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ARTICLE INFO ABSTRACT

Dataset link: https://gwu.box.com/s/1vw7jsay In ride-hailing markets, the spatial mismatch between supply and demand characterizes one
9ufwphv60n47pk4cun26myfu of the most fundamental operational bottlenecks. The voluntary customer search of drivers
Keywords: is oftentimes inadequate for narrowing the demand-supply gaps and falls short in responding

Ride-hailing market timely to the dynamic market conditions. To facilitate better supply management, some ride-

Dual sourcing
Network equilibrium
Supply management

hailing platforms now adopt a dual-sourcing strategy by converting some freelance drivers as
contractors, who would then follow platforms’ guidance on repositioning movements when idle.
This paper thus aims to analyze the implications of such a dual-sourcing strategy on the overall

operations of ride-hailing services. We consider a monopolistic platform that owns a blended
workforce, with freelance drivers searching for customers following their own preferences
whilst contracted drivers repositioning in a centralized manner as system actuators. A mixed
network equilibrium model is devised to capture the interplay between the idle repositioning
movements of both parties. The theoretical existence of the mixed equilibrium is proved, and
real-world data is invited to quantify the effects of dual sourcing on various market sectors. Our
numerical results confirm the effectiveness of dual sourcing in smoothing operations, increasing
customer demand, and driving up the revenue of ride-hailing services. However, the benefit of
dual sourcing to the platform remains sensitive to the proportion of contractors in the entire
workforce as well as the stimulative commission beyond their regular service income.

1. Introduction

Transportation Network Companies (TNCs) such as Uber and DiDi Chuxing act as intermediate platforms that swiftly connect
ride-hailing customers with nearby drivers through digital applications (Wang and Yang, 2019). Accordingly, the service quality
provided by the platform is heavily influenced by customer demand for rides and the availability of drivers within the spatial
market. The spatial imbalance between supply and demand has a substantial impact on the operations of ride-hailing services, as
demonstrated by empirical analysis using TNC data (Chen et al., 2015). This phenomenon arises partly because drivers tend to cluster
in specific areas while becoming scarce in others. However, managing supply across spatial networks poses operational challenges.
On the one hand, while it is essential to reposition drivers to meet future demand, achieving this is highly implausible given that
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the primary workforce of existing ride-hailing services consists of freelancers who have the freedom to select their preferred work
schedules and service areas. On the other hand, freelancers can search strategically for potential customers to maximize their own
profits, but they lack complete knowledge of market conditions, such as the demand distribution and the locations of other drivers.
These factors cause significant frictions in matching supply and demand efficiently (Zha et al., 2018b).

TNCs typically employ pricing strategies to incentivize freelancers to relocate and counteract the spatiotemporal supply—demand
mismatch (Bimpikis et al., 2019; Wang and Yang, 2019). For example, surge pricing enables the platform to dynamically raise
prices in specific areas and periods (Cachon et al., 2017; Ma et al., 2020; Garg and Nazerzadeh, 2021; Hall et al., 2015; Besbes
et al.,, 2021). The hypothesized mechanism is that freelancers who enjoy high flexibility will react to price surges and adjust their
customer-searching movements and working schedules accordingly. Using an equilibrium analysis, Bimpikis et al. (2019) explored
the theoretical potential of origin-based pricing for a platform’s profitability. Lu et al. (2018) and Guda and Subramanian (2019) also
investigated the merits of region-based pricing in mitigating the supply-demand imbalance and stimulating drivers toward hot-spot
areas. While promising theoretical potentials are established on pricing, there is some pushback from the practice that questions
the implementation and the equality issues related to spatial pricing. First, surge pricing can cause systematic earning disparities on
drivers, even for those at the same origin, and thus discourage them from serving certain non-surging regions (Zuniga-Garcia et al.,
2020). Meanwhile, whether the spatial surge pricing benefits customers also remains controversial (Zha et al., 2018b). Second, the
setup of price surges can be challenging, and self-interested drivers can exploit tactless pricing mechanisms (Tripathy et al., 2022).

Demand rationing is considered as another efficient strategy for balancing spatial demand and supply (Afeche et al., 2023; Xu
et al., 2020). It enables platforms to strategically decline ride requests in certain cases without price surges. Nevertheless, while a
demand rationing strategy such as matching discrimination can free up supply resources and improve service efficiency, it raises
concerns regarding the unequal treatment of riders, which harms the branding that TNCs strive to maintain. In addition, pricing and
rationing strategies remain dependent on freelancers voluntarily seeking customers, which may still result in systemic demand-supply
imbalances.

To address this issue at its core, one straightforward solution is to directly modify the composition of the workforce by reducing
reliance on self-interested freelancers. Recently, some TNCs have expanded their single-sourcing supply of freelancers as dual
sources by hiring dedicated contracted drivers (contractors), who submissively follow the platforms’ scheduling and repositioning
instructions. Being endowed with more managerial authority, the platform can accommodate the flexibility of freelancers with the
predictability of contractors to improve the system’s productivity. As two pioneering works on this topic, Dong and Ibrahim (2020)
and Dong et al. (2021) applied aggregate models to explain why a dual-sourcing strategy can mitigate the labor shortage due to
demand variation. However, their models, without a spatial structure, cannot inform how the introduction of contractors affects
operational decisions such as idle drivers’ repositioning. This study bridges this gap by characterizing the market equilibrium over
a spatial network and examining strategies for repositioning contractors in a dual-sourcing environment. Specifically, freelancers
reposition with their heterogeneous self-interested behaviors, whilst contractors as market actuators follow centralized guidance to
mitigate the demand-supply imbalances. A monopolistic platform, in a role of a Cournot-Nash player, maximizes its overall revenue
by whistling the contractors’ repositioning. One challenge for modeling such a dual-sourcing market is to capture the interaction
between centralized contractors’ and self-interested freelancers’ movements over the network. This paper develops a mixed network
equilibrium (MNE) model with the objective of (a) characterizing the interplay between the dual-sourcing supply and the spatial
customer demand; (b) investigating the platform’s optimal repositioning policies for contractors; and (c) examining empirically the
impact of dual sourcing on the status-quo ride-hailing market, especially its effectiveness in redistributing the supply to better match
demand over the network.

The remainder of the paper is organized as follows. Section 2 begins with a comprehensive literature review, focusing on existing
studies related to driver repositioning and dual sourcing in ride-hailing markets, and highlights the unique perspectives taken in
this study. Section 3 formulates drivers’ spatial repositioning under two special cases with freelancers and contractors serving as the
sole source of labor in ride-hailing services, respectively. The repositioning models outlined in both cases set the stage for the MNE
model with dual sourcing, which is then formally presented in Section 4. An iterative solution algorithm for solving the optimal
repositioning strategies is developed in Section 5, while Section 6 details the empirical data and contextual setups for numerical
experiments. Section 7 then conducts numerical analysis with various performance metrics retrieved for drivers, customers, and the
platform, to comprehensively evaluate the impacts of dual sourcing. In addition, Section 8 investigates the matching differentiation
between freelancers and contractors in the MNE and glimpses the multifaceted consequences on the system performance. The paper
concludes with the main findings and future research avenues in Section 9.

2. Literature review

The mixed equilibrium under dual sourcing represents an intermediate product, with freelancers and contractors respectively
following decentralized (Yang and Wong, 1998; Buchholz, 2022; Bimpikis et al., 2019) and centralized (Iglesias et al., 2019;
Braverman et al., 2019; Banerjee et al., 2017) customer-searching disciplines but forming interdependence in between.

In the decentralized discipline, extensive studies analyzed drivers’ self-interested customer searching behavior and incorporated
their strategic decisions into network equilibrium models. Yang and Wong (1998) made the first attempt to develop a static network
equilibrium model that describes taxi movements for given customer demand. Each idle driver chooses her target zones to minimize
the expected searching time for the next customer, whose zonal choices are described by a logit model. Such a framework has
been extended to account for elastic demand and congestion (Wong et al., 2001; Xu et al., 2021a), bilateral searching (Yang et al.,
2010b), and e-haling services (He et al., 2018). To account for temporal market fluctuations, Buchholz (2022) constructed a dynamic
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equilibrium model in which drivers’ utility and repositioning decisions are time-dependent. Zhang et al. (2023) adopted a game-
theoretical approach and described drivers’ dynamic routing problems as Markov decision processes. These works are built upon their
spatial network equilibrium models that characterize the ride-hailing market at (time-dependent) steady states. Recently, Beojone
and Geroliminis (2023) investigated individualized relocation guidance within an extensive context of co-existing ride-hailing and
ride-splitting services to tailor strategies that maximize drivers’ expected earnings.

For the centralized operations, research studies have been devoted to the optimization and solution of empty vehicles’
repositioning for various managerial objectives (Ozkan and Ward, 2020; Liu and Samaranayake, 2020; Lei et al., 2020; Li et al., 2021;
Yang and Ramezani, 2022). For example, Guo et al. (2021) integrated platforms’ matching strategies with vehicles’ repositioning
decisions to hedge the uncertain market demand. Braverman et al. (2019) examined the empty vehicle repositioning problem using
a closed queueing network model and proved that the fluid-based approach can provide asymptotically optimal routing strategies
in a finite-vehicle setting. Besides, Wen et al. (2017) and Jiao et al. (2021) developed practical frameworks based on the deep
reinforcement learning method and conducted real-world experiments to verify its effectiveness. Yang and Ramezani (2022) later
proposed a learning method that outputs real-time multi-vehicle repositioning policy by accounting for the platform’s long-term
efficiency. A comprehensive survey can be found at Wang and Yang (2019) and Zardini et al. (2022). In general, this research
stream assumes that idle drivers fully adhere to the repositioning guidance provided by the platform. This assumption aligns more
effectively with scenarios where compliant contractors represent the primary labor source. Building upon the framework established
by these studies, we formulate contractors’ centralized repositioning as an optimization problem. Nonetheless, existing research
often considers vehicle repositioning alongside other operational decisions (Zardini et al., 2022; Narayanan et al., 2020), whereas
our focus lies on the former.

Despite extensive research conducted on both decentralized and centralized repositioning of drivers, the investigation on the
intermediate level is rather limited. The consideration of dual sources further complicates the interaction between market supply
and demand. The repositioning decisions for centralized contractors influence trip demand both directly and indirectly, through
their effects on the availability of drivers and the movement of self-interested freelancers. The key challenge lies in capturing such
intricate interactions over a spatial network in a unifying model framework.

As a related variant of dual labor sources, recent studies have developed equilibrium models in the mixed-autonomy contexts,
where both autonomous and human-driven vehicles coexist to offer services (Wei et al., 2019, 2020; Yang et al., 2020). Wei et al.
(2019) considered the context where autonomous vehicles get matched after the depletion of human-driven vehicles, and discovered
that a mixed-autonomy fleet does not always outperform that of human-driven vehicles alone. They then extended the work to
other priority matching schemes performed uniformly over the network (Wei et al., 2020). These early efforts on mixed autonomy
assumed perfect matching between customers and drivers. Customers either get matched and picked up immediately or they exit the
market. Thus, customers’ trip demand is independent of service quality characterized by service delay. However, customers’ delay
sensitivity is a distinct feature for on-demand services, where platforms strive to improve service quality by lessening customers’
waiting time (Taylor, 2018). Besides, the relative spatial distance is an important factor in drivers’ repositioning decisions. Despite
the resultant beauty of math, the omission of these aspects of considerations yields troubles when applying the models for practical
repositioning decision-making. The proposed model addresses these gaps by explicitly accounting for the endogeneity between
service demand and quality as well as incorporating repositioning distance into the decisions of both drivers and platforms.

The contribution of our study is threefold. First, we introduce a mixed network equilibrium model that captures the complexity
arising from the heterogeneity and interactions of repositioning movements between freelanced and contracted drivers. Second, a
theoretical proof for the existence of market equilibrium is provided within the proposed framework, and an effective algorithm
is devised for solving the equilibrium solutions. Third, we conduct an extensive case study using real-world ride-hailing trip data,
allowing us to derive valuable insights regarding the implications of dual-sourcing strategies on various stakeholders.

3. Network equilibrium with single sourcing

Consider a spatial network N'(V, A), where V is the set of vertices consisting of customers’ origin zones I and destination zones
J,ie., V =1uUJ, and 4 is the set of arcs connecting in between. Each trip request leads from one origin zone to a destination zone,
and drivers circulate over the space to provide non-pooling ride services. The trip-wise travel time, fare, and driver commission
are assumed to be fixed and exogenous in this paper. A platform then matches trip requests to idle drivers within the origin
zone and collects the revenue on trip completion. In the given context, this section introduces two network equilibrium models
that correspond to the single-sourcing scenarios. One model focuses on self-interested freelancers, while the other model addresses
obedient contractors with centralized repositioning decisions. Notations in this paper are summarized in Appendix A for readers’
reference.

3.1. Network equilibrium with freelance drivers

The network equilibrium with only freelancers is similar to those of the conventional taxi or ride-hailing markets (Yang et al.,
2010a; Xu et al., 2021a). The following collects the major components to assemble the base model.
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3.1.1. Modeling components

Demand of ride-hailing market. Denote W as the set of origin and destination (OD) pairs, i.e., W = {(i,j)|i € I, j € J}. For each
given hour and each OD pair, the demand for trip services Q; ; (trips/hr) is assumed to be a decreasing continuous function of the
waiting time wf (or service delay) that customers experience at origin zone i:

0y =0y f (W]|Fy.hy;). VG J)EW, €y

where Q?j denotes the potential demand from zone i to j; the parameters F;; and h;; represent the exogenous trip fare and in-vehicle
service duration; and the superscript p labels passengers. Under the single-sourcing context, the number of trips served by freelancers
Qifj equalizes the realized demand Q;; for each OD pair (i, j) € W.

Self-interested repositioning of freelancers. After dropping off customers at their destination zones, freelance drivers decide target
origin zones to search for the next customers. Denote ijlf as the idle freelancer flow from zone j to zone i. The associated utility
U;; subtracts the operating cost from the average trip earnings of drivers:
Ui=Ei—y-(h+h)—p-w’, Vjiediel,

where E; and h; are drivers’ perceived earning and delivery time of trips that originate from zone i; the travel time h ;i from zone
Jj to i is the sunk cost drivers spend repositioning; the waiting time w,.”f is the average time that drivers spend being idle at zone i
before matching with a customer, which is an endogenous variable; parameter y;, and y, denote drivers’ value per unit travel time
and per unit idle time, respectively. Collectively, the composite component y, - (h;; + h)+y,- w;’f represents a driver’s total expected
time cost across the stages of dropping off a customer in zone j, repositioning to zone i, picking up a new customer therein and
delivering her. Specifically, the perceived earning E; and delivery time h; are subject to drivers’ risk attitudes and behaviors, which
are described by the following functions:

Ei =G, ({Eu, Quadazaarew) > i =Gn ({hig: Quadazqarew ) Vi€, )

where E;; is a driver’s earning per completed trip from zone i to d for all (i,d) € W. Without loss of generality, we assume that
both mappings G,(-) and G,,(-) are continuous with respect to their inputs, and the outputs are bounded by the values of {E;;} and
{hig}, respectively, i.e., E; € [ming gycp Eiq.maxgep Eql and h; € [ming gycp hig, max e higl.

Freelance drivers make repositioning decisions to maximize their own utility. However, due to the imprecision in market
observations and the stochastic nature in market realizations, drivers’ perceived utility may contain errors. To account for this,
we introduce a random error term €° to represent the noise in freelancers’ perceived utility for each zonal choice. Specifically, a
freelancer in zone j will choose to search for customers in zone i if Uj; + > Ujm +¢0 for any m € I. We further assume freelancers’
perception errors follow an independently and identically-distributed Gumbel distribution, which has been extensively used and
empirically validated in taxi markets (Wong et al., 1999). With these prescriptions, the probability Pr;,; that an idle freelancer in
zone j would search customers in zone i is given by a logit function:

exp(0U;;)
Zmel exp(GUjm) ’

where 6 is a non-negative parameter and measures the degree of dispersion on drivers’ perception error. Drivers make random
selections of repositioning destinations when 6 approaches 0, but target uniformly toward the zone with the highest true utility U;
when 60 approaches +. As a result, the flow of idle drivers T;{f is given by:

Pry, = viel,jel, )

=Y O -Pr, Vieljel.
m:(m,j)eW

Besides, at the steady state, T;'f satisfies the following flow balance constraints:

=% ol viel, 4
JjeJ I HME4

Tj‘;f= D Q,fj vjelJ. (5)
iel i(i,j ) ew

These equalities ensure that the idle movements of drivers should match the flow of assigned trip requests at both origin and the
destination zones.

Pickup time of drivers for customers. Customers’ average waiting time endogenously depends on the density of idle drivers
within each origin zone. Suppose the platform executes quick matching for customers such that all incoming requests are matching
immediately to nearby drivers without matching delays. Then, customers’ waiting time simply equals their pickup time after getting
matched (Castillo et al., 2017). Denote Ni”f as the number of idle drivers in zone i. Then, the pickup time of customers could be
specified as follows:

D o_ vf ;
w; = fp,(N;7), Viel.
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where f,,(-) prescribes a non-negative decreasing function regarding its inputs. Without loss of generality, we assume that f,,(-)
is twice differentiable and satisfies f]/ > 0. i.e., increasing the number of idle drivers leads to a diminishing marginal return in
reducing pickup times. By Little’s law, at steady state, the number of idle freelancers N*/ at zone i satisfies:

1
vf _ vf vf .
Nl. _ZTji cw;”, Viel.
jel

Freelancers’ fleet conservation. Denote N/ as the total number of freelancers in service. The fleet conservation condition is given
as

— vf vf S P
Nf—ZZTﬁ (W) + Z Qij'(wi"'hij)’
jeTier (. )EW
where the right-hand-side terms expand the number of freelancers over the stages of spatial repositioning, idling for matching,
picking up customers, and delivering them, respectively.

3.1.2. Network equilibrium model
Assembling all the above relationships yields a network equilibrium model (6) that solves freelancers’ idle movements {Tﬁf } in

a single-sourcing ride-hailing market:

0l =0 - f (w\Fy.hy), VG.)EW, (6a)
) exp(6U ;)
T;if = > Qi].)-—j', vjed,iel, (6b)
m:(m,j)EW Zmel exp(HUjm)
U = Ge({Eitl’Q,{j}d:(i.d)EW) -1 (hji + Gh({hid’Q,{j}d:(i.d)EW)) o W,l-)f» vielJiel, (60)
Tj”if = Y Q{; viel, (6d)
jel jiinew
wl = [ (N, Viel, (6e)
NI =Tl w, viel, (66)
jel
N =Y I b+ YN+ Y0 (wh k). (68)
JjeJ iel iel (i,j) )W

Specifically, z/ = {Qifj, w?, T;f U wl.”f R N,.”f } is the collection of endogenous variables to be solved for market equilibrium when
freelance drivers serve as the sole labor source. Under mild conditions, the existence of such a market equilibrium has been

proved (Xu et al., 2021a).
3.2. Centralized repositioning policy with contracted drivers

When compliant contractors serve as the single labor source, the number of trips taken by contractors oy equals the total realized
demand Q;; for each OD pair (i, j) € W and customers’ pickup time w” is uniquely dependent on the number of idle contractors N
in each zone i € I. Because contractors adhere to the centralized routing instructions, the centralized repositioning model disregards
individual strategic repositioning behaviors.

We assume the platform guides the movements of idle contractors to maximize the system revenue. Contractors received a fixed
salary as permanent employees, which is an exogenous parameter in the centralized model. Let N¢ denote the number of active
contractors, T be contractors’ repositioning flow from destination zone j to origin zone i, and w}* be their average waiting time
before getting matched with customers in zone i. The centralized repositioning policy for contractors {1} solves the following

optimization problem:

max 7(Qj)) = Z F; - 0 (7a)
ZOZO jew
st. Q= Q?j - (w!\Fy.hy), YG.J) €W, (7b)
wl = f (N, Viel, (70)
Nye= ) T -w*, Viel, 7d)
jeJ
YTE= ) 0, Viel, (7e)
Jj€eJ Ji.)EW
TH= Y Q5 Vel 7
iel i:(i.j)EW
2 Q5 (ywl)+ 3 P TiE g+ YN =N, 78
i.))ew JjeJ iel iel
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Fig. 1. Interaction between customers and drivers of the two labor sources.

where 7 specifies the system revenue, and zg = { ij, N/<, wf R Tj’f w{} is the collection of decision variables when contractors serve
as single labor source. Constraints (7b)-(7g) confine contractors’ idle and occupied movements related to the aggregate customer
demand. Among them, constraint (7d) results from Little’s law; (7e) and (7f) ensure the flow balances at the origins and destinations,
respectively; and (7g) specifies the fleet conservation for contractors.

4. Mixed network equilibrium with dual sourcing

This section extends the network models to consider MNE with both freelancers and contractors. We first clarify the market
setting for dual sourcing and detail the modeling components to delineate the strategic interactions between two labor sources.
Then, the concept of mixed network equilibrium is formally introduced and the existence of equilibrium is proved. The end of this
section discusses major model assumptions and outlines their relaxation.

4.1. Market setting

With dual sources, a mixed labor supply of N/ freelancers and N¢ contractors circulate in the network to provide on-demand
services. The spatial distribution of idle freelancers and contractors influences the market realizations characterized by trip demand
and the waiting time of customers and drivers. Freelancers and the platform act as players who are presumed to make repositioning
decisions given their knowledge of the other players. After observing market conditions, freelancers when idle would cruise to search
for customers in zones with maximal perceived utility. Meanwhile, the monopolistic platform acts as a Cournot-Nash player who
controls the contractors’ repositioning movements to maximize its overall revenue. It makes repositioning decisions in responding
to market conditions and the instantaneous spatial distribution of idle freelancers.! Fig. 1 summarizes the interaction between the
two labor sources as well as the shared pool of customer demand in a ride-hailing market. The key challenge is to characterize
the interplay among these market components and then bundle them as consistent mathematical correspondences over the network
structure. The following rematerializes the modeling components for the dual-sourcing setting, devises their connections, and puts
forward an MNE model to delineate the service state of a ride-hailing network.

4.2. Modeling components

Note that the repositioning decisions of the platform and strategic freelancers are interconnected by influencing the spatial
distribution of idle drivers and market states. Therefore, to neutrally represent the market structure, here we introduce a dummy
market operator in addition to the platform and freelancers. The dummy operator takes the platform’s order-matching policy, based
on the spatial distribution of idle freelancers and contractors, and executes market state values. This partitions the MNE model into
three components that respectively delineate intrinsic system relationships, the platform’s repositioning policy for contractors, and
the strategic repositioning behaviors of freelancers.

1 Here, we consider a Cournot-Nash game. However, as we model freelancers’ responses by a system of equations, the model developed in this paper can be
easily adapted to delineate Stackelberg games where the platform acts as a leader and freelancers are followers.
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4.2.1. Intrinsic system relationships

Let k denote the driver type with k € {f, ¢}, and the superscripts f and ¢ label terms corresponding to freelancers and contractors,
respectively. We characterize the current market status by a tuple { = ({Q{.‘j}(,-‘j)ew, {wf}ie I {W;Uk}ie ,), with Qg being the trip
demand served by type-k drivers for each OD pair (i, j) € W and w,.”k being type-k drivers’ average waiting time at zone i. Given
the number of type-k idle drivers Ni”" at each zone i, the market status ¢ is uniquely determined, and is calculated by the following
function:

¢ =g(N"*,N“), (8)

where vector N = (N'.”"),-E ; represents the spatial distribution of type-k idle drivers; and function g(-) assembles the calculating
rules for updating ¢ (Egs. (10), (11), and (12)), which is explained below.

Demand of ride-hailing market. The customer demand function remains the same as the single-sourcing counterpart, see Eq. (1).
But with contractors and freelancers coexisting to offer trip services, the realized demand now satisfies the following relationship,

0,=0,+0/. Vipew. ©
where the number of trips served by two types of drivers o and Qf;. endogenously depend on the platform’s matching policies.

Matching policy with dual sources. The matching policy could directly impact the trip demand served by each type of driver
and hence their occupied and idle movements over the network. For simplicity, we assume that idle freelancers and contractors are
scattered independently following the spatial Poisson Point Process, and the platform matches trip requests to the closest available
driver nearby regardless of her service types. In other words, it is assumed that the platform does not differentiate freelancers and
contractors in the matching process. A more general modeling treatment is discussed in Section 8 that discards such an assumption
by permitting matching priority between the two types of drivers.

For each driver type k € { f,c}, let Pi" denote the probability that a trip request originating at zone i is matched with a type-k
driver. Then, without matching differentiation, the matching probabilities are

Nk
Pk = —f viel,ke{f, c}.
N,,”‘ + N;
Accordingly, the number of trips served by each type of driver satisfies
Nk
Q,’-}=Q%~f(wf|ﬂj,hij)~m, V(.)€ W.k € {f.c). (10)

Waiting time of customers. Freelancers and contractors are treated identically in the matching process and thus experience the
same amount of time on average for picking up customers after getting matched. The average pickup time w” decreases with the
density of idle contractors and freelancers and now formulates

wl = f (N +N7), viel, an
where the inputs of function f,,(-) contains the idle drivers from both service types.

Waiting time of drivers. Without order-matching differentiation, freelancers and contractors are expected to experience the same
amount of idle waiting time before getting matched with a customer at each origin zone. Following Little’s law on idle driver supply
(Egs. (6f) and (7d)) and the flow balance conditions for each driver type (Egs. (6d) and (7e)), drivers’ average waiting time w;”‘ can
also be expressed as follows,

vk
wik = Zke(/,c} N;

= , Yiel,ke{f,c}. (12)
Zke(f,c) Zj:(i,j)EW QZ

4.2.2. Platform’s repositioning policy for contractors

The platform observes the spatial distribution of idle drivers N’ and the current market status ¢ characterized by the trip
demand served by two labor sources {Qf.‘. }, current customers’ average waiting time {w‘;J }, and drivers’ average waiting time {wf" 1.
With such knowledge, the platform plays the role of a Cournot-Nash player and calls the repositioning of contractors to maximize
the overall expected system revenue 7. Given fixed trip fare F;;, the revenue 7 is determined by the expected realized demand Q;;,
which routes back to the availability of contractors in each zone and their flow across zones. Given its knowledge of market status ¢
and the distribution of idle freelancers N,.”f , the platform’s repositioning decisions for contractors {7} solve the following problem:

maxa(N“[(,NY) = Y Fy- Q) - f (fulNI 4 N, (132)
- (i,))ew

st. (7d), (7e), (7D, (78),

where z¢ = {N,.”C,Tj”lf"} is the collection of decision variables. The above problem is similar to the single sourcing optimization
problem (7), but with different specifications regarding market demand and with ¢ serving as input parameters. For brevity, the
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feasible region of decision variables z¢ prescribed by (7d)-(7g) along with the non-negativity constraints is denoted as Q¢(¢, N%/),
ie.,

Q¢ Ny = {2°](7d)=(7g), z° = 0}.

4.2.3. Freelancers’ repositioning decisions

After observing current market status ¢, an individual idle freelancer chooses a zone that maximizes her perceived utility as in
the pure-freelancer case. Given ¢, freelancers’ utility can be calculated by Eq. (6¢) and their idle flow pattern {T;,:f } could still be
described by the logit function (6b). For each origin zone, the resultant expected spatial distribution of idle freelancers N/ satisfies
Eq. (6f). We denote z/ = {Tﬁf S NI.Uf U j,-} as the collection of freelancers’ decisions thereafter. For brevity, given ¢, the variables z/
prescribed by Egs. (6b), (6¢), and (6f) is denoted as Q7©), ie.,

@/ ©) = {2/ |(6b), (60), (6D).
4.3. Formulation and existence of MNE

The MNE is materialized in accordance with the principle that the platform and individual freelancers both make the best
responses in their repositioning decisions given their perception of the market condition. At equilibrium, the market reaches a
steady state where the market conditions are self-sustaining and the movements of idle contractors and freelancers meet the trip
demand at every origin zone. With the above specifications, the MNE integrates the following interdependent decision-making and
steady-state conditions:

(a) The repositioning decision of the platform z°* solves

z% = argmax z(N“|{,N%/), where N*/ € z/; (14a)
z¢eQe (¢, NV)

(b) The repositioning decision of freelancers 2/ solves
2l e /), (14b)
(c) The market reaches an steady state when we have (6d), (6g), and the following (14c),

¢ =g(N*,N¥), where N* € z¢*, NV € z/; (14¢)

The calculation of MNE solves (z¢*,z/) and ¢ that are mutually reconcilable as inputs and outputs in (14). Since market status ¢
depends on the decisions of both the platform and individual freelancers, solving z¢* and z/ essentially solves the best response of
each player when the others’ decisions are held constant. Such a structure resonates with that of the traffic assignment problem with
mixed user behaviors. As initiated by Harker (1988), the traffic states were materialized as a network equilibrium between multiple
Cournot-Nash players, each minimizes its own costs treating all other players’ flows as fixed. Similarly, to extend our model for
competitive market cases with multiple profit-maximizing platforms, each platform can be incorporated in parallel as an additional
Cournot-Nash player that manages a group of contractors, while freelancers remain as Wardropian players. Conversely, by setting
the fleet size of freelancers or contractors to zero, the above model structure reduces to single-sourcing models discussed in Section 3.

The aforementioned MNE model takes system states as an intermediary and captures drivers’ strategic repositioning behaviors
over a spatial network. Notice that the trip demand function f(-) and customers’ pickup function f,(-) influence the system
realizations and platform’s repositioning decisions, and hence the MNE solutions. To theoretically examine the equilibrium existence,
we make the following specification on functions f(-) and f,,(-) as well as the network structure:

C.1 Both f(x) and waiting time function f,,(x) are twice differentiable on x. Given x > 0, the value of derivatives f/(f,,(x)) has
an upper limit.

C.2 Given x > 0, waiting time function f,,(x) is positively valued and upper bounded.

C.3 Given x > 0, the composition of function f(f,(x)) satisfies f(f,,(x)) > 0 and lim,_, f(f,(x)) = 0. With this, we have the

conditions limN;“+N,.”f—>0 0;; =0and limN’_%rNivf_}0 Q,fj =0 hold for any OD pair (i, j) € W.
C.4 The composition of functions f(f,,(x)) is strictly concave over the domain x > 0.
C.5 Given x € (0, N¢ + N/), the value of x/f(f,(x)) has an upper limit.

C.6 The network N (V, A) defines a strongly connected graph.

Recall that the trip demand Q;; can be expressed as Q;; = Q%f(fw(Nl.”” + N,.”f)ll'",.j,h,.j) for each OD pair (i,j) € W (see Egs. (9),
(10), and (11)), Condition C.1 implies that trip demand changes continuously with the supply of idle drivers at zone i and its rate
of change has an upper limit. Condition C.2 suggests that customers have a tolerance for their waiting time. If their average waiting
time exceeds the maximum waiting time, they will cancel the trip and turn to other alternative modes. Condition C.3 states that
no trips would be served at an origin zone if there are no available idle drivers. Condition C.4 indicates that the marginal return of
idle driver supply is diminishing, which is a commonly adopted assumption (Yang et al., 2010a; Zha et al., 2018a). Condition C.5
states that the average waiting time of drivers has an upper limit. Finally, Condition C.6 ensures that there exists a path connecting
each pair of zones over the network N'(V, A).
With the above conditions, the existence of mixed network equilibrium is guaranteed, as we state in Theorem 1.
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Theorem 1 (Existence of Mixed Network Equilibrium). If conditions C.1-C.6 are satisfied, there exists at least one equilibrium solution to
the MNE model defined by (14).

Readers can refer to Appendix B.1 for the proof of Theorem 1 and the relevant lemmas and propositions. Note that the MNE
solution is unlikely to be unique in view of the fact that multiple equilibria exist even in an isotropic market when pickup times are
endogenous (Castillo et al., 2017). Readers could refer to Appendix B.3 for further discussions on the existence of multiple equilibria.

4.4. Discussion on model assumptions

The proposed model characterizes the market equilibrium under dual sourcing, which posits several technical assumptions. The
following summarizes the major assumptions made in the analysis and outlines possible relaxations to approach:

1. The current model assumes that the total numbers of contractors N and freelancers N/ are exogenous variables. When
drivers’ reservation wage is taken into account (Dong et al., 2021), one can add an additional equation and easily incorporate
the elastic supply into this framework.

2. We assume that freelancers’ perception errors regarding their utility are independently and identically distributed Gumbel
variables, which results in a logit choice function. The assumption of identical distribution can be relaxed by involving the
weibit model (Castillo et al., 2008). Other alternative distribution functions could also be viable substitutes, though they could
lead to choice functions that are not analytically tractable. As more data becomes available, we can calibrate and integrate
more precise discrete choice models, as exemplified by Urata et al. (2021).

3. The travel time between zones is assumed to be constant, ignoring potential congestion effects caused by ride-hailing drivers’
repositioning decisions. This is applicable in situations where ride-hailing services account for a small portion of overall traffic
volumes while their interactions with regular traffic are negligible. When the congestion effects become pronounced, one can
incorporate a flow-dependent travel time function as well as complementarity constraints to endogenize traffic dynamics (Xu
et al., 2021a).

5. Solution algorithm

Given the exposed structure, this section interprets the MNE as a fixed-point problem and then develops an iterative procedure
that is tractable with prevailing optimization solvers for efficient solutions.

5.1. MNE as a fixed-point problem

The composition of MNE model reveals a natural fixed-point problem structure that starts and loops back at the distribution of
idle contractors and freelancers (N, NV/). Specifically, taking (N”, N*/) as parametric inputs uniquely determines market status
¢ through Egs. (10), (11), and (12). With ¢ and N vf | the platform’s revenue maximization problem (13) is expected to solve z¢
and hence the distribution of idle contractors N*“. Meanwhile, for given ¢, applying Egs. (6b), (6¢), and (6f) is expected to lead
to an updated distribution of idle freelancers N*/. However, directly applying such a fixed-point problem might fail to obtain an
equilibrium solution because problem (13) could be infeasible, and the conditions (6d) and (6g) are not guaranteed to be satisfied
by N¥/. To avoid infeasibility during the iterative process, we introduce demand adjusters ¢* for each origin zone i and for each
driver type k € {f,c} that scales the trip demand Qf.‘j and serves as a new variable. Instead of directly applying the best response
functions (14a) and (14b), we construct the following two optimization problems for solving N** and N/, respectively.

For contractors, the following modified revenue maximization problem (denoted as RMP thereafter) is developed to solve the
distribution of idle contractors N*“:

vf ) )
e S ™ = 2 P QSN+ NID) = M- 3, (Nf” - X w,%ﬂ), (15a)
i.)ew iel JjeJ
s.t. TH= Y Q¢ Viel, (15b)
j€J jiGew
ZT“ > 0 -5, Viel, (15¢)
iel i(i,j ) ew
> o (hy+wl)+ Y YT - hy+ )0 NF =N, (15d)
(i.))EW jeJ iel icl
N2 ) Tif-wj, Viel, (15e)
jeJ
¢ <M;5, Viel. (15f)

where M{ and Mj are large positive numbers with M¢ > max;c;{}; F;; -00;;(N/*, Ni”f)/aN,.”C} for any N/ € [0, N¢], Ni”f e[0,N/]
and M5 >> 1. Similar to the original platform’s optimization problem (13), problem (15) takes market status ¢ and the distribution of
idle freelancers N/ as inputs and solves N“ and the idle movements of contractors {T””} in addition to {¢{}. The objective (15a)

consists of the platform’s expected revenue and a term penalizing the difference between Yier N and ¥, X, T - wic. The

IGI iel = ji
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constraints of problem (15a) resemble those of problem (13) but with inclusions of demand adjusters {¢{} and constraints (15¢) and
(15f). Among them, constraint (15e) relaxes (7d) as an inequality, and constraint (15f) confines the adjuster to be upper bounded.
The above modifications ensure that problem (15) is feasible with T]Lf =0VjeJ,iel,and ¢ =0and N/ = N°/|I| Vi € I being
a naive feasible solution.

Given market status ¢, freelancers’ probability Pr;,; of cruising from a destination zone j to an origin zone i can be determined by
Egs. (3) and (6¢). With ¢ and { Pr;/;}, we solve N v/ by constructing the following freelancers’ customer-searching problem (denoted
as FCP for short) that simultaneously accounts for freelancers’ strategic repositioning behaviors stated in (14b) and the steady-state
conditions (14c):

Comax al= Y F0lel -] Y6, (16a)
(i 0! 8112008 @ew iel
st. 7= Y 0l el Py, Vieldicel, (16b)
m:(m,j)eW
T;;f = ) Q{j¢{, viel. (16¢)
jeJ ji.)EW
> olel - (hy+uwh)+ Y 3T b+ Y N =N, (16d)
(i, ) eW JjeJ iel iel
NT =Tl w +sl, viel, (16€)
jer
N >¢ viel (16f)

where variable 5if represents the difference between the number of idle freelancers Ni”f and Y, T, .’jf - w; for each origin zone
i € I. Problem (16) takes {Pr; /i) and market status ¢ as inputs and solves the spatial distribution of idle freelancers N/, their
vf

}

idle movements {T,, , and demand adjusters {¢if }. Similar to problem (15), the objective (16a) introduces a positive number

M lf M lf > 0) to penalize the term Zie I ﬁif . Constraints (16b)-(16e) replicates conditions (14b) and (14c) but including additional
variables {qbif } and {5I,f }. The additional constraint (16f) forces N ,” 7 to be greater than a lower bound ¢ at each zone i where & < %

Problem (16) warrants a feasible solution Tl'jf =0VjeJ,iel, and ¢if =0, Nl.”f = 5,.f =N//|I|Viel.
We approach the equilibrium solution (N, N*/) by iteratively updating market status ¢ and solving the above two optimization
problems. Assembling all calculation process for ¢, {Pr;/;}, RMP problem (15), and FCP problem (16) essentially leads to the

following fixed point problem:

@ (N, Ny =z (N, NY)|(3), (60), (8), N* e argmax 7, N e argmax x
(N*CTHE 9 (N ol 6]y

It is worth emphasizing that both RMP problem (15) and FCP problem (16) are purely mathematical constructions. Because of
the inclusion of demand adjusters {d:f.‘}, the intermediate outputs of (15) and (16) could differ from those specified by the best
response functions (14a) and (14b) for given (N, N v/, But as proved by Theorem 1 in Appendix B.1, once a fixed-point solution
is found, it would map exactly the MNE conditions (14) along with the platform’s optimal repositioning policies for contractors.

Naturally, the above decomposition of the fixed-point problem leads to an iterative solution procedure below.

5.2. Solution procedure

As summarized in Fig. 2, the solution algorithm approaches the MNE by iteratively (a) updating market status ¢; (b) solving
RMP problem (15) for the spatial distribution of idle contractors N and the platform’s centralized repositioning policies; and (c)
solving FCP problem (16) for the spatial distribution of idle freelancers N/ and their self-interested repositioning movements. The
procedure updates the distributions of idle drivers until convergence.

The detailed solution algorithm is as follows:

1. Initialize (fluf,ﬁw), M, M3, and le;

2. Update ¢ through Egs. (10), (11), and (12);

3. With ¢ and N*/, obtain N*® and {7} by solving RMP problem (15); With ¢, calculate freelancers’ probability {Pr;/;} of
cruising from j to i through Egs. (3) and (6¢) and obtain N and {Tj‘jf } by solving FCP problem (16);

4. If \/ Die I(ﬁ,.”” - N+ I(ﬁi”f — Nv/) < g, stop the procedure and obtain the solution. Otherwise, update (1/\7 UC, N Uf) by

setting N°* < N*¢ and N < NYT 4 Ky -(ﬁvf — N?/), and return to step 2.

The parameter ¢ in the above algorithm specifies the error tolerance for convergence. Here, we use a linear combination rule
to update N°/ and parameter i, describes the step size for updating N*/ in each iteration. To accelerate the convergence speed,
the solution algorithm adopts a self-regulated successive average method where the step size k, varies depending on how close the
current solution is to the equilibrium solution (Liu et al., 2009).

10
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Fig. 3. Demand pattern during the study period.

6. Data for numerical experiments

6.1. Data description

Our datasets come from a major city in China where DiDi as a dominant TNC provides on-demand ride-hailing services. The
studied city has been partitioned into 27 zones, including an airport and two railway stations that are distant from the rest spatial

market (see Fig. 4).

The raw dataset includes all trip records from a four-week period in 2019 in a granularity of five minutes. In this dataset, we
obtain access to each customer’s pickup and drop-off locations, the corresponding timestamps when a customer sent out a request,
got matched with a driver, got into the car, and completed the trip, as well as the fare charged. On the supply side, the number of
occupied and idle drivers in each zone is also available. Fig. 3 displays the aggregated daily demand pattern in a week span, where
the request proportion (y-axis) represents the hourly number of trips compared to the total trips in that day. The repetitive shape
implies the fairly stable demand pattern across the weekdays.

11



T. Dong et al. Transportation Research Part C 158 (2024) 104450

1.4
12000
1.2
9 10000
Railway station Railway
8000 3 5"" 1.0
Iqﬁ :9 Railway station
Q 6000 i f{} 08
g ) i
Airport Airport ’;;;;
4000 2TE0SS:
; 0.6
2000
0.4
(a) Hourly trip demand (b) Ratios of trip arrival and completion rates

Fig. 4. Spatial demand-supply imbalances at morning peak hours.

Further, Fig. 4 glimpses the spatial imbalance between driver supply and customer demand. As indicated by the contrasts in
colors, not only the customer demand level is vastly different across zones, but the market condition, that result from the supply—
demand interaction, exhibits substantial heterogeneity with both under-supplied (termed as “hot-spot”) and oversupplied (termed
as “cold-spot™) areas coexisting in the city. Customers in the hot-spot areas may suffer poor quality of service and many trip requests
are delayed or rejected by the platform, while drivers in the cold-spot area endure low prolificacy. More importantly, there lacks
clear correspondence between the customer demand level and the severity of supply shortage, and thereby stressing the necessity
of system/network models to capture the operational cruxes behind.

6.2. Parametric setup and experimental scenarios

Our case study bases on the morning peak period of a typical weekday when spatial supply-demand imbalance appears to be
most severe. The realized demand between each OD pair (i, j)) € W, as specified by Eq. (1), is assumed to follow an exponential
function:

Q=0 -exp (B- (Fy; +Bou)) —€y, Vi, )EW, 17)

where the parameter f§,, denotes customers’ value per unit waiting time; the other parameter f in front of the term (F;; + ﬂwwf )
represents each customer’s sensitivity to the trip cost of traveling from zone i to j. Customers’ in-vehicle travel time is assumed to be
constant across the study period and gets embedded in the calibration of potential demand Q?.. In accordance with the calibration
results from Xu et al. (2021b), the sensitivity parameter § is set to be —0.09 1/CNY, while the value of waiting time g, anchors at
20 CNY/hour. In Eq. (17), one additional positive parameter ¢;; is introduced to ensure the satisfaction of regularity conditions C.3.

Specifically, setting ¢;; as Q?j - exp (ﬂ - (Fyj + B w? )) ensures that no trips are served when customers’ average waiting time reaches

their tolerance w/.
Without matching priority, customers’ pickup time function f,(-) as prescribed by Eq. (11) is assumed to have the following
form:

We___ "M el (18)

i p’
(N‘.”C + N‘.Uf +€ )

Here, #; is a positive parameter that captures the spatial features of zone i; p is a non-negative parameter that reflects the efficiency of
matching technology; and ¢, is a positive parameter to ensure the boundedness of customers’ pickup time (Condition C.2). When the
parameter ¢; equals 0, the above equation could be theoretically derived using a first-come-first-serve (FCFS) matching mechanism
where each customer is matched with the nearest idle driver (Daganzo, 1978; Zha et al., 2018b). For the case with matching priority,
the customers’ pickup time function is listed in Appendix D where an additional parameter ¢; is included to indicate contractors’
matching priority in each zone i.

Customers’ pickup times are characterized differently in spot-type areas like airports and train stations versus other spatial zones.
The pickup time of customers would decrease with the supply of idle drivers in the spatial markets but remain insensitive in spot-type
areas, where ride-hailing vehicles are provided with dedicated waiting areas. Thus, for customer pickup time function, we set p = 0.5
for the spatial zones (Zha et al., 2018b; Daganzo, 1978) and p = 0.001 for service spots (Xu et al., 2021b). With further analysis on
the empirical data, we set #; = 0.08 at the service spots and »;, = 1 for other spatial zones. The freelancers’ initial perception error
parameter 6 is set to be 0.5 1/CNY.

12
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Table 1
Parameters and their values adopted in the numerical experiments.
Description Parameter Value
Fjhy directly taken from service data
E; 0.8F; (CNY/trip)
B 20 (CNY/hr)
p —-0.09 (1/CNY)
Fixed parameters across all scenarios 7 20 (CNY/hr)
7 20 (CNY/hr)
0 0.5
N¢+ N/ 33,000
n; 0.08 and 0.1 for spot-type and spatial zones
p 0.001 and 0.5 for spot-type and spatial zones
Baseline scenario N/ /(N/ + N¢) 100%
. 1
Dual sourcing scenarios without matching priority np/(Nf 4+ N9) 10%,20%, ... ,100%
Dual sourcing scenarios with matching priorif % 05,1,1.5,2
g 8 priority N¢J(N/ + N°) 20%,50%

Note that by specifying customers’ trip demand and pickup time as (17) and (18) and setting {e;;, ¢, } properly, conditions C.1-C.5
hold and hence ensures the existence of MNE as per Theorem 1. Readers can refer to Appendix C for detailed discussions on this
matter and on the parametric setting of these parameters.

On the supply side, the total number of active drivers (N + N/) is set at 33,000 to approximate the real-world setting. As per the
current practice, freelancers earn 80% percent of trip fares as commission, and the platform keeps the remaining 20% (Chen et al.,
2020). Drivers’ monetary cost per trip time y, and per idle time y, are assumed to be 20 CNY/hour. We suppose that freelancers are
risk-neutral when choosing their target zones. Their perceived trip earning and delivery time, as prescribed by mappings (2), are
assumed to be the average weighted trip earning and delivery time given as follows:

f f
B Ya-iaew Eia - (Qiy +€2) B = Ya-iayew hia - (Q;y + €2)
i f ’ i f
Za:aaew @iy +€) Za:i.aew @iy +€)

where ¢, is a very small positive number to avoid singularity in the cases when denominator Y. »ew Q£1 approaches 0.

Throughout the experiments, we take the scenario where freelancers are the sole labor source as the baseline, given it represents
the status-quo strategy of labor sourcing for TNCs. Then, we create a set of scenarios by varying the ratio of contractors while
keeping the total driver population fixed. Without considering matching differentiation, the implication of dual sourcing is drawn by
contrasting the results of dual sourcing equilibrium with that of the baseline scenario (Section 7). Finally, several additional scenarios
vary the matching priority of contractors and explore the impact of dual-sourcing matching differentiation policies (Section 8).
Table 1 summarizes the parametric settings for the above experimental scenarios.

, Viel,

7. Numerical analysis of dual sourcing

Based on the above settings, this section examines the convergence of the proposed solution algorithm and conducts numerical
experiments to examine the impacts of dual-sourcing supply on a ride-hailing system. Specifically, the MNE model is implemented
to draw the implications on the dual sourcing and the centralized repositioning of contractors for different service stakeholders,
including drivers, customers, and the platform.

7.1. Convergence of the solution algorithm

; ; to measure the convergence gap between two
consecutive iterations n and n+1. We illustrate the case with 20% and 50% of active drivers as contractors, and the same convergence
pattern applies to other percentages. Fig. 5(a) illustrates the convergence gap with iterations. There, each line differs from others
in the initial values for N¢ that are used in calculating MNE solutions. As shown in Fig. 5, the convergence gaps decrease rapidly

within hundreds of iterations in all cases.

2
For type-k drivers, we use the Euclidean norm \/ Sieiselicl ( NORHD Ngk(n))

7.2. Impact on drivers and customers’ service experiences

We first consider the impact of dual sourcing on supply utilization by examining three scenarios where contractors make up
0%, 20%, and 50% of the total driver population, respectively. Fig. 6 compares the proportions of drivers’ labor hours over the
four service states, namely customer delivery, pickup, repositioning, and waiting for matching, under the three mixed equilibria.
Among the four service states, in particular, the time spent in delivery is metered and thus considered as being effectively utilized.
Despite the three separate cases, it is clear that with the increasing share of contractors, the percentage of the time that drivers

13
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Fig. 6. The proportion of drivers in each service stage at mixed equilibria.

spend delivering customers mildly goes up whereas those in pickup and repositioning stages reduce significantly. Even though the
waiting time of drivers in matching increases, this contributes to the reduction of the pickup time (as implied by the pickup time
function (11)). Overall, given the fixed number of drivers in total, the labor supply of drivers is utilized more efficiently with the
increasing composition of contractors who follow the platform’s repositioning guidance.

We then move to the realized demand profile by varying the proportion of contractors in a higher granularity from 0% to 100%
with a step of 10%. Fig. 7 summarizes the changes of the total realized demand and the corresponding shares fulfilled by contractors
and freelancers. Specifically, Fig. 7(a) indicates that converting drivers from freelancers to contractors can boost the demand by up
to 4%. However, the marginal return is observed to be diminishing overall. The first 20% contractual conversion gives rise to the
most significant pickup in the demand volume, whereas further increasing the share of contractors yields lacklustre increments. A
similar phenomenon can be observed in Fig. 7(b). For mixed fleets with contractors composing less than 50%, individual contractors
are directed to undertake slightly more trips exceeding their freelancer counterparts. But when contractors compose more than half
of the labor supply, their task loads become no different from that of freelancers. In fact, the interest of freelancers and the platform
is not entirely contradictory. The will of an individual freelancer for higher earnings would benefit the platform in higher revenues
and trip demand as well. Such partially aligned interest thus weakens the necessity of a pure-contractor strategy for TNC platforms,
especially when the cost of retaining contractors appears higher than freelancers.

Besides, contracting with a subgroup of drivers may raise the concern that dual sourcing would intensify the competition and
reduce freelancers’ expected payoff. To look into this potential issue, Fig. 8(a) compares the average number of trips served per
freelancer and contractor across the mixed equilibria over the different proportions of contractors. Without prioritizing any driver
group in matching, the results suggest that converting some drivers to contractors will not necessarily adversely affect the trips served
by freelancers. Interestingly, when the proportion of contractors surpasses 60%, the number of trips served by the freelancers will
increase whereas that of contractors gradually declines. A similar pattern is also presented in Fig. 8(b) on the effective hourly wage of
freelancers. There lack of a sign that involving contractors could systematically undermine the wages of freelancers. Meanwhile, since
contractors are paid with fixed salaries, the platform needs to balance labor costs and the expansion of service capacity. Fig. 8(b)
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plots the platform’s willingness to pay contractors (namely, the maximum salary) for achieving positive profit margins compared
to the status quo. As shown, the platform’s willingness to pay steadily decreases as the proportion of contractors increases and
eventually overlaps with the effective wage of freelancers. This again marks the diminishing marginal return for converting drivers
from freelancers to contractors. In particular, when a platform needs to pay contractors with a salary higher than the commission
that they would receive under the freelance agreement, the best strategy is to stick with the mixed supply composition.

We caution that the above conclusions are drawn with the assumption of an indiscriminate matching policy. Later, Section 8
sheds light on how matching priority may affect drivers’ payoffs.

7.3. Impacts on the platform’s profit

TNC platforms adopt dual sourcing expecting that the more obedient contractors could increase the overall profitability. Suppose
a platform offers contractors a guaranteed hourly salary s. The platform’s profit is thus defined as its revenue r (given by Eq. (13a))
minus the total labor cost ¥ ; ;o E; jQ{; +s-N¢. Note that the profit margin of contractual conversion from freelancers to contractors
depends on the driver composition and the risk-free salary for contractors. In practice, the design of contractors’ salaries manifest
the trade-off between the benefits of risk-hedging and the limitation in free service provision. Here, we examine a set of hypothetical
scenarios coupling the two dimensions of system settings: (a) Ten levels of supply composition with the proportion of contractors
ranging from 0% to 100% by a step of 10%; (b) Four levels of hourly salary s for contractors respectively anchoring at 5% and 10%
reduction/surge based on freelancers’ status-quo hourly earning r,. Conceptually, the conditions of s being greater or less than r,
refer to the cases when the market exhibit high or low uncertainty to drivers, respectively (Dong et al., 2021).

The platform’s profits across the different scenarios are summarized in Fig. 9, where the y-axis shows the percentage change in
profit compared to the status quo, i.e., a pure-freelancer case. The upward trends presented by the top two curves imply that when
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Fig. 10. Social welfare versus the proportion of contractors.

there appears relatively high market uncertainty and thus low cost for contractor recruitment, the platform could be in favor of a
pure-contractor structure to service more trips at competitive labor costs. But as the salary paid to contractors goes up, the platform
would prefer a mixed supply composition with low penetration of contractors, who would then act as system actuators. In these
circumstances, the diminishing return of converting freelancers into contractors cannot stay profitable with a high penetration of
contractors. Such a result echoes what has been concluded previously.

7.4. Impact on social welfare

Since the number of drivers is assumed to be fixed, the social welfare sums up the customers’ surplus and the producers’ profits.
The customers’ surplus C; is calculated by the following formula:

Qi q x
C = Z / E -In _de_ z (Fij+ﬂww,~p)'Qij,
.jyew 70 ij (i.)EW
where the inverse demand function is adapted from Eq. (17). Meanwhile, the producers’ profits P, add up those from the platform,
freelancers, and contractors,

Py = Z Q- F; =7 - (N“+ N,
i.)ew
where in the right-hand side the first term represents the producers’ total revenue and the latter two terms denote drivers’ trip cost
of picking up and delivering customers, idle repositioning, and waiting to be matched.

Fig. 10 shows that both the customers’ surplus and the producers’ profits increase monotonically as the penetration of contractors
enlarges. Specifically, the adoption of dual sourcing increases the consumers’ surplus by up to 4%, proportional to the realized
customer demand. The demand surge further accelerates the circulation of drivers in service, thereby stimulating the total profits
earned by producers. In sum, the deployment of dual sourcing can increase social welfare by up to 8%. Thus, while a higher
proportion of contractors may not appear tempting to the platform, it does benefit the entire system with higher social welfare.
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8. MNE with matching priority

The previous sections assume that the platform treats freelancers and contractors equally in matching. It is notable that instituting
matching priority/discrimination dependent on varying contractual types can directly affect drivers’ expected payoff and indirectly
influence their movement over the network. This section relaxes the equal-treatment assumption by expanding the MNE model with
a more general module that allows region-specific matching priority. The implications of matching priority under the dual-sourcing
context are analyzed numerically via various service performance measures.

Keeping the rest components unchanged, the MNE replaces the matching module with one that permits matching priority.
Suppose the platform still enforces a distance-based matching scheme. Then, the matching priority can be implemented through
distance-adjustment factors applied to certain groups of drivers. Without loss of generality, we set contractors as the base group
that maintains the actual distance measures. Now, let r represent the actual distance between a customer and her nearest idle
contractor, and «; be the distance-adjustment ratio for freelancers. Then, the customer would be matched to the contractor only if
there are no idle freelancers in the vicinity of r/q;. Accordingly, the condition of «; being greater(less) than 1 refers to the matching
policies that prioritize(discriminate) contractors. The adjustment factors can be region-specific, thereby being flexible of covering
various priority policies under this framework.

The mathematical derivation of group-specific matching probabilities and pickup time for freelancers and contractors under the
above mechanism is included in Appendix D, while the rest of this section focuses on the analysis of yielded mixed equilibria. The
effects of matching priorities are evaluated under two typical schemes that differ in their spatial granularity in implementation.
A uniform scheme adopts a homogeneous matching priority across the entire network, whereas a fine-grained scheme enables the
platform to tailor the degrees of priority for specific zones.

8.1. Effects of spatially uniform schemes

For a uniform scheme, drivers under each contractual type experience universal matching priority in all zones i € I. Here, we
set the distance-adjustment ratio «; at four levels of {0.5,1,1.5,2}, which respectively stand for (a) prioritizing freelancers, (b) equal
treatment, (c) slightly prioritizing contractors, and (d) heavily prioritizing contractors. For demonstration purposes, we consider
two contexts with contractors constituting 20% and 50% of the driver population receiving a risk-free salary s of 1.1r.

Fig. 11 presents the profits that the platform and freelancers receive in response to the different levels of matching priority.
Some useful insights can be obtained from the sets of comparisons. First, based on Fig. 11(a), it is clear that given the total supply,
prioritizing contractors who follow centralized repositioning guidance can constantly benefit the platform. But in the meanwhile,
elevating the penetration of contractors could impose contrasting effects that do not always benefit the platform. The platform
can only expect higher profit from involving more contractors when they receive adequate priority in matching. Otherwise, the
centralized repositioning is insufficient in compensating for the higher cost incurred by the recruitment of contractors. Besides, in
contrast to the platform’s rising profits, Fig. 11(b) suggests that freelancers’ profit declines dramatically with respect to contractors’
matching priority. At a medium penetration of contractors in the labor supply, freelancers’ average profit slides underneath zero
even if the platform only prioritizes contractors slightly. Such a great sensitivity of profit migration among drivers in response to
the matching priority alerts ride-hailing platforms who consider to take prioritizing policies for contractors. Even slight matching
discrimination against certain driver groups can severely drag down their profitability, potentially exclude them out of the market,
and eventually worsen the system supply.
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Fig. 12. Comparison of two schemes that conceptualize spatially uniform and heterogeneous matching priority (assuming 20% contractor penetration).

8.2. Effects of spatially heterogeneous schemes

The above results illustrate that uniform matching priority schemes can be abused and give rise to unfavorable system outcomes
for either the platform or freelancers. However, such adverse effects should not be understood as evidence for completely abandoning
the use of matching priority. Through the following example, we showcase that differentiated matching, if implemented regionally
at specific areas, can serve as an extraordinary option for supply management.

Since freelancers reposition with self-interest, an area with reduced waiting time for freelancers could incentivize more cohorts
to service there. We investigate a naive scheme that sets the adjustment ratio o; at 0.5 in the central downtown of the city (i.e., the
purple area in the center of Fig. 4(a)) but keeps it as 1 among all other regions. Accordingly, the platform prioritizes freelancers in
the downtown while treating the two types of drivers equally elsewhere. Interestingly, the overall system performance under such a
simple priority scheme is comparable to that of a universal counterpart where contractors are heavily prioritized in matching (with
a; =2 for all i € I). As revealed by Fig. 12, the regional priority scheme attains a very similar level of realized demand while going
slightly higher in the social welfare and lower in the platform’s profit, compared to the uniform scheme. But meanwhile, the former
scheme is able to secure significantly higher profits for freelancers and thus appears to be superior in sustaining the labor supply
for the service. Such an outcome showcases the favorable use of contractors as system actuators that effectively complement the
primary labor source of freelancers. To fully exploit the advantages of dual sourcing, a platform could consider integrated designs
of matching and repositioning for contractors.

9. Conclusion and future work

This paper investigates the impacts of dual-sourcing strategy in a ride-hailing market, where drivers can either serve as freelancers
or contractors. The idea is to leverage contractors, who follow the platform’s strategic guidance, as system actuators to neutralize
the self-interested service behavior of freelancers and mitigate the spatial mismatch between demand and supply. An MNE model
is developed to capture the interplay between freelancers’ and contractors’ repositioning movements, with a fixed-point iterative
method devised for equilibrium solutions and the platform’s repositioning policies in a general network context. We provide a
theoretical proof for the existence of mixed network equilibrium. Numerical experiments and sensitivity analysis are conducted
based on real-world cases from Didi Chuxing. Below summarize the major findings surrounding the implementation of dual sourcing
in supply management:
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+ Given the total number of drivers in service, converting drivers from freelancers to contractors can constantly increase the
realized demand and the total social welfare. However, once contractors’ penetration exceeds 20% of the driver population,
their marginal value diminishes significantly.

» The platform’s profit is sensitive to the salary paid to contractors. When contractors are less costly to recruit than freelancers,
the platform favors a pure contractor structure. Otherwise, only the dual sourcing strategy with a thin penetration of contractors
would remain profitable.

» Matching priority should be implemented with caution. A uniform priority scheme for contractors can be abused with
catastrophic consequence toward freelancers, whereas a fine-grained scheme with differentiated matching ratio tailored at
local regions can better promote the facilitating role of contractors in dual sourcing.

Future research could extend along the following avenues. First, our work considers a static network equilibrium, while the ride-
hailing market in practice characterizes more transient market states. Consequently, the effects of dual sourcing strategy might be
underestimated. Extending the model to a dynamic context is meaningful and could be accomplished in various ways. For example,
characterizing the system dynamics and state transitions with dual sources can be a straightforward extension. Beyond that, we
may consider drivers’ time- and state-dependent utility and investigate how freelance drivers’ far-sighted repositioning behaviors
influence the platform’s optimal repositioning policy for contractors. Appendix E discusses the extensions toward dynamic settings
in more detail. Second, this paper primarily focuses on the use of contractors in strategic repositioning, with preliminary discussions
provided on differentiated matching. It is of great importance to explore the joint optimization of repositioning and other operational
policies, especially more sophisticated ones like ride pooling. Last but not least, the conclusions resulting from the counterfactual
analyses should be carefully validated as more relevant data becomes available.

As a closing remark, this study can offer insight into the management of mixed-autonomy systems, in which autonomous vehicles
can be viewed as centralized contractors and human-driven vehicles as freelancers. The proposed MNE framework can be used to
analyze the effects of increasing the fraction of autonomous vehicles on human drivers, as well as the effects of a mixed-autonomy
strategy on improving service quality. It would be advantageous to expand the current framework to include automation factors
such as fairness concerns and cleaning needs.
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Appendix A. Nomenclature

Notation Description

Sets

1 Set of customers’ origin zones

J Set of customers’ destination zones

w Set of OD pairs

Variables

w? Customers’ average waiting time in zone i (hr)

wf" Average waiting time of type-k drivers in zone i (hr)

NI.”" Number of idle type-k drivers in zone i

0;; Realized service demand for OD pair (i, j)) € W (trips/hr)

Qf.‘j Trips between OD pair (i, j) served by type-k drivers (trips/hr)
Tj”,.k Idle repositioning flow of type-k drivers from zone j to i (1/hr)
Uj; Freelancers’ utility for repositioning from zone j to i (CNY)

E,- Average earning of drivers at zone i (CNY)

h; Average en-route time for trips originating from zone i (hr)

N Number of type-k drivers in service

Pk Customers’ probability of matching with type-k drivers at zone i
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Parameters

Q?j Potential trip demand from zone i to j (trips/hr)

F; Trip fare from zone i to j (CNY/trip)

E; Freelancers’ earning per completed trip from zone i to j (CNY/trip)
h;; Trip duration from zone i to j (hr)

B Customers’ value per unit waiting time (CNY/hr)

p Customers’ sensitivity to the trip cost (1/CNY)

" Drivers’ value per unit travel time (CNY/hr)

Y2 Drivers’ value per unit idle time (CNY/hr)

a; Adjustment ratio for freelancers’ relative matching priority in zone i
i Positive parameter in the pickup time function for zone i

i Non-negative ratio in the pickup time function for zone i

0 Degree of drivers’ perceptual dispersion over utility

s Salary for contractors (CNY)

€;j An adjustment parameter in trip demand function

€ A positive parameter in pick-up time function

€ A positive parameter to avoid singularity when calculating E; and A,
Functions

JiO) Function of customer demand in response to the waiting time
Suw() Function of customers’ pickup time on the number of idle drivers
G,() Mapping for drivers’ perceived earning from customer trips

G,(») Mapping for average delivery time of customer trips

Appendix B. Supplementary proofs for Section 4

B.1. Proof on the existence of market equilibrium
We prove the following market equilibrium existence theorem by Kakutani’s fixed point theorem.

Theorem 1 (Existence of Mixed Network Equilibrium). If conditions C.1-C.6 are satisfied, there exists at least one equilibrium solution to
the MNE model defined by (14).

The solution procedure in Section 5 creates a mapping @ : (N, N*/) 3 (N, N*¥) in the following steps: (1) Given (N, N*),
the mapping @ updates the market status ¢ characterized by customers’ average waiting time {w?}, trip demand {Q:‘j }, and drivers’
average waiting time {w'.”k}. (2) With ¢ as input parameters, the optimization problems (15) and (16) output N* and N*/,
respectively.

Fig. 13 outlines the roadmap for proving the existence of fixed points satisfying the MNE condition. As depicted, Lemma 1 first
establishes a lower bound ¢ for freelancers’ idle supply N/, with which the mapping space for @ can be constructed. Lemma 2
then investigates the existence of strictly positive solutions to problem (16) and deduces the continuity properties for mapping @
as presented in Proposition 1. Finally, given the results of Lemmas 1, 2, and Proposition 1, Theorem 1 proves that the mapping @
has at least one fixed point by applying Kakutani’s fixed point theorem.

B.1.1. Preliminary lemmas and propositions

Step 1. Recall that the existence of MNE solution (N¢, N vf)y requires the satisfaction of conditions (14a), (14b) and (14c). As the
first step, the following Lemma 1 proves the existence of a lower bound ¢ for freelancer’s supply N‘.”f when (14b) and (14c) are
satisfied.

Lemma 1. For any given N/° € [0, N€] Vi € I, there exists a bound & > 0 such that Ni”f > £ Vi € I holds for any solution N*/ that
solves (14b) and (14c).

Proof. Taking N as inputs, (14b) and (14c) solves for the tuple ({Qifj }{wf), {w,.”f ), NV, {Tj”f }, {U};}. { Pry/;}) from the following

i

system of equations:

w’ = f (N + Ny, Yiel, (19a)
of
0/ =00 - 1 (wWl|F,,hy;) - _NC Y(i,j)eW (19b)
ij ij iV i vf ’ ’ ’
N7 + N/
T = Y Q. -Pr, Vieliel, (19¢)

m:(m,j)eEW
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Fig. 13. Proof roadmap for Theorem 1 on the existence of mixed network equilibrium with dual sourcing.

=% ol viel, (19d)
jet jG.)ew
> ool () + YT hy+ YN =N, (19%)
i.)Hew JjeJ iel i€l
N = T;,Tf-wf'f, viel, (190
jes
exp(0U ;)
Pryj=e——>"—— Vielje€J, (19g)
Yomer exp(0U;,,,)
Uji = G, ({Eig» Qiadazarew) =71 (hyi + Gy ({higs Qiadazarew)) = 72 - 0] (19h)

Given any N/ € [0, N¢] Vi € I, solving the above system of equations can be reduced to solve a special case of the fixed point
problem with respect to N¥/ in Xu et al. (2021b). Specifically, according to Egs. (19a) and (19b), applying N* and N*/ uniquely
determmes customers’ average waiting times {w”}, and the demand served by freelancers {Qf }. Next, freelancers’ average waiting
time {w"/} and idle vehicle flow {T”f } are obtained by solving a convex optimization (Wong and Yang, 1998; Xu et al., 2021b).
Plugglng {w”f } and idle flow {T”f } into Eq. (19f), we obtain N/, which are feasible solutions to the fixed point problem under
Condition C.3.

Given the number of idle contractors N 7, let N :.’f (NF€) denote the lower bound for N,.”f satisfying system of Egs. (19a)-(19h).
Let ¢ = inf = denotes a global lower bound where = is a set comprising N i”f (N/¢) for all zone i € I and N/ € [0, N¢]. Recall that
freelancers’ utility U}; satisfies the following formula by Eq. (19h),

(’_Lr;gnw{E,-d} (h + r‘?;l);V{ hig)—vy- w <U (,%?W{Eid} (h + _gnn {hig}),
vVield,iel. (20)

In the above inequality, freelancers’ average waiting time w,."f

can be expressed as wl.”f = Nl.”f /2. new Q,f; through Egs. (19d)
and (19f), because N*/ > 0 holds at the fixed point. Then, as per Condition C.5, w”f has an upper limit w w 7 for glven N/¢ € (0,N°]
and N, v/ e (0, N/]. Therefore, for any j € J and i € I, inequality (20) suggests the existence of common bounds U, U] for ie.,

. —uf
{Q =ming gew {Eig} — 71 - (hj; + max gew {hig}) — 12 wiu >

U =max; gew {Eig} — 71 - (hj; + ming gyep {hig D).

Ujis

Since Uj; - U; < U —-U Vm € I, and freelancers’ routing probability Pr;;; can expressed as Pr;); = 1/3%, o, exp(0U;,, — 60U

Jm =

Viel,ie I by Eq. (19g), a lower bound P, for Pr;/; can be given as

ﬂi/. = +,

7] - exp(8U — 6U)

Finally, to satisfy (14b) and (14c), we have Egs. (19d), (19e) and (19f) give rise to the following inequality,
> Q (hyj+w?) +ZZT” (hy+wly< Y Qf (2h+w +w”f>

(i,j))ewW JjeJ iel (i.j))ew

vield,iel.
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where /i = max,¢, jeshij hj;}; and w! denotes the common upper bounds for customers’ average waiting time, which exists given
inputs N* + N°/ > 0 (Condition C. 2) The above inequality then leads to the following formula, i.e.,

N/
Q,-fj > P — 2n
(i J)EW 2h + w‘,." + w;
Combining inequality (21) with Egs. (19¢) and (19d), we have
VR P s N/ A
2 9=2Tl=% Y (Prn-Q)zPr, ————. Viel (22)

—p v
Ji.)EW Jjes JEJ m:(m.j)ew 2h + w; +w;

Recall that Qifj changes continuously with Ni”f for given N 20 and satisfies Zj:(i,j)EW Qifj —0as N, vf 0 (Egs. (19a), (19b)
and Condition C.3). Thus, there must exist a lower bound N ,.”f >0 such that 3. ey Q =Pr,,-N 1/ (Zh +uwl + wa ) holds for
any N/© € [0, N¢]. This concludes the existence of a lower bound ¢ > 0 for N o0

Step 2. Lemma 2 explores the solution properties of the system of Egs. (16b) and (16c¢), serving as the basis for the freelancers’
problem (16).

Lemma 2. Consider the system of equations formed by (16b), (16c) and the following equation:
Y ofdl - (hy+ul)+ X YT (hy+wl) =L >0, (23)

(i.j))ew jEJ i€l

Then, given that {h;;}, {h;;}, {wff L Q L APry;h and {w } are positively valued, there exists one unique solution ({ be N {¢f D to the
above system of equations satisfying the followmg conditions:

A The solution is strictly positive, i.e., T;jf >0Vjed,iel and d)[f >0Viel.
B Assume that L renders a unique solution ({Tj”if (L)},{dwif (L)}). Then, for any arbitrary ¢ > 0, oL renders the solution
vf(oL) SloL)yy _ vf(L) S(L)
({Tj,- LA, D= ({(JTI-,- Liod; ' H.

Proof. The above system of equations has (|7| X |J| + |7|) unknowns and (|7| x |J| + |T| + 1) equations. Note that the cruising
probability satisfies 3., Pr;/; = 1 for any destination j € J. There exists a redundant equality because

DRIEDAON LRGN ATAIED WEDIREATAD MDA

i€l jeJ jeJ iel m:(m,j)EW Jj€J m:(m,j)ew i€l j:(i,j))ew
Since {Qifj} and {Pr; /;} are positive, one can eliminate one redundant equation from (16c) such that the remaining equations are
linearly independent.

We apply Farkas’ lemma to prove that the solution to the above system of equations is non-negative. Let .A denote a n X n-
dimensional coefficient matrix, and b be an n-dimensional column vector with n = (|I| x |J| + |I]). For simplicity, we use r to
denote the index thereafter, i.e., r € {1,2,...,n}, and x = ({Tﬁf 1, {qbif 1 = (x|, x5...,x,) to be the solution vector. For the system of
equations formed by (16b), (16¢) and (23), A has full row rank and b = (0,0, ...,0, L)". Therefore, there exists a unique solution
to ({T Lf 1, {qbf D). As per Farkas’ lemma (Luenberger et al., 1984), exactly one of the feasible sets {x € R"|Ax = b,x > 0} and
{ye R"lAT y > 0,y, <0} is non-empty. To prove that the latter set is empty, we drop Eq. (23) and consider the following primal
and dual problems:

(Primal problem) max & x, (24a)
X

st Ax=0, (24b)
x> 0. (24¢)
(Dual problem) min OTyS, (25a)

¥
st. ATy, >8. (25b)
where 6 = (6;,...,6,) is an n-dimensional vector satisfying 6 > 0 and 5, > 0; y, = (3}, ¥»,..,_) is the vector formed by dual
variables; A; = (ay,...,a,) is the (n — 1) X n-dimensional coefficient matrix for x formed by (16b) and (16c) after dropping one

bi 12

redundant equation from (16c¢). Notice that matrix .4 can be further expressed as a block matrix A, = with I being

AU A%Z
an (|J| - [I]) x (|J] - |[]) identical matrix, matrices .A!?> and .A?? being the coefficient matrices for {qﬁfr } in Egs. (16b) and (16¢),
respectively, matrix A?! being the coefficient matrix for {Tj”if } in Eq. (16¢).

By the construction of the above primal and dual problems, y, < 0 holds only if both the primal problem (24) and dual
problem (25) are feasible. However, problem (24) is unbounded and we reach a contradiction. One can check this observation
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. With this, the primal

I -A?
o 7

by replacing x with a vector z so that x = £z where £ is a n X n square matrix given by £ = [

problem (24) is transformed into finding z > 0 to satisfy A Lz = ] (21,295 ..., 2,_1) + € - z, = 0, where the vector

T 0
Lo
¢, =(0,0,....¢1,¢....¢p =) € R with ¢; equal to 2j:om=ii)j) OmjPrisj- Mis a (II] = 1) X (|I| — 1)-dimensional matrix formed by
the first (n — 1)th columns of the matrix (A?lA;Z — Afz). The above system of linear equations has one degree of freedom. Given
z, > 0, the solution of (zy,z,,...,z,;) can be calculated as (zy, 2y, ..., z ;7)) = 0 and (z)5.jj41> -+ » Z4—1) = =2, - M~'c,. Note that
matrix M is a M-matrix and ¢; > 0, we have z > 0 for a given z, > 0. Plugging the solution z into Lz leads to a feasible solution to
problem (24) that satisfies x,, > 0 and 8" x > 0. Because the value of z, can be arbitrarily chosen over the interval [0, ), the problem
(24) has unbounded solutions. By duality, the problem (25) is infeasible and the set {x € R"|.Ax = b,x > 0} must be non-empty.

(Condition A) We then prove by contradiction that the solution x is strictly positive. Assume there exists a zone m € I such that
d),{, = 0. This implies that Tj”,j: = 0 holds for all j € J by Eq. (16¢). Because {Pr;;;} and {Q{;.} are positively valued, the condition
T;”{ = 0 suggests that ¢if =0Vie I and Tj{ =0Vj e J,i e I hold following Egs. (16b) and (16c). However, such a solution violates
(23) and reaches a contradiction.

(Condition B) Note that {{oTj‘;f @ 1 {0¢if (L)}} satisfy Eqs. (16b) and (16¢) automatically for any arbitrary parameter ¢ > 0 given
that L renders a solution ({le.f (L)}, {dzif (L>}). Plugging {{gT;,ff (L)}, {aq‘)if (L)}} into the left-hand-side of (23) will equal ¢L. Because
the solution to the above system of equations is unique, we must have ({Tjif ("L)}, {¢,.f ("L)}) = ({ij‘;f (L)}, {0¢if (L)}), i.e., the solution
({T;Iff 2 1, {d),-f (L)}) homogeneously and linearly increases with the value of L. []

Step 3. We define a mapping @ : (N”¢, N*/) 3 (N, N¥F). Given (N*¢, N*S), @ first calculates parameters {w!}, {Qﬁ‘j 1 {w;”‘} and
{Pr;;} following Egs. (3), (6¢), (10), (11), and (12). Then, it solves optimization (15) and (16) for updating (N"¢, N"f). Proposition 1
characterizes the continuity property of mapping @ regarding its inputs.

To prove this result of Proposition 1, we need the following results from literature.

Definition 1 (Mangasarian-Fromovitz Constraint Qualification - MFCQ, Solodov et al. (2010)). Consider a set X defined by a finite
number of equality constraints e;(x) = 0 with i € 7 = {1,2,3,..} and inequality constraints g;(x) < 0 with j € J = {1,2,3,..},
ie, X ={x€eR"e(x)=0,i€I, g;x)<0,j€J} Lete(x):R"— Randg;(x): R"— R be continuously differentiable functions.
At a feasible point X € X, let A(%) be the set of index j satisfying g;(%) = 0, i.e., A%) = {j € J|g;(%) = 0}. MFCQ holds at % if the
following two conditions are satisfied:

1. {e; (%) Vi € I} are linearly independent;
2. 3d € R" such that (e/(%),d) =0 Vi € T and (gj’.(fc),d) < 0Vj € AR).

where e,f(x) and g;.(x) denote the first derivatives of function e;(x) and g;(x) regarding x, respectively; and (-,-) means vector
multiplication.

Definition 2 (Slater Constraint Qualification, Solodov et al. (2010)). Consider a set X as being defined in Definition 1. Slater constraint
qualification assumes that the following conditions are satisfied:

1. e;(x) defines an affine function Vi € 7, and g;(x) is a convex function Vj € J.
2. 3% € X such that ¢;(%) =0 Vi € T and giX)<0VjeJ.

Definition 3 (Feasible Path Transfer Lower Semicontinuity-FTP Lower Semicontinuity (Tian and Zhou, 1992)). Let X and Z be two
topological spaces and I': Z — 2% be a correspondence. The function 7 : X x Z — R is FTP lower semicontinuity in ¢ with
respect to I' if for each (x,¢) € X x Z with x € I'({) and Ve > 0, there exists some neighborhood N'(¢) of ¢ such that VE € N(©),
3 (a feasible path) x e r©) satisfying z(x,¢) < n(x, O +e.

Lemma 3 (Tian and Zhou, 1992). Let X and Z be two topological spaces. If

() = : X X Z > R is an upper semicontinuous real-valued function;

(i) T : Z - 2% is a nonempty compacted-valued and closed correspondence;
(iii) #(x,¢) is FTP lower semicontinuity in ¢ € Z with respect to I';
(iv) I is upper semi-continuous,

Then, the maximum correspondence S : Z — 2%, which is defined as S(¢) = {x € ') : n(x,{) > n(y,{),Vy € ['()} for each { € Z, is

nonempty compact-valued, closed and upper semi-continuous.

Lemma 4 (Berge’s Maximum Theorem (Ausubel and Deneckere, 1993)). Let X and Z be metric spaces, I': Z = X be a compact-valued and
non-empty correspondence, and f : X X Z — R be a continuous function. If I' is continuous, then f*({) = max,¢ re) f(x.{) is continuous
at { € Z and x* = argmax, ¢ f(x.{) is upper semicontinuous, compact-valued and non-empty.

Using these definitions and lemma, Proposition 1 is formally introduced as follows:
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Proposition 1. The mapping & : (N, N*/) = (N, N*f) is upper semicontinuous regarding its inputs N* > 0 and N*/ > 0.
Proof. As defined, ®(N¢, N*¥) involves solving optimization problems (15) and (16) for contractors and freelancers, respectively.

To this end, we define two mappings S¢ and S/ that map the inputs parameters (¢ € Z¢ and ¢/ € Z/ of problems (15) and (16) to
their corresponding optimal solutions N?¢*(¢¢) and N>/*(¢/), respectively:

S¢: 263 NP € F(CO)IN"" € argmax z°(N",Ti|¢) where (© € Z¢), (26)
(N¥ET )
Tzl 2 (NT*¢yer/(¢)INY* e argmax 2/(¢].6/|¢/) where ¢/ € Z/). (27)

of of sf
(N1 9] 8]y

Here, Z* denotes the set associated with parameters ¢ for each driver type k € {f,c}; I'°(¢¢) and I'/((/) denote the feasible
set of problems (15) and (16) for given parameters (¢ and ¢/, respectively. For contractors, parameter (¢ is characterized by a
tuple ({w] 207w, where additional information on freelancers’ cruising probability {Pr;/;} is necessary for solving (16) and
¢ = () () (]}, (Pryy ).

Given N > 0 and N*/ > 0, trip demand {Qf.‘j} and customers’ waiting time {w‘;J } can be uniquely determined by (10) and
(11). Since both f,,(-) and f(-) prescribe continuous functions, {wf7 } and {Qf‘j} change continuously with (N”¢, N vfy, By Eq. (12),
drivers’ average waiting time {w,%'k} is also continuous with respect to (N, N*/). Because 0,; >0 for all OD pair (i,j) € W
(Condition C.2 and C.3), freelancers’ utility {U;;} are well defined and continuous regarding {Q;;} and {w,.”f }. Therefore, their
cruising probability { Pr; /;} are continuous with (N?¢, NvT) following Egs. (3) and (6¢). The above indicates that the parameter ¢*
continuously changes with (N¢, N*/). Therefore, proving Proposition 1 is equivalent to proving that the mapping S*(¢¥) is upper
semicontinuous regarding ¢¥ € ZX for k € {f,c}. The following Lemma 5 provides such a result regarding the continuity of S*,
which completes the proof of this proposition. []

We invoke the following lemma to prove the upper semicontinuity of S*(¢¥):
Lemma 5. Mapping S¥, as defined in (26) and (27), is upper semicontinuous regarding ¢* € Z* for k € { f,c}.

Proof. We apply Berge’s maximum theorem (see Lemma 4) to prove Lemma 5. We first define two mappings I'* (k € {f.c})
that maps from the parameter space Z¥ formed by inputs ¢* to the corresponding feasible sets of (15) and (16), respectively. For
contractors, the mapping I'¢ takes (¢ = ({Ql?'j}, {wf }. {w{*}) as inputs:

re:Z2°3 X {x={T;,¢;, N/ }|(15b)-(150), ¢ > 0,T; > 0}.

For given input ¢, the feasible set I'“((¢) is non-empty since problem (15) warrants a feasible solution N/* = N¢/|I|, ¢{ = 0
for i € I and Tff =0 for j € J,i € I. Since constraints (15b)—(15f) define a non-empty polyhedron, I"“(¢¢) is closed-valued. Also,
the feasible set I'“(¢¢) is bounded (considering the modified fleet conservation condition (15d), the boundary condition (15f), and
the non-negativity constraints for {T;) and {¢{}). Therefore, the mapping I'® essentially defines a compact-valued correspondence
from the parameter space Z¢ to the feasible set X.

For freelancers, the feasible set mapping I'/ takes ¢/ as inputs and is defined as follows:

2 sy sy =11 ¢ N 8] yaeb)-(160, ¢] > 0.7} > 0,5/ > 0}.

Here, in addition to {Q{; IR {wf } and {wl.”f }, parameter ¢/ € Z/ contains additional information on freelancers’ cruising probability
{Pry;),1e, ¢/ = ({Qifj } (wf), {w,.”f }, {Pry/;}). For a given input ¢/, the feasible set I'/ ({/) is non-empty since problem (16) warrants
a feasible solution Ni”f = Ei/ =N//|I|, ¢if =0 forie I and T]”If =0for jeJ,iel. Also, I'' is compacted-valued.

Note that both the objective functions of (15) and (16) are continuous. Therefore, Lemma 4 suggests that mapping S*(¢¥)
is upper semicontinuous if I'* is continuous. To this end, the following characterize the continuity properties (upper and lower
semicontinuity) of the mapping I'* and proves the upper semicontinuity S* for contractors and freelancers, respectively.

(a) Upper semicontinuity of S¢({¢). We first show that mapping I'¢ is upper semi-continuous. Since the feasible set I'“(¢¢) is a
non-empty and bounded polyhedron, mapping "¢ is upper-Lipschitz-continuous (Robinson, 1977), i.e., there exists a constant / > 0
such that the condition I'*(¢¢') C {x|dis(x, I'*(£%)) < 1]|¢€ — ¢¢'||} holds for ¢ e B,(¢¢). Here, dis(x, ') = inf{||x — x'|||x" € I'°(¢%)}.
Hence, I' is upper semicontinuous (Davidson, 1996).

Next, we discuss the lower semicontinuity of mapping I'¢ if

1. Q;'j > 0 for all (i,j) € W;

2. dm € I such that anj =0 holds for any (m, j) € W.
In the first case where Qf, > 0 for all (i,j) € W, proving the lower semi-continuity of I'® can reduce to prove that MFCQ (see
Definition 1) holds at any x € I'°(¢¢) (Robinson, 1977; Davidson, 1996; Still, 2018). Note that the rows of the coefficient matrix
defined by constraints (15b) and (15¢) are linearly dependent since ¥,c; 3. hew Qf; - ¢! = Xjes Zi:qjyew 95, - ¢ - Therefore, one

can eliminate one redundant constraint so that the feasible region remains the same. Let H and G denote the resultant coefficient
matrix formed by equality constraints and inequality constraints of problem (15), respectively. Then, the feasible set can be denoted
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as {x|Hx = 0,Gx < 0}, and H has full row rank. With this, proving that MFCQ holds is equivalent to proving the satisfaction of
Slater CQ (see Definition 2) which means that there exists a feasible solution % satisfying Hx = 0 and G% < 0 (Davidson, 1996;
Solodov et al., 2010).

Consider % = ({¢f WAT ”f 1o Ai”f }) that consists of the following components:

=0 Viel, (28)
Zd:(i.d)eW Qfd

e _ e . . .

Ti=c( ¥ 05 oo Vieliel (29)
m:(m,j)EW (md)EW = md

T= TR w A, Viel, (30)

jeJ
where ¢ > 0 and 4° > 0. With the above solution, % satisfies constraints (15b) and (15c). Plugging % into (15d) leads to the following
equation:

"'W(ij’w wi, hyj, hy) + |I] - A° = N°. 31)
where W(ij, wf’ SW hy hyy) s prescribed as follows:
. ve 2a:a, mew iy ve
WO Wl w by k)= Y05 (hy+ul )+ Y 3 Y 0 T ) (hy + w), (32)
(i.j))ew jeJ iel \m:(mj)ew Z(m d)EW Q

Because Qf] > 0 for all (i, j) € W, v > 0 holds for given ¢¢. With this, it suffices to show that there exists ¢ € (0, My) and A° > 0
such that (31) holds as follows:

o=1,4c= v, if y(QF, wf, w, by hy) < N

: 1] . i g (33)
N L ge= N Otherwise.

o=~ . —
v |I]+1° |[1]+1°

With ¢ and A¢ prescribed in (28) and (33)-(30), % satisfies Hx = 0 and G% < 0. Therefore, the Slater CQ holds, and 7"°({¢) is lower
semi-continuous at {¢ when ij > 0 for all (i,j) € W.

For the second case where there exists a zone m € I such that 0;,; =0, MFCQ does not hold since Y., »ew Om; €quals 0 and
no idle contractors flow into zone m, i.e., Tj”nj =0 for any j € J. To prove the upper semicontinuity of S¢(¢“), we apply a weakened
condition called “feasible path transfer semicontinuity” (FTP), as stated in Definition 3 and Lemma 3. To apply Lemma 3, we note
that function r in Lemma 3 corresponds to objective function (15a), and I" and ¢ correspond to I'¢ and ¢¢, respectively. For Problem
(15), condition (i) in Definition 3 holds because the objective (15a) prescribes a single-valued continuous function. Recall that ¢
is compacted-valued and upper semicontinuous, condition (ii) and (iv) also hold. To prove condition (iii), let ¢ > 0 and consider the
neighborhood W'(¢€) = {£°|II¢° = ¢€ll, < €,05,; > 0,118 = E€lly = \/ X mjyew (O, )? ) for a given ¢¢ that have components Qf . =0,
m € I and (m, j) € W. More specifically, ¢¢ and £¢ only differs in the values of components {Qm} Yom.jew - Then, given ¢, the set
{7(x(¢),¢%)|x € (&)} that is formed by the objective function values of (15a) can be retained at £¢ by setting qbfn 0 for any
£¢ € N(£°), leading to the condition {z(x,{¢)|x € I'°(¢¢)} € {#(x,E¢)|x € I'°({°)}. Therefore, condition (iii) holds and S¢(¢¢) is
upper semicontinuous at .

(b) Upper semicontinuity of S/({/). We prove the upper semicontinuity of S/ ({/) by proving that the feasible set mapping I’
is continuous. (b1) Note that the feasible set I'/({/) is a non-empty, closed and bounded polytope. Therefore, I'/(¢/) features
upper Lipschitz continuity at ¢/, implying the upper semicontinuity of I'/(¢/) at ¢/. (b2) Mapping I'/ is lower semi-continuous
regarding its inputs because MFCQ holds for feasible solutions y € I'/(¢/). Given N*/ > 0, Eq. (10) suggests that the trip demand
for freelancers Qif . satisfies Qif; > 0 for any OD pair (i, j) € W. We can drop one equation from (16c) and the remaining equations
are linearly independent. Then, proving the satisfaction of MFCQ for any y € F f¢lyis equlvalent to proving that Slater CQ holds
for problem (16). Consider a solution ’)7 that have components gl.f =4/ and N =Yjes T; w v/ + A’ Vi € I where A/ is a constant

and satisfies 47 € [¢, W) Plugging N into problem (16) transforms constraint (16d) into the following equation:

D Qf¢f hyj +w’) +ZZT?}f-(hj,.+w;’f):Nf-|1|Af. (34)
(i.))ew jeJ iel
Note that N/ — |14/ > 0 holds, as per Lemma 2, there exists unique solution $lf > 0 and f"}”}f > 0 satisfying (16b), (16¢) and (16d)
for any fixed 47 € [¢, m) This further leads to N; NV > £ Vi € I and constraint (16f) is satisfied. Also, Egs. (16b), (16¢) and (16d)
are satisfied with the solution ¢I.f >0, Ni”f > &, NI.Lf >3, f]ﬁf . uAJI."f s Tj’ff >0 and 6if > 0. Therefore, Slater CQ holds and mapping
I’/ is lower semi-continuous.
The upper and lower semicontinuity of I'/(¢/) indicate that I'/ (¢/) is continuous at ¢/. Applying Berge’s maximum theorem in
Lemma 4, we prove the upper semicontinuity of S/. []

B.2. Proof of Theorem 1

Proof. We prove Theorem 1 in two steps. First, we prove the existence of fixed points with the defined mapping ®(N"¢, N”) by
Kakutani’s fixed point theorem. Second, we show that the derived fixed point satisfies the equilibrium condition defined by (14).
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B.2.1. Proof for the existence of fixed point

According to Kakutani’s fixed point theorem (Granas and Dugundji, 2003), a set-valued map ¢ : Z — 2Z ensures a fixed point
if: (i) Z is non-empty, compact and convex: (ii) ¢(z) is non-empty and convex for all z € Z; (iii) ¢ has a closed graph.

In our setting, ®(N‘, N vfy defines a set-valued mapping from Q to 22, i.e.,, @ : Q — 2%, where 22 denotes the set of all
subsets of Q. We define a space Q = {(N””,N”f)lNi”” € [0, N”],Ni”f € [£, N/]} where the bound & > 0 is derived in Lemma 1.
Given (N*°, N*/) € @, mapping @ first updates the market status ¢ characterized by customers’ average waiting time {w!}, the
trip demand {Ql{;}, and drivers’ average waiting time following Egs. (10), (11), and (12). Additional information on freelancers’
routing probability is determined following Egs. (3) and (6¢) with Pr; ;, €EODVjeJ iel. Finally, with {¢ as input parameters,
solving optimization problem (15) lead to N/°*(¢¢) € [0, N¢] fori € I considering constraints (15d) and (15e) and the non-negative
constraints for variables {Tj’f} and {¢¢}. Given input ¢ f= ({w 1 {Qf oA{w } {Pr;;;}), solving optimization problem (16) glves the
solution N; v/ *(¢fy e [6, N7 Vi € T considering constraints (16d), (1 6f) and the non-negative constraints for variables {T j,. }, {qb,.f }

and {8/ }.

Condition (i) By our definition of @, i.e., 2 = {(N", N”f)lNi”” € [0, N*], Ni”f € [¢, N/]}, condition (i) is satisfied because & < N/
and Q is compact and convex.

Condition (ii) @(N’¢,N*/)is non-empty and convex because: First, for given (N”¢, N”: /) € @, the inputs ¢¢ and ¢/ for contractors’
and freelancers’ optimization problems (15) and (16) are uniquely determined. Second, given {¢ and ¢/, two optimization problems
(15) and (16) have feasible solutions, respectively (see Proposition 1). Therefore, the set ®(N"“, N vfyis nonempty. Third, Condition
C.4 ensures that the first term of the objective (15a) is strictly concave regarding N*“. Consequently, the input {¢ leads to a unique
solution N¥¢*(¢¢) for problem (15). Given ¢/, the optimal solution N*/*(¢/) belongs to a convex set ((16) is a linear program).
Therefore, given any (N”¢, N*) € @, the set ®(N"¢, N*f) is convex.

Condition (iii) Theorem 17.11 in Guide (2006) showed that in a Hausdorff space Condition (iii) is satisfied if the mapping @ is (1)
upper semicontinuous and (2) closed-valued. Property (1) is proved by Proposition 1. Property (2) holds since NY¢*({¢) is unique
given input ¢¢ and the set of N vf*¢fy forms a polyhedron given inputs ¢/. Therefore, given (N6, N vfy e Q, the set ®(NU, N¥/)
is closed valued.

Summarizing Conditions (i)-(iii), the mapping @& ensures a fixed point over Q.

B.2.2. Verification of equilibrium conditions

This subsection shows that the fixed point satisfies the equilibrium conditions of (14) by further examining optimal solutions to
(15) and (16). We use X and x* to differentiate the input and the optimal solution of optimization problems, respectively.

(1) Verification of MNE condition (14a). For contractors, proving that the fixed point satisfies the MNE condition (14a) is
equivalent to proving that constraints (15e) are active at the fixed point and the optimality conditions of problem (15) at the fixed
point replicates those of problem (13).

First, we prove constraints (15e) are active at the fixed point. When N v¢ =, we have Z T“*(Zj ¢)=0and N/** = Z T”C*(g €)-i0 A”C
Therefore, constraints (15e) are active for zone i if NI.”C 0. For the zones satlsfymg N ve > O we can reformulate constraints (15e)
as N > ¢f - N”‘ Vi € I because ¥, T/ - e = ¢ Z/ (ew ij wye, wie = NUC/ZJ G j)EW Qu and 3. hew Q” > 0. Since
N = N/°*(¢°) at the fixed point, the relation N/¢ > ¢ - N Y implies that ¢C*(§ ¢) € (0, 1] given inputs N ¢ > (. Therefore, constraint
(15f) can be dropped from problem (15) at the flxed point, leading to the following KKT conditions:

T?;C*zo, vieldJ,iel, (35a)
(=M + ) @ +u+uj+v-h; 20, VjeJ,iel, (35b)
T - {(- M +/1.).13;E Futu vy =0, VielJiel, (35c)
- Y Fy- an 'N;’” +v+M{-1,=0, Viel, (35d)
Ji.)EW
A (NP = YT - @) =0, Viel, (35€)
jeJ
2420, Viel, (350
veo X0y~ Y 05wt u)20. Viel (358)
Jji.j)ew Jjii.pHew
¢§*~(v~ Y QC hy+ @D =Y é§j~(y,.+;4j)>=o, viel, (35h)
JiDEw JiEw
¢ >0, Viel, (35i)

(15b), (150), (15d), (15e),

where y;, u 5V, 4; are the Lagrangian multipliers associated with constraints (15b)—(15e).
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For a zone m with f\?:f > 0, we prove that constraints (15e) are active and ¢$*({¢) = 1 at the fixed point by contradiction.
Assuming that constraint (15e) is inactive and d)c*(Cc) < 1 holds at the fixed point. In this case, Eq. (35e) suggests 4,, = 0, which
implies v < 0 by Eq. (35d) because M| > ¥ ..., sew Fyj - 00,,;/ON¢. With 4, = 0 and v < 0, the inequality (35b) indicates that
Hm + ;2 0 holds for all j € J, leading to ¥;., jew (#n + ;) 2 0. However, this contradicts the inequality (35g).

Next, we show that the optimal solution to (15) at the fixed point satisfies the KKT conditions of (13). Since constraints (15e)
are active at the fixed point, (15e) becomes equalities. By setting ¢¢*((¢) = 1 Vi € I and removing (35h) and (35i), the remaining
conditions are essentially KKT conditions for (13). Therefore, the derived fixed point satisfies the MNE condition (14a).

(2) Verification of MNE condition (14b) and (14c). For freelancers, verifying that fixed point satisfies the MNE condi-
tions (14b) and (14c) is equivalent to proving that problem (16) has optimal solutions 5;.f *&’) = 0 and d)'l.f €H=1Vielat
the fixed point. Here, (Sl.f *¢/) = 0 Vi € I can be inferred by comparing constraints (16e) with (6f) while q&lf WhHh=1vielis
derived according to (6b) and (16b).

For problem (16), notice that constraints (16e) can be reformulated as N, of = 6f +¢f N, N/ vie Iin viewing that Z e I‘ -0,
ol &y X ihew Qu and &/ = = Ykelse) NY k) Ekeir el TiGpew Q,j ”f/zj GhHew Qu for any given input N/ > 0 and i € I.
S1nce N, ol fy = N; N/ Vi € T holds at the fixed point, the relation N; of = 5f + q.’)f iLf implies that problem (16) has optimal
solutlons qbl.f* = 1if (Sif*(é,’f) =0, or qﬁif* =1e(0,1) if 6if*(Cf) > 0. The followmg proves ﬁl.f*(gf) = 0 Vi € I by showing that the
second solution 6if *(¢/) > 0 is not obtainable at the fixed point.

First, we prove by contradiction that N ,” 4 *¢7) = £ holds if ﬁif *(¢/) > 0 in the optimal solution to (16). Assuming that there exists
a zone m € I such that N*/*(¢/) > & and 6.,*(¢/) > 0. Then, Lemma 2 suggests that reducing the value of 5/*(¢/) by a small number
will increase ¢,.f *(¢/) for any i € I. As the objective function (16a) increases with the value of q‘)lf and decreases with the value of
&/, This feasible solution does not violate any constraint and obtains a higher objective function value, which contradicts the fact
that ¢,~f *(¢7) is the optimal solution.

Next, we prove that N, v/*(¢/y = & cannot be obtained at the fixed point by contradiction. Assume that there exists a zone m € I
such that N*/*(¢f) = ¢ and 8/*(¢7) > 0 hold at the fixed point. Now, given the same input ¢/ = ({wh}, {Qf} {w”f} {Pr;;}), we
drop b'if from (16e) and solve a system of linear equations formed by (16b), (16c) and the following formula.

> 0Ll (hy+ @)+ Y YT (hy+ @)= N (36)

(i.j)ew JjerI iel

Lf ALf

We denote the solution to the above system of equations as {$f } and {T bf } for differentiation. Since st 7)) > 0 at the fixed
point, we have N/ — ¥, (Sfx ¢y < N7. Consequently, Lemma 2 suggests that qbf* e < ¢f ¢yvieI and be* ¢ < TLf(gf)
Vj € J,i € I hold. Recall that the solutions to problem (16) satisfy N, of = éf + ¢f N; N/ Vi € I. Therefore, glven the same ¢/, f we
have NLf*(g“f) < N”f(cf) for zone i € I and i # m and NY/*(¢/) > N,f,f(cf) for zone m. Since N'/*(¢/) = ¢ by assumption, we have
”f(cf) < & for m. Because N°/* = N*/ hold at the fixed point and N2/ (¢/) = $fﬁ”f Vi € I, the fact N?/(¢/) < £ and N*/* = ¢
imply ¢f < 1 for m. Also, for Egs. (16b), (16c¢) and (36) to be satisfied, we have the following inequalities:
= X 0L (ny+ @)+ XTI @< Y, OLd - (A 4w ),

(i, j))EW JjeJ iel (i,j))EW

where 7 = max;c; jesthi hy); ) and W, /" denotes the common upper bounds for the average waiting time of customers and
freelancers, respectively, which exist given inputs N,.”f > 0 (Conditions C.2 and C.5). The above inequality further leads to the

following formula:

> 0> Y OLeL=XTr=% % (Pr,-0hH=pr, - +f_bf viel (37)

jimew ji(mpew jes JET it ew 2h +w; +w;

where the first inequality stands because q.’~>m < 1 and second ’=’ results from Eq. (16b). Recall that ¢ serves as a common lower
bound for N, v/ yi e T that satisfies X iihew Q (N v N = Pr,; # for any given N/ € [0, N°] (see Lemma 2). Therefore,
if (37) is satisfied, we must have N°/ > & However, this contradicts the assumption N'/* = & because N/ = N'/* holds at the
fixed point for m. Therefore, at the fixed point, N,.”f *(¢/) = ¢ is not obtainable and 5{ “¢/)y=0 and d),.f *(¢/) = 1 must hold for any
zone i € I. MNE condition (14b) and Egs. (6d) and (6g) are satisfied.

With the updating rules { = g(N*, N vf), the market status ¢ is self- fulling at the fixed point because (a) N. ”‘*(C ") = N vk

Vi € I,k € {f,c} hold at the fixed point; (b) ¢¥ is uniquely determined via Egs. (10), (11), and (12) for given (N N ) € Q.
Therefore, MNE condition (14c) is satisfied at the fixed point. []

B.3. Existence of multiple equilibria

We use numerical examples to show that multiple equilibria may exist for the MNE model, mainly due to the nonlinearity and
nonconvexity of constraints. Using the parameters stated in Section 6, Fig. 14 presents the convergence patterns in the platform’s
revenue based on the best responses of freelancers and the platform. Two curves in Fig. 14 differ in their initial values of the number
of idle drivers N, We observe that the calculated equilibria yield different revenue for the platform.

These two types of equilibria are also observed in other instances used in this study. Therefore, we conclude that MNE is generally
not unique. To explore the potential of dual sourcing at different solutions, we run the proposed algorithm multiple times using
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Fig. 14. The existence of multiple equilibria (20% contractors).
different starting points for N'¥. Each starting point may display different spatial distributions of idle drivers. The equilibrium
yielding the highest revenue for the platform is used as the final solution.

Appendix C. Regularity conditions and parametric setting

For notation clarification, let x; = (N + Ni”f ) denote the total number of idle drivers at each origin zone i € I. Given x = {x;},¢;,
customers’ trip demand function (17) and pickup time function (18) can be restated as follows,

0, (x) = Q) - f(fo(x)) = QF - exp (B - (Fyj + B fu(x) — €, Vi, ) €W,

(38a)
n;

v — — 1 .

w; (x) = f,(x) = Grey Viel. (38b)
Their derivatives regarding x; are listed below,

dQ;; 0 dw; .
—— = 0B exp (B (Fy + Pufux)) - 7=, VG.)EW, (392)

X; dx;
dw? .
oM P oviel, (39b)
dx; (x; + €+l (x;+¢€) !
d’Q; BB.wp; BB.pr;

=0, W (p+1+ ), VU,))eEW. 39

dx; Y (x; + )2 < (Xi+€1)p> &0 (399

Egs. (38a) and (38b) define two twice-differentiable functions regarding x; for given p > 0, which satisfies Condition C.1. Condition

C.1 and C.2 require that the values of % and pickup time w! have upper limits over domain x; > 0, which can be satisfied by

setting a positive lower limit for ¢, given 1'11 > 0 and p > 0 according to Egs. (38b), (39a), and (39b).

Condition C.3 indicates that the number of served trips at zone i is positive when x; > 0 and no trips from zone i would be
served when x; = 0. Section 6 mentioned that setting ¢;; = Q% - exp (ﬂ - (F;j + Bw}) ) will yield lim, o Q;;(x;) = 0 for any OD pair
(i,j) € W. With an additional definition of lim0/0 = 0, the number of trips served by type-k drivers satisfies lim, g Qf.‘j(x,-) =0,
V(i,j) € W. By setting ¢; > 0, Eq. (38a) defines a continuous and increasing function on x, which ensures that Q;; > 0 for given
x; > 0. Therefore, Condition C.3 can be satisfied by a parametric setting ¢;; = Q?j - exp ( B (Fyj + Bw’ )), and ¢ > 0.

20,
Condition C.4 suggests that f(f,,(x;)) is strictly concave regarding x;, or equivalently ddfz” < 0V(i,j) € W. According to Eq. (39¢),

for any given pn; > 0 and pp,, < 0, Condition C.4 holds if —pf,,/(x; + €,)? < p+ 1 where the term on the right-hand side attains its
maximum at x; = 0. Therefore, Condition C.4 is satisfied by setting ¢, > (—p8,,pn;/(p + 1y)i/e.
Condition C.5 requires the term x;/f(f,,(x;)) to be upper-bounded so that drivers’ average waiting time, which is calculated by
ﬁ, has an upper limit. Since x; < N + N/ and f(f,(x;)) defines a continuous increasing function with x;, showing that
j:(i.)EW ¥i
x,-j/ fj(;w(xij)) has a upper limit is equivalent to showing that lim, _, x;/f(f,,(x;)) exists. Applying L’Hospital’s Rule gives:
. X; . Q?j 0 (61)p+1
lim ——— = lim — =0, - ————,
xi=0 f(fi,(x)))  xi—~0 4Qi I —€;; BBy pn;
dx,

vViel.

i

The above formula indicates that Condition C.5 holds over the domain x € (0, N¢ + N/) by setting a lower limit for ¢; ; and an upper
bound for €.
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Summarizing the above analysis, Condition C.1-C.5 holds with a parametric setting ¢, € [—ff,p0n;/(p + 1)!/?, %), and € =
Q% - exp (ﬂ ~(F; + ﬂwwf )) V(i, j) € W. For the numerical experiments introduced in Section 7, we set ¢; = 0.8.

Appendix D. Matching module with driver priority

In this appendix, we derive the mathematical expressions for the matching probability and pickup time at an arbitrary origin
zone i € I under the context of matching priority.

Matching probability. For a given zone i € I, let A; be its area and A*(= N'*/A,) be the average density of type-k drivers
idling in the zone. Denote P¥(n, ) as the probability that a circular area of radius r contains exactly » idle type-k drivers. By assuming
that idle drivers appear randomly in space following a Poisson Point Process, IP’f (n,r) can be expressed as

(Akzr?yn

Ph(n,r) = — N ke (fe). (40)

n!
Suppose freelancers (contractors) are discriminated (prioritized) with a distance adjustment ratio of ;. Following the priority
mechanism expounded in Section 8, the probability of a customer being matched with an idle contractor who is r away is
P =P/ (0, i) (PE(L, r +dr) — PS(0, 7)) .
1 al 1 1

where dr represents an infinitesimal distance. Then, applying Eq. (40) and omitting the higher-order terms on dr yields
Pf(r) =24 zr - e_”’z'('{fﬂrf/“?)dr. 41)

Then, integrating the above item over r from 0 to +co obtains the unconditional probability P¢ of a customer matched with an
idle contractor as follows,
a?N©
1 1

i

P = /°° 24i7r - ef”rz'ulc“'f/“rz)dr T e—
0 a N+ N,
The complement to 1 of Pf gives the customer’s probability of matching with a freelancer,
P.f=1_pAC=N+Uf.
' " aN+ N
Pickup time. Suppose a customer in zone i gets matched to an idle contractor. Using Eq. (41), the unconditional expected
pickup time w{* for the contractor could be derived as follows (Zha et al., 2018b),

pc 1 /m 226212 - e*ﬂrz»(/ler/lif/aiz)dr _ A 4
; =

w. = R ——
20\/a? NP + N

1 U, I)iC :
where v; is the vehicle’s average travel speed in zone i. Similarly, for freelancers, the contingent expected pickup time wff is

pf \/TI

w,, =
200/ N + N
= VA

Thus, by introducing parameter #; = S we write drivers’ expected pickup time wfk as

wffzn,-/ aiz-N,.”C+N,.Uf, w” = qu?’ (42)

i i "

Meanwhile, from customers’ view, the expected pickup time w"" is
w) = Pf - wf + B )
Appendix E. Discussion on dual sourcing under dynamic market setting

To account for market temporal variations, one can equally divide the planning horizon into a set of discrete periods H =
{1,2,....1,...}. At each period 7, the market state is characterized as a tuple S = {NUK® Q0 vk®) {w,.”k(’)},-e,, {w,.p(’)},-e,} where
QK and T represent the spatial distribution of type-k drivers who are delivering customers to their destinations and who are
repositioning toward their target zones by time ¢, respectively. wfk(’) and wf(') denote drivers’ idle time and the pick-up time for
customers at the start of period . The market state over both temporal and spatial dimensions can be represented as S = {S®},.

Similar to the static model, the platform determines the flow of contractors after dropping off customers while freelancers
strategically choose target zones. At the start of period ¢, we characterize the platform’s repositioning policy R’ by the fraction

of contractors who cruise from each destination zone toward their designated zones:

() (@] (O] z 0 ®
R' = A;i e [0,1] TJCI = A;i . Z 10+ wg(’) +hy=1)- Q;j , VteH,
1€H, 0:(0.))EW
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where 1(x) stands for an indicator function whose value is 1 if x is true and 0 otherwise; Qf;’) is the number of trips between OD pair
(i, j) that are served by contractors at ¢. For freelancers within the destination zone j, we characterize their repositioning strategies
by their probability of choosing each origin zone {Prl(_’/)j }. Applying Eq. (3) leads to the following formula:

U]
© _ exp(0Uji )

= Vi€eljeJicH.
T er exp(0U ')

Pr

where U @f.) represents freelancers’ expected utility for cruising from j to i at period 7.
The following fixed point problem can be employed to capture the intricate interaction between market demand and repositioning
decisions:
13
S = F(RVYAPH) ) j00:
(RO}, = Fx(S),
(1) (1) —
{Pri/j’ Uj,- }t,j,i = F}(S)
where function F,(-) accounts for system dynamics given the platform’s and freelancers’ repositioning decisions; functions F,(-)
and F;(-) prescribe the platform and freelancers’ best responses. In a dynamic market setting, one research direction would be to
characterize the market state variation pattern F,(-). This is nontrivial because F,(-) accommodates various endogenous relations
between market demand and supply.
Another research direction involves investigating “far-sighted” repositioning behaviors when modeling drivers’ best response
functions F,(-) and F;(-). For example, for a freelancer at zone j, her utility of choosing origin zone i can be expressed as follows:

of (t+hj;)
US) = =1 hy—rp-w, " (S)
1 kG —
+—k(;). Z Qi;”)'(Eid_}'l'hid+73'Udz(s)> ,
Zaaanew Qg Laredew
VieldJ,iel,teH, 43)

vf(+hj;)
i

origin i to destination d. It can be calculated by ﬁ’-(s) =Y Pr f’), : U;:)(S), Vj € J,t € H; and y denotes a set of coefficients for
different utility factors. On the right-hand side of Eq. (43), the first line describes drivers’ total cost before getting matched in zone

- - - —t
where 1} = t+h; +w and 1) = t; + hiy; U dz denotes the drivers’ expected future utility after delivering a customer from

i. The second line represents drivers’ expected revenue and costs for serving customers at zone i. In particular, ﬁ: is incorporated
to account for freelancers’ far-sighted repositioning behaviors. The coefficient y; is a discount factor and would replicate myopic
decisions if it equals 0. By defining freelancers’ utility as Eq. (43), their far-sighted behavior influences their best response to market
states. The impact of such behaviors on market states and players merits further investigation.

References

Afeche, P., Liu, Z., Maglaras, C., 2023. Ride-hailing networks with strategic drivers: The impact of platform control capabilities on performance. Manuf. Serv.
Oper. Manage. 25 (5), 1890-1908.

Ausubel, L.M., Deneckere, R.J., 1993. A generalized theorem of the maximum. Econom. Theory 3 (1), 99-107.

Banerjee, S., Freund, D., Lykouris, T., 2017. Pricing and optimization in shared vehicle systems: An approximation framework. In: Proceedings of the 2017 ACM
Conference on Economics and Computation. pp. 517-517.

Beojone, C.V., Geroliminis, N., 2023. Relocation incentives for ride-sourcing drivers with path-oriented revenue forecasting based on a Markov chain model.
Transp. Res. C 157, 104375.

Besbes, O., Castro, F., Lobel, 1., 2021. Surge pricing and its spatial supply response. Manage. Sci. 67 (3), 1350-1367.

Bimpikis, K., Candogan, O., Saban, D., 2019. Spatial pricing in ride-sharing networks. Oper. Res. 67 (3), 744-769.

Braverman, A., Dai, J.G., Liu, X., Ying, L., 2019. Empty-car routing in ridesharing systems. Oper. Res. 67 (5), 1437-1452.

Buchholz, N., 2022. Spatial equilibrium, search frictions, and dynamic efficiency in the taxi industry. Rev. Econom. Stud. 89 (2), 556-591.

Cachon, G.P., Daniels, K.M., Lobel, R., 2017. The role of surge pricing on a service platform with self-scheduling capacity. Manuf. Serv. Oper. Manag. 19 (3),
368-384.

Castillo, J.C., Knoepfle, D., Weyl, G., 2017. Surge pricing solves the wild goose chase. In: Proceedings of the 2017 ACM Conference on Economics and Computation.
pp. 241-242.

Castillo, E., Menéndez, J.M., Jiménez, P., Rivas, A., 2008. Closed form expressions for choice probabilities in the Weibull case. Transp. Res. B 42 (4), 373-380.

Chen, L., Mislove, A., Wilson, C., 2015. Peeking beneath the hood of uber. In: Proceedings of the 2015 Internet Measurement Conference. pp. 495-508.

Chen, X.M., Zheng, H., Ke, J., Yang, H., 2020. Dynamic optimization strategies for on-demand ride services platform: Surge pricing, commission rate, and
incentives. Transp. Res. B 138, 23-45.

Daganzo, C.F., 1978. An approximate analytic model of many-to-many demand responsive transportation systems. Transp. Res. 12 (5), 325-333.

Davidson, M., 1996. Stability of the extreme point set of a polyhedron. J. Optim. Theory Appl. 90 (2), 357-380.

Dong, J., Ibrahim, R., 2020. Managing supply in the on-demand economy: Flexible workers, full-time employees, or both? Oper. Res. 68 (4), 1238-1264.

Dong, T., Xu, Z., Luo, Q., Yin, Y., Wang, J., Ye, J., 2021. Optimal contract design for ride-sourcing services under dual sourcing. Transp. Res. B 146, 289-313.

Garg, N., Nazerzadeh, H., 2021. Driver surge pricing. Manage. Sci. 68 (5), 3219-3235.

Granas, A., Dugundji, J., 2003. Fixed Point Theory. Vol. 14, Springer.

Guda, H., Subramanian, U., 2019. Your Uber is arriving: Managing on-demand workers through surge pricing, forecast communication, and worker incentives.
Manage. Sci. 65 (5), 1995-2014.

Guide, A.H., 2006. Infinite Dimensional Analysis. Springer.

30



T. Dong et al. Transportation Research Part C 158 (2024) 104450

Guo, X., Caros, N.S., Zhao, J., 2021. Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand. Transp. Res. B 150, 161-189.

Hall, J., Kendrick, C., Nosko, C., 2015. The Effects of Uber’s Surge Pricing: a Case Study. The University of Chicago, Chicago, IL.

Harker, P.T., 1988. Multiple equilibrium behaviors on networks. Transp. Sci. 22 (1), 39-46.

He, F., Wang, X., Lin, X., Tang, X., 2018. Pricing and penalty/compensation strategies of a taxi-hailing platform. Transp. Res. C 86, 263-279.

Iglesias, R., Rossi, F., Zhang, R., Pavone, M., 2019. A BCMP network approach to modeling and controlling autonomous mobility-on-demand systems. Int. J.
Robot. Res. 38 (2-3), 357-374.

Jiao, Y., Tang, X., Qin, Z.T., Li, S., Zhang, F., Zhu, H., Ye, J., 2021. Real-world ride-hailing vehicle repositioning using deep reinforcement learning. Transp. Res.
130, 103289.

Lei, Z., Qian, X., Ukkusuri, S.V., 2020. Efficient proactive vehicle relocation for on-demand mobility service with recurrent neural networks. Transp. Res. C 117,
102678.

Li, S., Luo, Q., Hampshire, R.C., 2021. Optimizing large on-demand transportation systems through stochastic conic programming. European J. Oper. Res. 295
(2), 427-442.

Liu, H.X., He, X., He, B., 2009. Method of successive weighted averages (MSWA) and self-regulated averaging schemes for solving stochastic user equilibrium
problem. Netw. Spat. Econ. 9, 485-503.

Liu, Y., Samaranayake, S., 2020. Proactive rebalancing and speed-up techniques for on-demand high capacity ridesourcing services. IEEE Trans. Intell. Transp.
Syst. 23 (2), 819-826.

Lu, A., Frazier, P., Kislev, O., 2018. Surge pricing moves uber’s driver partners. Available at SSRN 3180246.

Luenberger, D.G., Ye, Y., et al., 1984. Linear and Nonlinear Programming. Vol. 2, Springer.

Ma, J., Xu, M., Meng, Q., Cheng, L., 2020. Ridesharing user equilibrium problem under OD-based surge pricing strategy. Transp. Res. B 134, 1-24.

Narayanan, S., Chaniotakis, E., Antoniou, C., 2020. Shared autonomous vehicle services: A comprehensive review. Transp. Res. C 111, 255-293.

Ozkan, E., Ward, A.R., 2020. Dynamic matching for real-time ride sharing. Stoch. Syst. 10 (1), 29-70.

Robinson, S.M., 1977. A characterization of stability in linear programming. Oper. Res. 25 (3), 435-447.

Solodov, M.V., et al., 2010. Constraint qualifications. In: Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York.

Still, G., 2018. Lectures on parametric optimization: An introduction. Optim. Online.

Taylor, T.A., 2018. On-demand service platforms. Manuf. Serv. Oper. Manag. 20 (4), 704-720.

Tian, G., Zhou, J., 1992. The maximum theorem and the existence of Nash equilibrium of (generalized) games without lower semicontinuities. J. Math. Anal.
Appl. 166 (2), 351-364.

Tripathy, M., Bai, J., Heese, H.S., 2022. Driver collusion in ride-hailing platforms. Decis. Sci. 54 (4), 434-446.

Urata, J., Xu, Z., Ke, J., Yin, Y., Wu, G., Yang, H., Ye, J., 2021. Learning ride-sourcing drivers’ customer-searching behavior: A dynamic discrete choice approach.
Transp. Res. C 130, 103293.

Wang, H., Yang, H., 2019. Ridesourcing systems: A framework and review. Transp. Res. B 129, 122-155.

Wei, Q., Pedarsani, R., Coogan, S., 2020. Mixed autonomy in ride-sharing networks. IEEE Trans. Control Netw. Syst. 7 (4), 1940-1950.

Wei, Q., Rodriguez, J.A., Pedarsani, R., Coogan, S., 2019. Ride-sharing networks with mixed autonomy. In: 2019 American Control Conference (ACC). IEEE, pp.
3303-3308.

Wen, J., Zhao, J., Jaillet, P., 2017. Rebalancing shared mobility-on-demand systems: A reinforcement learning approach. In: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, pp. 220-225.

Wong, K., Wong, S., Yang, H., 1999. Calibration and validation of network equilibrium taxi model for Hong Kong. In: Transportation Science and Technology
Into the Next Millenium: Proceedings of the Fourth Conference of the Hong Kong Society for Transportation Studies, Hong Kong, HKUST, Hong Kong.

Wong, K.-I., Wong, S.C., Yang, H., 2001. Modeling urban taxi services in congested road networks with elastic demand. Transp. Res. B 35 (9), 819-842.

Wong, S., Yang, H., 1998. Network model of urban taxi services: Improved algorithm. Transp. Res. Rec. 1623 (1), 27-30.

Xu, Z., Chen, Z., Yin, Y., Ye, J., 2021a. Equilibrium analysis of urban traffic networks with ride-sourcing services. Transp. Sci. 55 (6), 1260-1279.

Xu, Z., Yin, Y., Chao, X., Zhu, H., Ye, J., 2021b. A generalized fluid model of ride-hailing systems. Transp. Res. B 150, 587-605.

Xu, Z., Yin, Y., Ye, J., 2020. On the supply curve of ride-hailing systems. Transp. Res. B 132, 29-43.

Yang, H., Fung, C., Wong, K.I., Wong, S.C., 2010a. Nonlinear pricing of taxi services. Transp. Res. A 44 (5), 337-348.

Yang, H., Leung, C.W., Wong, S.C., Bell, M.G., 2010b. Equilibria of bilateral taxi—customer searching and meeting on networks. Transp. Res. B 44 (8-9),
1067-1083.

Yang, Y., Ramezani, M., 2022. A learning method for real-time repositioning in E-hailing services. IEEE Trans. Intell. Transp. Syst. 24 (2), 1644-1654.

Yang, K., Tsao, M.W., Xu, X., Pavone, M., 2020. Planning and operations of mixed fleets in mobility-on-demand systems. arXiv preprint arXiv:2008.08131.

Yang, H., Wong, S.C., 1998. A network model of urban taxi services. Transp. Res. B 32 (4), 235-246.

Zardini, G., Lanzetti, N., Pavone, M., Frazzoli, E., 2022. Analysis and control of autonomous mobility-on-demand systems. Annu. Rev. Control, Robot., Auton.
Syst. 5, 633-658.

Zha, L., Yin, Y., Du, Y., 2018a. Surge pricing and labor supply in the ride-sourcing market. Transp. Res. B 117, 708-722.

Zha, L., Yin, Y., Xu, Z., 2018b. Geometric matching and spatial pricing in ride-sourcing markets. Transp. Res. C 92, 58-75.

Zhang, K., Mittal, A., Djavadian, S., Twumasi-Boakye, R., Nie, Y.M., 2023. Ride-hail vehicle routing (RIVER) as a congestion game. Transp. Res. B 177, 102819.

Zuniga-Garcia, N., Tec, M., Scott, J.G., Ruiz-Juri, N., Machemehl, R.B., 2020. Evaluation of ride-sourcing search frictions and driver productivity: A spatial
denoising approach. Transp. Res. C 110, 346-367.

31



