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Abstract—Networks deployed for Internet of Agricultural
Things (IoAT) applications are often deployed in remote areas
with limited coverage and a lack of standardization across
sensing devices, posing challenges to reliable connectivity and
resilient data exchange. The IEEE 802.11ah standard, commonly
known as Wi-Fi HaLow, offers the potential for wide coverage
and support for a large number of IoAT devices. However,
such protocol still faces efficiency suboptimalities in channel
utilization, particularly when handling heterogeneous IoT appli-
cations with diverse Quality of Service (QoS) requirements. To
address these challenges, in this paper we propose SoftFarmNet, a
reconfigurable IEEE 802.11ah (Wi-Fi HaLow) network manage-
ment architecture, specifically designed for remote monitoring
and control of agricultural-based I0AT. SoftFarmNet leverages
a network traffic prediction-based slot scheduling and station
grouping scheme to enhance channel utilization and support
different QoS requirements of IoAT applications. The proposed
architecture integrates Software-defined Networking (SDN) at
the edge, enabling configuration of low-level Wi-Fi Halow
parameters and the management of multiple network slices to
dynamically meet application requirements. Our performance
evaluation demonstrates substantial improvements in throughput,
delay, and energy consumption, effectively optimizing channel
usage, with respect to state-of-the-art solutions.

Keywords—Internet of Things, Internet of Agricultural Things,
IEEE 802.11ah, Software-Defined Networking, Quality of Service

I. INTRODUCTION

Precision agriculture is a modern farming approach that
leverages technology to optimize crop yields, reduce waste,
and increase profitability [1]. One of the most promising
technological innovations in precision agriculture is the com-
bination of the Internet of Things (IoT) and Unmanned Aerial
Vehicles (UAVs) [2]. Integrating IoT sensors in the soil and
on crops enables data collection and analysis for informed
decision-making on planting, fertilization, and pest manage-
ment. UAVs provide a bird’s eye view, identifying crop issues
and enabling swift corrective action [3]. However, challenges
like network connectivity, data management, and QoS for dif-
ferent applications need addressing. Existing solutions such as
LoRA, NB-IoT, and SigFox offer long-range communication
but suffer from low data rates, limiting scalability [4], [5].
Wi-Fi, BLE, and 6LoWPAN offer higher data rates but limited
coverage [6]. On the other hand, 4G/5G cellular networks have
limited coverage, higher energy consumption, and cost. Ex-
isting solutions for scalable and remote networking solutions
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in precision agriculture can be broadly categorized into two
approaches. The first approach involves combining multiple
existing communication technologies, such as Wi-Fi, 6LoW-
PAN, and LoRa [6], [7], creating complex and challenging-to-
manage networks. The second approach focuses on utilizing
Wi-Fi Halow [8], [9], [10], offering a more streamlined and
efficient solution.

The IEEE 802.11ah standard, also known as Wi-Fi HalLow,
has great potential for covering vast areas and accommodating
numerous devices [11]. With sub-1GHz channels, low power
consumption, and Modulation and Coding Schemes (MCSs),
it achieves up to 78Mbps data rates over a lkm range in
a single hop [12]. This bandwidth is crucial for processing
large amounts of field-collected imagery, such as (hyper-
spectral) cameras [13]. Wi-Fi HalLow’s channel access and
Restricted Access Window (RAW) features reduce contention
and facilitate station grouping [11]. It also supports multi-
hop or relays, expanding coverage with up to two hops, each
covering over lkm. Thus, 802.11ah is a promising candidate
for supporting numerous sensing and actuation devices in
precision agriculture and other IoT applications.

Future AIoT networks deploy a wide range of heteroge-
neous IoT applications with diverse QoS requirements. For
example, scenarios like deploying cameras in the field or
utilizing drone-borne hyperspectral data for surveillance and
phenotyping operations [14], coordinating fleets of robots for
efficient fruit harvesting [15], enabling self-driving tractors
to collaborate with UAVs [16], and even employing small
bee-like drones for pollination assistance [17], all underscore
the critical need for dynamic environments and real-time
decision-making. Despite various enhancements in network
management [18], slot scheduling schemes [19], [20] and node
grouping schemes [21], [9] proposed for Wi-Fi Hal.ow, they
do not suffice to meet the dynamic requirements and real-time
decision-making demands of these diverse AIoT applications.

In this paper, we propose SoftFarmNet, a Wi-Fi HalLow-
based network management architecture designed for con-
necting a large number of IoT-based agricultural devices
with various applications such as farm monitoring, irrigation
automation, and seasonal harvesting. An SDN controller at
the edge collaborates with the edge and cloud to analyze
application behavior using historical data and network traffic,
enabling dynamic reconfiguration of the data plane’s Wi-Fi
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HalLow access points (APs). This dynamic reconfiguration
optimizes channel allocation and ensures the required QoS in
terms of throughput, delay, and energy consumption.

The key contributions of this paper are as follows:

o Architectural contribution: We introduce a scalable
network management architecture based on Wi-Fi HaLow
for smart precision agriculture. Leveraging SDN at the
edge to configure low-level Wi-Fi HalLow parameters
and create multiple network slices, enabling dynamic
adaptation to meet varying application requirements.

o Algorithmic contribution: We present a network traffic
and pattern prediction-based slot scheduling and station
grouping scheme to enhance channel utilization and sup-
port QoS for different IoAT applications.

« Implementation and evaluation: We designed and im-
plemented a prototype to generate IoAT network traffic.
To predict the timing of future transmissions and facilitate
slot scheduling, we employed suitable prediction models.
The proposed network was implemented using the open-
source SDN controller, Ryu [22], and for large-scale
analysis, we used NS-3 simulator [23].

The rest of the paper is organized as follows: Section II
discusses related works, Section III presents SoftFarmNet, our
precision agriculture architecture. In Section IV, we evaluate
its performance, and finally, Section V concludes the paper.

II. RELATED WORK

Network Management Architectures for IoT Applications.
The related work on network management architectures for
precision agriculture can be categorized into non-scalable
network architectures, IEEE 802.11ah-based architectures, and
SDN-based architectures.

Most existing network architectures for precision agriculture
rely on wireless sensor networks and employ various com-
munication technologies such as ZigBee, Bluetooth, Cellular,
Wi-Fi, 5G, and LoRa. For instance, Gsangaya et al. [24]
utilized Wi-Fi-based ESP8266 devices for field node-to-AP
communication to facilitate data acquisition. Ahmed et al. [6]
combined 6LoWPAN and long-distance Wi-Fi networks to
connect precision agriculture devices in rural regions. While
those are all sound solutions, managing a network with modern
and future farm cyber-physical systems remains a challenge.
For example, while LoRa is capable of connecting sensor
devices over long distances in precision agriculture [7], it
is limited in terms of the high data rate and scalability re-
quirements. Our architecture was designed to cope with those
limitations. Additionally, studies have explored the suitability
of 5G cellular networks for rural agriculture, highlighting fea-
tures such as enhanced mobile broadband (eMBB), ultrahigh
reliability and low latency (uURLLC), and massive machine
type communications (mMTC) [25]. FarmBeats [26] presets an
end-to-end IoT platform for agriculture that enables seamless
data collection from various sensors, cameras and drones.
IBM’s Watson Decision Platform for Agriculture [27], and
ThingsBoard’s IoT platform [28]. Our architecture not only

leverages these innovations but also enhances network cover-
age and reduces implementation costs, making it a promising
solution for precision agriculture applications.

While these existing networks are designed for specific
communication needs, IEEE 802.11ah holds the potential
for connecting a large number of IoAT [12]. Alam et al.
[8] demonstrates the potential of IEEE 802.11ah for long-
range connectivity and supporting various IoT applications,
including precision agriculture.

Prior use of IEEE 802.11ah and Radio Channel Manage-
ment in IoT. To improve channel utilization and capacity,
Chang et al. [21] proposed an station grouping scheme for
load balancing among RAW groups. Tian et al. [9] developed
the Traffic-Aware RAW Optimization Algorithm (TAROA)
to predict inter-packet times of stations, while Georgiev et
al. [10] analyses selfish behavior of 802.11ah stations to
improve fairness. In [29], a genetic algorithm (GA)-based
approach is proposed for station grouping. By optimizing the
GA parameters, the algorithm achieves highly efficient results
within a short timeframe. These studies enhance channel
utilization but often overlook QoS and priority considerations
for heterogeneous network traffic.

Software-Defined Networks for IoT. Incorporating SDN into
IoTA networks has been explored to address various challenges
and optimize service delivery [30]. For example, Huang et
al. [31] proposed an SDN-based vehicular network for preci-
sion agriculture to minimize performance degradation during
controller connection loss. A slicing scheme on 802.11ah
network has been proposed in [18]. It creates and manages
logical slices per service (e.g., video or audio) based on
the available RPS configurations. However, further works are
needed for supporting the required QoS demands of various
agricultural services while efficiently utilizing the available
channel bandwidth.

Considering the requirements of precision agriculture, a
network architecture that seamlessly connects all components
and facilitates remote management and control based on QoS
and application priorities is of utmost importance, and this
paper aims to achieve that. While an SDN-enabled IEEE
802.11ah network holds promise in addressing connectivity
challenges, further efforts are required to support the specific
QoS requirements of different applications while optimally
utilizing the available channels.

III. SOFTFARMNET ARCHITECTURE OVERVIEW
A. System Model and Assumptions

Consider Fig. 1, which illustrates the architecture of a Wi-Fi
HalLow-based IoAT network. IoT devices are organized into
different groups irrespective of their geographical locations.
The stations are associated with their nearest Access Point
(AP) or relay node to forward their traffic to a gateway. The
gateway or AP utilizes their available resources to host an
Edge SDN controller (ESDN). Each of these groups is allo-
cated to a RAW frame, which has a specific RAW parameter
Set (RPS). Each group is associated with a slice, which is a set
of states composed of virtual network states and other group
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Fig. 1: Wi-Fi HalLow-based IoAT network architecture

states. In this model, we consider a total of Ny, IoT devices,
including sensors and actuators, distributed among K, groups.
Each group consists of Ngs = Ny /Kg, stations, although the
number of stations in each group can dynamically change for
load balancing purposes. We assume that the network utilizes
RAW R=R|,R,,-- 'RKg, for channel access, configured with a
specific RPS. Additionally, we assume that multiple MCSs are
available and we denoted them with, M =M, M, ,M3,--- ,M,,,
allowing the selection of an appropriate MCS for a relay or an
access point, based on the required bandwidth for the current
demand. In our model, an SDN controller oversees the net-
work infrastructure, enabling flexible dynamic configuration
of parameters related to APs, RPS, MCS, and grouping.

We categorize [IoAT application’s network traffic into three
main classes: (i) control loop, (ii) periodic, and (iii) on-
demand. The control-loop category includes real-time control
and automation applications with high sensitivity to delays and
direct impact on automation, such as machine automation and
irrigation control. Traffic flows in this category are assigned
Priority 1. The periodic category involves continuous or
periodic data collection and transmission for monitoring and
triggering actions, like collecting weather data every hour,
capturing crop growth measurements daily, or monitoring
livestock conditions at fixed time intervals. Traffic flows in
this category are assigned Priority 2. The on-demand cate-
gory includes flexible and less time-sensitive data collection
applications, such as collecting hyperspectral images from the
crops during early sessions. Traffic flows in this category are
assigned Priority 3.

The SDN controller creates multiple QoS configurations for
each type, enabling the creation of slices over the 802.11ah
network infrastructure. The edge gateway possesses sufficient
processing capabilities to perform edge computing operations
such as actuation based on threshold values and running the
SDN controller. The cloud performs traffic and data value
pattern predictions based on historical agricultural data and
network traffic. The cloud forwards the outputs, such as future
expected traffic flows, to the edge computing module and SDN
controller for data-level and network-level decision-making,

respectively. By utilizing this system model, the proposed
solution achieves traffic differentiation and resource allocation.

B. Traffic Differentiation

In this section, we focus on modeling different classes

of IoAT network traffic and employing prediction models to
calculate expected future transmission.
Periodic Data Collection Type. Periodic traffic exhibits pre-
dictable patterns, making it relatively easier to anticipate and
plan for. We determine the better periodicity of such traffic
by utilizing Autocorrelation Function (ACF). Let’s assume
we have a time series of uplink traffic data denoted as X;,
where ¢ represents the time index. The ACF(k) at lag k can
be calculated as follows:

Y (X —X) (X —X)
Y (X —X)?

where X and N are the mean and total number of observations
of the time series data, respectively. The reciprocal of the lag
with highest ACF gives the periodicity of traffic [32]. The
cloud stores data with a size of 1000, which is then processed
to calculate the autocorrelation function (ACF). The periodcity
of network traffic can be seen in Fig. 2a. The corresponding
ACF and lag values are illustrated in Fig. 2b.
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Fig. 2: Calculating periodicity for historical soil sensor data:
(a) Sine-wave of Periodic Data , and (b) ACF and Significant
Peaks in ACF

Control-Loop Type. Control-loop communication and on-
demand data collection are less predictable, as they are trig-
gered by specific events. In the case of control-loop com-
munication in agricultural fields, it is possible to predict the
occurrence of downlink frames based on the patterns observed
in the uplink periodic data [33]. For instance, a decrease in
moisture levels could indicate the need for action, leading
to the generation of downlink traffic. We consider employing
Autoregressive Integrated Moving Average (ARIMA). Let us
denote with X; and Z; the time series data and error term at
time ¢, respectively; with B we denote the backshift operator,
representing the lag operator, with ¢ --- , ¢, the autoregressive
(AR) coefficients, and with 6y,---, 6, the moving average co-
efficients. Then, an ARIMA(p,d,q) model can be represented
as follows:

(1—¢:B— 28> —...— ¢,B°)(1-B)'X, =
(14+6,B+6:,B>+...+6,B")7, )
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where, p is the order of the AutoRegressive (AR) component,
d is the degree of difference required to achieve stationarity,
q the order of the moving average (MA) component. With
the model of Equation 2, we can forecast future uplink traffic
values using. Based on the forecasted uplink traffic, we can
identify when downlink traffic is expected. We generated a
dataset of 1000 data points representing control loop commu-
nication. We then applied an ARIMA-based prediction model
to estimate the timing of a control loop pair, which includes
the time for the uplink and downlink frames. Fig. 3a shows the
forecasted uplink traffic and visualizes the predicted downlink
traffic. Threshold markers are set at a value of 20 to indicate
the threshold level.

Control loop communication prediction On-Demand Data Collection Prediction

Data Value
IS
S
Data Value
»
o
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Time Index
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() (b)

Fig. 3: ARIMA-based prediction of control-loop time based
on smart irrigation data (b) SARIMA-based prediction of
ondemand traffic timing based on smart irrigation data

On-Demand Data Collection Type. The on-demand data
collection often takes place after specific seasons of crops,
typically involving a larger amount of uplink traffic. In this
case, we use Seasonal ARIMA (SARIMA) models to pre-
dict appropriate seasonal periods. Along with non-seasonal
ARIMA parameters p, d, and ¢, lets P, D, and Q, represent
the seasonal orders of the autoregressive, differencing, and
moving average components, respectively. We can fit the
SARIMA(p,d,q)(P,D,Q)s model to the uplink traffic data,
where s represents the seasonal period [34]. By utilizing this
model, we can account for both the seasonal and non-seasonal
patterns in the uplink traffic data. This improved model allows
for more accurate predictions during the specific seasons of
crops when on-demand data collection is expected. Fig. 3b
illustrate the prediction of on-demand data over time. Due to

ToAT Node with
Sensor & Actuator

Soil Moisture Sensor

Fig. 4: Arduino-based sensor and actuator node for collecting
control loop and on-demand application’s traffic

the unavailability of publicly available datasets to understand
control loop and on-demand traffic in agricultural scenarios,
we have developed an IoAT node with sensing and actuation

capabilities, as depicted in Fig. 4. This module is designed
to capture the service patterns of agricultural applications,
disregarding timing variations caused by communication and
networking constraints. The cloud/edge utilizes a southbound
API to send the trained model associated with predicted timing
for all three types of traffic, enabling efficient scheduling and
actuation by the SDN controller.

C. The Resource Allocation

The SDN controller analyzes the available resources, specif-
ically dedicated slots for communication, to enable QoS for
the identified priorities.

1) RAW Parameter Set: The RAW is a crucial concept in
IEEE 802.11ah networks that defines a dedicated time interval
within a superframe to allow a particular group of stations for
contention. The RPS in the IEEE 802.11ah standard contains
essential information about the configuration of one or more
RAWs, including the associated stations in each RAW and the
duration of each RAW. A station determines its assigned RAW
using the following formula:

x = (i+offset) mod Sraw. 3)

Here, x represents the slot number within a RAW frame of size
Sraw, the offset value is utilized to enhance fairness among
the stations within a RAW, and i denotes the position index
or Association Identifier (AID) of the station. If the station
has already been paged, it uses the AID; otherwise, it uses
the position index. The station can access the RAW only if
the RAW is restricted to stations with AID bits set to 1 in the
TIM (Traffic Indication Map) element [35]. The duration of
each slot (7}) is calculated based on the slot duration count
(S¢) specified in the RPS as follows:

T, = 500Ls + Se x S004Ls )

Here, S. depends on the value of & (S. =2¥—1), which
represents the number of bits in a sub-field. The proposed
scheme sets the slot size by determining an appropriate value
of k. The information collected from the above section, we

reRPS reRPS reRPS

[ RAW 1 RAW 2 I RAW 3 RAW 4 I RAW 5

[ KRAW 13 I TRAW 13 ]

Fig. 5: Structure of RAW with logically separated TRAW and
KRAW

use KRAW contains a dedicated set of slots for known traffic.
Otherwise, traffic which are not knows to the system, we
use TRAW (traditional RAW) they use traditional DCF based
channel access for uplink and downlink transmission (refer
Fig. 5). We use an updated RPS (reRPS) to support dynamic
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RPS. In of traffic’s priorities are know, the time required for
transmitting one frame can be calculated as:

Tkpata = Tsirs + Tra + Tpata + Tack + 2Tp )

Here, Try = Tpuy + Tyac represents the frame header dura-
tion, including the PHY layer header Tpgy and the MAC layer
header Tyac. Additionally, Tpara, Tack, Tsirs, and Tp indicate
the time required to transmit a data frame, acknowledgement,
short inter-frame space, polling, and propagation, respectively.
Otherwise, in such a case, normal traffic, the time required for
transmitting one frame can be calculated as:

Trpara = Tru + Tpara + Tack + Tsirs +Tpor +3Tp +Tpo (6)

where, Tpor., and Tpp are the size of a power-save poll message
and back-off. The control loop time (Cr) is the time difference
between actuation and sensing. If Tp is the propagation time
from AP to Controller, and Ty is the controller processing
time, and Tyasr is the frame wait time at AP. Then, the control
loop time, Cr = 2(Tgpara + Tap) + Twarr + Terr. Therefore
to complete a control loop communication slots pair slot; and
sloty are scheduled at time #; and (= t; +Cy — Tkpara)- The
control loop achieves its fastest execution when the controller
processing time is smaller than the beacon interval, and there is
no contention during the transmission of frames by the sensor
and actuator nodes [19]. While removing the Ty 47, depends
on the beacon interval, the shortest control loop time can be
calculated as:

2 % (Tpara + Tsirs + Tack)
Tbeucon - TKDATA

Cr= @)
where Tpeucon 18 the beacon interval. To increase the number of
Crg and to reduce Tya;r time, the proposed scheme schedule
a priority 1 traffic in the immediate slots after the beacon.
In case of periodic traffic, a slot of size Tgpara is reserved
at t3(= Pr — Tkpara) time. Moreover, in case of on-demand
traffic, if the total size of the request segment is S,.,, the
number of dedicated slot should be:

Sre
Sp = —— (8)
"™ Txkpara

While supporting priority to the higher classes, it is important
to note that time slots may not be consecutive.

2) Channel utilization and dynamic stations grouping:
Considering the dynamic traffic load over time there maybe
some of the RAW group get congested. Moreover, if there are
large number of priority traffic in a single group, other traffic
flows will may face never transmission issues. Therefore, load
balancing aware dynamic grouping mechanism is proposed.
Lets assume there are Niames Number of frames in a RAW
group and duration of a RAW is Traw. For known traffic
(allocated in dedicated slots of KRAW), we can calculate the
load in the RAW group as follows:

LoadK = Ngrames X TKDATA )

where Tkpara is the time required to transmit one frame for
known traffic. Similarly, for normal traffic (utilizing traditional

RAW slots in TRAW), we can calculate the load in the RAW
group as: LoadT = Ngames X TtpaTA, Where Trpata is the time
required to transmit one frame for normal traffic. To calculate
the channel utilization, we need the total duration of the RAW
group. Assuming all the RAW slots are fully utilized, the
channel utilization can be calculated as:

LoadK + LoadT

Channel Utilization, U =
K X Traw

(10)
where K is the number of RAWs. We can form the integer
programming formulation that optimizes the channel utiliza-
tion while considering station assignments and the regrouping
of stations between groups to maximize the incremental gain
of channel utilization: Objective:

LoadK + LoadT
Maximize U = oadie + Loadl (11)
K X Traw
Subject to:
K
Y xij=1, vies (12)
j=1
Tj <Traw, Vj=1,...,K (13)
X;j€{0,1}, VieSVvj=1,...,K (14)
Hi=YX;-Dj Vj=1,. K (15)
=
H; <H, Vjkwherej<k (16)

To maximize the utility (U) based on the given equation, which
considers the load of both K and T components over the
total available RAW time (Tgaw ). Equation 12 states that each
station i must be assigned to exactly one group. The sum of
X;.; over all groups j for a given station i should be equal to
1, indicating that the station is assigned to one group only.
Equation 13 restricts the duration 7; of each group j to be
less than or equal to the duration of the RAW group Traw.
It ensures that the duration of each group does not exceed
the overall duration of the RAW group. Equation 14 specifies
that the decision variable X; ; takes binary values of 0 or 1,
indicating whether station i is assigned (1) or not assigned (0)
to group j. It enforces the assignment of stations to groups
to be mutually exclusive. The additional constraint H; < H
ensures that the load of RAW group j is less than or equal to
the load of RAW group £ for all pairs (j,k) where j represents
a higher priority RAW group than k. This constraint allows the
dynamic allocation of stations from higher load RAW groups
to lower load RAW groups, prioritizing the stations with higher
priority.

3) Northbound API: The SDN controller collects priority,
future RPS timing (predicted), MCS, and grouping information
via the northbound API. Using these data, a Virtual Network
Slicing Broker (VNSB) creates dynamic slices and transmits
the updated parameters to the AP via the southbound API. This
allows the AP to implement the required changes in its MAC
layer, ensuring efficient resource allocation and improved QoS
for different traffic flows.
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4) Data Plane: The data plane in the AP is essential for
efficient resource deployment and network slice configuration
by the SDN controller. It facilitates optimal resource allo-
cation, while also providing feedback on the current load
conditions. Algorithm 1 present the slot scheduling process

Algorithm 1: Priority-based Resource scheduling
Data: Priority 1, Priority 2, and Priority 3 traffic
Result: Resource 1, Resource 2, Resource 3

1 {sloty,sloty,---} € KRAW ;

2 {SLOT,,SLOT, -} € TRAW ;
3 1< time ;

4 for Incoming traffic do

5 if Priority ==1 then

6 Resource 1: Allocate slot; for uplink, and
slot, for downlink at time ¢ and ¢ +Cr
respectively

7 else if Priority == 2 then
8 Resource 2: Allocate slot; at time
t At & {slot,slota} ;

9 else if Priority ==2 then
10 Resource 3: Assign
{sloty,--- ,slots, } & {slot1,sloty,slot3} ;

11 else
12 Assign {SLOTy,SLOT,---} for normal
contention.

for allocating resources based on the priority of incoming
traffic. It takes into account different levels of priority traffic,
namely priority 1, priority 2, and priority 3. The algorithm
aims to allocate appropriate resources (i.e., slot time slot) for
each priority level based on their specific requirements. The
algorithm operates in a time-based manner, with incoming
traffic being processed at each time interval. For priority 1
traffic, which represents control loop traffic, the algorithm
allocates two slots: one for uplink and the other for downlink
communication. These slots are assigned at specific time
duration. For priority 2 traffic (line #5-6), which represents
periodic traffic, the algorithm allocates a single slot based
on the closest periodicity of the traffic. This slot is assigned
at a time that is not conflicting with the slots allocated for
priority 1 traffic. For priority 3 traffic, which represents on-
demand traffic, the algorithm assigns a set of slots to fulfill
the immediate requirements of the application. These slots are
selected from the available slots that have not been allocated
for priority 1 or priority 2 traffic. In case the incoming traffic
does not match any of the defined priorities, the algorithm
falls back to normal contention, where resources are assigned
based on standard contention mechanisms.

IV. PERFORMANCE EVALUATION

The proposed network architecture has been evaluated using
a combination of emulation, simulation, and a real IoT setup.
To develop accurate prediction models, real IoAT datasets

are considered for the service differentiation methods. The
OpenVswitch, integrated with the NS-3 802.11ah module [23],
is connected with the Ryu SDN controller [22] to simulate
large-scale IoAT networks. The default performance evaluation
parameters are provided in Table 1.

TABLE I: Parameters used in Simulation and Analysis

Parameters

Value

Bandwidth

Basic Data rate (6)

Payload size (L)/Traffic type
Traffic rate

CWmin/CWmax, 6/0C,qx
Backoff slot time

SIFS time /DIFS time
Distribution/Path loss model
Symbol duration (Zgy,)/bits (B)
Coding rate BPSK-MCSO (y)
Header PHY (Tpyy)/MAC
(my)

Queue size/Group/RAW size
No. of stations (Max.)
plx/prx/pid/psl

Simulation area/time

2MHz (MCS0, MCS1)
650Kbps, 1300Kbps

100 Bytes/UDP

~2Kbps* (MCS0)
15/1023, 0.5/0.7 Sec.

52 us

160 /SIFS+2* slot time s
Random/Outdoor Macro [36]
40 ws/26 bits

0.5

6 * Tyym (1s)/14Bytes

100/2-10 /15
1000

255 /135/135 /1.5mW [37]
1000 x 1000 m?/ 5 Min.

A. Performance Metrics

We analyze QoS performance using key metrics: through-
put, delay, and energy consumption. Our study compares
SoftFarmNet with traditional IEEE 802.11ah (HaLow [11]) and
a slicing-based 802.11ah scheme, CoHaLow [18].

1) Throughput: In case of data transmission in traditional
RAW, we can use the two-dimensional discrete Markov Chain
Model as proposed by Bianchi et al. [38]. A station can
transmit when backoff counter is zero and the probability of
moving to the next state depends only on the event occurred
in the previous state. It is possible to calculate the probability
of at least one transmission (Prx), and the probability of
successful Tx in a slot (Psyc) [38]. With average payload
size E[Payload], the saturation throughput (7;;,) using the
traditional protocol can be calculated as:

Prx PsycE[Payload)
(1 —Prx)& + PrxPsucTsuc +PeorTcoL
where & is the average duration of a slot, and Pror(= (1 —
Psyc)Prx) is the collision probability. Tsyc and Teop are the
busy times for successful Tx and when a collision occurs

respectively. For 802.11ah, these values can be calculated as
below:

T = an

Tsuc = Trpara
Tcor = Tpu + Tpata + Tpirs + Tp + Trimeour

where Tpara, Tsirs, Tp, Tacks Trimeowr and Tpyrs are the Data,
SIFS, Propagation, ACK, ACK-Timeout, and DIFS duration
respectively. For long durable periodic station, we can neglect
the initial contention time. The duration of data frame, Tpara
and control frame, Tycx used in IEEE 802.11ah can be
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calculated as proposed in [37]. Then, saturation throughput
in the proposed scheme can be calculated as:

E[Payload|

(18)
Txpata

T})rop =

For successfully transmitting a frame in the traditional scheme,
Tsyc additionally includes Tpor, Tpirs, and Tsjrps. From Eq.
17, and 18, it is clear that the throughput of the proposed
scheme will be higher.

2) Energy Consumption: In the context of 802.11ah, a
transceiver can be in different modes such as receiving (Tgx),
transmitting (Trx), idle (Tjp), and sleeping (7gz) within a
DTIM (Delivery Traffic Indication Message) period [11]. The
total energy consumption by a station within a DTIM can be
calculated by multiplying the duration of each operation with
their respective power consumption [39]:

Ety = Trx prx + Trx prix + Tippia + TsLpsi

where pi, Pre, Pig, and pg are the power consumption
required in the transmitting, receiving, idle, and sleep modes,
respectively. However, in the proposed scheme, the frequency
of updates depends on the controller messages. If there are
no changes during one or two DTIM periods, a station might
stay in sleep mode for a longer duration, resulting in energy
savings.

3) Delay: In IoT, one of the major concerns is the delay
caused by channel access, as a large number of devices
compete for the same channel. When multiple stations choose
the same backoff slot, a collision is likely to occur. Assuming a
negligible frame drop probability, we can calculate the average
frame delay (D;,) for traditional WiFi Hal.ow as follows [40]:

Tpw x & (19)

where Tpw represents the time duration that a station needs
to wait before successfully transmitting a frame after encoun-
tering a series of empty slots [41]. However, the proposed
approach uses a dedicated frame time Txpara to successfully
complete a transmission.

Dtr =

B. Results on Channel Utilization

Fig. 6a shows the channel utilization of three different
schemes: SoftFarmNet, CoHalLow, and HalLow, as the number
of stations increases in the network. The graph demonstrates
the impact of station density on channel utilization and allows
for a comparison of the performance of each scheme. With
the default configuration, a single station generates an average
data rate of nearly 2 Kbps, and to fully utilize a half-
duplex link operating at MCSO (2 MHz), approximately 160
stations are required. As the number of stations increases
beyond this point, traditional schemes such as HalLow face
challenges related to contention and collisions, resulting in
a decrease in channel efficiency. However, the proposed
scheme,SoftFarmNet, utilizes slot scheduling for dedicated
transmission and dynamic grouping, enabling optimization of
slot allocation and improved channel utilization. We further
investigated the effect of the number of groups on channel

utilization (refer to Fig. 6b). The results indicate that all
schemes perform better with 10-15 groups when there are
1000 stations. However, the proposed scheme consistently
demonstrates the highest efficiency. The dynamic grouping
capability of the proposed scheme has a lesser impact on
channel utilization. It is important to note that the trends
may vary with different numbers of stations. To critically
assess the performance of the scheme with an increasing
number of control loop communications among the 1000
stations, we conducted additional experiments (see Fig. 6c).
In a single control loop, an uplink and downlink traffic pair
is involved, consuming double the required resources. While
the other schemes fail to maintain a stable channel utilization
as the number of control loop communications increases,
the proposed scheme shows nearly 50% higher utilization
efficiency. We evaluated the performance of the proposed
scheme with varying numbers of stations, demonstrating its
stability and consistent channel utilization (refer to Fig. 6d).
The prediction-based slot scheduling and dynamic grouping
features contribute to the scheme’s ability to maintain optimal
channel utilization even with increasing numbers of stations.
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Fig. 6: Channel utilization with: (a) increasing active number
of stations, (b) increasing number of groups, (c) increasing
control loops, (d) different priorities

C. Results on Throughput Performance

The prediction-based slot allocation in the proposed scheme
improves dedicated transmission by reducing collisions due
to contention, thereby reducing transmission time (refer to
Fig. 7a). However, CoHalLow and Halow encounter col-
lision issues during transmission using DCF-based channel
access. Consequently, as the number of stations increases, the
throughput decreases in the proposed scheme. Furthermore,
when multiple MCSs are available (e.g., MCSO (2 MHz) and
MCS1 (2 MHz)), the proposed scheme dynamically switches
to the MCS with a better data rate, resulting in improved
throughput when required (see Fig. 7b). We also investigated
how Packet delivery ratio (%) of different priorities behave
under increasing load conditions, as shown in Fig. 7c. Due
to priority handling, control loop communications exhibit
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stable throughput performance. However, a slight decrease
in throughput can be observed for priority 2 (Overdue) and
priority 3 (On-demand) with increasing loads. Additionally,
to enable a shorter time frame for dynamic configuration,
the beacon interval plays a crucial role. In the proposed
scheme, the configuration can be adapted immediately with a
changing interval, whereas in the traditional HaLow scheme,
all stations can only be updated during the DTIM periodic
update. Therefore, a DTIM with a lower value yields better
results in the traditional HalLow scheme (refer to Fig. 7d).
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Fig. 7: Throughput: (a) increasing number of stations, (b)
different MCSs, (c) increasing loads, (d) different DTIM sizes

D. Results on Delay

The proposed scheme effectively reduces channel access
delay and wait time through throughput prediction-based slot
scheduling. By utilizing dedicated transmission and ensuring
transmission when slots are available, the scheme minimizes
collisions. This is evident in Fig. 8a, where the delay is the
lowest in the proposed scheme. Although CoHal.ow recon-
figures the RPS for service-aware scheduling, the lack of
prediction of upcoming traffic results in failure to reduce delay
in channel access. Furthermore, we examined the average time
required for a frame to be successfully transmitted, as shown
in Fig. 8b. Due to the highest priority, an immediate slot is
allocated to the control loop, resulting in the lowest latency
compared to other traffic flows. On-demand traffic is scheduled
without strict deadlines, hence exhibiting the lowest delay.
Similarly, when multiple MCSs are available, the proposed
scheme dynamically utilizes them, making it easier to transmit
a frame in the MCS with a higher data rate (refer to Fig. 8c).
Finally, as depicted in Fig. 8d, with 1000 devices, the delay
for all schemes is better in the case of 10-15 groups, where
the proposed scheme demonstrates the lowest delay.

E. Results on Energy Consumption

The proposed scheme leverages traffic periodicity, pre-
dicts control loop communication, and forecasts on-demand
communication to efficiently utilize available resources in a
reduced time frame. Additionally, it optimizes energy con-
sumption by configuring the RPS to keep devices in sleep
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Fig. 8: Delay incurred: (a) increasing number of stations, (b)
different priorities, (c) different MCSs, (d) increasing number
of groups
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mode for longer periods. As shown in Fig. 9a, the proposed
scheme requires the lowest energy consumption to successfully
transmit a frame, while existing solutions exhibit higher energy
consumption, possibly due to collisions and retransmissions.
Moreover, the wait time (e.g., idle or Rx mode of the station)
for high-priority applications is minimized in the proposed
scheme, leading to lower energy consumption, as depicted in
Fig. 9b.
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Fig. 9: Energy consumption: (a) increasing active number of
stations, (b) different priorities

V. CONCLUSION

In this paper, we presented an SDN and edge computing
enabled Wi-Fi HalLow network that effectively supports a
large number of stations with diverse agricultural applications.
By addressing challenges related to channel utilization, appli-
cation prioritization, and adaptability, our proposed scheme
offers significant improvements over existing state-of-the-art
solutions for precision agriculture networks. Through exten-
sive performance analysis, we have demonstrated enhanced
throughput, reduced delay, and optimized power consumption,
while effectively utilizing available channels and maintaining
traffic flow priorities. Our future work includes the use of
multiple prediction models and implementation of the network
over a real testbed in an agricultural farm field.
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