate
lg(p)l < €A + [In|pl)),

and suppose its first-order horizontal derivatives are kernels of type Q — 1 with respect to group dilations. Then,
if f€ D(MH™) and R is a homogeneous polynomial of degree ¢ > 0 in the horizontal derivatives, we have

R(f*&)p)=0(p[*) asp—o if ¢>0;
R(f*g)Xp)=0(nlp]) asp - if ¢=0.

We set now

So(HM) = {u € S(HM) : J'xau(x) dx = 0}

H"

for all monomials x?.
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Definition B.9.Ifa €ER anda & Z* = N U {0}, then we denote by K* the set of the distributions in H" that are
smooth away from the origin and homogeneous of degree a, whereas, if a € Z*, we say that K € D'(H")
belongs to K® if has the form

K =K + p(x)In|x|,
where K is smooth away from the origin and homogeneous of degree a, and p is a homogeneous polynomial of

degree a.

In particular, kernels of type a according to Definition B.7 belong to K« €.
If K € K% we denote by Oy(K) the operator defined on So(H") by Oo(K)u = u * K.

Proposition B.10. ([16], Proposition 2.2) O«(K) : So(H™) = So(H™).
A straightforward computation shows that

Lemma B.11. If K € K% and X! is a left invariant homogeneous differential operator, then

X'0y(K) = OyX'K), and X'K € K« 4D,
Theorem B.12. [37,38] If K € K9, then Oy(K) : I3(H") — L[3(H").

Remark B.13. We stress that we also have
So(H™) C Dom (A;%4%) with a > 0.
Indeed, take M € N, M > a/2. If u € Sp(H"), we can write u = A[,ﬂ‘{hv, where
V= (0o(R)° Og(Rp)° -+ ° Oo(R))u € So(H™)
(M times). Since v € Dom (41%,) N Dom (4};%*) by density, then u=4},v € Dom (4;%%), and

AR = AYEAM, v, by [24], Proposition 3.15, (iii).

Theorem B.14. (see [16,32], Theorem 5.11) Take K € K? and let the following Rockland condition hold: for every
nontrivial irreducible unitary representation 7t of H", the operator T is injective on C*(r), the space of smooth
vectors of the representation 7. Then the operator Oo(K) : L*(H") — L*(H") is left invertible.

Obviously, if Oy(K) is formally self-adjoint, i.e., if K = YK, then Oy(K) is also right invertible.

Proposition B.15. ([16], Proposition 2.3) If K; € K%, i = 1, 2, then there exists at least one K € K%*%*Q sych that
Oo(K2) > Oo(Ky) = O(K).

It is possible to provide a standard procedure yielding such a K (see [16], p. 42). Following [16], we
write K = K; * K,.

Definition B.16. Throughout this article, if £ is an operator acting on functions, then we still denote by £ the
diagonal operator (&;.L);j=1,..., M

Lemma B.17. If m > 0 and u € Sy(H"), then (1 - Ay)™?*u € Sy(H™).

Proof. By [24], p. 185 (3), (1 - Ay) ™2u = u * J» where ] is the Bessel potential defined therein. For our
purpose, it is important to stress that

® J, € L'@HM;

(i) J,(p) = 0(|pI™) for all N € N (see again [24] p. 185 (2)).
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It is easy to see that u * J,, is smooth. To prove that u * J,, € S(H"), we can follow basically the same
arguments we shall use later to prove that all moments of u * J,, vanish. Thus, we shall not repeat twice the
same computations (that, by the way, are elementary though cumbersome).

Thus, we have to show that all moments of u * ], vanish. In the sequel, we denote by J a smooth function
in [H"\{e} satisfying (i) and (ii) earlier.

To start with, we can write

J

H"

[uey, 6rx0dy

H"

dx = Iu(y)[ffm(y-lm dx

H"

dy = [0 [updy =o.
H" H"

Denote now by (%, ...,Xan, Xon+1) @ generic point in H™.
Take, for instance,

[x Juoy oixdyfax with j=1, .., 2n.
H" H"
We write
[ [uoForiody| = [ue| [ 5 7or1x) dxay
H" H" H" H"
= [u)| [ 05 -3 Jorx0 axfay + [y, u(y)[If(y‘lx) dx fdy.
H" H" H" H"
As mentioned earlier,
[ uw| [7671%0 ax|ay = o,
H" H"
since u € Sp(H"). On the other hand,
Juon| [ 65 -3 7100 dxlay = Juw)| [y Foix) dxly
H" H" H" H"
= [&7 @z Juay =o.
H" H"
If j = 2n + 1, the argument is similar, but requires some further tricks. We write:
1 n
Xone1 = (V7 X02ne1 + Yy + 2 -Zl(yixnﬂ' ™ X))
=
1 n
= O et + Yopar + 5 2 G0~ Yhnsj = (X = Yy
j=1
Therefore,
[ JuF o 0dy|ax = [| [um)o1x0mea 0 00dy|ax + [| [uyy,..f 0 xdy|ax
H" H" H"H" H"H"
1 ¢ N N
32 I‘Iu(y)y,-(x = O0dyfax + [ | [y 00 = y)F 1 x0dy|ax
]= Hﬂ [Hn [HYl [HVI

=0

arguing as earlier. Thus, by iteration, (1 — Ayn)™/?u € Se(H™). (I
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Lemma B.18. If m 2 0, then So(H") is dense in W™2(H"),

Proof. If m = 0, then the assertion follows straighforwardly via Fourier transform. Suppose now m > 0 and let
v € W™(H™) be normal to Syg(H"), i.e.,

(@ = M)™, Wzgmy =0 forall u € So(H). (B7)
Let now ¢ € Sy(H™") arbitrary. By Lemma B.17, we can take in B7) u = (1 - 4y)™¢@ € So(H™). Therefore,
W, B)zamy = (A = 4™V, W2y = 0,

and the assertion follows since Sy(H™) is dense in L2(H™). O

Definition B.19. Once a basis of E; is fixed, and 1 < p < «, we denote by LP(H", E;) the space of all sections of
E; such that their components with respect to the given basis belong to LP(H"), endowed with its natural norm.
Clearly, this definition is independent of the choice of the basis itself. The notations, D(H", E;), S(H", E;),
So(H", Ej), as well as W™P(H", E;) have the same meaning.
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