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ABSTRACT: Biased enhanced sampling methods that utilize collective variables (CVs) are
powerful tools for sampling conformational ensembles. Due to their large intrinsic dimensions,
e�ciently generating conformational ensembles for complex systems requires enhanced
sampling on high-dimensional free energy surfaces. While temperature-accelerated molecular
dynamics (TAMD) can trivially adopt many CVs in a simulation, unbiasing the simulation to
generate unbiased conformational ensembles requires accurate modeling of a high-dimensional
CV probability distribution, which is challenging for traditional density estimation techniques.
Here we propose an unbiasing method based on the score-based di(usion model, a deep
generative learning method that excels in density estimation across complex data landscapes.
We demonstrate that this unbiasing approach, tested on multiple TAMD simulations,
significantly outperforms traditional unbiasing methods and can generate accurate unbiased
conformational ensembles. With the proposed approach, TAMD can adopt CVs that focus on
improving sampling e�ciency and the proposed unbiasing method enables accurate evaluation
of ensemble averages of important chemical features.

M olecular dynamics (MD) simulations have emerged as a
primary computational tool for generating conforma-

tional ensembles for studying thermodynamic properties of
complex systems in chemistry, biology, and material science.1

With the assistance of supercomputers,2,3 it is now possible to
perform milliseconds of all-atom MD simulations for medium-
sized proteins. To extend MD simulations to broader time and
length scales, multiple enhanced sampling methods have been
designed to increase the MD sampling e�ciency.4−14 Among all
enhanced sampling methods, CV-based enhanced sampling
methods focus on several important degrees of freedom that
capture systems’ essential dynamics. By biasing the probability
distribution along CVs, CV-based enhanced sampling methods
encourage systems to cross high energy barriers and explore
di(erent regions of the energy landscape more e�ciently. In
general, CV-based enhanced sampling methods focus on
converging the free energy surface (FES) associated with the
CV. Some CV-based enhanced sampling methods, like
metadynamics5 and umbrella sampling,15 can generate unbiased
conformational ensembles via unbiasing algorithms.

A critical assumption behind CV-based enhanced sampling
methods is themanifold hypothesis,16−18 which posits that high-
dimensional all-atom configurations often lie along a low-
dimensional latent manifold, and such a low-dimensional
manifold can accurately describe the important features of the
high-dimensional systems. Traditionally, physics-based CVs are
chosen from experimentally measurable properties, geometric
descriptors, and order parameters with important underlying
physics.19−21 Recently, machine-learning-based methods that
utilize dimensionality reduction techniques have been applied to

design CVs.22−33 Regardless of the CV categories, it is
challenging to fully describe a complex system in biochemistry
and material science with one or two parameters, a typical
number of CVs used in many enhanced sampling simulations.
For example, following the two-nearest neighbors method,34 we
estimate the intrinsic dimension (minimum numbers of
parameters) for accurately describing amyloid-β 42 (Aβ42)

35

to be 7.13, as shown in Figure 1. Fewer than seven CVs will not
fully describe this system. Therefore, sampling a high-dimen-
sional FES withmore than three CVs are important for exploring
conformations of a complex system.36−39

There are two challenges associated with studying a high-
dimensional FES. First, limited enhanced sampling methods
have been developed to sample a high-dimensional FES. For
most enhanced sampling methods38,40−42 that utilize biasing
potentials to assist crossing of energy barriers, it is challenging to
use many CVs, primarily due to the di�culty of constructing an
accurate biasing potential for a high-dimensional FES. Other
methods like driven-adiabatic free energy dynamics/temper-
ature-accelerated molecular dynamics (TAMD),6,7,38,43 which
enhance MD sampling by increasing the temperature of certain
degrees of freedom, are capable of adopting many CVs in
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enhanced sampling simulations, because biasing potential is not
required. Second, analyzing and visualizing a high-dimensional
FES are nontrivial. One solution is to e�ciently generate a
conformational ensemble by converging a high-dimensional
FES with enhanced sampling. Unbiased conformations can be
projected to any features of chemical interest without requiring
further sampling, while CVs in enhanced sampling can focus on
improving the sampling e�ciency. Designing an accurate
unbiasing method is needed for this approach.

However, when many CVs are being handled, the task of
unbiasing TAMD trajectories to produce unbiased conforma-
tional ensembles becomes increasingly complex. This complex-
ity arises from the need for accurate modeling of the high-
dimensional, often multimodal, CV probability distribution.
Traditional density estimation techniques, such as histogram
methods, kernel density estimation (KDE),44 nearest neighbor
density estimation,45 and the Gaussian mixture model
(GMM),46 often struggle to accurately capture the nuances of
such intricate distributions. For instance, KDE su(ers in high-
dimensional spaces, as it may produce overly smooth or
distorted estimates due to the lack of data across the expansive
high-dimensional space. On the contrary, the GMM su(ers from
scalability, initialization sensitivity, and a trivial model selection
process. In this paper, we leverage the score-based di(usion
model (SBDM)47 for accurate unbiasing of enhanced sampling
simulations with many CVs. A recently popularized denoising
di(usion model,48−50 the SBDM has been successfully used on
molecular conformation generation, protein docking, and
molecular dynamics.51−60 In our study, we evaluate the
performance of the SBDM-based unbiasing method in TAMD
simulations. We will demonstrate that the SBDM is highly
e(ective in accurately estimating CV’s probability distributions,
outperforming other models in constructing detailed CV
probability landscapes. Furthermore, compared to other
modern density estimation methods such as normalizing flow,
the SBDM can adapt to estimate probability distributions of
non-Euclidean CV such as torsion angles, with minor changes to
the model architecture.61 These capacities endow the SBDM-

based unbiasing method with superior performance and
versatility.

We first introduce the TAMD method and its unbiasing
formula. For a system of N particles, we denote its Cartesian
coordinates by r≡ (r1, r2, ..., rN), and n collective variables by q≡
[q1(r), ..., qn(r)]. In TAMD, q are coupled with extended
variables z ≡ (z1, ..., zn) with sti( harmonic potentials ∑iκi/
2[qi(r) − zi]

2. z typically shares the same topology as q. It has
been proven that the free energy surface A(q) can be
approximated with the free energy surface of extended variables
Aκ(z) when κi → ∞ for all κi. TAMD introduces a high
temperature Th ≫ T for z and maintains r at the desired
temperature T. To keep the thermodynamic properties of the
system, z are adiabatically decoupled from r by assigning each zi
a fictitious mass μi ≫ 1. With βh = 1/kBTh, where kB is the
Boltzmann constant, the joint probability distribution of r and z
from a TAMD simulation satisfies38

P P Pr z z r z( , ) ( ) ( )
TTAMD h

| (1)

where PTdh
(z) ∝ exp[−βhAκ(z)] is the marginal probability

distribution of z and P(r|z) is the Boltzmann distribution at
physical temperature T depending on z. Equation 1 is exact if all
μi → ∞. The free energy of collective variables Aκ(z) can be
easily obtained from TAMD with A(z) ≈ −kBTh log PTdh

(z). We

are often interested in intuitive features that are di(erent from
those of CVs used in an enhanced sampling to understand the
properties of the simulated system. Unbiasing enhanced
sampling trajectories is necessary to project biased simulation
data onto intuitive features. Assuming Y(r) is a set of low-
dimensional intuitive features of interest, the equilibrium
probability of Y(r) = y can be written as

P Py y Y r z r z r z( ) ( ( )) ( ) ( , ) d dTAMD=

(2)

where ω(z) = PTdh
(z)Th/T−1 is the unbiasing weight.

If Y can be written as a function of CVs, eq 2 can be reduced to
P(y) = ∫ δ(y − Y(z)) ω(z) PTdh

(z) dz. A good estimation of

PTdh
(z) is crucial for obtaining an accurate ω(z) in TAMD. Errors

in estimating PTdh
(z) magnify errors in ω(z) at a high Th, leading

to an inaccurate P(y). We design a toy problem to demonstrate
the importance of accurately modeling PTdh

(z) in unbiasing

TAMD. In this example, a one-dimensional probability density
P(z) at kBT = 1 is constructed with a mixture of Gaussians; the
feature of interest Y is set to be z. The probability is scaled to
di(erent Th values followed by convolution with a Gaussian
kernel to obtain a “perturbed” high-temperature probability
P̃Tdh

(z). P̃Tdh
(z) represents an example of inaccurate modeling of

PTdh
(z). Unbiasing weight ω(z) is computed from P̃Tdh

(z) and

used to calculate P(y) with eq 2 (see the Supporting Information
for details of the toy problem). Figure 2 demonstrates that the
error in P(y) is more sensitive to errors in P̃T dh

(z) when Th is

higher. There are various approaches for constructing PTdh
(z).

One approach is to use the mean force, such as unified free
energy dynamics,38 the single-sweep method,62,63 on-the-fly
parametrization,64−67 and reinforced dynamics.39 However, a
large variance of mean force estimator68 requires enormous
samples to control the noise in the mean force, which is highly
challenging for converging an FES with more than four CVs. On
the contrary, previous studies36 have shown that PTdh

(z) at special

Figure 1. (a) Two-nearest neighbors method that calculates the ratio μ

between the nearest and the second nearest neighbor distance for each
data point (red dots). F(μ) is the cumulative distribution of μ. The
slope (black fitting line) of −log[1 − F(μ)] as a function of log(μ) is an
estimation of the intrinsic dimension of Aβ42 (see the Supporting
Information for details of the two-nearest neighbors method). (b)
Molecular structure of Aβ42.
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points on a 10-dimensional FES can be evaluated e�ciently and
accurately by a histogram, which inspires us to use an
unsupervised learning method such as the SBDM to model
PTdh

(z).

We then briefly review the SBDM framework and its usage in
density estimation. The SBDM perturbs data distribution to
noise prior with a di(usion process over a unit time by a linear
stochastic di(erential equation (SDE):

f t t g t tz z wd ( , ) d ( ) d , 0, 1= + [ ] (3)

where f(z, t) and g(t) are user-defined drift and di(usion
functions of the SDE, respectively, and w denotes a standard
Wiener process. With a carefully designed SDE, the marginal
probability of z at di(usion time t, Pt(z), changes from data
distribution P0(z) to approximately a simple Gaussian
distribution P1(z). In this paper, we use an SDE with the drift

term f(z, t) = 0 and the di(usion function g t t t( ) d ( )/d2
= ,

where σ(t) represents the noise scale.
For any di(usion process in eq 3, it has a corresponding

reverse-time SDE:69

f t g t P t g tz z z wd ( , ) ( ) log ( ) d ( ) dtz

2
= [ ] + (4)

where w̅ is a standardWiener process in reverse. The trajectories
of the reverse SDE have the same marginal densities as those of
the forward SDE. Thus, the reverse-time SDE can gradually
convert noise into data. The SBDM parametrizes time-
dependent score function ∇z log Pt(z) in the reverse SDE with
a neural network sθ(z(t), t). To estimate ∇z log Pt(z), a time-
dependent score-based model sθ(z(t), t) can be trained via
minimizing a denoising score matching loss J(θ):

M t t P t

J t M

s z z z( ) ( ( ), ) log ( ( ) (0))

( ) arg min ( ) ( )

t

t t

z

z z z

( ) 2
2

(0) ( ) (0)

= |

= [ ]|
(5)

with t uniformly sampled in [0, 1], λ(t) being a positive
weighting function, z(0) ∼ P0(z), and z(t) ∼ P(z(t)|z(0)). In

our chosen SDE, perturbation kernel P(z(t)|z(0)]) can be
computed in the following closed form:

P t t tz z z z I( ( ) (0)) ( ( ); (0), ( ) (0) )2 2
| = [ ] (6)

In our paper, a precomputed weighting function

t P tz z( ) 1/ log ( ( ) (0))
tz( ) 2

2
= { | } is used. The score

matching loss ensures that the optimal solution to eq 5 equals
∇z log Pt(z) for almost all values of z and t.

Finally, the SBDM defines a deterministic way to compute
data distribution P0(z) as follows, with f(z, t) = 0:

P P g t t t tz z s zlog ( ) log ( )
1

2
( ) ( ( ), ) d

z0 1
0

1
2

= ·

(7)

CVs can be defined as spaces with di(erent topologies. For
example, n torsion angles are defined on a hypertorus space n,
and quaternions that represent rigid-body rotations are defined

on a three-dimensional unit sphere 3. Therefore, extending the
SBDM to di(erent topologies is important. In this study, we will
focus on the SBDM on a hypertorus space. The theory behind
the SBDM holds for compact Riemannian manifolds with subtle
modifications. For z ∈ M, a Riemannian manifold (such as
hypertorus n), with w being the Brownian motion on the
manifold and f(z, t) ∈ TzM, a tangent space, eq 4 still holds.61

Additionally, due to the compactness of the manifold, the noise
prior to P1(z) becomes a uniform distribution overM. As shown
in eq 5, training a denoising score matching model requires
sampling from perturbation kernel P(z(t)|z(0)) of the forward
di(usion defined by eq 3. We consider the perturbation kernel
on n with a wrapped normal distribution:

z z

t
t

t

P t t

U
d

d

z z U

( )
(0) ( ) 2

2 ( )
,

( ( ) (0)) exp ( )

n

d

d

d

2

2
=

+

| [ ]

(8)

The rest of the terms in the loss function in eq 5 remain the
same. Note that density estimation in eq 7 can be applied to both
variables in Euclidean and hypertorus space. The architecture of
an SBDMmodel is highly flexible. For example, an SBDMmodel
can use a residual neural network (ResNet),70 U-Net,71 a graph
neural network (GNN),72 etc.

In the following section, we will demonstrate how
incorporating SBDM can fulfill the strict density estimation
accuracy requirement of unbiasing TAMD, thus allowing
TAMD to generate correct unbiased ensembles. We tested the
e�ciency and accuracy of SBDM to unbiasing TAMD
simulations on three systems: (1) alanine dipeptide, (2)
glutamine dipeptide, and (3) met-enkephalin (see the
Supporting Information for simulation details34,38,73−92). In all
three systems, we conducted TAMD with torsion angles as
collective variables, with aTh of 1200 K in the first example and a
Th of 900 K in the second and third examples. The physical
variables were maintained at 300 K in all three experiments. We
then unbiased TAMD with density estimation performed by the
SBDM on hypertorus space (see the Supporting Information for
details of training SBDM models). In all three experiments, the
SBDM is trained with time-dependent score function sθ[z(t), t]
parametrized by a U-net architecture. For the di(usion function

g t t t( ) d ( )/d2
= in the forward SDE of the SBDM, we use

σ(t) = σmin
1−tσmax

t, where σmin = 0.01π and σmax = π. Unbiasing
TAMD with the SBDM as the density estimation method is

Figure 2. Free energy profiles generated from the unbiasing method of
using eq 2 are shown as solid lines with an “inaccurate” estimation of the
high-temperature probability. The blue, orange, and green lines
correspond to unbiased results from kBTh = 3, 6, and 9, respectively,
where kBT = 1 in all three cases. The black dashed line is the ground
truth with accurate estimation of the high-temperature probability.
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termed SBDM-TAMD hereafter. The general framework of
SBDM-TAMD is summarized in Figure 3. For a fair comparison,

we unbiased the same TAMD simulations with kernel density
estimation (KDE-TAMD) and a Gaussian mixture model

Figure 3. (a) Mechanism of denoising SBDM. During the di(usion process, the data (in this demonstration, a picture) are gradually perturbed to an
isotropic Gaussian noise via a forward SDE. (b) Flowchart of unbiasing TAMDwith the SBDM.We perform TAMD simulation at a high temperature,
Th, and construct the SBDM for z. The time-dependent score function (boxed in orange) is used to perform the density estimation of the CV, P(z) ≡
PT dh

(z), from a simple distribution, as shown above the red line.Weight ω(z) of the configurations is evaluated from estimated CV probability P(z). The

weight is used to compute the unbiased distribution of features of interest in P(y).

Figure 4. (a) Molecular structure of the alanine dipeptide. FES with respect to backbone dihedral angles of the alanine dipeptide obtained by (b) the
WTM and (c) SBDM-TAMD. The red and black points represent the locations of important minima and saddle points on the FES. Absolute free
energy di(erences between theWTM and (d) SBDM-TAMD, (e) KDE-TAMD, and (f) GMM-TAMD. FES of alanine dipeptide with respect to (g) ϕ
and (h) ψ.
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(GMM-TAMD) in all three systems, and normalizing flow on
hypertorus space (NF-TAMD)93,94 in the last system. We
performed converged well-tempered metadynamics (WTM)
simulations at 300 K as the baseline results for all three systems.
We will compare the unbiasing results from di(erent density
estimation methods to the baseline results. For all examples,
multiple WTM simulations, multiple TAMD simulations, and
multiple SBDM trainings were performed to ensure reproduci-
bility. Detailed results of all simulations and training results are
presented in the Supporting Information.

The first proof-of-concept example is an alanine dipeptide in
an aqueous solution with an implicit solvent. This has been a
benchmark system with well-established FES in previous
studies.95,96 In both the 500 ns TAMD and the baseline 500
ns WTM, we used Ramachandran angles (ϕ, ψ) as CVs. The
accuracy of SBDM-TAMD is demonstrated in Figure 4. The
SBDM capably captures the intricate free energy delineated by
WTM, as shown in panels c and d of Figure 4. Notably, the
model accurately locates all six free energy minima, with the
depth of the minima being quantitatively accurate (<1 kJ/mol
energy di(erence). Furthermore, the saddle points, representa-
tive of transitions between conformational basins, are also well
reproduced. Energy errors in low-free energy saddle points are
<2 kJ/mol compared to those of the WTM results. This match
implies that the SBDM-TAMD is accurate for studying
thermodyanmics of the alanine dipeptide. We notice that for
this two-dimensional problem, the KDE and GMM perform
relatively well, but still less accurately than the SBDM. Both
methods can locate the free energy minima well, but the free
energies of saddle points have a larger deviation (≤3.5 kJ/mol).
The clear disparities in free energy di(erences, as shown in
panels e and f of Figure 4, especially in regions corresponding to
the annotated energy minima and saddle points, illustrate the
inadequacies of the KDE andGMM for precise FES calculations.
The one-dimensional projections shown in panels g and h of
Figure 4 also demonstrate the accuracy of SBDM-TAMD.

The second systemwe studied is the glutamine dipeptide in an
aqueous solution with explicit water. A 100 ns TAMD

simulation was performed with five dihedral angles on the
backbone and the side chain (ϕ, ψ, and χ1−χ3) as CVs to
enhance the sampling of both backbone and side chain
conformations. We also performed a benchmark 100 ns WTM
with two backbone dihedral angles as CVs. The result is
demonstrated in Figure 5. Projecting an unbiased SBDM-
TAMD trajectory onto backbone dihedral angles quantitatively
matches the bechmark FES from the WTM. Energy errors of
minima on the projected two-dimensional (2D) FES are within
2 kJ/mol, while errors of low-free energy saddles are within 4 kJ/
mol. As a comparison, the KDE and GMM both struggle to
uphold their precision with increased CV dimensions. Both of
these two methods introduce larger errors at S2 and S3. This
example highlights the SBDM’s superior adaptability and
accuracy in high-dimensional CVs compared to traditional
methods. One-dimensional projections presented in panels g
and h of Figure 5 suggest SBDM-TAMD outperforms KDE-
TAMD and GMM-TAMD when the free energy is <30 kJ/mol.

The final, more challenging system we studied is the
oligopeptide met-enkephalin (Tyr-Gly-Gly-Phe-Met) in an
aqueous solution with explicit water, which is a common test
case for enhanced sampling techniques.36,38,97 For 1.0 μs
TAMD, we chose 10 backbone dihedral angles (ϕ1, ψ1, ..., ϕ5,
and ψ5) as CVs. The baseline 1.0 μs WTM simulation was
performed with a 2D stochastic kinetic embedding (STKE), a
manifold learning method that serves as a low-dimensional CV
representation that preserves kinetic information.26 We
projected the unbiased SBDM-TAMD trajectory to features
like end-to-end distance dee and a one-dimensional (1D) STKE
CV. As a comparison, we unbiased the benchmark WTM
simulation98−100 and projected configurations from the WTM
onto the same features. We want to emphasize that generating
optimal machine-learning-based CVs for the WTM (STKE in
this work) is nontrivial and requires extra simulation data. We
compare the unbiased end-to-end distance and 1D STKE, as
shown in Figure 6. SBDM-TAMD exhibits high performance,
demonstrating a FES that closely aligned with the WTM
baseline. The minimum on each projected one-dimensional FES

Figure 5. (a) Molecular structure of the glutamine dipeptide. FES of backbone dihedral angles of the glutamine dipeptide calculated by (b) the WTM
and (c) SBDM-TAMD. The red and black points represent the locations of important minima and saddle points on the FES. Absolute free energy
di(erences between theWTM and (d) SBDM-TAMD, (e) KDE-TAMD, and (f) GMM-TAMD. FES of the glutamine dipeptide with respect to (g) ϕ

and (h) ψ.
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predicted by SBDM is in good agreement with the benchmark,
suggesting SBDM-TAMD is capable of modeling the
thermodynamics of a polypeptide. As shown in panel a of
Figure 6, SBDM-TAMD predicts that the free energy of dee

values from ∼9.0 to ∼16.0 Å is nearly the same, which is in good
agreement with the WTM. However, unbiasing with KDE,
GMM, andNF predicts the free energy at a dee of 10.0 Å is nearly
2 kJ/mol higher than the free free energy at a dee of 15.0 Å. The
KDE, GMM, and NF also underestimate the stability of a
metastable conformation with a dee of 4.0 Å by ∼3 kJ/mol, while
SBDM-TAMD agrees well with the WTM. Panel b ofFigure 6
shows that both the WTM and SBDM-TAMD identify all
metastable states on 1D STKE with consistent metastability,
while the KDE, GMM, and NF fail to predict the correct
metastable states and corresponding free energy. Although the
FES from SBDM-TAMD slightly underestimates barrier
heights, it correctly predicts the location of all barriers. However,
unbiasing with the KDE, GMM, and NF results in wrong barrier
locations or even missing barriers.

In this work, we developed an unbiasing method based on a
score-based di(usion model, a deep generative learning model,
to generate unbiased conformational ensembles from collective
variable-based biased enhanced sampling simulations. Our
method can adapt to simulations with collective variables of
large amounts and di(erent topologies. We test the unbiasing
method on temperature-accelerated molecular dynamics, an
enhanced sampling method that can utilize many collective
variables to e�ciently explore a high-dimensional free energy
surface. Numerical experiments across three systems of 2, 5, and
10 collective variables underscore our unbiasing method’s
exceptional accuracy and adaptability to high-dimensional
collective variables. Although biomolecules were used in the
numerical experiments, the developed approach can be used to
solve other problems like modeling material phase transitions.
Looking ahead, we aim to explore the method’s potential in
unbiasing simulations with even larger amounts of collective

variables and form accurate high-dimensional biasing potentials
for wider ranges of enhanced sampling methods.
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