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Abstract: The complex, multi-variable, highly nonlinear and strong coupling characteristics
of water distribution systems (WDSs) has significantly limited the capability of model-based
approaches for control purposes in such systems. With the emerging application of
high-resolution metering devices and historical data, model-free identification of WDSs can
facilitate the control design without tedious modeling complexities. This paper develops a
data-driven framework to facilitate the identification of nonlinear models of WDSs using
available data. A quadruple tank system that represents the nonlinear and strong coupling
nature of WDSs is considered as the test system and sparse identification of nonlinear
dynamics (SINDy) is utilized to identify the nonlinear dynamics from the data. Unlike
existing modeling approaches that either heavily rely on knowing the detailed dynamics of the
system (model-based) or designs that relay on large historical data and are not interpretable
(data-driven approaches), the proposed model-free identification framework is parsimonious,
which can accurately capture the dynamics of the quadruple tank process with available
measurements suitable for control problems. The effectiveness of the proposed approach is

validated using time-domain simulations in MATLAB.
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1. INTRODUCTION

Dynamics of the water distribution system (WDS) is of
growing importance due to role of modeling in efficiently
controlling the water system assets and responding to the
increased demand for clean water Zhang et al. (2020).
Existing practices for modeling WDSs mainly focus on
physics-based modeling based on governing physical laws
(i.e., hydraulic laws and mass balance) in these systems
Abdelbaki et al. (2017); Kara et al. (2016); Zamenian et al.
(2017); Creaco et al. (2017). For example, a combined
modeling technique was proposed in Abdelbaki et al.
(2017) to utilize the map information from the GIS
data in the hydraulic modeling for water management in
WDSs, or in Zamenian et al. (2017), a random-parameter
negative-binomial approach was utilized along with the
WDS model to estimate a system-wide monthly frequency
of water main breaks in WDSs. However, due to multivariate,
nonlinear, complex, and highly coupled dynamics of assets
in WDS, modeling can be challenging Tung et al. (2020).

The increasing availability of data from improved monitoring
technologies such as smart metering devices and wireless
sensors provide an opportunity to discover enhanced
models for WDSs that could account for nonlinearities
and complex nature of these systems. Several studies have
focused on data-driven modeling for water distribution
assets or treatment processes Seo et al. (2015); Liu
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et al. (2016); Seyedzadeh et al. (2020); Zhang et al.
(2018); Ahmed et al. (2019). For example, in Seo et al.
(2015), a wavelet-based artificial neural network approach
was proposed to forecast the water level on a daily
basis for WDSs. In Liu et al. (2016), the water quality
forecast on an hourly basis was carried out using a
multitask multi-view learning methods to capture the
spatio-temporal and spatial correlations between water
quality treatment facilities. Other existing data-driven
approaches include estimating the discharge of drip tape
irrigation using temperature and pressure measurements
Seyedzadeh et al. (2020), identifying the reservoir operation
using artificial neural network and support vector regression
Zhang et al. (2018), predicting the water quality using
various machine learning methods Ahmed et al. (2019),
and reservoir water inflow forecast using neural networks
Yang et al. (2017). While the existing research shows
the significant potential of data-driven approaches for
predicting the behavior of water system assets or the
quality of water, none of the existing studies have
focused on utilizing data-driven techniques for identifying
nonlinear dynamics of WDS at a system level. In addition,
most existing studies focus on machine learning-based
methods, which heavily rely on training data and are
not interpretable. Such models would require a re-training
with system expansions and might not be suitable for
system-level control in WDS.

To address the existing challenges of the data-driven
approaches for identifying the complex dynamics in
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water distribution systems, this paper investigates the
application of sparse identification theory. Sparse regression
techniques have demonstrated great potential for precisely
modeling the nonlinear dynamics of unknown systems
Brunton et al. (2016a,b); Khazaei and Blum (2022),
However, there is currently no reported data-driven
modeling of the nonlinear dynamics of WDSs using
sparsity promoting techniques. The identification of WDS
is challenging due to its complex, highly nonlinear and
strong coupling characteristics. The novelty of this paper
lies in investigating the potential usage of sparse regression
in such systems. The main contribution of this work is to
identifying nonlinear dynamics of quadruple water tank
process that closely represent the nonlinear dynamics of
WDSs using data-driven sparse regression technique. In
addition, to deal with noisy measurements, this paper
Pyoposes the use of data denoising via Savitzky Golay
iltering approach that simplities the SINDy process and
has not been reported in any work. Using time-domain
simulations, we will validate the effectiveness of the
proposed data-driven approach in accurately identifying
the dynamics of the quadruple tank system using available
measurements.

The rest of the paper is organized as_follows: Section
II formulates the dynamics ot multi-tank system. Sparse

identification of dynamics is included in Section IIL
Time-domain simulations are included in Section IV and
Section V concludes the paper.
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Fig. 1. Schematic of a quadruple tank process.

1.1 Dynamic Model of Quadruple Tank Process

The quadruple water tank process in Fig. 1 can be
represented by the following set of differential equations
]ohansschZOOO):a O
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where A is the cross-sectional area of tank i, a: is a
cross-sectional area of the outlet hole in tank i, h; is the
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Table 1. Operating points of quadruple tank.

Parameter MP operating point NMP operating point
hy, ha [cm] 12.4, 12.7 12.6, 13
hs, hg [cm] 1.8, 14 48,49
vy, v2 [V] 3,3 3.15, 3.15
ki1, ko 3.33, 3.35 3.14, 3.29
Y1, Y2 0.7, 0.6 0.43, 0.34

water level at tank i vi is the voltage applied to pump
i with a corresponding flow kivi Parameters yi ¢ [0, 1]
are determined from the settings of the valves. The water
flow to tank 1 is yikivi, and the water flow to tank 4 is
(1 gn)kivy. Similarly, the water flow to tank 2 is y2kzvz,
and the water flow to tank 3 is (1 yz) k2v2. Furthermore,
the acceleration of gravity is denoted by g. By re-arranging
equation (1) and writing the model in state-space form,
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In equations (5)-(7), x = [ hz hs h4]T is the state vector,
Yy = X is the output vector, and u = [v; v2]7 is the input
vector of the system, which includes the voltage applied
to the pumps.

1.2 Operating Points

Assuming detailed information about Quadruple tank
process system and its parameters are not available, the
objective is to identify the dynamic model presented
in equations (5)-(7) from available measurements of the
states. Two separate operating points will be studied
to validate the effectiveness of the proposed model
identification framework. These two different operating
points were selected specifically as the system shows
a minimum phase (MP) characteristics in one of the
operating points and non-minimum phase (NMP) behavior
t etli}gl%tvl\l]% é)%%lghese two operating points are listed in

Simulations were carried out to depict the operation of
the system in these two operating points. Fig. 3 depicts
the trajectory of the states at two operating points.

2. DATA-DRIVEN IDENTIFICATION OF DYNAMICS

We will utilize sparse identification of nonlinear dynamics
to identify equations (5)-(7) from measurements. An
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Fig. 2. Proposed data-driven framework for identifying the dynamics of a quadruple tank process.
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Fig. 3. Trajectory of the states in MP operating point
(Left), and trajectory of the states in NMP operating
point (right).

overview of the proposed data-driven model identification
approach for the quadruple tank process is depicted in Fig.

2. By taking the measurements from the water tank levels,
h; and the inputs applied to pumps, v; and constructing
a library of functions that could represent the quadruple
tank dynamics, a sequentially thresholded least-square
optimization problem is solved to obtain the nonlinear
dynamics using sparse regression technique. The process
is explained in detail in the following.

To identify nonlinear dynamics of the dynamical systems
from measurements, the first step is to estimate the
derivatives of the states (x) from measurements and
then construct a library of candidate functions (6{x))
that describe how state variables vary with time. If no
information about the dynamics of the system is known,
an extended basis of candidate functions can be selected
to cover all possible functions. Since most dynamical

systems have few nonlinear terms in the dynamics, sparsity
promoting techniques can identify the candidate functions
with a major impact on forming the system dynamics.

This method is known as sparse identification of nonlinear
dynamics (SINDy), which was originally proposed in
Brunton et al. (2016a), and is explained step-by-step in
the following.

2.1 Measurements

SINDy uses symbolic regression and sparse representations
to determine the dynamics of the system. This approach
relies on the fact that most dynamical systems that are
represented by differential equations to the form x =
f(x, u) have a relatively few terms on the right hand
side. The actual dynamics of a quadruple tank process
is represented by ‘x = f(x) + g(x)u, where x(f) ¢ R»
is the state vector, u(f) ¢ R< is the input or control
vector, and f(x(f),u(?)) : R*Rg R~ _, By collecting

m measurement samples from the water tank levels and
pump inputs, the quadruple tank process dynamics can
be identified by a library of candidate functions, @ ¢
Rm=p. To identify the governing equations of the system in
(5)-(7), we collect a time-history of the tank levels (state
vector) x(£), pump inputs u(¢), and derivatives of the
states "x(f). Since only x(f) and u(f) might be available
in most real-world systems, the derivative measurements
‘x(f) must be estimated first. This can be done through
numerical derivative calculations from measurements of
the states. To do so, first, the measurement data is sampled
at mintervals t;, &, ..., tmand arranged into:

HL R
X=[[ sz% )

XTCtm) X1 (tm) xz(tm) P Xn(tm)
and inputs for tm samples are written into a matrix U,
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the measurements for derivatives can be approximated
numerically from X following the procedure.

2.2 Estimating the Derivatives, X

By using difference approximation, ordinary differential

equations and partial differential equations can be numerically

solved. At specified mesh points, the derivatives of
a smooth function can be approximated using Taylor
series expansion. This paper uses the central difference
approximation because it is more accurate for smooth
functions. Consequently, X can be approximated by
Larsson and Thom’ee (2003):

o XE+1)—-X(i—1)

X = o (10)
where X(i+ 1) is the measured data at sample i+ 1 and
h is the sampling time of the simulation or data collection
platform. Utilizing the measurements from the states and
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Fig. 4. Derivative estimation for MP operation point.

perturbing the inputs (pump voltages, v;) with a sinusoidal
signal (to excite the dynamic modes), the results of the
estimated derivatives for minimum phase (MP) operating
points of the quadruple tank process are shown in Fig. 4.
As it can be seen, the estimated derivative can accurately
represent the measured derivative.

2.3 Sparse Identification of System Dynamics

By utilizing the measured data X R™" to obtain the
derivatives of the states, the derivative data is a linear
combination of columns from the candidate function (e.g.,
polynomials, or sinusoids) library expressed by entries of
the matrix £ € Rp*n such that Brunton et al. (2016a):
X = O(X, U)E. (11)

Having estimated X, ®(X, U) can be constructed by
linear and nonlinear functions of the columns of X and
U. Typically, the candidate functions include monomials
and trigonometric functions for nonlinear systems. An
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example of such function is represented in equation (12),
where Mi(X, U) denotes a nonlinear combination of the
i-order monomials of X and U. For example, Mo.5(X, U)
includes square-root functions that exist in the quadruple
tank system, or P2(X, U) involves polynomials up to the
second order. Having estimated X and finding (X, U)
using available X, U, we can solve for X = @(X U)=E
by solving for the sparse vectors of coefficients in E that
decide what terms are active in the X dynamics. This is
achieved by solving an optimization of the form:

&= argmin || X 1 — O, U nl | + A€ rllo
&

where §r is the h-th column of & represented by & =
[§ & ... & and Xy, represents the h-th column of
X. The objective function in (13) utilizes the L2 norm
[I.]]2 to minimize the error between the derivatives X
and estimated derivatives using calculated § through a
least-squares problem and the LO norm, ||.||c minimizes
the number of nonzero elements in §» to promote
sparsity in the coefficients matrix § In addition, A is the
sparsity-promoting hyperparameter.

(13)

The minimization problem of (13) is solved by the

sequentially thresholded least squares method, which is an
iterative algorithm defined by Zhang and Schaeffer (2019):

Sk—]G[p D&Dw\, k>0 (14)
&P =0X, U)X (15)
et = argmin [ X - OX, U)Enl,  (16)

fA nERP:supp(§r) = Sk

where k is the iteration number, @(X, U)t is the pseudo
inverse of @(X, U) defined as:

X, Ut =[0X, X, U)ex,u)r 17
and the support set of §x is defined by supp($r) : je
[p]: & = 0} The coefficients §r can be found using the
sparse regression formulation presented in Algorithm 1.
If the intent is to identify the signal U for feedback control,
i.e, U= G(s)X, where G(s) is the transfer function of
the controller, the matrix of inputs can be identified using
U = 0(X)I'y, where O©(X) is the matrix of candidate
functions with the terms corresponding to U have been
removed from O(X, U) and I'u can be found using the
sparse regression algorithm similar to E.

Algorithm 1 Sparse Regression Algorithm
Input: Measurements X, U
Input: Estimated derivatives X
1: procedure Sparsity Promoting Algorithm
2: =0 X (least-square solution)

3: for k =1:10 do (number of iterations)

4 Set A (sparsity knob)

5: |:| <A __, indsmall

6: u(lndsmall) —

7: fork=1:ndo (n dimension of state X)
8: lndbd = lndsmall( k)

9: E(indbpig, k) = O(:, indbpig) ?(( K)
10: end for
11 end for

Output: sparse matrix 2
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Table 2. Parameter identification using SINDy.

Dynﬁmics Ierm 1erm % erm Ierm Ierm 1Ierm
N 7 7 N 7 7 k
X1 —M\/ 0\/X2 M\/xs 0 x4 ¥ vl 0 va
Al Al A1
Physical 20112 0 0.112 0 0.118 0
Identified —0111 0 0.110 |0 0118 0
— re — Pre ko
X2 O\/ 1 *M\/xz 0\/X3 M\/X4 Oovy vz v2
Az Ao Az
Physical 0 20078 0 0.078 0 0.104
Identified 0 -0.073 0 0.074 0 0.1
e N 1ok
X's oV 0% *%&\/x 0% ovi PRERE
Physical 0 0 20112 0 0 0.119
Identified 0 0 —0110 0 0 0.122
as 28~ 1—vik
X4 o' 0% o's _2 28N iy Ova
Aa Aq
Physical 0 0 0 0 -0.078 0.118
Identified 0 0 0 0 0.074 0.123

3. TIME-DOMAIN SIMULATIONS

To validate the effectiveness of the proposed data-enabled

another step change was applied at 100 seconds to reduce
vy from 4 to 2 V. In addition, a step change was applied
to the pump 2’s voltage v, at 50 seconds to increase it

model-free identification of quadruple tank process dynamics, from 3 to 4V and another step change was applied at

time-domain simulations using MATLAB was carried
out and the states were observed by perturbing the
inputs of the pumps. The models were run for 300
seconds with 5ousec sampling time and the training data
set includes a state matrix X R#000 and input
matrix size of U ¢ R2x¢000 The Hyperparameter A
was tuned manually and chosen as 0.01 for sparse model
identification. The proposed framework has also been
validated with comparisons with physical models.

3.1 Model Identification

First, data was collected on states and input of a physical
quadruple tank system that was simulated in MATLAB
using the parameters provided in Johansson (2000). Since
it is assumed that the original model of the system is
not known, the candidate terms for ®(X, U) included
square-root functions, polynomiavl.s up to degree 2, and
sinusoidal functions, i.e., u, x,VxX, x.x, X%, X COSX ,

Xi sin xj, wicos xj, uisin xj, lresi)ectivlely.l o 7

Sparse regression was then carried out to identify the
sparse matrix of coefficients, E. The identified & for
the studied model were used to develop a data-driven
quadruple tank model in MATLAB. A comparison between
the parameters of the physical model and the identified
model is shown in Table. 2, which confirms the identified
data-driven model accurately represents the dynamics of
the physical model.

3.2 Time-domain Validation

In the second case study, the obtained SINDy model of the
quadruple tank process was compared with the physical
model in several scenarios. A step change from 3V to 4V
was applied to the pump 1’s voltage v; at 25 seconds and

150 seconds to reduce v; from 4 to 2 V. The physical
system was compared with the identified data-driven
model using SINDy as shown in Fig. 5. The results
indicate the effectiveness of the proposed data-driven
model identification approach (SINDy) for accurately
identifying the nonlinear dynamics of quadruple tank
process system. Such model identification can significantly
simplify the complex physics-based modeling of large-scale
water distribution systems.
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Fig. 5. Time-domain validation of the identified model.

3.3 Noisy Measurements

In this case, the impact of measurement noise on dynamics
identification is studied. The state measurements were
augmented with Gaussian-distributed random noise, with
mean of 0 and variance of 0.1. The collected noisy data
was then utilized in the identification process. In order
to minimize the impact of measurement noise on the
identification process, a filtering process using Savitzky
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Golay filter Savitzky and Golay (1964) was first carried
out. The physical noisy system was compared with the
identified data-driven model using SINDy as shown in Fig,.

6. The results exhibit the effectiveness and accuracy of the
proposed approach for identifying the nonlinear dynamics
of quadruple tank system from noisy measurements.
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14 / 777777 hy(SINDv)
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Fig. 6. The identified model with noisy measurement.

4. CONCLUSION

In this paper, a model-free data-driven identification of
dynamics was proposed for a quadruple tank process that
incorporates the nonlinear behavior of water distribution
networks. Using sparse identification of nonlinear dynamics
with control and utilizing the available measurements, we
predicted the nonlinear dynamics of the multi-tank system
was through a library of candidate functions. The learned
dynamics demonstrated the effectiveness of the sparse
identification theory for data-driven model identification
of nonlinear water distribution systems. Time-domain
simulations validated the close tracking of system states
using the data-driven model. Future research will focus on
expanding the analysis to a large-scale water distribution
system model identification using sparse regression.
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