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ABSTRACT
In a traditional Gaussian graphical model, data homogeneity is routinely assumed with no extra variables
affecting the conditional independence. In modern genomic datasets, there is an abundance of auxiliary
information, which often gets under-utilized in determining the joint dependency structure. In this article,
we consider a Bayesian approach to model undirected graphs underlying heterogeneous multivariate
observations with additional assistance from covariates. Building on product partition models, we propose
a novel covariate-dependent Gaussian graphical model that allows graphs to vary with covariates so that
observations whose covariates are similar share a similar undirected graph. To efficiently embed Gaussian
graphicalmodels into our proposed framework, we explore bothGaussian likelihood and pseudo-likelihood
functions. For Gaussian likelihood, a G-Wishart distribution is used as a natural conjugate prior, and for the
pseudo-likelihood, aproduct ofGaussian-conditionals is used.Moreover, theproposedmodel has largeprior
support and is flexible to approximate any ν-Hölder conditional variance-covariancematriceswith ν ∈ (0, 1].
We further show thatbasedon the theoryof fractional likelihood, the rateof posterior contraction isminimax
optimal assuming the true density to be a Gaussian mixture with a known number of components. The
efficacy of the approach is demonstrated via simulation studies and an analysis of a protein network for
a breast cancer dataset assisted by mRNA gene expression as covariates. Supplementary materials for this
article are available online.
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1. Introduction

Graphical models are widely recognized as a powerful tool
(Dempster 1972) to uncover conditional independence
relationship in multivariate observations. They have found
widespread applications acrossmany fields, including genomics,
causal inference, speech recognition, and computer vision. For
instance, in systems biology, graphical models have been used
to reverse engineer molecular networks from multi-omic data
(Dobra et al. 2004; Friedman 2004; Telesca et al. 2012).

Typically, a graphical model assumes a graph-dependent
probability distribution PG(y) as the sampling distribution for
a q-dimensional random vector y = (y1, . . . , yq), for exam-
ple, a centered Gaussian distribution with a sparse precision
or inverse-covariance matrix. We assume that the conditional
independence relationships in y are encoded via an undirected
graph G = (V ,E) that consists of a set of nodes V = (1, . . . , q)
and a set of undirected edges E such that s − t �∈ E if ys
and yt are conditionally independent given all other variables.
One common assumption of many existing graphical model
approaches is that the observations are homogeneous and a
single graphG is sufficient to characterize the conditional depen-
dency structure of y. However, such an assumption can be
violated in many modern applications such as cancer genomic
studies where patients are known to be highly heterogeneous
and may have distinct molecular networks whose structures
are modulated by various individualized factors such as genetic
markers and prognostic factors (Dahl 2008; Lohr et al. 2014;
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Bolli et al. 2014). Existing statistical approaches (briefly reviewed
below) do not adequately capture such network plasticity for
heterogeneous populations and hence the goal of this article is
to fill in the gap by developing novel covariate-dependent undi-
rected graphical models. We illustrate the idea of the proposed
model with a toy example in Figure 1 where a 4-node undirected
graph changes with covariate x in both its structure and edge
strength.

1.1. Existing Literature on Heterogeneous Graphical
Models

Guo et al. (2011), Danaher, Wang, and Witten (2014), Peterson,
Stingo, and Vannucci (2015), and Ha, Baladandayuthapani, and
Do (2015) considered heterogeneous graphical models with-
out covariates to estimate multiple group-specific undirected
graphs where the groups are pre-fixed. The approaches depend
on the specific criteria used to segment heterogeneous data,
which are often subjective and not necessarily always avail-
able, and may result in groups that are still heterogeneous. In
another line of work, Rodriguez, Lenkoski, and Dobra (2011)
and Talluri, Baladandayuthapani, and Mallick (2014) explored
mixtures of graphicalmodels where the population is objectively
clustered into homogeneous groups with each group having
different graph structures. The clustering is mainly driven by
the separation of group-specific means instead of graphs. As
demonstrated in our simulation studies, covariate information
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https://doi.org/10.1080/01621459.2023.2233744
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2233744&domain=pdf&date_stamp=2023-09-01
http://orcid.org/0000-0001-8087-6747
mailto:yni@stat.tamu.edu
http://www.tandfonline.com/r/JASA


2 Y. NIU ET AL.

Figure 1. A toy example of an undirected graphical model with four nodes (a, b, c, and d) and one continuous covariate x. The edge thickness is proportional to its strength.
Both the structure and the edge strength vary with the covariate.

can be beneficial to the estimation of multiple graphs even
when there is no clear separation in the first moment of the
data. Refer also to Yin and Li (2011), Lee and Liu (2012),
Bhadra and Mallick (2013), Cai et al. (2013), Ni, Ji, and Müller
(2018), Deshpande, Ročková, V., and George (2019), Niu et al.
(2020), and Samanta, Khare, and Michailidis (2022) for graphi-
calmodelswith covariate-dependentmean structure. In essence,
these approaches can be written as a multivariate regression
model with residuals following a graphical model. While they
are effective in adjusting covariates for graph estimation, the
graph structure is still assumed to be homogeneous across all
observations.

As an extension from covariate dependency through the first
moment, a second order covariance regression framework (Hoff
and Niu 2012; Fox and Dunson 2015) models the covariance
matrix �x as a function of covariates, �x = �x�T

x + � for
some positive diagonal matrix � . Matrix �x is clearly positive-
definite at any value of x by construction. Although, in principle,
the covariance regression framework can be extended to graph
or inverse-covariance-regression by assuming �x = �−1

x =
�x�T

x + � , it is not immediately clear how to induce sparsity
in �x, a key feature of undirected Gaussian graphical mod-
els (GGMs). For instance, in order to set the (i, j)th element
of �x to zero, �x needs to be carefully chosen so that the
inner product of the ith and jth rows of �x is exactly zero.
Such systematic control calls for a tedious modeling exercise,
which becomes even more challenging in relatively sparse high
dimensional �x.

There has been some recent developments for covariate-
dependent graphs and sparse precisionmatrices. Liu et al. (2010)
developed a graph-valued regression model that partitions the
covariate space into rectangles by classification and regression
trees and fits GGMs separately to each region. However, the
estimated graphs may become unstable and lack similarity for
similar covariates due to the separate graph estimation, as
reported in Cheng et al. (2014). Several kernel-based meth-
ods (Kolar, Parikh, and Xing 2010a, 2010b; Zhou, Lafferty and
Wasserman 2010) have been developed for conditional precision
matrix estimation. However, due to the curse of dimension-
ality, they all focused on a univariate covariate. Recently, Ni,
Stingo, and Baladandayuthapani (2019) proposed a graphical
regression method that estimates directed acyclic graphs as
functions of covariates and allows the graph structure to vary
continuously with covariates. However, it is difficult to extend
their approach to undirected graphs because as mentioned ear-
lier, formulating a sparse positive-definite matrix directly as
a function of covariates is highly nontrivial. To the best of
our knowledge, there is no existing method that can model

continuously varying undirected graphs as functions of general
covariates.

1.2. Outline of the Proposed Approach

We propose a novel Bayesian covariate-dependent graphical
model that circumvents the challenges described above. Specif-
ically, we avoid directly parameterizing the graphs or sparse
precision matrices as functions of covariates by introducing
an intermediate layer of latent variables and exploiting the
conditional independence of graph and covariates given the
intermediate latent variables. We choose this layer to be a ran-
dom partition that serves as a hidden link between the graphs
and covariates. We then specify a model for the graphs given
the random partition and a model for the random partition
given the covariates, both of which are significantly simpler
than directly modeling sparse precision matrices as functions
of covariates. Despite the discrete nature of the random par-
tition, one can still arrive at a continuously varying graph or
precision matrix by marginalizing out the covariate-dependent
partition. We take note here that this cannot be done in
non-probabilistic partition-based approaches such as Liu et al.
(2010). Even in applications where a clear partition of the popu-
lation is deemed plausible, marginalizing out the partition can
still be interesting and provides natural uncertainty quantifi-
cation of the graph estimation assisted by covariates. While
our focus in this article is on undirected graphs, the proposed
model can be easily extended to other graphs such as directed
acyclic graphs.

Moreover, we study the theoretical support of our proposed
prior by showing that our model is flexible to approximate any
ν-Hölder conditional variance-covariance functions ν ∈ (0, 1].
It is well-known that such functions are dense (in an L1 sense)
in the class of all continuous functions, attesting to the large
support. We also establish optimal rates of fractional posterior
contraction by using a specific choice of the cohesion function
that builds connection between the conditional and joint den-
sities, which allows us to leverage on the existing results on
posterior convergence rates of mixture models.

1.3. Novelties of the Proposed Approach

(a) Structurally varying graphs. The existing methods can only
handle the covariate-dependent undirected graphs in a discrete
fashion (Liu et al. 2010). Our approach offers the ability to
model a continuously varying graph by marginalizing out the
discrete partition so that discretely and continuously varying
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graphs are unified seamlessly under one Bayesian framework,
which has not been achieved before. (b) Theoretical results. The
large support result of the proposed prior shows that although
the prior for the conditional precision matrix is continuous
in covariates through the multinomial logit transformation in
probabilities, it assigns positive probabilities to any L1 neigh-
borhood of a ν-Hölder continuous conditional precision matrix
(0 < ν ≤ 1, see its definition in Section 3.4.1). To the
best of our knowledge, this is the first result on the flexibil-
ity of covariate-dependent graphical models on the space of
piecewise conditional covariance functions. In addition, our
posterior contraction result demonstrates that our posterior
for the conditional density is rate-optimal. (c) Generality. Our
approach is a general class of models that includes some of
the methods mentioned above as special cases. For example,
by using certain cohesion function, Rodriguez, Lenkoski, and
Dobra (2011) can be considered as a special case of our approach
without any covariates. (d) Generalizability. Some methods (Liu
et al. 2010) can be adapted to different types of graphs but not
without major modifications, and some methods (Ni, Stingo,
and Baladandayuthapani 2019) cannot easily move beyond its
specification. Our approach offers an easy adaptation to any
kind of graphs without changing anything significant and it
can be easily done by replacing the graph-related likelihood
only.

The rest of this article is organized as follows. First, we intro-
duce and formulate the general problem of interest in Section 2.
We present our proposed model in Section 3, which contains
prior and likelihood specification, model averaging and predic-
tion, and theoretical results of the prior support and the frac-
tional posterior consistency. Posterior inference including a fast
blocked Gibbs sampler and some details of model comparison
are defered to Section S.4. In Sections 4–5, we illustrate the pro-
posed method using simulations with different dimensions of
covariates and graphs, and an application of protein networks in
breast cancer with gene expressions as covariates. We conclude
this article with discussions in Section 6.

2. General Formulation

Let y1, . . . , yn be n realizations of a q-dimensional random
vector y = (y1, . . . , yq) of primary interest and let x1, . . . , xn
be the realizations of p-dimensional secondary covariates x =
(x1, . . . , xp). The goal is to build a graphical model that char-
acterizes the conditional independencies of y conditional on x.
Specifically, we assume a covariate-dependent graphical model
y ∼ P{y | �(x)} where �(x) encodes the covariate-dependent
graph structure. For GGMs, �(x) is the covariate-dependent
precision matrix. As mentioned in the introduction, directly
modeling a covariate-dependent precision matrix can be a chal-
lenging problem: it is difficult to ensure that the precisionmatrix
is both sparse and positive-definite while being smoothly vary-
ing with the covariates.

To address this challenge, we introduce a discrete latent
variable—a covariate-dependent partition—to avoid explicitly
define the precisionmatrix as a function of covariates. It serves as
an additional layer between the precision matrix and covariates.
This is natural in a Bayesian hierarchical model, and it can

take advantage of marginalization as we shall show in the next
section. The covariate-dependent partition ensures the precision
matrix function to have only a finite number of values according
to the partition; thus, a finite number of graphs as well. To
maintain positive definiteness and sparsity in a finite number of
precision matrix is substantially easier and many models have
been developed for this purpose.

Let ρ = (S1, . . . , SKρ ) denote a random partition of [n] =
{1, . . . , n}, that is, Sj ∩ Sj′ = ∅ for j �= j′ and ∪Kρ

j=1Sj =
[n], where Kρ is the size of partition ρ. In other words, the
set Sj contains the indices of the observations that belong to
cluster j and Kρ is the number of clusters. For each cluster
j = 1, 2, . . . ,Kρ , we let �j denote its cluster-specific precision
matrix and � = {�1, . . . ,�Kρ }. The probability distribution
of y1, . . . , yn given the partition and cluster-specific precision
matrices can be written as

P(y1, . . . , yn | ρ,�) =
Kρ∏
j=1

∏
i∈Sj

P(yi | �j). (2.1)

Notice, by introducing the cluster specific indicators z =
{z1, . . . , zn}, where zi = j if i ∈ Sj for i = 1, . . . , n and
j = 1, . . . ,Kρ , an equivalent representation of (2.1) can be
obtained as

P(y1, . . . , yn | z,�) =
n∏

i=1
P(yi | zi,�) =

n∏
i=1

P(yi | �zi).

Hence, yi’s are independent given z and �, that is, yi | zi,� ∼
P(yi | �zi). Therefore, the true data-generating distribution of
y can be written as a mixture distribution,

P(y | π ,�) =
Kρ∑
j=1

πjP(y | �j), (2.2)

where πj = P(zi = j) for i = 1, . . . , n and j = 1, . . . ,Kρ and∑Kρ

j=1 πj = 1, π = {π1, . . . ,πKρ }.
For the choice of graphical models (i.e., the choices of prob-

ability distribution P(yi | �j) and the graphical prior p(�j)),
we focus on undirected GGMs. We adopt two approaches
in this article. First, we consider a Gaussian likelihood func-
tion with the G-Wishart prior (Roverato 2002) as the nat-
ural conjugate prior for the precision matrix. It is a well-
studied model with many existing efficient procedures (Atay-
Kayis and Massam 2005; Jones et al. 2005; Lenkoski and
Dobra 2011; Dobra, Lenkoski, and Rodriguez 2011; Wang
and Li 2012; Lenkoski 2013; Mohammadi and Wit 2015;
Uhler, Lenkoski, and Richards 2018). However, this nat-
ural Bayesian formulation does not scale well with high-
dimensional graphs. Traditionally, to scale up, researchers often
restrict graphs to be decomposable (Dawid and Lauritzen
1993); see also some recent theoretical developments (Xiang,
Khare, and Ghosh 2015; Lee and Cao 2021). Another scal-
able approach, which does not assume decomposability, is the
pseudo-likelihood implementation of the neighborhood selec-
tion method for GGMs (Meinshausen and Bühlmann 2006).
Several Bayesian adaptations have been proposed in recent
years (Atchade 2015; Lin et al. 2017). The pseudo-likelihood
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Figure 2. (a) A direct model. (b) The proposed model with an extra layer.

approach, in addition to scalability, allows the use of any exist-
ing regression variable selection methods such as the spike-
and-slab prior (Mitchell and Beauchamp 1988; Ishwaran and
Rao 2005; Narisetty and He 2014), which we adopt in this
article.

To incorporate covariates x1, . . . , xn, we consider covariate-
dependent random partition prior models p(ρ | x1, . . . , xn).
In this article we choose to use the product partition model
with covariates (PPMx, Müller, Quintana, and Rosner 2011).
But several other Bayesian models that incorporate covariate
information can be used as well, such as dependent Dirichlet
process (DDP) models (MacEachern 1999; Sethuraman 1994;
Griffin and Steel 2006; Müller, Erkanli, and West 1996; Bar-
cella, De Iorio, and Baio 2017) and the hierarchical mixture
of experts (HME) models (Dasgupta and Raftery 1998; Jor-
dan and Jacobs 1994; Bishop and Svensén 2012). Neither DDP
or HME is equivalent to PPMx, and none of them has been
extended for graphical models. To the best of our knowl-
edge, our proposed model is the first Bayesian partition-based
model adapted for covariate-dependent graphical models with
heterogeneous data.

Exploiting marginalization, the covariate-dependent graphi-
cal model is defined as

P{y1, . . . , yn | �(·), x1 . . . , xn}
=

∑
ρ∈Bn

P(y1, . . . , yn | ρ,�1, . . . �Kρ )p(ρ | x1, . . . , xn),

where Bn is the collection of all possible partitions of [n]. It is
clear from themarginal likelihood that the precisionmatrix�(·)
is a function of covariates.

3. Partition-Based Covariate-Dependent Graphical
Model

The proposed partition-based covariate-dependent graphical
model (PxG) is a hierarchical model with three levels (see Fig-
ure 2): the probability distributionP(y | �), the graphical prior
p(� | ρ) given the partition ρ, and the covariate-dependent
partition prior p(ρ | x). We will describe the modeling details of
each level.

3.1. Covariate-Dependent Partition Prior

As stated in Section 2, we consider partition-based prior models
to incorporate covariates. There is a variety of them, such as
PPMx, DDP, and HME, just to name a few. In this article,
we consider PPMx, that is, the product partition model with
covariates proposed in Müller, Quintana, and Rosner (2011) for
its simplicity and ease to use. See Page, Quintana, and Rosner
(2021) for another application of PPMx. But this does not limit
the choice to only PPMx. In fact, any other partition-based
models can be adopted within the same Bayesian framework
directly if one prefers, which is a big advantage of the proposed
model. The PPMx model (Müller, Quintana, and Rosner 2011)
is defined as

p(ρ | x1, . . . , xn) ∝
Kρ∏
j=1

g(X∗
j ) · c(Sj),

where the cohesion function c(S) ≥ 0 for S ⊆ [n] measures
the tightness of the elements in S and the similarity function
g(X∗

j ) ≥ 0 for X∗
j = {xi | i ∈ Sj} characterizes the similarity

of the xi’s in cluster j. The similarity function need not be a
proper probability model of covariates, but for convenience, we
construct it by marginalizing out the parameters in the auxiliary
probability model of covariates p(xi | �j) within each group,
where �j ∼ p(�j) is a set of parameters, hence

g(X∗
j ) =

∫ ∏
i∈Sj

p(xi | �j)p(�j)d�j.

Let z1, . . . , zn ∈ {1, . . . ,Kρ} denote the cluster indicator such
that zi = j if i ∈ Sj. The covariates in our later application are
continuous, and therefore we use the following default auxiliary
probability model of covariates for cluster j = 1, . . . ,Kρ ,

{xi}zi=j | μj, σ 2
j

iid∼
∏
i∈Sj

Np(μj, σ 2
j Ip),

μj | σ 2
j ∼ Np(μ0, σ 2

0 σ 2
j Ip),

σ 2
j ∼ IG(b1, b2).

(3.1)

The similarity function can be constructed in the same fash-
ion for discrete covariates. Through similarity functions, the
PxG model encourages that similar covariates lead to similar
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clustering, which in turn leads to similar graph structures. The
choices of cohesion function c(·) are plenty. For simplicity, we
use c(Sj) = α(nj − 1)! where nj = |Sj| is the size of cluster j.
With this choice of cohesion function, Dirichlet process (DP)
mixture model is a special case of the PxG model (Ferguson
1973; Antoniak 1974), and Rodriguez, Lenkoski, and Dobra
(2011) is equivalent to the PxG model with no covariates. See
Section S.4 for details of the blocked Gibbs sampler for the PxG
model.

3.2. Probability Distribution and Graphical Prior

We focus on undirected GGMs although our methodology is
applicable to a much larger class of graphical models. Specifi-
cally, conditional on the partition ρ, we independently assign
an undirected graph and precision matrix to each cluster.
That is, �(xi) = �j if i ∈ Sj. We effectively reduce an
infinite-dimensional functional�(·) to a finite set of parameters
�1, . . . ,�Kρ . Let Y∗

j = (yTi1 , . . . , y
T
inj

) with nj = |Sj| and Sj =
{i1, . . . , inj}. We consider two approaches for GGMs, which cor-
respond to two different choices of the probability distribution
P(Y∗

j | �j) and graphical prior p(�j,Gj) for j = 1, . . . ,Kρ .

3.2.1. Approach One: Gaussian-G-Wishart Model
The probability distribution is a centered multivariate Gaussian
distribution, P(Y∗

j | �j) = ∏
i∈Sj Nq(yi | 0,�−1

j ) where the

precision matrix �j = {ωj
st}qs,t=1 encodes the graph structure

of Gj = (V ,Ej) such that ω
j
st �= 0 if and only if s − t ∈ Ej.

Conditional onGj, we assume a conjugate G-Wishart prior�j ∼
G-WishartGj(b,D) with density,

p(�j | Gj) = I−1
Gj

(b,D)|D|(b−2)/2 exp
{
−1
2
tr(�−1

j D)

}
,

where I−1
Gj

(b,D) is the analytically intractable normalizing con-
stant and tr(·) is the trace of a matrix. The graphical prior is
completed with a prior distribution on graph G. Let gjst be a
binary indicator variable such that gjst = 1 if s − t ∈ Ej and
0 otherwise. We assume gjst ’s are independent Bernoulli, g

j
st ∼

Bernoulli(αG), for 1 ≤ s < t ≤ q, with prior edge inclusion
probability αG.

Many sampling procedures have been developed for
Gaussian-G-Wishart model (Jones et al. 2005; Dobra, Lenkoski,
and Rodriguez 2011; Mohammadi and Wit 2015). To improve
the scalability of posterior inference, we also consider a pseudo-
likelihood approach.

3.2.2. Approach Two: Pseudo-LikelihoodModel
As the graph size increases, the Gaussian-G-Wishart approach
becomes computationally expensive. Instead of using proper
Gaussian likelihood function that constrains the precision
matrix to be positive definite, we replace it by the pseudo-
likelihood function that is a product of conditional likelihood
functions (Besag 1975). Let yi,−s be a subvector of yi without the
sth element. Denote the conditional likelihood of yi,s | yi,−s as
Q(yi,s | yi,−s,�j) for i ∈ Sj, where yi,s is the sth element of yi.

Then the pseudo-likelihood function is defined as

P(Y∗
j | �j) =

∏
i∈Sj

q∏
s=1

Q(yi,s | yi,−s,�j).

Such pseudo-likelihood approach has been adopted inmodeling
undirected graphical models (Ji and Seymour 1996; Csiszár and
Talata 2006; Ravikumar,Wainwright, and Lafferty 2010; Ekeberg
et al. 2013; Barber and Drton 2015; Pensar et al. 2017). For
GGMs, the conditional likelihood function is the node-wise
linear regression model, that is, Q(yi,s | yi,−s,�j) ≡ N(yi,s |
yTi,−sβ

j
s, τ

j
s ) where β

j
s = (β

j
s1, . . . ,β

j
s,s−1,β

j
s,s+1, . . . ,β

j
sq)

T . This
choice is motivated by the fact that the conditional density of
N(yi | 0,�−1

j ) is N(yi,s | yTi,−sβ
j
s, τ

j
s ) with β

j
st = −ω

j
st/ω

j
ss

and τ
j
s = 1/ωj

ss (Peng et al. 2009). Therefore, ω
j
st = 0 if and

only if β
j
st = 0. Consequently, determining the graph structure

is equivalent to finding a sparse subset of β
j
s in the regression

model N(yi,s | yTi,−sβ
j
s, τ

j
s ).

In essence, the pseudo-likelihood approach converts the
graph structure learning task for GGMs into a variable selec-
tion problem in a set of independent linear regressions. Thus,
any existing variable selection procedures can be adopted here,
including both spike-and-slab priors (Mitchell and Beauchamp
1988; Ishwaran and Rao 2005; Narisetty and He 2014) and
shrinkage priors (Park and Casella 2008; Carvalho, Polson, and
Scott 2010) under a Bayesian framework; we use the former.
Specifically, the density of β j

st is given by

β
j
st ∼ gjstN(0, η1τ

j
s ) + (1 − gjst)N(0, η0τ

j
s ), (3.2)

where gjst is defined in Section 3.2.1 and η1 � η0 > 0. The
graphical prior is completed with a conjugate inverse-gamma
prior, τ

j
s ∼ IG(a1, a2) and the same Bernoulli prior on gjst as

in Section 3.2.1.
The pseudo-likelihood approach provides a fast and flexible

way in estimating GGMs, especially when the Gaussian assump-
tion cannot be verified. Atchadé (2019) showed that its posterior
contraction rate matches the rate of convergence of the frequen-
tist neighborhood selection. Alluding to the slightly faster upper
bound on the rate of posterior contraction, Atchadé (2019)
remarked that the pseudo-likelihood approach is statistically
more efficient than a full likelihood approach (e.g., Gauusian-G-
Wishart approach) for high-dimensional graphs. Although we
do not consider high-dimensional graphs (q > n) in this article,
the pseudo-likelihood approach is computational efficient as
well. Its computation is considerably faster than the Gaussian-
G-Wishart model because (i) there is no intractable normalizing
constant in the graphical prior anymore, and (ii) computation of
independent linear regressionmodels are trivially parallelizable.
To exploit parallel computing, we do not constrain gjst = gjts. This
asymmetry can be fixed with post-MCMC processing, which
will be detailed in Section S.4.1.3.

3.3. Partition Averaging and Graph Prediction

Recall that by introducing the random partition ρ, we effectively
discretize the continuous precision matrix function �(·) as
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�(xi) = �j for i ∈ Sj, which greatly simplifies the modeling
of covariate-dependent sparse precision matrix. Because ρ is
random,we can recover�(·) (hence,G(·)) by partition averaging
the posterior distribution.

3.3.1. Partition Averaging
The full posterior distribution is given by

p{�(·),G(·), ρ | y1:n, x1:n}
∝ P{y1:n | �(·)} · p{�(·) | ρ,G(·)} · p{G(·) | ρ} · p(ρ | x1:n),

where y1:n and x1:n denote y1, . . . , yn and x1, . . . , xn, respectively.
Marginalizing out partition ρ,

p{�(·),G(·) | y1:n, x1:n}
=

∑
ρ∈Bn

p{�(·),G(·), ρ | y1:n, x1:n}

∝
∑

ρ∈Bn

P{y1:n | �(·)} · p{�(·) | ρ,G(·)} · p{G(·) | ρ} · p(ρ | x1:n)

=
∑

ρ∈Bn

⎡
⎣P(y1:n | �1, . . . ,�Kρ )

Kρ∏
j=1

{
p(�j | Gj)p(Gj)

}⎤⎦ p(ρ | x1:n).

In summary, (i) through Bayesian hierarchical formulation via
random partition, we reduce an infinite-dimensional quantity
�(·) as a sparse positive-definite matrix function of x to a
finite number of sparse positive-definite matrices �j’s; and (ii)
through partition averaging, we recover the infinite dimensional
functional �(·) from �j.

3.3.2. Graph Prediction
The PxGmodel also allows for graph structure prediction given
a new sample covariate xnew through the posterior predictive
distribution

p{�(xnew),G(xnew) | y1:n, x1:n, xnew}

=
∑
ρ∈Bn

Kmax∑
j=1

p(xnew ∈ Sj | ρ, y1:n, x1:n) · p(�j,Gj | ρ, y1:n, x1:n)

· p(ρ | y1:n, x1:n), (3.3)

where Kmax is the maximum number of clusters allowed. This
is a new and useful feature as the prediction does not require
the access of ynew. Notice that the marginalization performed
here cannot be done in non-Bayesian partition-based graphical
models (e.g., Liu et al. 2010) since the partition is not random.

3.4. Theoretical Properties of the PxGModel

In the following, we first investigate the flexibility of our prior
specification for the PxGmodel, following which we shall inves-
tigate the asymptotic properties of the posterior distribution.

3.4.1. Prior Support
Essential to studying the theoretical support of our prior is to
look at an equivalent representation of the conditional density
p(y | x), where (y, x) denotes a generic response-covariate
pair. Based on the previous definition in Section 2, � is the
collection of q× q precision-matrix atoms. Letμ = {μj}Kρ

j=1 and

�x = {�x
j }Kρ

j=1 denote the collection of normalmean-covariance
atoms. For simplicity, in this section we assume �x

j = σ 2
j Ip. As

in (2.2), an equivalent representation of the joint density of y and
x is given by

p(y, x | π ,�,μ,�x) =
Kρ∑
j=1

πjNq(y; 0,�−1
j )Np(x;μj, σ 2

j Ip).

By integrating out y, the marginal density of x is

p(x | π ,μ,�x) =
Kρ∑
j=1

πjNp(x;μj, σ 2
j Ip),

Hence, we consider the specific form of the conditional density
of the PxG model,

p(y | x,�,μ,�x,π) = p(y, x | �,μ,�x,π)

p(x | μ,�x,π)

=
Kρ∑
j=1

πj(x)Nq(y; 0,�−1
j ), (3.4)

where

πj(x) = πjNp(x;μj, σ 2
j Ip)∑Kρ

t=1 πtNp(x;μt , σ 2
t Ip)

. (3.5)

Equation (3.4) is a conditional density representation with
covariate-dependent weights in (3.5). Interestingly, if σ 2

j ≡ σ 2,
πj(x) depends only on linear functions of x, noting the simplifi-
cation,

πj(x) = πj exp{(−‖μj‖2/2 + μT
j x)/σ

2}∑Kρ

t=1 πt exp{(−‖μt‖2/2 + μT
t x)/σ 2}

, (3.6)

where ‖ · ‖ is the vector Euclidean norm. Equation (3.6) is
reminiscent of multinomial-logit probabilities as one can repa-
rameterize πj(x) in terms of the canonical parameters (aj, bj) ∈
R × R

p of the Gaussian exponential family

πj(x) = πj exp(aj + bTj x)∑Kρ

t=1 πt exp(at + bTt x)
.

Thus, the PxG model with σ 2
j ≡ σ 2 can be viewed as an

extension of the HME models by Jordan and Jacobs (1994).
Norets (2010) obtained approximation results of an arbitrary
continuous conditional density using the HME models of the
form (3.6) under suitable regularity conditions, demonstrating
the flexibility of such models. Norets and Pati (2017) took this
a step further and obtained minimax rates of posterior conver-
gence for appropriately smooth conditional densities.

As y | x,�,μ,�x,π is not Gaussian, the variance-covariance
matrix var(y | x,�,μ,�x,π) no longer captures the condi-
tional dependency relations among (y1, . . . , yq). Observe that
the conditional independency relation here holds true only by
further conditioning on the latent clusters. Similar examples of
conditional independency conditional on certain latent param-
eters can be found in the literature on robust graphical modeling
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(Finegold andDrton 2011, 2014; Cremaschi et al. 2019). It never-
theless is important to look at the form of var(y | x,�,μ,�x,π)

and how it changes with covariates. Observe that

var(y | x,�,μ,�x,π) =
Kρ∑
j=1

πj(x)�−1
j .

Notice that the precision matrix of y | x,�,μ,�x,π is given
by {∑Kρ

j=1 πj(x)�−1
j }−1. Given y and x, one can find a simplified

representation of the posterior mean of var(y | x,�,μ,�x,π)

which is
∑Kρ

j=1 E{πj(x)�−1
j | y, x}. It is hard to characterize the

nature and sparsity structure of {∑Kρ

j=1 πj(x)�−1
j }−1 in its full

generality, but if πj(x) behaves approximately like an indicator
function 1Xj(x) for a finite partition {X1, . . . ,XKρ } of X ⊆ R

p,
then the precision matrix of y | x would be approximately∑Kρ

j=1 1Xj(x)�j. In this case the precision matrix approximately
reflects the conditional independence structure of y | x. Theo-
rem 3.1 shows that if indeed all entries of the true conditional
variance var(y | x,�,μ,�x,π) is ν-Hölder continuous, 0 <

ν ≤ 1 (see the definition of ν-Hölder continuity in the lemma
below), then the prior assigns positive probability to appropriate
integrated neighborhood of the true function of the covariance
matrix �−1

0 (·). For simplicity, we only consider the case when
the covariate x is scalar for the following lemma and theory in
this section and use notation x for scalar x. Before introducing
Theorem 3.1, we first show the fact that ν-Hölder continuous
matrix can be approximated by a piecewise constant function.

Lemma 3.1. Denote the true conditional covariance matrix of
y given x as �−1

0 (x) = [σ 0
ij (x)]q×q. Let Hν be the space of

uniformly ν-Hölder continuous functions, 0 < ν ≤ 1, that is,

Hν =
{
f : [a, b] → R; ‖f ‖Hν ≡ sup

x,x′∈[a,b]
|f (x) − f (x′)|

|x − x′|ν < ∞
}
,

where ‖f ‖Hν is the ν-Hölder coefficient. Assume σ 0
ij (x) ∈ Hν ,

i, j = 1, . . . , q. Therefore, for any ε > 0, there exists Kε ∈ N
+

and a set of positive definite matrices {�0k}Kε

k=1 where �−1
0k =

(σ 0k
ij )q×q and a set of positive real numbers a ≤ a1 < · · · <

aKε+1 ≤ b such that∣∣∣∣∣∣
∣∣∣∣∣∣�−1

0 (·) −
Kε∑
j=1

1(aj,aj+1](·)�−1
0j

∣∣∣∣∣∣
∣∣∣∣∣∣
1

< ε,

where �−1
0j and aj depend only on �−1

0 (·) and ε, ‖A(·)‖1 =∫ b
a ‖A(x)‖dx for any matrix norm ‖ · ‖.

Proof. See Supplementary Materials Section S.1.

Theorem 3.1. (Prior large support). Assume that the true condi-
tional density of y given x satisfies var(y | x) = �−1

0 (x), where
the precision matrix �0(·) is a continuous function of a one-
dimensional covariate x ∈ (a, b] for −∞ < a < b < ∞.
Assume that all entries of the true covariance matrix�−1

0 (x) are
in Hν , 0 < ν ≤ 1. Then there exists K ′

ε ∈ N
+ such that for

any absolutely continuous prior distributions on (�j,μj,�x
j ) ∈

S+
q×q × R × R

+ and (π1, . . . ,πK′
ε
) in the simplex �K′

ε−1,

�

⎧⎨
⎩

∣∣∣∣∣∣
∣∣∣∣∣∣�−1

0 (·) −
K′

ε∑
j=1

πj(·)�−1
j

∣∣∣∣∣∣
∣∣∣∣∣∣
1

< ε

⎫⎬
⎭ > 0,

where S+
q×q is the cone of q × q positive definite matrices and

πj(·) is in the form of (3.5).

This specific choice of ν-Hölder continuous true conditional
variance ismotivated by the good performance of the simulation
study in Sections 4.1 and 4.2. Refer to Supplementary Materi-
als Section S.2 for a proof of Theorem 3.1. Observe that the
proof proceeds in two steps: (i) Invoking Lemma 3.1, we first
approximate a ν-Hölder continuous using a piecewise constant
function. (ii) Approximating a piecewise constant density using
densities of type (3.4). This is in contrast with Norets (2010)
and Norets and Pati (2017) who considered approximating only
smooth conditional densities. Another difference with Norets
(2010) andNorets and Pati (2017) is that we obtain prior support
in an integrated metric whereas Norets (2010) obtain point-
wise approximation bounds. Observe that for ν ∈ (0, 1] we
approximate the ν-Hölder covariance function with a piecewise
constant function in an integratedmetric. This does not hold for
ν > 1 in a stronger metric (such as the supremum norm). Refer
to Theorem 2 of Castillo (2014), which requires α > 1 for the
supremum-norm posterior contraction results to hold.

One of our key contributions is to recognize the connection
between conditional density in (3.4) to the mixture of experts
representation in Norets and Pati (2017) under a special choice
of parameters. This helps us adapt results on prior large support,
and later in Section 3.4.2 allows us to leverage on the posterior
contraction rate for the joint density (Shen, Tokdar, and Ghosal
2013).

In addition to the large prior support property, we also
develop posterior contraction rates in Section 3.4.2 where it
is important to assume smoothness. In fact, as we shall see
below in Section 3.4.2, our derivation for rate of contraction
assumes true joint density to be a mixture of Gaussians. As
shown in Ghosal, Ghosh, and Van Der Vaart (2000), this is a
fairly broad class of densities and can approximate any smooth
density with desirable accuracy. In addition, we characterize the
role of the number of mixture componentsK in rate, but assume
the dimension to be fixed.

3.4.2. Posterior Contraction Rates
In this section, we investigate the asymptotic properties of
the posterior distribution associated with the PxG model. For
technical simplicity, we shall consider a fractional likelihood
introduced in Bhattacharya, Pati, and Yang (2019), although we
anticipate analogous results with the original likelihood. Let p�

be the joint density of x and y in the PxG model and p�0 be the
true model, where � and �0 are the model parameters and the
true parameters, respectively. Instead of fitting p�, we shall work
with pα

� for α ∈ (0, 1) and investigate the convergence rate of the
posterior �n,α given by

�n,α(p�

∣∣ x1:n, y1:n) = pα
�(x1:n, y1:n)�(�)∫

pα
�(x1:n, y1:n)�(�)d�
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for some prior � on the parameters �. Next we shall state two
types of assumptions on the true density p�0 and assumed prior
�, respectively.

Assumption 3.1. (Assumptions on the conditional density and
marginal density of covariates). Assume the true conditional
density of the q-dimensional response y given the p-dimensional
covariate x has the following form

p(y | x,�0) =
K∑
j=1

πj(x | �0) · Nq(y; 0,�0
G0j)

=
K∑
j=1

πj(x | �0) · φ�0
G0j

,

and the true marginal density of covariates is

p(x | �0) =
K∑
j=1

π0j · Np(x;μ0j,�x
0j) =

K∑
j=1

π0j · φμ0j,�x
0j
,

where

πj(x | �0) =
π0j · φμ0j,�x

0j∑K
j=1 π0j · φμ0j,�x

0j

,

�0 = {(π0j,�0
G0j

,μ0j,�x
0j)}Kj=1, K is a known constant and

�x
0j = diag(σ 2

0j1, . . . , σ
2
0jp) is a diagonal matrix with diagonal

entries σ 2
0ji, i = 1, . . . , p, j = 1, . . . ,K. Let p�0 = p(y |

x,�0) · p(x | �0) be the true joint density and p� be any
joint density with parameters� = {(πj,�Gj ,μj,�x

j )}Kj=1, where
μj = (μj1, . . . ,μjp) and �x

j = diag(σ 2
j1, . . . , σ

2
jp). Moreover,

let 0 < λ0j1 ≤ · · · ≤ λ0jq be the eigenvalues of �0
G0j

. Assume
0 < λ0m ≤ λ0j1 ≤ · · · ≤ λ0jq ≤ λ0M and σ 2

m ≤ σ 2
0ji ≤ σ 2

M ,
for j = 1, . . . , q, i = 1, . . . , p, where λ0m, λ0M , σ 2

m, σ 2
M are global

constants.

Assumption 3.2. (Assumptions on �).
1. Prior for (π1, . . . ,πK) is Dirichlet (π0/K, . . . ,π0/K), π0 > 0.
2. Prior for μji is any normal density, j = 1, . . . ,K, i = 1, . . . , p.
3. Prior for σ 2

ji is any inverse-Gamma density, j = 1, . . . ,K,
i = 1, . . . , p.
4. Prior for �Gj given Gj is any G-Wishart density and edges in
Gj follow independent Bernoulli density, j = 1, . . . ,K.

To measure the closeness between p�0 and p�, define the α-
divergence with respect to the true probability measure P�0 as

Dp�0 ,α(p�, p�0) :=
1

α − 1
log

∫ (
p�

p�0

)α

p�0dμ.

Using the two assumptions above, we derive the main theorem
of the fractional posterior distribution around the true density.

Theorem 3.2. (Contraction of fractional posterior distribu-
tions). Fix α ∈ (0, 1) and let εn =

√
K(p+q) log n

n . Suppose
Assumptions 3.1 and 3.2 hold. Then, for any D ≥ 2 and t > 0,

�n,α

(
Dp�0 ,α(p�, p�0) ≥ D + 3t

1 − α
ε2n

∣∣∣ x1:n, y1:n
)

≤ e−tε2n

holds with P�0 probability at least 1−2/{(D−1+ t)2ε2n}, where
�n,α(· | x1:n, y1:n) is the posterior probability and x1:n, y1:n are
the sample covariates and responses, respectively.

Proof. See supplementary materials section S.3.

Compared to the regular posterior contraction results, the
fractional posterior result in Theorem 3.2 only requires the
prior to be sufficiently concentrated around �0. Observe that
we have worked with the simplifying assumption when the true
density p�0 is itself amixture ofK-Gaussians and our PxGmodel
assumed the knowledge of the number K. Indeed the conver-
gence rate

√
K(p + q) log n/n is minimax optimal (Tsybakov

2008). When the number of mixtures K = n
p+q

2β+p+q ,β > 0,
one can recover the contraction rates of posterior for estimating
(p + q)-variate β-smooth densities (Shen, Tokdar, and Ghosal
2013; Norets and Pati 2017).

4. Simulation Study

In this section, we present three simulated examples. The first
two simulation studies consider the entries of precision matrix
to be linear or piecewise linear functions of covariates whereas
the third simulation assume discrete functions (i.e., piecewise
constant precisionmatrices).We demonstrate that the proposed
PxG model is able to handle both types of precision matrix
functions. To show the necessity of using covariate information,
we compare the PxGmodel with two following “partial”models:
covariate-only model where graph is assumed to be constant
among sample; graph-only model where graph varies with sam-
ples but does not depend on covariates. Model comparison
among them is conducted via DIC in this section.

4.1. Example 1: Piecewise Linear PrecisionMatrix

We consider an example with a three-dimensional GGM of
which the precision matrix is a piecewise linear function of the
given one-dimensional covariate x. Define the true covariate-
dependent precision matrix as �(x) = [�st(x)]s,t=1,2,3 where
�ss(x) = 1.2 and

− 1 < x < −0.33, �12(x) = 0, �13(x) = −0.75x + 0.25,
�23(x) = 0.75x + 1.25; −0.33 ≤ x < 0.33,
�12(x) = 0.75x + 0.75, �13(x) = 0, �23(x) = −0.75x + 0.75;
0.33 ≤ x < 1, �12(x) = −0.75x + 1.25,
�13(x) = 0.75x + 0.25, �23(x) = 0.

Thus, the piecewise linear function of the precision matrix
defines three clusters with different graphs. They are G1 =
(V ,E1) for −1 < x < −0.33 with E1 = {1 − 3, 2 − 3};
G2 = (V ,E2) −0.33 < x < 0.33 with E2 = {1 − 2, 2 − 3};
G3 = (V ,E3) for 0.33 ≤ x < 1 with E3 = {1 − 2, 1 − 3},
where V = {1, 2, 3}. We draw 100 realizations of the covariate
uniformly from each of the three clusters, that is, the total sample
size is 300. Then the responses y are drawn from the correspond-
ing covariate-dependent normal distributionN3{0,�−1(x)}.We
simulate 1000MCMC samples using the blocked Gibbs sampler
for the Gaussian-G-Wishart model with 500 burn-in samples.
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Figure 3. Edge inclusion probability as a function of covariate x. Black: true edge inclusion probability. Red: PxG posterior estimate of edge inclusion probability.

Figure 4. Partial correlation as a function of covariate x. Black: true partial correlation. Red: PxG posterior estimate of partial correlation. Blue: k-lasso estimate of partial
correlation.

We plot the posterior edge inclusion probability as a function
of x for all three edges in Figure 3. The black lines are the true
edge inclusion and the red lines are the estimated posterior edge
inclusion probabilities. The posterior edge inclusion probability
is captured by averaging out all MCMC samples. We can also
calculate the posterior partial correlationmatrix as a function of
the covariate x based on theMCMC samples; see Figure 4. From
both figures, the posterior estimates capture the overall trends of
the true edge inclusion and the true piecewise linear precision
matrix.

Moreover, we compare the PxG model with the kernel
graphical lasso approach (hereafter, k-lasso) described in Liu
et al. (2010), which estimates a covariate-dependent covariance
matrix via kernel smoothing. Let S(x) be the covariance matrix
varying with a covariate x, then

S(x) =
n∑
i=1

K
( |x − xi|

h

)
(yi − μ(x))(yi − μ(x))T

/ n∑
i=1

K
( |x − xi|

h

)

with

μ(x) =
n∑

i=1
K

( |x − xi|
h

)
yi

/ n∑
i=1

K
( |x − xi|

h

)
.

Here h > 0 is the bandwidth and K(·) is a Gaussian kernel.
We tune h on a [0.1,1] grid with the Akaike information cri-
terion. To obtain a sparse precision matrix �i for each sample,
glasso (Friedman, Hastie, and Tibshirani 2008) is applied, �̂i =
argmin�

{
log |�| − tr(S(xi)�) − λi‖�‖1

}
. The corresponding

blue curves in Figure 4 shows the partial correlation estimates
using k-lasso approach. We can see that it does not capture the
basic shape of the piecewise linear partial correlation functions.
And k-glasso approach does not yield posterior estimates of edge

inclusion probabilities. Mean squared errors (MSE) of PxG and
k-lasso for each partial correlation are shown in Figure 4 as well.
By comparing the proposed PxG model (DIC=2193) with the
covariate-only model (DIC=2585) and the graph-only model
(DIC=3190) and via the deviance information criterion (DIC)
(see supplementarymaterials for details), the PxGmodel has the
smallest DIC value, indicating the best model fitting.

4.2. Example 2: Linear PrecisionMatrix with Constant
Graph

In this scenario, we demonstrate that the PxGmodel can recover
the precision matrix as a function of covariates even when the
graph induced by the precision matrix is constant. We compare
PxG with approaches proposed by Bhadra and Mallick (2013)
(hereafter, BM13) and Deshpande, Ročková, V., and George
(2019) (hereafter, mSSL) to show the necessity of using covariate
information in graph estimates and to show that under this
case model misspecification leads to incorrect graph estimates.
We consider a five-dimensional covariate-dependent precision
matrix �(x) as a linear function of a scalar covariate x. It is
defined as follows: �ss(x) = 1.4 for s = 1, 2, 3, 4, 5; �s,s+1(x) =
x for s = 1, 2, 3, 4; the rest entries in �(x) are 0 and x ∈
(−0.8, 0) ∪ (0, 0.8). Thus, 4 entries in �(x) are linear functions
of x. The constant graph induced by �(x) is a 5-node chain
graph G = (V ,E) with 4 edges, where V = {1, 2, 3, 4, 5} and
E = {1− 2, 2− 3, 3− 4, 4− 5}. Covariate x is drawn uniformly
from its range with sample size n = 300, and the corresponding
responses y are generated from N5{0,�−1(x)}. We simulate
2000 MCMC samples using the blocked Gibbs sampler of the
Gaussian-G-Wishart model with 1000 burn-in samples.
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Figure 5. PxG posterior estimate of partial correlations.

Figure 6. (A) BM13 posterior estimate of edge inclusion probability. (B) mSSL estimate of absolute value of partial correlation. Red dots indicate true edges in�(x).

Figure 7. (A) indicates the true cluster allocation, which is also the estimated cluster allocation of PxG (i.e., no misclassification). (B) and (C) are the posterior estimates of
cluster allocations of the covariate-only model and the graph-only model, respectively.

We plot the posterior estimate of partial correlation as a
function of x for the four edges in Figure 5 indicated by red
line along with the MSE for each partial correlation estimate.
The black line is the true partial correlation. Thanks to partition
averaging, the PxG model captures the linear precision matrix
well even though all observations share the same graph and
there is no cluster induced from the underlying data generating
process. Figure 6 shows the results from BM13 and mSSL. For
BM13, the posterior estimate of edge inclusion probability is
shown in Figure 6(A); for mSSL, we plot the absolute value
of the estimate of partial correlation matrix in Figure 6(B).
Red dots in both plots are true edges. Both methods fail to
identify the true edges induced by �(x) due to model mis-
specification since BM13 and mSSL assume a constant graph
and a constant covariance matrix, both of which are indepen-
dent from covariates. Without using covariate information, the
graph estimates from BM13 and mSSL seem to be dictated
by the sample partial correlations of responses. In fact, we
observe that sample partial correlations of edges 1–3, 2–4, and
3–5 are about 4 times larger than the rest (including the true
edges).

4.3. Example 3: Piecewise Constant PrecisionMatrix

In this example, we consider the precision matrix to be a piece-
wise constant function of a set of covariates. Thus, clusters can
be induced from the precision matrix. Assume �(x) to be a
50-dimensional covariate-dependent precision matrix where x
is a 10-dimensional covariate. The piecewise constant precision
matrix of �(x) is defined as �(x) = �1 for x ∼ N10(010, I10)
and �(x) = �2 for x ∼ N10(210, I10), where 010 = 0 · 110
and 210 = 2 · 110. Two clusters are induced by �(x), and
�1 and �2 are the cluster-specific constant precision matrices.
Let G1 and G2 be the corresponding sparse graphs induced
from �1 and �2, respectively. They are selected randomly with
approximately 1% sparsity, and then �1 and �2 are drawn from
G-Wishart distribution with the degree of freedom equal to 3
and scale matrix equal to the identity matrix given G1 and G2.
We generate 250 realizations of covariate x for each cluster and
the corresponding responses are drawn from N50{010,�−1(x)}.

Figure 7 (A) shows the first two dimensions of the 10-
dimensional covariates with cluster allocation. The variances
of both clusters are relatively large comparing to the distance
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Figure 8. PxG posterior edge inclusion probability for Cluster 1 and 2. Red and green dots in both plots are the true edges in G1 and G2 with red indicating false negative
edges and green for true positive edges.

Figure 9. (A) BM13 posterior estimate of edge inclusion probability. (B) mSSL estimate of absolute value of partial correlation. (C) JRNS posterior estimate of edge inclusion
probability. Red dots indicate edges selected by each approach.

between their means. Thus, we observe that there is signifi-
cant overlap between these two clusters. Due to the relatively
large dimension of graph in this example, we use the pseudo-
likelihoodmodelwith the blockedGibbs sampler. TheGaussian-
G-Wishart model is too slow for such application due to the
computational burden of calculating the normalizing constant
of G-Wishart density. In the pseudo-likelihood approach, gjst in
(3.2) is not necessary the same as gjts since they are two separate
parameters in two independent conditional likelihood functions
that make up the pseudo-likelihood function. Therefore, the
posterior edge inclusion probabilities of gjts and gjst , denoted as
pjts and pjst , are unlikely to be the same. We use max(pjts, p

j
st)

as the final posterior edge inclusion probability for edge s − t
(similar in spirit to the union approach in the frequentist neigh-
borhood selectionmethod). This ensures the graph estimates are
symmetric. We simulate 1000MCMC samples with 500 burn-in
samples. For comparison, we follow the same procedure for the
covariate-only model and the graph-only model.

The PxG model correctly identifies both clusters with no
misclassification. Edge inclusion probabilities for each cluster
are show in Figure 8. Red and green dots are false negative edges
and true positive edges, respectively, according to the true graph
in each cluster. By selecting edges with posterior edge inclusion
probabilities greater than 0.5, its posterior graph estimate of G1
has 2 false negative edges and no false positive edges; forG2 it has
1 false negative edge and 1 false positive edge. Due to the close-
ness of covariates between the two clusters, the covariate-only
model is not able to correctly identify both clusters as shown

in Figure 7 (B). Figure 7(C) indicates that, without utilizing any
covariate information, the response information is not enough
for the graph-only model to identify Cluster 2 correctly, hence
the true piecewise precision matrix as well. This demonstrates
the necessity of using covariate information to assist graph esti-
mates in heterogeneous GGMs. The DIC values for the PxG,
covariate-only, and graph-only models are 104166, 155453, and
106138, respectively, with the PxG having the smallest value
among them.

We compare the PxG model with BM13, mSSL, and a recent
approach by Samanta, Khare, and Michailidis (2022) (hereafter,
JRNS) in this example. We plot the posterior edge inclusion
probability for BM13 in Figure 9(A), the estimates of absolute
values of partial correlations using mSSL in Figure 9(B), and the
posterior edge inclusion probability for JRNS in Figure 9(C)with
red dots indicating edges selected by each approach. For BM13
and JRNS, the red dots are edges with posterior edge inclu-
sion probability greater than 0.5 and for mSSL they are edges
corresponding to nonzero entries in the estimate of precision
matrix. Since the graph and the precision matrix are assumed
to be constant among all observations, these three approaches
suffer from model misspecification and do not identify the true
edges in the graph. The graph estimates of mSSL and JRNS are
identical, both having 17 edges. Comparedwith the trueG2, they
have 1 false negative edge and 8 false positive edges. It is worse
when compared to true G1. The posterior graph estimate of
BM13 has 8 edges whose posterior edge inclusion probabilities
are greater than 0.5. It has 5 false negatives and 3 false positives
compared with the true G2.
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Figure 10. Posterior estimates of cluster allocation of the PxG model shown on pairwise scatterplots of 3 mRNA covariates: ERBB2, ESR1, and PGR.

Figure 11. Posterior estimates of cluster allocation of the graph-only model shown on pairwise scatterplots of 3 mRNA covariates: ERBB2, ESR1, and PGR.

5. Real Data Analysis: Breast Cancer Data

In this section, we apply the proposed PxG model to a breast
cancer dataset. The mRNA and protein data of breast cancer
are downloaded from The Cancer Genome Atlas (TCGA) and
the Clinical Proteomic Tumor Analysis Consortium (CPTAC)
through the R program TCGA-Assembler (Wei et al. 2018).
The central dogma of genetics states that genetic information
flows from mRNA to protein. It is natural that we use mRNA
expressions as covariates and protein expressions as responses in
our approach.Wemodel the protein network of breast cancer as
amRNA-dependent graph. The PxGmodel allows us to uncover
how interactions between proteins change with different mRNA
expression. Different cancer treatments take advantages of var-
ious properties of protein–protein interactions. Therefore, dis-
covering how those interactions vary with mRNA expression is
one of the key steps in developing new targeted, personalized
cancer therapy.

It has been known that human epidermal growth factor
receptor 2 (HER2), estrogen receptor (ER), and progesterone
receptor (PR) are important in determining breast cancer sub-
types (Onitilo et al. 2009). They are related to treatment, survival
rate, and cancer cellmetabolismof breast cancer (Kennecke et al.
2010; Lobbezoo et al. 2013; Rimawi, Schiff, and Osborne 2015).
We focus on the correspondingmRNAs of these three receptors,
which are ERBB2 for HER2, ESR1 for ER and PGR for PR.
For proteins, in addition to the protein expression of the three
markers, we also include 12 proteins from the mTOR pathway,
which is known to play a significant role in breast cancer (Hynes
and Boulay 2006; Cidado and Park 2012; McAuliffe et al. 2010).
In total, 883 observations are available for this analysis.

We apply the PxG model with pseudo-likelihood approach
and generate 10,000 MCMC samples with 1000 burn-in sam-
ples. For comparison, the graph-only model is applied, which
only uses protein information. Figure 10 shows the posterior

estimates of cluster allocation under the PxGmodel on pairwise
scatterplots of 3 mRNA covariates, and Figure 11 shows the pos-
terior estimates of cluster allocation for the graph-only model.
Under PxG, there is a clear separation among 3 of the 4 posterior
clusters which can be observed from the first two scatterplots in
Figure 10, whereas the same separation is not observed under
the graph-only results on Figure 11. This suggests that the
covariates influence but do not dominate the clusters in the PxG
model.

Additionally, we use the total sum of squares (TSS) of covari-
ates to measure the overall variance under a cluster allocation.
It is defined as TSS = ∑K̂

j=1
∑

i∈Ŝj ‖xi − μ̂j‖2, where μ̂j is
the sample covariate mean of the jth cluster, Ŝj is the index set
of the estimated cluster j, and K̂ is the estimated number of
clusters. TheTSS for the PxGand graph-onlymodels are 509,029
and 645,585, respectively, which again indicates that the covari-
ate information assists the clustering results for heterogeneous
GGMs under PxG. The DIC values (37,531 for the PxG model
and 40,798 for the graph-only model) confirm this conclusion
as well.

For protein network estimation, we plot the posterior edge
inclusion probability for each cluster under the PxG model in
Figure 12, where red dots indicate the included edges (inclusion
probability greater than 0.5). According to the posterior estimate
of the cluster allocation of the PxG model in Figure 10, ERBB2
is highly expressed (relatively large values) in cluster 1 and it is
suppressed (relatively small values) in cluster 2; ESR1 is highly
expressed in both cluster 3 and 4. We observe that when ESR1
is highly expressed, the connectivity among proteins intensifies
based on the protein networks from cluster 3 and 4 in Figure 12.
The connection between protein expressions of ERBB2 and PGR
seems independent of the mRNA gene expression of ERBB2
since the edge between them presents in both cluster 1 and 2.
Other than few exceptions, most edges among clusters do not
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Figure 12. Posterior edge inclusion probability for each cluster under the PxG model. Red dots indicate posterior graph selection.

overlap. Since cluster 3 and 4 have a similar mRNA profiles
among ERBB2, ESR1 and PGR, they share the most edges than
other pairwise edge comparison among clusters. The results in
Figure 12 illustrate howprotein connectivity changewith certain
mRNAs.

6. Discussion

We have introduced a novel Bayesian model, PxG, for hetero-
geneous graphical models with covariates. We have focused
on undirected Gaussian graphical models with two different
approaches, that is, the Gaussian-G-Wishart approach and the
pseudo-likelihood approach. The modularity of the proposed
PxG model allows straightforward extension to other graphical
models such as directed acyclic graphs. Despite the discrete-
ness of the random partition, we have shown both theoreti-
cally and empirically that PxG is capable of recovering graphs
that continuously change with covariates. One of the important
components of the proposed PxG is the PPMx model. Recently
Page, Quintana, and Rosner (2021) uses PPMx in regression
problems to discover the interaction effects of predictors, which
are mainly categorical, on an univariate response. Note that our
approach uses PPMx for a completely different purpose, that
is, we focus on learning the precision matrix and graph struc-
ture (conditional independencies) of a set of multivariate Y-
variables assisted by a set of covariates X. Therefore, the depen-
dencies considered in PxG and Page, Quintana, and Rosner
(2021) are fundamentally different. Future direction of this work
includes investigating other nonparametric Bayesian methods

for covariate-dependent random partition models as well as a
more direct approach in modeling the continuous relationship
between graph/precision matrix and covariates.

Supplementary Materials

Supplementary Materials include all the proofs, the posterior inference
procedure, and the code that implements the proposed method.
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