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ABSTRACT

Density Functional Theory (DFT) has become a cornerstone in the modeling of metals. However, accurately simulating metals, particularly
under extreme conditions, presents two significant challenges. First, simulating complex metallic systems at low electron temperatures is
difficult due to their highly delocalized density matrix. Second, modeling metallic warm-dense materials at very high electron temperatures is
challenging because it requires the computation of a large number of partially occupied orbitals. This study demonstrates that both challenges
can be effectively addressed using the latest advances in linear-scaling stochastic DFT methodologies. Despite the inherent introduction
of noise into all computed properties by stochastic DFT, this research evaluates the efficacy of various noise reduction techniques under
different thermal conditions. Our observations indicate that the effectiveness of noise reduction strategies varies significantly with the electron
temperature. Furthermore, we provide evidence that the computational cost of stochastic DFT methods scales linearly with system size for

metal systems, regardless of the electron temperature regime.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0207244

. INTRODUCTION

Metals are ubiquitous in daily life, industry, and academic
research due to their unique mechanical, magnetic, and elec-
tronic properties.” ’ Theoretical modeling of metal electronic struc-
tures is crucial for understanding their ground and excited state
properties.”” Density functional theory (DFT) is a widely used
approach in materials science and condensed matter physics to accu-
rately model the ground-state properties of metals at reasonable
computational costs.”*’ Recent studies have focused on complex
metal systems, such as metal nanostructures, high-entropy alloys,
and metal-support interfaces, which exhibit intriguing properties
and have significant applications.” '’ These materials often require
large supercells in theoretical modeling, sometimes containing more
than 1000 atoms.'" " While DFT has been effective for studying
bulk metal systems, the computational cost of conventional DFT
scales as O(N?), where N, represents the number of electrons. This
makes the application of conventional DFT methods to complex
metal systems challenging.

Another significant challenge arises in modeling metallic sys-
tems at high electron temperatures, especially in the context of

warm-dense materials relevant to fusion energy.'* Accurate model-
ing of these materials requires the description of electronic structure
at extremely high electron temperatures.'” Conventional DFT meth-
ods face difficulties in modeling warm dense materials due to the
requirement of a large number of partially occupied orbitals.'®
Therefore, the development of DFT methodologies that can mini-
mize computational expenses is essential for modeling metals across
various system sizes and under different conditions.

Various linear-scaling DFT methods have been developed to
address the computational challenges associated with modeling
complex materials.'” *° These methods generally employ one of
two strategies: exploiting the “nearsightedness” of the electronic
structure or decomposing the system into smaller, manageable
subsystems.'””***” The concept of nearsightedness in electronic
structure implies that the one-body density matrix, p(r,r'), decays
exponentially with the distance between points r and r’.* This prop-
erty allows for the truncation of the density matrix, facilitating the
use of sparse matrix techniques to achieve linear-scaling compu-
tational efficiency.””” Such an approach is particularly effective
for systems with large bandgap or metallic systems at high elec-
tron temperatures.” ' However, challenges arise when dealing with
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metals at low electron temperatures due to the slow decay of p(r,1"),
making the application of this principle less straightforward.” "
Alternatively, some methods focus on the subsystem decomposi-
tion approach, which relies on embedding theory to account for
interactions between a subsystem and its environment.!” This tech-
nique has shown success with non-covalently bonded systems, such
as molecular clusters,* but faces significant challenges when applied
to inorganic materials with covalent bonds.*” Notwithstanding, cer-
tain linear-scaling DFT methods have demonstrated the ability to
efficiently model metals with high electron temperatures by focus-
ing on a localized density matrix. Nonetheless, these methods often
struggle to access high-energy orbital information, which remains a
limitation. """

Stochastic DFT (sDFT) represents a significant advancement
in linear-scaling DFT methodologies, uniquely addressing chal-
lenges posed by systems characterized by small or negligible fun-
damental gaps.”® Unlike traditional DFT approaches that depend
on the Kohn-Sham (KS) orbitals, sDFT calculates ground-state
properties—including electron density, ground-state energy, and
forces on nuclei—through the statistical averaging over a set of
stochastic orbitals. Research into the application of sDFT on semi-
conductor materials has revealed a particularly compelling advan-
tage: the number of stochastic orbitals required for accurate property
calculation does not scale with the size of the system. This char-
acteristic enables sDFT to achieve linear or even sublinear scaling
efficiency for computations of electron density, energy per parti-
cle, and nuclear forces. The independence from explicit KS orbitals
allows sDFT to effectively model systems at high electron tem-
peratures, such as warm-dense materials (WDM), with enhanced
computational efficiency.””" "'

Inherent to sDFT, stochastic noise affects all calculated prop-
erties, presenting a significant computational challenge. To reduce
this noise by an order of magnitude, the number of stochastic
orbitals must be increased by two orders of magnitude, leading
to a substantial rise in computational demand.”” To mitigate this
issue, a variety of noise reduction techniques have been devel-
oped, each leveraging different approaches to enhance computa-
tional efficiency without compromising accuracy. Among these,
“overlapped embedded-fragmented sDFT” (0-efsDFT) that is based
on real-space fragmentation technique,” “energy-window sDFT”
(ew-sDFT) that is an energy-space fragmentation method,” and
“energy window embedded-fragmented sDFT” (ew-efsDFT) that
uses a hybrid strategy’* have shown promise. These methods facil-
itate the study of semiconductors, including those with minimal
bandgaps, by effectively managing stochastic noise and computa-
tional workload. Despite their success with semiconductors, the
application of these noise reduction techniques to metals, particu-
larly at varying electron temperatures, remains an area with limited
exploration.*’

In this study, we undertake a comprehensive benchmarking of
noise reduction techniques in stochastic Density Functional Theory
(sDFT), aimed at efficiently modeling metals subjected to both low
and high electron temperatures. Our paper is structured to facil-
itate a clear understanding of these techniques and their efficacy.
We begin by offering a concise introduction to sDFT, alongside a
detailed overview of the various noise reduction strategies that have
been developed to date. This sets the foundation for our subsequent
analysis. Following the introduction, we delve into an empirical eval-
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uation of these noise reduction techniques, using bulk aluminum as
our test system. This evaluation encompasses simulations at both
room temperature and elevated temperatures, providing insights
into the performance of these methods across a range of thermal
conditions. In addition, we extend our analysis to compare the
computational costs associated with the ew-efsDFT method across
different system sizes and temperatures. This comparison aims to
elucidate the scalability and efficiency of ew-efsDFT, offering valu-
able perspectives on its practical application in materials science
research. Through this structured approach, our study aims to illu-
minate the capabilities and limitations of noise reduction techniques
in sDFT, contributing to the ongoing optimization of computational
methodologies for the modeling of metal systems under diverse
thermal conditions.

Il. STOCHASTIC DENSITY FUNCTIONAL THEORY

We initiate our discussion with a consideration of a supercell of
volume V, encompassing an electron density p(r) that is discretized
over a real-space grid consisting of N grid points. For the scenario
of spin-unpolarized systems, the electron density is expressed as

p(r) =2%; f (&) (rlyi)(wilr), 9]

where y,(r) = (r|y,) represents the Kohn-Sham (KS) orbitals and
&i denotes the corresponding KS orbital energies, according to the
Kohn-Sham formulation of DFT. The function f(x), serving as a
smearing function to accommodate the occupancy of states, is cru-
cial for DFT calculations in metallic systems. Specifically, we employ
the Fermi-Dirac distribution,

1
f(x,y,ﬂ) = 1+ Pe0)” (2)

with g symbolizing the chemical potential and 8 =1/kgT repre-
senting the inverse temperature factor, where kg is the Boltzmann
constant and T denotes the electron temperature. It is pertinent to
highlight that alternative smearing functions, such as the error func-
tion, are equally viable for implementation within the scope of sDFT.

The Kohn-Sham Hamiltonian, fsz, is defined as
hKS = f+ 1;loc + 1jnl + 19H + 1;X.Ca (3)

where f delineates the kinetic energy term, #i,c and ¥y, correspond to
the local and nonlocal pseudopotentials, respectively, vy represents
the Hartree potential, and vxc denotes the exchange-correlation
potential. Consequently, the one-body reduced density matrix is
succinctly described by p = f (ixs; i, ).

In sDFT, the electron density p(r) is calculated using stochastic
orbitals |y) as follows:

p(r) = {(xpd(xr - t)

), = (E@F), “)

where 8(+) is the Dirac delta function and |¢) = \/; X) represents a
projected stochastic orbital. The notation (- - -), denotes averaging
over all samples of y. In practical sDFT calculations, a finite num-
ber (Ny) of stochastic orbitals is employed. The stochastic orbital
x(r) is constructed to satisfy {(x(r)*x(r')), = §(r —t’). Practically,

x(r) = :{:(AV)_%, where AV = V/Ng is the volume element of the
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real-space grid, and the sign of y is randomly, uniformly, and inde-
pendently selected for each grid point. Equation (4) becomes exact
in the limit as the number of stochastic orbitals Ny — oo; otherwise,
the density obtained is a stochastic approximation.

The projection of stochastic orbitals onto the operator \/; can

be efficiently approximated by expanding \/ f (fiks; , ) through
polynomial series, such as Chebyshev or Newton’s Interpola-

tion polynomials.””*® Specifically for Chebyshev polynomials, this
approximation takes the form,

V f (s 1, B) Z;anQAﬁ)Yh(ﬁKs% ®)

where N. denotes the length of the polynomial chain and T,(-)
are the Chebyshev polynomials. Within the framework of sDFT,
the application of T,(fixs) to a stochastic orbital is computed
utilizing the iterative formula associated with Chebyshev polyno-
mials, thereby facilitating a computationally efficient projection
algorithm.

A property O, other than electron density, can be calculated as
follows. If O is an explicit functional of electron density, it can be cal-
culated using p from Eq. (4). Otherwise, O requires calculating the
trace of an operator, which can be evaluated by the stochastic trace
formula. In the stochastic trace formula, the trace of an operator
O[p] is calculated with

Tr (O[p]) = ((xIO[p]1X))» (6)

where O[p] indicates that O depends on the electron density p. In a
special case, O[p] = p[p]A, where A is a one-body operator. In this
case,

0 =2Tr (pA) = 2((8AIE)),. 7)

For some other properties, O is more complicated. For example,
sDFT uses the following formula to calculate the electron density
of states at energy &:

D(e) = (Mo (hxs = )W)y » (MGlhksie )W) (®)

2 2
where G(x;¢,0) = \/%ef(’ﬂ) /27" is a Gaussian function. A pre-

selected o is the broa(fening of the Gaussian function, which deter-
mines the broadening of the density of states. The second example,
electron entropy (Sks), is essential for finite temperature calcula-
tions involving metals. In sDFT, Sks can be calculated using the
following formula:

Sks = ~2ks{{x|p log p+ (1~ p) log (1= p) ) ©)

where I represents the identity operator. Both Egs. (8) and (9) can
be calculated with a Chebyshev polynomial expansion, similar to
Eq. (5).

Due to the use of finite stochastic orbitals |y), noise exists in
all quantities calculated with sDFT. This noise varies inversely with
the square root of the number of stochastic orbitals, Ny, in accor-
dance with the central limit theorem. Specifically, to reduce the
stochastic fluctuation by one order of magnitude, it is necessary to
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increase N, by two orders of magnitude. Therefore, noise reduction
techniques are crucial for accurately determining properties with-
out compromising the efficiency of sDFT. It is important to note
that for many observables, such as electron density, density of states,
and atomic forces, the noise does not scale with the system size.
This allows sDFT to maintain linear scaling. Conversely, for prop-
erties like the energy per particle, the noise diminishes as the system
size increases. This implies that fewer stochastic orbitals are required
for larger systems, making sDFT a sub-linear-scaling method. How-
ever, for total energy calculations, noise amplifies with system size,
challenging the linear-scaling property of sDFT. Users are encour-
aged to carefully assess the properties they intend to calculate with
sDFT, considering the method’s scalability and noise characteris-
tics for their specific application. Our implementation of sDFT,
along with all subsequent noise reduction methods discussed below,
is based on the PINY_MD package,”” which utilizes a plane wave
basis. Unlike other plane-wave-based sDFT implementations that
incorporate k-point sampling,*' our approach specifically focuses on
I'-point calculations.

A. Overlapped embedded fragmentation

The o-efsDFT method divides a supercell into fragments
referred to as core regions (Cy) that are wrapped by a buffer region
(By) to create a dressed fragment (Dy = Cy U By), where f is the
fragment index (as depicted in Fig. 1). The fragment density matrix,
p 7> is defined as

) DRVACHIN It )
0,

l‘,EDf

, (10)
v ¢ Dy

{rlpsl’) =

Buffer Region (Bf)

Core Region (Cf)

FIG. 1. Schematic for overlapped fragmentation.?’ The system is divided into over-
lapped fragments. Each fragment fis composed of a core region (C) and a buffer
region (By) is defined around each C+. A deterministic DFT is performed for each
dressed fragment (D), which is the union of C and B¢ (C¢ U By).
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where (pf are the KS orbitals for the fth fragment obtained from

1
deterministic KS-DFT (dDFT). slf are fragment KS orbital energies.
# is the chemical potential that keeps each fragment charge neutral.
We want to emphasize that using o-efsDFT to model a charge-
separated system needs further development. In o0-efsDFT, electron

density is calculated by

(11)

>
X

P =28 pr ()¢ 2(jE0)F), - 2y (j&r )

where the fragment electron density is p¢(r) = ¥, f (elf st B)
2
o/ (&) = SV (o Bl (0] ), - and (o] ),

= fo dr(plf (r)*x(r).If 4 is similar with p, noise in the second term

of Eq. (11) will almost cancel noise in the third term. As we will
demonstrate later, it is crucial to have a reasonably good fragment
density matrix in order to maximize the noise reduction efficiency
of sDFT.

Since the construction of p y does not require accessing stochas-
tic orbitals, dDFT calculations are performed to converge the ground
state properties of fragments before any sDFT calculations com-
mence. As previously discussed, the similarity between p; and p
is critical for optimizing noise reduction efficiency. Therefore, we
ensure that the same program is used in fragment dDFT calcula-
tions and the computational parameters for fragment dDFT, such as
the choice of exchange-correlation functional, pseudopotentials, real
space grid spacing or electron density cutoff, and wavefunction cut-
off, remain consistent with those used in the sDFT calculations for
the entire system. All fragment dDFT calculations exclusively utilize
the I'-point to ensure that the total computational costs scale linearly
with system size. Although using only the I'-point does not converge
the k-point sampling, p serves as a reasonably good approximation
for p, even for materials with small bandgaps.*

Our fragmentation method significantly differs from the mixed
stochastic density functional theory (MDFT) developed by White
and Collins.”” In MDFT, deterministic orbitals handle the domi-
nant low-energy density matrix for the entire system explicitly, while
stochastic orbitals estimate the deflated high-energy density matrix.
These deterministic orbitals are updated in each self-consistent iter-
ation within MDFT. In contrast, 0-efsDFT utilizes stochastic orbitals
to correct a reference system composed of fragments maintained
at the same temperature. Converged dDFT calculations of frag-
ments are performed prior to sDFT self-consistent iterations, with
pr remaining fixed throughout the process.

B. Energy windows

Reduction in the stochastic noise can also be achieved by divid-
ing the occupied space into subspaces named as “energy windows.”
In this method, instead of projecting the stochastic orbitals onto
the occupied space, the stochastic orbitals are projected onto energy
windows using a set of projectors, Py,... ,lA’Nw. Here, the projector
P, is defined as

P, = f (s ews B) = f (s ew-1, ) 12
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for 1 < w < N,,, where —oo = ¢y < e; <--- < ey, = 4. In energy win-
dows sDFT (ew-sDFT), the electron density is obtained from the
sum of all the projected densities,

N, ) N,
p0 =23 (0[] 225,70,

where |£(W)) =v/Puly) is a projected stochastic orbital for window

w - |f (W)) are calculated simultaneously with a single polynomial
expansion. We wish to highlight that the parameter 8 for the w-th
window, denoted as /3W and ranging from i < w < N,, — 1, can dif-
fer from the physical . However, in the N,,th window, # must align
with the physical value since summing all P,, yields the Fermi-Dirac
distribution function. We recommend maintaining 8, equal to f8 for
consistency. Employing a different 8, typically does not enhance the
overall computational efficiency of ew-sDFT, a point we will discuss
further in Sec. I1L.

C. Energy window embedded fragmentation

The final noise reduction method at our disposal combines
the approaches used in 0-efsDFT and ew-sDFT with the resulting
expression for the electron density on each grid point r,

N, ) N, )
o0 =25 pr+23 ([ 0f) 25 ¥ (g o).

f w=1 X f w=1 X
(14)
where (™) (r) = (r‘\/f)f’w|)(> and f}w)(r) = <r‘pfm‘x) The
projection operators on the energy windows are the same as
ew-efsDFT, besides the last window is defined as

A 2 Nw_l A
N, =1— > P, (15)
w=1

In ew-sDFT, foi L P, equals the density matrix p, while in
ew-efsDFT, it returns the identity operator, I. In addition, the high-
est energy window is set to ex, = y in ew-sDFT, while in ew-efsDFT,
the energy windows are held fixed for the entire self-consistent pro-
cedure and are chosen to be independent of the chemical potential,
u. This greatly simplifies the on-the-fly calculations of the chemical
potential.** All P,, can use non-physical B, that can be differ-
ent from physical . Again, we recommend setting 3, the same

as . The actions of \/pP, and /P, on |y) are obtained using
a Chebyshev polynomial series. p is calculated in the same way
as 0-efsDFT.

I1l. RESULTS

sDFT and all introduced noise reduction methods are based
on the PINY_MD package,”” which uses plane wave basis. Dif-
ferent from other plane-wave-based sDFT implementations that
include k-point sampling, our approach focuses on I'-point calcu-
lations. sDFT, o-efsFT, ew-sDFT, and ew-efsDFT were tested on an
aluminum crystal of varying supercell sizes. Various temperatures
ranging from 300 to 60000 K were used to test metal calculations
under ambient conditions as well as in warm-dense metal systems.
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All calculations were performed using the Becke-Lee-Yang-Parr
(BLYP) functional."*" It is important to emphasize that an
exchange-correlation functional specifically tuned for warm-dense
matter should be used to accurately model materials with extremely
high electron temperatures.”’”” However, this work mainly focuses
on demonstrating the computational efficiency of various sDFT
implementations; thus, the BLYP functional was used in all calcu-
lations. A wave function cutoff of 60.0 Ry and a density cutoff of
96.0 Ry, corresponding to a real-space grid spacing of 0.17 A, were
used for the calculations. A Troullier-Martins norm-conserving
pseudopotential in Kleinman-Bylander form was employed.”””*
Throughout this study, 256 stochastic orbitals were used, regard-
less of the number of atoms. In the ew-sDFT and ew-efsDFT
calculations, 10 energy windows are chosen by uniformly distribut-
ing between the estimated lowest KS orbital energy and estimated
chemical potential. All statistical quantities were obtained using
five independent runs unless explicitly stated otherwise. We used a
2 x 2 x 2 supercell containing 32 aluminum atoms as the fragment
for the fragmented methods, o-efsDFT and ew-efsDFT. The core
region for each fragment is 1 x 1 x 1 unit cell while the buffer region
thickness is half unit cell length. The number of orbitals used in
fragment dDFT calculations was selected such that the occupation
numbers were truncated to less than 1 x 107>, To achieve this, we
used the following number of deterministic orbitals for each system
temperature: 96 orbitals (300 and 6000 K), 576 orbitals (20 000 and
40000 K), and 796 orbitals (60 000 K). For additional details about
the computational parameters, please refer to the supplementary
material.

Previous work by White and Collins has demonstrated the
advantages of sDFT in studying warm dense matter.”” The dDFT
calculations lack information on KS orbitals with high orbital ener-
gies. Therefore, evaluating properties that require knowledge of
high energy orbitals, like electron density of states, is not possi-
ble with dDFT. In Fig. 2, we demonstrate that sDFT is capable of
estimating the electronic density of states even at extremely high
energies. This is necessary for studying warm dense matter with
high electron temperatures. Similar results were observed by White
and Collins.”

Figure 3 shows the standard deviations (STD) of the elec-
tron densities calculated with various sDFT implementations at

2.4

1 \‘\

wn

8 LOF"™" a1 dDFT-300K

sDFT-6,000K

d sDFT-60,000K

—0.155 700 700

Energy (eV)

FIG. 2. The density of states of Alysg at different electron temperatures. The green
dashed line is the density of states calculated from dDFT. The blue solid line and
the red solid line are calculated from sDFT at temperatures 6000 and 60 000 K with
Eq. (8). We used 420 deterministic orbitals to converge our dDFT calculations at
300 K while only 256 stochastic orbitals were used to converge DOS calculations
in sDFT for at 6000 and 60 000 K. The inset highlights low-energy DOS.
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/5‘ — sDFT ew-sDFT
s 100r 0-efsDFT ew-efsDFT
2 s0r
W
=)
() 0. 1 N 1 1
A "[b) 6,000 K
)
o 100r
.2
g 5
=
Q) = 1 1 1
A Y0 60,000 K
e
= 100F
=
s 50r
n
O- 1

0 10 20 30 40 30
Gridpoint Index

FIG. 3. Standard deviations (STD) of the density in SDFT and noise reduction
techniques at different temperatures. We obtained the STDs over five independent
trials for SDFT (green), ew-sDFT (blue), o-ef-sDFT (red), and ew-ef-sDFT (purple)
at 300, 6000, and 60 000 K. We plotted the STDs for the first 50 grid points along
the x axis with y = z = 0.0 of Alysg.

different electron temperatures. Panel (a) demonstrates that real-
space fragmentation is not capable of reducing noise in electron
density at low electron temperatures; specifically, the noise from
0-efsDFT is comparable to that from sDFT, and the noise from
ew-efsDFT is comparable to that from ew-sDFT. On the other hand,
the energy window method works reasonably well and can reduce
the noise in electron density by almost 50%. This qualitative noise
reduction performance is similar when the electron temperature is
increased to 6000 K, as demonstrated in panel (b) of Fig. 3. Since
the Fermi-Dirac function becomes smoother at higher electron tem-
peratures, the overlap between two neighboring energy windows
becomes larger. Therefore, both ew-sDFT and ew-efsDFT become
less effective at reducing noise. Real-space fragmentation still can-
not efficiently reduce noise in electron density at 6000 K. When
the electron temperature is increased to 60000 K, the efficiency of
noise reduction becomes very different, as shown in panel (c) of
Fig. 3. First, all real-space-fragmentation-based methods, including
0-efsDFT and ew-efsDFT, can significantly reduce noise in elec-
tron density. The efficiency changes for real-space fragmentation
methods will be explained in the following paragraph. Second, using
only ew-sDFT is not capable of reducing noise in the electron den-
sity because there is a significant overlap between two neighboring
window functions.

It has been demonstrated that the noise reduction efficiency
of real-space fragmentation methods depends on the difference
between the fragment density matrix 3>, p and the system den-

sity matrix p."*** The difference between 7Py and p arises for
two reasons. First, a I'-point calculation is performed for each frag-
ment. The finite size error from using a small supercell in a fragment
DFT calculation is one reason for the discrepancy between 3¢ ps
and p. Second, the fragment density matrix p is truncated at the
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FIG. 4. One-dimensional slices of density matrix. The green line is the results
from a 300 K deterministic DFT calculation while the blue/magenta line is from a
sDFT calculation at 6000 K/60 000 K. Details of calculating the density matrix are
presented in the support information.

boundary of Dy, according to Eq. (10). At 300 K, py is very sen-
sitive to fragment size, which can be confirmed by performing a
unit cell calculation with k-point sampling. At this temperature,
DFT calculations converge slowly with an increasing number of k-
points (see Fig. S1 in the supplementary material). Also, p is highly
delocalized at 300 K, as shown in Fig. 4, leading to a large trunca-
tion error at the boundary of D;. However, at 60 000 K, fragment
DEFT calculations converge quickly with an increasing number of
k-points, and p, decays to zero much faster (see Fig. 4). There-
fore, using a small supercell in a fragment DFT calculation results
in X4 py that is similar to p. Errors associated with truncating p ¢
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are also negligible at 60 000 K. For hot Warm Dense Matter (WDM)
at even higher temperatures, our current fragmentation implemen-
tation faces high computational demands due to the significantly
larger number of orbitals required. This challenge could be mitigated
by reducing the fragment size, as the density matrix becomes more
localized at higher temperatures. A potential solution is to design
an overlapped fragmentation of clusters, which is subject to future
developments.

Noise reduction techniques can also be applied to other ground
state properties, such as ground state energy and atomic forces. We
list different energy terms calculated with various methods at dif-
ferent temperatures in Table I. We would like to emphasize that we
display results only up to 20 000 K. This is due to that determinis-
tic calculations of Alyse is highly challenging at temperatures higher
than 20000 K. For all ground state energies, including those for
sDFT above 20 000 K, please refer to Table S1 in the supplementary
material. Some energy terms, such as local pseudopotential energy,
Hartree energy, and exchange-correlation energy, can be directly
evaluated with electron density. The noise in these energy terms
is consistent with the noise in electron density. At 300 K, the
noise reduction efficiency of o-efsDFT is limited, while o-efsDFT
can significantly reduce noise at 20 000 K. ew-sDFT works well at
300 K, and its noise reduction efficiency is dramatically reduced at
20000 K. For Ejo, En, and Exc, ew-efsDFT performs best at all three
temperatures.

Kinetic energy and non-local pseudopotential energy can be
calculated using Eq. (7). Noise reduction methods for these energy
terms have been developed in previous studies.”” ** Real-space-
fragmentation-based methods, such as o-efsDFT and ew-efsDFT,
have demonstrated significant noise reduction in these energy terms.
However, ew-sDFT can only achieve marginal noise reduction, even
at low electron temperatures. Previous studies have indicated that,
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TABLE . The average energies per electron and corresponding standard deviations (STD) for various sDFT methods at different temperatures. The statistics were obtained
from five independent trials for each method of sDFT used in this study. In order, the kinetic energy (Ex ), non-local pseudopotential energy (Ey), local pseudopotential energy
(Ejoc ), Hartree energy (Ey), exchange—correlation energy (Exc ), entropy (TSks), and total energy (Ei) are shown in units of eV in the table. Each entry represents the
average energy up to four decimal places and in parenthesis next to it, is the STD on the order of 0.1 meV.

Temper ature (K) Method Ex E. Ejoc Ey Exc TSks Eiot
Deterministic 7.7052 -0.3639 5.4858 0.0381 —6.8521 —-0.0011 —18.7095
sDFT 7.7215(154)  -0.3666(12) 5.4858(16) 0.0494(3) —6.8582(7) —0.0009(0) —18.6905(140)
300 ew-sDFT 7.7059(124) -0.3645(11) 5.4863(5) 0.0397(2) —6.8531(2) —-0.0011(0) —18.7084(110)
0-efsDFT 7.7063(26) —0.3643(3) 5.4871(13) 0.0434(2) —6.8598(4) —0.0010(0) —18.7098(18)
ew-efsDFT 7.7097(27) —0.3643(5) 5.4861(3) 0.0385(2) —6.8528(2) —0.0011(0) —18.7054(24)
Deterministic 7.7702 -0.3733 5.4846 0.0395 —6.8534 -0.1193 —18.7731
sDFT 7.8035(250) —0.3763(14) 5.4854(12) 0.0505(2) —6.8595(3) —-0.1198(7) -18.7377(227)
6000 ew-sDFT 7.7842(205)  —0.3747(16) 5.4853(8) 0.0431(2) —6.8556(3) —0.1196(8) —18.7587(191)
0-efsDFT 7.7696(45) -0.3735(6) 5.4852(9) 0.0424(3) -6.8576(4) —0.1194(10) —18.7748(40)
ew-efsDFT 7.7739(24) -0.3737(3) 5.4846(3) 0.0401(1) —6.8543(1) -0.1199(11) —18.7706(15)
Deterministic 8.4300 —0.4342 5.4795 0.0368 —6.8528 -1.3115 —19.3737
sDFT 8.4596(196) —0.4372(16) 5.4803(10) 0.0482(4) -6.8599(4) -—1.3159(30) —19.3464(193)
20000 ew-sDFT 8.4677(230) —0.4375(17) 5.4798(10) 0.0452(6) —6.8582(5) —1.3161(36) —19.3407(200)
0-efsDFT 8.4311(22) —0.4344(4) 5.4797(2) 0.0373(1) —6.8538(1) —1.3144(28) —-19.3760(32)
ew-efsDFT 8.4300(37) —0.4342(3) 5.4797(1) 0.0370(0) —6.8532(1) —1.3145(38) —19.3766(52)
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at low electron temperatures, ew-sDFT cannot reduce the noise in
Tr (pO) only if the matrix representation of O is diagonal-dominant
in the deterministic Kohn-Sham (KS) orbital basis.*” Our results
suggest that the kinetic operator £ and the non-local pseudopoten-
tial operator vy tend to be diagonal-dominant in the deterministic
KS orbital basis for the tested system.

Noise in the electron entropy term, Sks, originates from two
primary sources. The first source is the noise in electron den-
sity, which leads to noise in the Kohn-Sham Hamiltonian, his,
and subsequently in the density matrix, p. The second source is
inherent in the stochastic trace formula used to calculate entropy.
Despite significant reductions in electron density noise through
methods, such as 0-efsDFT, ew-sDFT, and ew-efsDFT, we observe
that noise in TSks persists. This observation indicates that the dom-
inant noise contribution arises from the stochastic trace formula
rather than electron density fluctuations. To delve deeper into this
issue, we utilized converged electron densities, p ., from sDFT
or its noise-reduced variants, and performed a deterministic diag-
onalization of fle[pstT] to evaluate Eq. (9). This deterministic
trace approach revealed a decrease in entropy noise when employ-
ing noise reduction techniques (see Table S2 in the supplementary
material). This outcome underscores that the primary source of
entropy noise is the stochastic trace formula, overshadowing the
impact of noise reduction in electron density. Addressing the noise
in the stochastic trace formula for entropy, thus, necessitates fur-
ther research and development. Nevertheless, our findings indicate
that the presence of significant noise in the entropy term does not
adversely affect the accuracy of calculated electron densities and
atomic forces.

In addition to noise-related challenges, we also identified the
presence of bias or systematic errors in certain energy terms, par-
ticularly those that are non-linear functionals of electron density.>”

1.5
o 300 K
< (a) 300 sDFT ew-sDFT
% 1.0 0-efsDFT ew-efsDFT
o
0.0
% (b) 6,000 K
Z 1.0
B
= 0.5
2
E0.0
g (c) 60,000 K
- 1.0
kS
§ 0.5
0.0

5 10 15 20
Atom Index

FIG. 5. Standard deviations (STD) of the total nuclei force (eV/A) in SDFT and noise
reduction techniques at different electron temperatures. We obtained the STD over
five independent trials for SDFT (green), ew-sDFT (blue), o-ef-sDFT (red), and ew-
ef-sDFT (purple) at 300, 6000, and 60 000 K. We plotted the STDs for the first 20
atoms of Alysg.

ARTICLE pubs.aip.org/aipl/jcp

Notably, bias is evident in Ey, Exc, and TSks. Such biases are inher-
ent to sDFT calculations, where, for instance, Ey obtained from
sDFT is significantly higher compared to dDFT calculations, despite
relatively small fluctuations in Ey. Noise reduction methods play
a crucial role in mitigating these biases, largely due to their effec-
tiveness in minimizing fluctuations in electron density. Specifically,
the systematic error in all energy terms is notably reduced when
employing ew-efsDFT.

Reducing noise in atomic forces is very important for determin-
ing equilibrium structures.”®”” In Fig. 5, the STD of the force on the
nuclei along the x axis (Fx) for the first 20 atoms is plotted for sDFT
and noise reduction methods at electron temperatures of 300 K
[panel (a)], 6000 K [panel (b)], and 60000 K [panel (c)]. At 300 K,
both o-efsDFT and ew-sDFT can marginally improve the fluctua-
tion of nuclear forces, while ew-efsDFT performs best at 300 K. At
60000 K, ew-sDFT is not capable of reducing noise in nuclear forces.
However, both methods, 0-efsDFT and ew-efsDFT, can significantly
reduce the noise in nuclear forces at 60000 K. This is consistent
with the noise reduction efficiency observed in electron density
at different temperatures. In Fig. 6, we highlight the efficiency of
sDFT and noise reduction techniques by plotting the average STD
of nuclear forces along the x-axis as a function of temperature.
The efficiency of ew-sDFT is consistent with the work done by
Hadad et al.*

The overlap between two neighboring window functions in
ew-sDFT and ew-efsDFT can be controlled by the non-physical
parameter 3. Typically, the optimal choice is 8,, = 8. The total com-
putational costs for both ew-sDFT and ew-efsDFT for a given system
approximately equal N.Ny. Here, N, is determined by max(f,, ),
as the same Chebyshev polynomial expansion is used for all win-
dowing functions. If 8, < f, the increased overlap between window
functions results in decreased noise reduction efficiency. Conversely,
if B, > f8, N increases based on f8, but noise reduction efficiency
is enhanced. However, the increase in computational costs due to

g 1.
% sDFT ew-sDFT
$0.8 0-efsDFT ew-efsDFT
3
o)
'50.6]
E
z
50.4
[a)
2
0 0.2
&
g
<0. 0 20000 40000 60000

Temperature (K)

FIG. 6. Noise reduction efficiency in nuclei forces (eV/A) of various SDFT methods
with respect to temperature. We obtained the standard deviation (STD) of atomic
force on each atom over five independent trials for each method at 300, 6000,
20000, 40000, and 60000 K. We then average all STDs of different atoms and
plotted the corresponding values for sDFT (green), ew-sDFT (blue), o-ef-sDFT
(red), and ew-ef-sDFT (purple). The error bars indicate the fluctuations of force
STD for different atoms.
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TABLE II. Comparison of different methods of obtaining statistics for nuclei forces
(eV/A). Here, we compare using SDFT and ewef-sDFT on various system sizes of Al,
all of which were run at an electron temperature of 6000 K. The numbers reported
in column A were a result of taking the STD across all atoms for each trial, and then
taking the average of those STDs. Numbers reported in column B were a result of
taking the STD for each atom across all trials, and then taking the average of those
STDs. For Alsgg and Alggy, statistics were obtained from only B.

Temperature(K) Method System A B
Aly 0.3258 0.3332
DFT % Gses  oaned
6000 Ao o3 01004
ew-efsDFT ﬁtzz 0. 1078 g(l)z;;
Alges v 0.1146
Aly 0.3434 0.3476
DFT (1 Gses 0079
60000 Ao 0016 0oldd
ew-efsDFT ﬁtzz 00122 gg}gi
Alges s 0.0170

a higher N, outweighs the benefits of reducing N,. Comparing
ew-sDFT results at 6000 and 60 000 K, an increase in f3,, by a factor
of 10 cuts the noise in atomic force calculations by 50%, allowing
N, to be reduced by a factor of 4 to maintain the same noise
level. Nevertheless, with N, increasing by a factor of 10, the overall
computational costs rise by a factor of 2.5.

To investigate the impact of system size on the noise reduc-
tion efficiency of sDFT and ew-efsDFT, we conducted a series of
tests focusing on the atomic forces within different-sized systems.
Our tests involved analyzing data from five independent trials for
both sDFT and ew-efsDFT across a range of system sizes. How-
ever, due to resource constraints, we were limited to single runs
for Alspo and Algss when using ew-efsDFT. Given these limita-
tions, it was crucial to design new approaches for statistical analysis
of the atomic forces for these larger systems. To achieve this, we
employed two distinct statistical methods for smaller system sizes,
which served as a basis for comparison. The first method calcu-
lated the STD of the force on each atom across the independent
trials, providing a measure of variability for individual atomic forces.
The second method aggregated the forces from all atoms within
a single trial and then calculated the STD, offering a holistic view
of force variability within a single system snapshot. Our findings,
presented in Table II, reveal no significant difference between the
results obtained from these two statistical approaches. This consis-
tency suggests that, for larger systems where conducting multiple
calculations is not feasible due to resource constraints, fluctuations
of nuclei forces in a single calculation can reliably represent the fluc-
tuation of atomic forces from independent calculations. This insight
is particularly valuable for efficiently assessing the noise reduction
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FIG. 7. Scaling of ew-efsDFT at 900 and 6000 K on NERSC Corri-KNL. In (a)
6000 K and (b) 900 K, the average time it took to complete one SCF iteration
(blue) and the total time (green) to converge the SCF calculations were plotted
against their corresponding system size.

efficiency of sDFT and ew-efsDFT in large-scale systems, indicat-
ing that even with limited data, meaningful statistical conclusions
can be drawn. We want to emphasize that the equivalence of the
two statistical methods may only be applicable to a crystal structure,
where atoms are equivalent in such a system. We do not recommend
calculating STD across different atoms in a slab model or a nanocrys-
tal. Aside from the sDFT Aly results in Table II, which could be
the result of artifacts from using a single unit cell, there appear
to be no significant changes in the efficiency of noise reduction in
response to system size. Since the number of stochastic orbitals is
kept constant across all calculations, this suggests that the number
of stochastic orbitals needed for a system is nearly independent of
the system size.

Given the performance of ew-efsDFT in noise reduction for
properties, such as density, ground-state energy, and force on nuclei,
we tested its computational efficiency for larger systems. Our tests
were conducted on the Cori-KNL and Perlmutter supercomput-
ers at the National Energy Research Scientific Computing Center
(NERSC). Calculations on Cori-KNL included Al,sg, Alsgg, and Alggs
at 900 and 6000 K. The same set of system sizes was tested on
Perlmutter but at a system temperature of 60000 K. The system
parameters defined earlier in the discussion were applied to all six
runs. In Figs. 7 and 8, we plotted the total and per iteration CPU time
per core vs the number of electrons in the system on a log-log scale.
Figure 7(a) presents the results for the runs at 6000 K, which shows
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FIG. 8. Scaling of ew-efsDFT at 60 000 K on NERSC Perlmutter. The average time
it took to complete one SCF iteration (blue) and the total time (green) to converge
the SCF calculations were plotted against their corresponding system size.

that the time needed for each iteration scales as O(N2®*), while the
time needed for a single calculation scales as O(N™"). Figure 7(b)
displays the results for the runs at 900 K, indicating that the time
needed for each iteration scales as O(Nf‘%), while the time needed
for a single calculation scales as O(N>%?). In Fig. 8, the run con-
ducted on Perlmutter at 60 000 K showed that the time needed for
each iteration scales as O(NJ*), and the time needed for a single
calculation scales as O(N2).

The computational analysis indicates that the ew-efsDFT
method scales linearly with system size. Any observed sub-linear
scaling may be attributed to overheads in our calculations. Primar-
ily, the total computational cost depends on the cumulative time
required to iteratively apply the hixs operator. The computational
effort of applying /s once scales linearly with N, whether using
a plane wave basis or a real-space basis with a real-space implemen-
tation of non-local pseudopotentials. The frequency of applying fixs
is represented by N, x Ny. Here, N, that depends on electron tem-
perature and the spectral range of /ixs remains constant regardless
of system size. In addition, since the noise in many ground state
properties does not increase with system size (see Table II), N, is
also independent of system size. Consequently, the overall compu-
tational cost exhibits a linear relationship with system size across
various temperatures.

IV. CONCLUSIONS

In this work, we present benchmark studies on noise reduc-
tion techniques in stochastic density functional theory (sDFT) for
metallic systems. Our findings indicate that the efficiency of noise
reduction depends on the electron temperature. Specifically, at low
electron temperatures, the energy-window-based method, ew-sDFT,
outperforms the fragmentation-based approach, o-efsDFT. Con-
versely, at extremely high electron temperatures, o-efsDFT demon-
strates superior performance over ew-efsDFT, attributed to the
localized nature of the one-body density matrix. At both low and
high electron temperatures, ew-efsDFT, which integrates both the
energy-window and fragmentation approaches, emerges as the most
efficient method. Our results further reveal that ew-efsDFT scales
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linearly, enabling the efficient simulation of large metallic systems
across a large range of electron temperatures. Despite ew-efsDFT’s
current status as the most effective noise reduction method, we
observe significant residual noises in electron density, energy, and
nuclear forces at low electron temperatures. This underscores the
necessity for further advancements. In addition, the development
of a formula to mitigate noise in electron entropy is imperative to
enhance the accuracy of total energy calculations at high electron
temperatures. Further studies are necessary to evaluate the applica-
tion of sDFT and various noise reduction techniques to disordered
or melted systems, which are typical for metals at high temperatures.
We anticipate that noise reduction efficiencies observed in melted
metal systems will be similar to those noted in other disordered or
defected systems compared to their crystalline counterparts.’”** The
application of overlapped fragmentation methods, which requires
further development to enable the use of clusters as fragments,*®
represents a significant potential advancement of sDFT.

SUPPLEMENTARY MATERIAL

Discussions on the convergence of electronic structure with
system size and electron temperatures are included in the
supplementary material.”>® The supplementary material also
includes complete data on energies per electron with different elec-
tron temperatures, analysis of noise in entropy, details in calculating
the density matrix, details of computational costs, and additional

details of computational parameters.
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