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Abstract—Networks deployed for Internet of Agricultural
Things (IoAT) applications are often deployed in remote areas
with limited coverage and a lack of standardization across
sensing devices, posing challenges to reliable connectivity and
resilient data exchange. The IEEE 802.11ah standard, commonly
known as Wi-Fi HaLow, offers the potential for wide coverage
and support for a large number of IoAT devices. However,
such protocol still faces efficiency suboptimalities in channel
utilization, particularly when handling heterogeneous IoT appli-
cations with diverse Quality of Service (QoS) requirements. To
address these challenges, in this paper we propose SoftFarmNet, a
reconfigurable IEEE 802.11ah (Wi-Fi HaLow) network manage-
ment architecture, specifically designed for remote monitoring
and control of agricultural-based IoAT. SoftFarmNet leverages
a network traffic prediction-based slot scheduling and station
grouping scheme to enhance channel utilization and support
different QoS requirements of IoAT applications. The proposed
architecture integrates Software-defined Networking (SDN) at
the edge, enabling configuration of low-level Wi-Fi HaLow
parameters and the management of multiple network slices to
dynamically meet application requirements. Our performance
evaluation demonstrates substantial improvements in throughput,
delay, and energy consumption, effectively optimizing channel
usage, with respect to state-of-the-art solutions.

Keywords—Internet of Things, Internet of Agricultural Things,
IEEE 802.11ah, Software-Defined Networking, Quality of Service

I. INTRODUCTION

Precision agriculture is a modern farming approach that

leverages technology to optimize crop yields, reduce waste,

and increase profitability [1]. One of the most promising

technological innovations in precision agriculture is the com-

bination of the Internet of Things (IoT) and Unmanned Aerial

Vehicles (UAVs) [2]. Integrating IoT sensors in the soil and

on crops enables data collection and analysis for informed

decision-making on planting, fertilization, and pest manage-

ment. UAVs provide a bird’s eye view, identifying crop issues

and enabling swift corrective action [3]. However, challenges

like network connectivity, data management, and QoS for dif-

ferent applications need addressing. Existing solutions such as

LoRA, NB-IoT, and SigFox offer long-range communication

but suffer from low data rates, limiting scalability [4], [5].

Wi-Fi, BLE, and 6LoWPAN offer higher data rates but limited

coverage [6]. On the other hand, 4G/5G cellular networks have

limited coverage, higher energy consumption, and cost. Ex-

isting solutions for scalable and remote networking solutions

in precision agriculture can be broadly categorized into two

approaches. The first approach involves combining multiple

existing communication technologies, such as Wi-Fi, 6LoW-

PAN, and LoRa [6], [7], creating complex and challenging-to-

manage networks. The second approach focuses on utilizing

Wi-Fi HaLow [8], [9], [10], offering a more streamlined and

efficient solution.

The IEEE 802.11ah standard, also known as Wi-Fi HaLow,

has great potential for covering vast areas and accommodating

numerous devices [11]. With sub-1GHz channels, low power

consumption, and Modulation and Coding Schemes (MCSs),

it achieves up to 78Mbps data rates over a 1km range in

a single hop [12]. This bandwidth is crucial for processing

large amounts of field-collected imagery, such as (hyper-

spectral) cameras [13]. Wi-Fi HaLow’s channel access and

Restricted Access Window (RAW) features reduce contention

and facilitate station grouping [11]. It also supports multi-

hop or relays, expanding coverage with up to two hops, each

covering over 1km. Thus, 802.11ah is a promising candidate

for supporting numerous sensing and actuation devices in

precision agriculture and other IoT applications.

Future AIoT networks deploy a wide range of heteroge-

neous IoT applications with diverse QoS requirements. For

example, scenarios like deploying cameras in the field or

utilizing drone-borne hyperspectral data for surveillance and

phenotyping operations [14], coordinating fleets of robots for

efficient fruit harvesting [15], enabling self-driving tractors

to collaborate with UAVs [16], and even employing small

bee-like drones for pollination assistance [17], all underscore

the critical need for dynamic environments and real-time

decision-making. Despite various enhancements in network

management [18], slot scheduling schemes [19], [20] and node

grouping schemes [21], [9] proposed for Wi-Fi HaLow, they

do not suffice to meet the dynamic requirements and real-time

decision-making demands of these diverse AIoT applications.

In this paper, we propose SoftFarmNet, a Wi-Fi HaLow-

based network management architecture designed for con-

necting a large number of IoT-based agricultural devices

with various applications such as farm monitoring, irrigation

automation, and seasonal harvesting. An SDN controller at

the edge collaborates with the edge and cloud to analyze

application behavior using historical data and network traffic,

enabling dynamic reconfiguration of the data plane’s Wi-Fi
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HaLow access points (APs). This dynamic reconfiguration

optimizes channel allocation and ensures the required QoS in

terms of throughput, delay, and energy consumption.

The key contributions of this paper are as follows:

• Architectural contribution: We introduce a scalable

network management architecture based on Wi-Fi HaLow

for smart precision agriculture. Leveraging SDN at the

edge to configure low-level Wi-Fi HaLow parameters

and create multiple network slices, enabling dynamic

adaptation to meet varying application requirements.

• Algorithmic contribution: We present a network traffic

and pattern prediction-based slot scheduling and station

grouping scheme to enhance channel utilization and sup-

port QoS for different IoAT applications.

• Implementation and evaluation: We designed and im-

plemented a prototype to generate IoAT network traffic.

To predict the timing of future transmissions and facilitate

slot scheduling, we employed suitable prediction models.

The proposed network was implemented using the open-

source SDN controller, Ryu [22], and for large-scale

analysis, we used NS-3 simulator [23].

The rest of the paper is organized as follows: Section II

discusses related works, Section III presents SoftFarmNet, our

precision agriculture architecture. In Section IV, we evaluate

its performance, and finally, Section V concludes the paper.

II. RELATED WORK

Network Management Architectures for IoT Applications.

The related work on network management architectures for

precision agriculture can be categorized into non-scalable

network architectures, IEEE 802.11ah-based architectures, and

SDN-based architectures.

Most existing network architectures for precision agriculture

rely on wireless sensor networks and employ various com-

munication technologies such as ZigBee, Bluetooth, Cellular,

Wi-Fi, 5G, and LoRa. For instance, Gsangaya et al. [24]

utilized Wi-Fi-based ESP8266 devices for field node-to-AP

communication to facilitate data acquisition. Ahmed et al. [6]

combined 6LoWPAN and long-distance Wi-Fi networks to

connect precision agriculture devices in rural regions. While

those are all sound solutions, managing a network with modern

and future farm cyber-physical systems remains a challenge.

For example, while LoRa is capable of connecting sensor

devices over long distances in precision agriculture [7], it

is limited in terms of the high data rate and scalability re-

quirements. Our architecture was designed to cope with those

limitations. Additionally, studies have explored the suitability

of 5G cellular networks for rural agriculture, highlighting fea-

tures such as enhanced mobile broadband (eMBB), ultrahigh

reliability and low latency (uRLLC), and massive machine

type communications (mMTC) [25]. FarmBeats [26] presets an

end-to-end IoT platform for agriculture that enables seamless

data collection from various sensors, cameras and drones.

IBM’s Watson Decision Platform for Agriculture [27], and

ThingsBoard’s IoT platform [28]. Our architecture not only

leverages these innovations but also enhances network cover-

age and reduces implementation costs, making it a promising

solution for precision agriculture applications.

While these existing networks are designed for specific

communication needs, IEEE 802.11ah holds the potential

for connecting a large number of IoAT [12]. Alam et al.

[8] demonstrates the potential of IEEE 802.11ah for long-

range connectivity and supporting various IoT applications,

including precision agriculture.

Prior use of IEEE 802.11ah and Radio Channel Manage-

ment in IoT. To improve channel utilization and capacity,

Chang et al. [21] proposed an station grouping scheme for

load balancing among RAW groups. Tian et al. [9] developed

the Traffic-Aware RAW Optimization Algorithm (TAROA)

to predict inter-packet times of stations, while Georgiev et

al. [10] analyses selfish behavior of 802.11ah stations to

improve fairness. In [29], a genetic algorithm (GA)-based

approach is proposed for station grouping. By optimizing the

GA parameters, the algorithm achieves highly efficient results

within a short timeframe. These studies enhance channel

utilization but often overlook QoS and priority considerations

for heterogeneous network traffic.

Software-Defined Networks for IoT. Incorporating SDN into

IoTA networks has been explored to address various challenges

and optimize service delivery [30]. For example, Huang et

al. [31] proposed an SDN-based vehicular network for preci-

sion agriculture to minimize performance degradation during

controller connection loss. A slicing scheme on 802.11ah

network has been proposed in [18]. It creates and manages

logical slices per service (e.g., video or audio) based on

the available RPS configurations. However, further works are

needed for supporting the required QoS demands of various

agricultural services while efficiently utilizing the available

channel bandwidth.

Considering the requirements of precision agriculture, a

network architecture that seamlessly connects all components

and facilitates remote management and control based on QoS

and application priorities is of utmost importance, and this

paper aims to achieve that. While an SDN-enabled IEEE

802.11ah network holds promise in addressing connectivity

challenges, further efforts are required to support the specific

QoS requirements of different applications while optimally

utilizing the available channels.

III. SOFTFARMNET ARCHITECTURE OVERVIEW

A. System Model and Assumptions

Consider Fig. 1, which illustrates the architecture of a Wi-Fi

HaLow-based IoAT network. IoT devices are organized into

different groups irrespective of their geographical locations.

The stations are associated with their nearest Access Point

(AP) or relay node to forward their traffic to a gateway. The

gateway or AP utilizes their available resources to host an

Edge SDN controller (ESDN). Each of these groups is allo-

cated to a RAW frame, which has a specific RAW parameter

Set (RPS). Each group is associated with a slice, which is a set

of states composed of virtual network states and other group
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Fig. 1: Wi-Fi HaLow-based IoAT network architecture

states. In this model, we consider a total of Nsta IoT devices,

including sensors and actuators, distributed among Kgr groups.

Each group consists of Ngs = Nsta/Kgr stations, although the

number of stations in each group can dynamically change for

load balancing purposes. We assume that the network utilizes

RAW R= R1,R2, · · ·RKgr for channel access, configured with a

specific RPS. Additionally, we assume that multiple MCSs are

available and we denoted them with, M = M1,M2,M3, · · · ,Mm,

allowing the selection of an appropriate MCS for a relay or an

access point, based on the required bandwidth for the current

demand. In our model, an SDN controller oversees the net-

work infrastructure, enabling flexible dynamic configuration

of parameters related to APs, RPS, MCS, and grouping.

We categorize IoAT application’s network traffic into three

main classes: (i) control loop, (ii) periodic, and (iii) on-

demand. The control-loop category includes real-time control

and automation applications with high sensitivity to delays and

direct impact on automation, such as machine automation and

irrigation control. Traffic flows in this category are assigned

Priority 1. The periodic category involves continuous or

periodic data collection and transmission for monitoring and

triggering actions, like collecting weather data every hour,

capturing crop growth measurements daily, or monitoring

livestock conditions at fixed time intervals. Traffic flows in

this category are assigned Priority 2. The on-demand cate-

gory includes flexible and less time-sensitive data collection

applications, such as collecting hyperspectral images from the

crops during early sessions. Traffic flows in this category are

assigned Priority 3.

The SDN controller creates multiple QoS configurations for

each type, enabling the creation of slices over the 802.11ah

network infrastructure. The edge gateway possesses sufficient

processing capabilities to perform edge computing operations

such as actuation based on threshold values and running the

SDN controller. The cloud performs traffic and data value

pattern predictions based on historical agricultural data and

network traffic. The cloud forwards the outputs, such as future

expected traffic flows, to the edge computing module and SDN

controller for data-level and network-level decision-making,

respectively. By utilizing this system model, the proposed

solution achieves traffic differentiation and resource allocation.

B. Traffic Differentiation

In this section, we focus on modeling different classes

of IoAT network traffic and employing prediction models to

calculate expected future transmission.

Periodic Data Collection Type. Periodic traffic exhibits pre-

dictable patterns, making it relatively easier to anticipate and

plan for. We determine the better periodicity of such traffic

by utilizing Autocorrelation Function (ACF). Let’s assume

we have a time series of uplink traffic data denoted as Xt ,

where t represents the time index. The ACF(k) at lag k can

be calculated as follows:

ACF(k) =
∑

N
t=k+1(Xt − X̄)(Xt−k− X̄)

∑
N
t=1(Xt − X̄)2

(1)

where X̄ and N are the mean and total number of observations

of the time series data, respectively. The reciprocal of the lag

with highest ACF gives the periodicity of traffic [32]. The

cloud stores data with a size of 1000, which is then processed

to calculate the autocorrelation function (ACF). The periodcity

of network traffic can be seen in Fig. 2a. The corresponding

ACF and lag values are illustrated in Fig. 2b.

(a) (b)

Fig. 2: Calculating periodicity for historical soil sensor data:

(a) Sine-wave of Periodic Data , and (b) ACF and Significant

Peaks in ACF

Control-Loop Type. Control-loop communication and on-

demand data collection are less predictable, as they are trig-

gered by specific events. In the case of control-loop com-

munication in agricultural fields, it is possible to predict the

occurrence of downlink frames based on the patterns observed

in the uplink periodic data [33]. For instance, a decrease in

moisture levels could indicate the need for action, leading

to the generation of downlink traffic. We consider employing

Autoregressive Integrated Moving Average (ARIMA). Let us

denote with Xt and Zt the time series data and error term at

time t, respectively; with B we denote the backshift operator,

representing the lag operator, with φ1 · · · ,φp the autoregressive

(AR) coefficients, and with θ1, · · · ,θp the moving average co-

efficients. Then, an ARIMA(p,d,q) model can be represented

as follows:

(1−φ1B−φ2B2− . . .−φpBp)(1−B)dXt =

(1+θ1B+θ2B2 + . . .+θqBq)Zt (2)
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where, p is the order of the AutoRegressive (AR) component,

d is the degree of difference required to achieve stationarity,

q the order of the moving average (MA) component. With

the model of Equation 2, we can forecast future uplink traffic

values using. Based on the forecasted uplink traffic, we can

identify when downlink traffic is expected. We generated a

dataset of 1000 data points representing control loop commu-

nication. We then applied an ARIMA-based prediction model

to estimate the timing of a control loop pair, which includes

the time for the uplink and downlink frames. Fig. 3a shows the

forecasted uplink traffic and visualizes the predicted downlink

traffic. Threshold markers are set at a value of 20 to indicate

the threshold level.

(a) (b)

Fig. 3: ARIMA-based prediction of control-loop time based

on smart irrigation data (b) SARIMA-based prediction of

ondemand traffic timing based on smart irrigation data

On-Demand Data Collection Type. The on-demand data

collection often takes place after specific seasons of crops,

typically involving a larger amount of uplink traffic. In this

case, we use Seasonal ARIMA (SARIMA) models to pre-

dict appropriate seasonal periods. Along with non-seasonal

ARIMA parameters p, d, and q, lets P, D, and Q, represent

the seasonal orders of the autoregressive, differencing, and

moving average components, respectively. We can fit the

SARIMA(p,d,q)(P,D,Q)s model to the uplink traffic data,

where s represents the seasonal period [34]. By utilizing this

model, we can account for both the seasonal and non-seasonal

patterns in the uplink traffic data. This improved model allows

for more accurate predictions during the specific seasons of

crops when on-demand data collection is expected. Fig. 3b

illustrate the prediction of on-demand data over time. Due to

Fig. 4: Arduino-based sensor and actuator node for collecting

control loop and on-demand application’s traffic

the unavailability of publicly available datasets to understand

control loop and on-demand traffic in agricultural scenarios,

we have developed an IoAT node with sensing and actuation

capabilities, as depicted in Fig. 4. This module is designed

to capture the service patterns of agricultural applications,

disregarding timing variations caused by communication and

networking constraints. The cloud/edge utilizes a southbound

API to send the trained model associated with predicted timing

for all three types of traffic, enabling efficient scheduling and

actuation by the SDN controller.

C. The Resource Allocation

The SDN controller analyzes the available resources, specif-

ically dedicated slots for communication, to enable QoS for

the identified priorities.

1) RAW Parameter Set: The RAW is a crucial concept in

IEEE 802.11ah networks that defines a dedicated time interval

within a superframe to allow a particular group of stations for

contention. The RPS in the IEEE 802.11ah standard contains

essential information about the configuration of one or more

RAWs, including the associated stations in each RAW and the

duration of each RAW. A station determines its assigned RAW

using the following formula:

x = (i+offset) mod SRAW. (3)

Here, x represents the slot number within a RAW frame of size

SRAW, the offset value is utilized to enhance fairness among

the stations within a RAW, and i denotes the position index

or Association Identifier (AID) of the station. If the station

has already been paged, it uses the AID; otherwise, it uses

the position index. The station can access the RAW only if

the RAW is restricted to stations with AID bits set to 1 in the

TIM (Traffic Indication Map) element [35]. The duration of

each slot (Tx) is calculated based on the slot duration count

(Sc) specified in the RPS as follows:

Tx = 500µs+Sc×500µs (4)

Here, Sc depends on the value of k (Sc = 2k−1), which

represents the number of bits in a sub-field. The proposed

scheme sets the slot size by determining an appropriate value

of k. The information collected from the above section, we

Fig. 5: Structure of RAW with logically separated TRAW and

KRAW

use KRAW contains a dedicated set of slots for known traffic.

Otherwise, traffic which are not knows to the system, we

use T RAW (traditional RAW) they use traditional DCF based

channel access for uplink and downlink transmission (refer

Fig. 5). We use an updated RPS (reRPS) to support dynamic
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RPS. In of traffic’s priorities are know, the time required for

transmitting one frame can be calculated as:

TKDATA = TSIFS +TFH +TDATA +TACK +2TP (5)

Here, TFH = TPHY +TMAC represents the frame header dura-

tion, including the PHY layer header TPHY and the MAC layer

header TMAC. Additionally, TDATA, TACK , TSIFS, and TP indicate

the time required to transmit a data frame, acknowledgement,

short inter-frame space, polling, and propagation, respectively.

Otherwise, in such a case, normal traffic, the time required for

transmitting one frame can be calculated as:

TT DATA = TFH +TDATA+TACK +TSIFS+TPOL+3TP+TBO (6)

where, TPOL, and TBO are the size of a power-save poll message

and back-off. The control loop time (CT ) is the time difference

between actuation and sensing. If TAD is the propagation time

from AP to Controller, and TCT L is the controller processing

time, and TWAIT is the frame wait time at AP. Then, the control

loop time, CT = 2(TKDATA + TAD)+ TWAIT + TCT L. Therefore

to complete a control loop communication slots pair slot1 and

slot2 are scheduled at time t1 and t2(= t1 +CT −TKDATA). The

control loop achieves its fastest execution when the controller

processing time is smaller than the beacon interval, and there is

no contention during the transmission of frames by the sensor

and actuator nodes [19]. While removing the TWAIT , depends

on the beacon interval, the shortest control loop time can be

calculated as:

CT =
2× (TDATA +TSIFS +TACK)

Tbeacon−TKDATA

(7)

where Tbeacon is the beacon interval. To increase the number of

CT E and to reduce TWAIT time, the proposed scheme schedule

a priority 1 traffic in the immediate slots after the beacon.

In case of periodic traffic, a slot of size TKDATA is reserved

at t3(= PT −TKDATA) time. Moreover, in case of on-demand

traffic, if the total size of the request segment is Sreq, the

number of dedicated slot should be:

ST =
Sreq

TKDATA

(8)

While supporting priority to the higher classes, it is important

to note that time slots may not be consecutive.

2) Channel utilization and dynamic stations grouping:

Considering the dynamic traffic load over time there maybe

some of the RAW group get congested. Moreover, if there are

large number of priority traffic in a single group, other traffic

flows will may face never transmission issues. Therefore, load

balancing aware dynamic grouping mechanism is proposed.

Lets assume there are Nframes number of frames in a RAW

group and duration of a RAW is TRAW. For known traffic

(allocated in dedicated slots of KRAW ), we can calculate the

load in the RAW group as follows:

LoadK = Nframes×TKDATA (9)

where TKDATA is the time required to transmit one frame for

known traffic. Similarly, for normal traffic (utilizing traditional

RAW slots in T RAW ), we can calculate the load in the RAW

group as: LoadT = Nframes×TTDATA, where TTDATA is the time

required to transmit one frame for normal traffic. To calculate

the channel utilization, we need the total duration of the RAW

group. Assuming all the RAW slots are fully utilized, the

channel utilization can be calculated as:

Channel Utilization, U =
LoadK+LoadT

K×TRAW
(10)

where K is the number of RAWs. We can form the integer

programming formulation that optimizes the channel utiliza-

tion while considering station assignments and the regrouping

of stations between groups to maximize the incremental gain

of channel utilization: Objective:

Maximize U =
LoadK+LoadT

K×TRAW
(11)

Subject to:
K

∑
j=1

Xi, j = 1, ∀i ∈ S (12)

Tj ≤ TRAW, ∀ j = 1, . . . ,K (13)

Xi, j ∈ {0,1}, ∀i ∈ S,∀ j = 1, . . . ,K (14)

H j = ∑
i∈S

Xi, j ·Di, ∀ j = 1, . . . ,K (15)

H j ≤ Hk, ∀ j,k where j < k (16)

To maximize the utility (U) based on the given equation, which

considers the load of both K and T components over the

total available RAW time (TRAW ). Equation 12 states that each

station i must be assigned to exactly one group. The sum of

Xi, j over all groups j for a given station i should be equal to

1, indicating that the station is assigned to one group only.

Equation 13 restricts the duration Tj of each group j to be

less than or equal to the duration of the RAW group TRAW.

It ensures that the duration of each group does not exceed

the overall duration of the RAW group. Equation 14 specifies

that the decision variable Xi, j takes binary values of 0 or 1,

indicating whether station i is assigned (1) or not assigned (0)

to group j. It enforces the assignment of stations to groups

to be mutually exclusive. The additional constraint H j ≤ Hk

ensures that the load of RAW group j is less than or equal to

the load of RAW group k for all pairs ( j,k) where j represents

a higher priority RAW group than k. This constraint allows the

dynamic allocation of stations from higher load RAW groups

to lower load RAW groups, prioritizing the stations with higher

priority.

3) Northbound API: The SDN controller collects priority,

future RPS timing (predicted), MCS, and grouping information

via the northbound API. Using these data, a Virtual Network

Slicing Broker (VNSB) creates dynamic slices and transmits

the updated parameters to the AP via the southbound API. This

allows the AP to implement the required changes in its MAC

layer, ensuring efficient resource allocation and improved QoS

for different traffic flows.
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4) Data Plane: The data plane in the AP is essential for

efficient resource deployment and network slice configuration

by the SDN controller. It facilitates optimal resource allo-

cation, while also providing feedback on the current load

conditions. Algorithm 1 present the slot scheduling process

Algorithm 1: Priority-based Resource scheduling

Data: Priority 1, Priority 2, and Priority 3 traffic

Result: Resource 1, Resource 2, Resource 3

1 {slot1,slot2, · · ·} ∈ KRAW ;

2 {SLOT1,SLOT2, · · ·} ∈ T RAW ;

3 t← time ;

4 for Incoming traffic do

5 if Priority == 1 then

6 Resource 1: Allocate slot1 for uplink, and

slot2 for downlink at time t and t +CT

respectively

7 else if Priority == 2 then

8 Resource 2: Allocate slot3 at time

t ∧ t /∈ {slot1,slot2} ;

9 else if Priority == 2 then

10 Resource 3: Assign

{slot4, · · · ,slotST
} /∈ {slot1,slot2,slot3} ;

11 else

12 Assign {SLOT1,SLOT2, · · ·} for normal

contention.

for allocating resources based on the priority of incoming

traffic. It takes into account different levels of priority traffic,

namely priority 1, priority 2, and priority 3. The algorithm

aims to allocate appropriate resources (i.e., slot time slot) for

each priority level based on their specific requirements. The

algorithm operates in a time-based manner, with incoming

traffic being processed at each time interval. For priority 1

traffic, which represents control loop traffic, the algorithm

allocates two slots: one for uplink and the other for downlink

communication. These slots are assigned at specific time

duration. For priority 2 traffic (line #5-6), which represents

periodic traffic, the algorithm allocates a single slot based

on the closest periodicity of the traffic. This slot is assigned

at a time that is not conflicting with the slots allocated for

priority 1 traffic. For priority 3 traffic, which represents on-

demand traffic, the algorithm assigns a set of slots to fulfill

the immediate requirements of the application. These slots are

selected from the available slots that have not been allocated

for priority 1 or priority 2 traffic. In case the incoming traffic

does not match any of the defined priorities, the algorithm

falls back to normal contention, where resources are assigned

based on standard contention mechanisms.

IV. PERFORMANCE EVALUATION

The proposed network architecture has been evaluated using

a combination of emulation, simulation, and a real IoT setup.

To develop accurate prediction models, real IoAT datasets

are considered for the service differentiation methods. The

OpenVswitch, integrated with the NS-3 802.11ah module [23],

is connected with the Ryu SDN controller [22] to simulate

large-scale IoAT networks. The default performance evaluation

parameters are provided in Table I.

TABLE I: Parameters used in Simulation and Analysis

Parameters Value

Bandwidth 2MHz (MCS0, MCS1)
Basic Data rate (δ ) 650Kbps, 1300Kbps
Payload size (L)/Traffic type 100 Bytes/UDP
Traffic rate ≈2Kbps∗ (MCS0)
CWmin/CWmax, σ /σmax 15/1023, 0.5/0.7 Sec.
Backoff slot time 52 µs
SIFS time /DIFS time 160 /SIFS+2* slot time µs
Distribution/Path loss model Random/Outdoor Macro [36]
Symbol duration (Tsym)/bits (β ) 40 µs/26 bits
Coding rate BPSK-MCS0 (γ) 0.5
Header PHY (TPHY )/MAC
(mh)

6 * Tsym (µs)/14Bytes

Queue size/Group/RAW size 100/2-10 /15
No. of stations (Max.) 1000
ptx/prx/pid/psl 255 /135/135 /1.5mW [37]

Simulation area/time 1000×1000 m2/ 5 Min.

A. Performance Metrics

We analyze QoS performance using key metrics: through-

put, delay, and energy consumption. Our study compares

SoftFarmNet with traditional IEEE 802.11ah (HaLow [11]) and

a slicing-based 802.11ah scheme, CoHaLow [18].

1) Throughput: In case of data transmission in traditional

RAW, we can use the two-dimensional discrete Markov Chain

Model as proposed by Bianchi et al. [38]. A station can

transmit when backoff counter is zero and the probability of

moving to the next state depends only on the event occurred

in the previous state. It is possible to calculate the probability

of at least one transmission (PT X ), and the probability of

successful Tx in a slot (PSUC) [38]. With average payload

size E[Payload], the saturation throughput (Tthr) using the

traditional protocol can be calculated as:

Tthr =
PT X PSUCE[Payload]

(1−PT X )ξ +PT X PSUCTSUC +PCOLTCOL
(17)

where ξ is the average duration of a slot, and PCOL(= (1−
PSUC)PT X ) is the collision probability. TSUC and TCOL are the

busy times for successful Tx and when a collision occurs

respectively. For 802.11ah, these values can be calculated as

below:
TSUC = TT DATA

TCOL = TPH +TDATA +TDIFS +TP +TTimeout

where TDATA,TSIFS,TP,TACK ,TTimeout and TDIFS are the Data,

SIFS, Propagation, ACK, ACK-Timeout, and DIFS duration

respectively. For long durable periodic station, we can neglect

the initial contention time. The duration of data frame, TDATA

and control frame, TACK used in IEEE 802.11ah can be
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calculated as proposed in [37]. Then, saturation throughput

in the proposed scheme can be calculated as:

Tprop =
E[Payload]

TKDATA
(18)

For successfully transmitting a frame in the traditional scheme,

TSUC additionally includes TPOL,TDIFS, and TSIFS. From Eq.

17, and 18, it is clear that the throughput of the proposed

scheme will be higher.

2) Energy Consumption: In the context of 802.11ah, a

transceiver can be in different modes such as receiving (TRX ),

transmitting (TT X ), idle (TID), and sleeping (TSL) within a

DTIM (Delivery Traffic Indication Message) period [11]. The

total energy consumption by a station within a DTIM can be

calculated by multiplying the duration of each operation with

their respective power consumption [39]:

Etr = TRX prx +TT X ptx +TID pid +TSL psl

where ptx, prx, pid , and psl are the power consumption

required in the transmitting, receiving, idle, and sleep modes,

respectively. However, in the proposed scheme, the frequency

of updates depends on the controller messages. If there are

no changes during one or two DTIM periods, a station might

stay in sleep mode for a longer duration, resulting in energy

savings.

3) Delay: In IoT, one of the major concerns is the delay

caused by channel access, as a large number of devices

compete for the same channel. When multiple stations choose

the same backoff slot, a collision is likely to occur. Assuming a

negligible frame drop probability, we can calculate the average

frame delay (Dtr) for traditional WiFi HaLow as follows [40]:

Dtr = TBW ×ξ (19)

where TBW represents the time duration that a station needs

to wait before successfully transmitting a frame after encoun-

tering a series of empty slots [41]. However, the proposed

approach uses a dedicated frame time TKDATA to successfully

complete a transmission.

B. Results on Channel Utilization

Fig. 6a shows the channel utilization of three different

schemes: SoftFarmNet, CoHaLow, and HaLow, as the number

of stations increases in the network. The graph demonstrates

the impact of station density on channel utilization and allows

for a comparison of the performance of each scheme. With

the default configuration, a single station generates an average

data rate of nearly 2 Kbps, and to fully utilize a half-

duplex link operating at MCS0 (2 MHz), approximately 160

stations are required. As the number of stations increases

beyond this point, traditional schemes such as HaLow face

challenges related to contention and collisions, resulting in

a decrease in channel efficiency. However, the proposed

scheme,SoftFarmNet, utilizes slot scheduling for dedicated

transmission and dynamic grouping, enabling optimization of

slot allocation and improved channel utilization. We further

investigated the effect of the number of groups on channel

utilization (refer to Fig. 6b). The results indicate that all

schemes perform better with 10-15 groups when there are

1000 stations. However, the proposed scheme consistently

demonstrates the highest efficiency. The dynamic grouping

capability of the proposed scheme has a lesser impact on

channel utilization. It is important to note that the trends

may vary with different numbers of stations. To critically

assess the performance of the scheme with an increasing

number of control loop communications among the 1000

stations, we conducted additional experiments (see Fig. 6c).

In a single control loop, an uplink and downlink traffic pair

is involved, consuming double the required resources. While

the other schemes fail to maintain a stable channel utilization

as the number of control loop communications increases,

the proposed scheme shows nearly 50% higher utilization

efficiency. We evaluated the performance of the proposed

scheme with varying numbers of stations, demonstrating its

stability and consistent channel utilization (refer to Fig. 6d).

The prediction-based slot scheduling and dynamic grouping

features contribute to the scheme’s ability to maintain optimal

channel utilization even with increasing numbers of stations.

(a) (b)

(c) (d)

Fig. 6: Channel utilization with: (a) increasing active number

of stations, (b) increasing number of groups, (c) increasing

control loops, (d) different priorities

C. Results on Throughput Performance

The prediction-based slot allocation in the proposed scheme

improves dedicated transmission by reducing collisions due

to contention, thereby reducing transmission time (refer to

Fig. 7a). However, CoHaLow and HaLow encounter col-

lision issues during transmission using DCF-based channel

access. Consequently, as the number of stations increases, the

throughput decreases in the proposed scheme. Furthermore,

when multiple MCSs are available (e.g., MCS0 (2 MHz) and

MCS1 (2 MHz)), the proposed scheme dynamically switches

to the MCS with a better data rate, resulting in improved

throughput when required (see Fig. 7b). We also investigated

how Packet delivery ratio (%) of different priorities behave

under increasing load conditions, as shown in Fig. 7c. Due

to priority handling, control loop communications exhibit
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stable throughput performance. However, a slight decrease

in throughput can be observed for priority 2 (Overdue) and

priority 3 (On-demand) with increasing loads. Additionally,

to enable a shorter time frame for dynamic configuration,

the beacon interval plays a crucial role. In the proposed

scheme, the configuration can be adapted immediately with a

changing interval, whereas in the traditional HaLow scheme,

all stations can only be updated during the DTIM periodic

update. Therefore, a DTIM with a lower value yields better

results in the traditional HaLow scheme (refer to Fig. 7d).

(a) (b)

(c) (d)

Fig. 7: Throughput: (a) increasing number of stations, (b)

different MCSs, (c) increasing loads, (d) different DTIM sizes

D. Results on Delay

The proposed scheme effectively reduces channel access

delay and wait time through throughput prediction-based slot

scheduling. By utilizing dedicated transmission and ensuring

transmission when slots are available, the scheme minimizes

collisions. This is evident in Fig. 8a, where the delay is the

lowest in the proposed scheme. Although CoHaLow recon-

figures the RPS for service-aware scheduling, the lack of

prediction of upcoming traffic results in failure to reduce delay

in channel access. Furthermore, we examined the average time

required for a frame to be successfully transmitted, as shown

in Fig. 8b. Due to the highest priority, an immediate slot is

allocated to the control loop, resulting in the lowest latency

compared to other traffic flows. On-demand traffic is scheduled

without strict deadlines, hence exhibiting the lowest delay.

Similarly, when multiple MCSs are available, the proposed

scheme dynamically utilizes them, making it easier to transmit

a frame in the MCS with a higher data rate (refer to Fig. 8c).

Finally, as depicted in Fig. 8d, with 1000 devices, the delay

for all schemes is better in the case of 10-15 groups, where

the proposed scheme demonstrates the lowest delay.

E. Results on Energy Consumption

The proposed scheme leverages traffic periodicity, pre-

dicts control loop communication, and forecasts on-demand

communication to efficiently utilize available resources in a

reduced time frame. Additionally, it optimizes energy con-

sumption by configuring the RPS to keep devices in sleep

(a) (b)

(c) (d)

Fig. 8: Delay incurred: (a) increasing number of stations, (b)

different priorities, (c) different MCSs, (d) increasing number

of groups

mode for longer periods. As shown in Fig. 9a, the proposed

scheme requires the lowest energy consumption to successfully

transmit a frame, while existing solutions exhibit higher energy

consumption, possibly due to collisions and retransmissions.

Moreover, the wait time (e.g., idle or Rx mode of the station)

for high-priority applications is minimized in the proposed

scheme, leading to lower energy consumption, as depicted in

Fig. 9b.

(a) (b)

Fig. 9: Energy consumption: (a) increasing active number of

stations, (b) different priorities

V. CONCLUSION

In this paper, we presented an SDN and edge computing

enabled Wi-Fi HaLow network that effectively supports a

large number of stations with diverse agricultural applications.

By addressing challenges related to channel utilization, appli-

cation prioritization, and adaptability, our proposed scheme

offers significant improvements over existing state-of-the-art

solutions for precision agriculture networks. Through exten-

sive performance analysis, we have demonstrated enhanced

throughput, reduced delay, and optimized power consumption,

while effectively utilizing available channels and maintaining

traffic flow priorities. Our future work includes the use of

multiple prediction models and implementation of the network

over a real testbed in an agricultural farm field.

ACKNOWLEDGMENTS

This work has been supported by the NSF Cyber-Physical

Systems Award: # 2133407 and the USDA FieldDock Award:

#2020-67021-31530.

8

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

219
Authorized licensed use limited to: SAINT LOUIS UNIVERSITY LIBRARIES. Downloaded on September 28,2024 at 20:51:35 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Y. Jararweh, S. Fatima, M. Jarrah, and S. AlZu’bi, “Smart and sus-
tainable agriculture: Fundamentals, enabling technologies, and future
directions,” Computers and Electrical Engineering, vol. 110, p. 108799,
2023.

[2] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV
communication networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 2, pp. 1123–1152, 2015.

[3] V. Sagan, M. Maimaitijiang, P. Sidike, K. Eblimit, K. T. Peterson,
S. Hartling, F. Esposito, K. Khanal, M. Newcomb, D. Pauli, R. Ward,
F. Fritschi, N. Shakoor, and T. Mockler, “Uav-based high resolution
thermal imaging for vegetation monitoring, and plant phenotyping using
ici 8640 p, flir vue pro r 640, and thermomap cameras,” Remote Sensing,
vol. 11, no. 3, 2019.

[4] A. Pagano, D. Croce, I. Tinnirello, and G. Vitale, “A Survey on LoRa
for Smart Agriculture: Current Trends and Future Perspectives,” IEEE

Internet of Things Journal, vol. 10, no. 4, pp. 3664–3679, 2022.

[5] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of cellular
lpwan technologies for iot deployment: Sigfox, lorawan, and nb-iot,”
in 2018 ieee international conference on pervasive computing and

communications workshops (percom workshops), pp. 197–202, IEEE,
2018.

[6] N. Ahmed, D. De, and I. Hussain, “Internet of Things (IoT) for Smart
Precision Agriculture and Farming in Rural Areas,” IEEE Internet of

Things Journal, vol. 5, no. 6, pp. 4890–4899, 2018.

[7] A. Pagano, D. Croce, I. Tinnirello, and G. Vitale, “A survey on lora for
smart agriculture: Current trends and future perspectives,” IEEE Internet

of Things Journal, vol. 10, no. 4, pp. 3664–3679, 2023.

[8] M. Alam, N. Ahmed, R. Matam, and F. A. Barbhuiya, “IEEE 802.11ah-
Enabled Internet of Drone Architecture,” IEEE Internet of Things

Magazine, vol. 5, no. 1, pp. 174–178, 2022.
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