
 

Available online at www.sciencedirect.com 

 

ScienceDirect 

IFAC PapersOnLine 56-2 (2023) 2389–2394 

Data-Enabled Identification of Nonlinear 

Dynamics of Water Systems using Sparse 

Regression Technique ⋆ 

Faegheh Moazeni ∗ and Javad Khazaei ∗ 
∗ Lehigh University, Bethlehem, PA 18015 USA (e-mails: 

moazeni@lehigh.edu, khazaei@lehigh.edu). 
 

Abstract: The complex, multi-variable, highly nonlinear and strong coupling characteristics 
of water distribution systems (WDSs) has significantly limited the capability of model-based 
approaches for control purposes in such systems. With the emerging application of 
high-resolution metering devices and historical data, model-free identification of WDSs can 
facilitate the control design without tedious modeling complexities. This paper develops a 
data-driven framework to facilitate the identification of nonlinear models of WDSs using 
available data. A quadruple tank system that represents the nonlinear and strong coupling 
nature of WDSs is considered as the test system and sparse identification of nonlinear 
dynamics (SINDy) is utilized to identify the nonlinear dynamics from the data. Unlike 
existing modeling approaches that either heavily rely on knowing the detailed dynamics of the 
system (model-based) or designs that relay on large historical data and are not interpretable 
(data-driven approaches), the proposed model-free identification framework is parsimonious, 
which can accurately capture the dynamics of the quadruple tank process with available 
measurements suitable for control problems. The effectiveness of the proposed approach is 
validated using time-domain simulations in MATLAB. 

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0/) 
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1. INTRODUCTION 

Dynamics of the water distribution system (WDS) is of 
growing importance due to role of modeling in efficiently 
controlling the water system assets and responding to the 
increased demand for clean water Zhang et al. (2020). 
Existing practices for modeling WDSs mainly focus on 
physics-based modeling based on governing physical laws 
(i.e., hydraulic laws and mass balance) in these systems 
Abdelbaki et al. (2017); Kara et al. (2016); Zamenian et al. 
(2017); Creaco et al. (2017). For example, a combined 
modeling technique was proposed in Abdelbaki et al. 
(2017) to utilize the map information from the GIS 
data in the hydraulic modeling for water management in 
WDSs, or in Zamenian et al. (2017), a random-parameter 
negative-binomial approach was utilized along with the 
WDS model to estimate a system-wide monthly frequency 
of water main breaks in WDSs. However, due to multivariate, 
nonlinear, complex, and highly coupled dynamics of assets 
in WDS, modeling can be challenging Tung et al. (2020). 

The increasing availability of data from improved monitoring 
technologies such as smart metering devices and wireless 
sensors provide an opportunity to discover enhanced 
models for WDSs that could account for nonlinearities 
and complex nature of these systems. Several studies have 
focused on data-driven modeling for water distribution 
assets or treatment processes Seo et al. (2015); Liu 

 

⋆ This research was in part under support from the National Science 

Foundation under Grant NSF-EPCN 2221784. 

et al. (2016); Seyedzadeh et al. (2020); Zhang et al. 
(2018); Ahmed et al. (2019). For example, in Seo et al. 
(2015), a wavelet-based artificial neural network approach 
was proposed to forecast the water level on a daily 
basis for WDSs. In Liu et al. (2016), the water quality 
forecast on an hourly basis was carried out using a 
multitask multi-view learning methods to capture the 
spatio-temporal and spatial correlations between water 
quality treatment facilities. Other existing data-driven 
approaches include estimating the discharge of drip tape 
irrigation using temperature and pressure measurements 
Seyedzadeh et al. (2020), identifying the reservoir operation 
using artificial neural network and support vector regression 
Zhang et al. (2018), predicting the water quality using 
various machine learning methods Ahmed et al. (2019), 
and reservoir water inflow forecast using neural networks 
Yang et al. (2017). While the existing research shows 
the significant potential of data-driven approaches for 
predicting the behavior of water system assets or the 
quality of water, none of the existing studies have 
focused on utilizing data-driven techniques for identifying 
nonlinear dynamics of WDS at a system level. In addition, 
most existing studies focus on machine learning-based 
methods, which heavily rely on training data and are 
not interpretable. Such models would require a re-training 
with system expansions and might not be suitable for 
system-level control in WDS. 

To address the existing challenges of the data-driven 
approaches for identifying the complex dynamics in 
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water distribution systems, this paper investigates the Table 1. Operating points of quadruple tank. 
application of sparse identification theory. Sparse regression   
techniques have demonstrated great potential for precisely 
modeling the nonlinear dynamics of unknown systems 
Brunton et al. (2016a,b); Khazaei and Blum (2022), 
However, there is currently no reported data-driven 
modeling of the nonlinear dynamics of WDSs using 
sparsity promoting techniques. The identification of WDS 
is challenging due to its complex, highly nonlinear and 
strong coupling characteristics. The novelty of this paper 
lies in investigating the potential usage of sparse regression 
in such systems. The main contribution of this work is to 
identifying nonlinear dynamics of quadruple water tank 
process that closely represent the nonlinear dynamics of 
WDSs using data-driven sparse regression technique. In 
addition, to deal with noisy measurements, this paper 
proposes the use of data denoising via Savitzky Golay 
filtering approach that simplifies the SINDy process and 

 γ1, γ2 0.7, 0.6 0.43, 0.34  
 

 

water level at tank i, vi is the voltage applied to pump 
i with a corresponding flow kivi. Parameters γi  [0, 1] 
are determined from the settings of the valves. The water 
flow to tank 1 is γ1k1v1, and the water flow to tank 4 is 
(1 γ1)k1v1. Similarly, the water flow to tank 2 is γ2k2v2, 
and the water flow to tank 3 is (1 γ2)k2v2. Furthermore, 
the acceleration of gravity is denoted by g. By re-arranging 
equation (1) and writing the model in state-space form, 

˙x = f (x)+ g(x)u,  y = h(x) (5) 
where 

has not been reported in any work. Using time-domain 
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II formulates the dynamics of multi-tank system. Sparse 
identification of dynamics is included in Section III. 
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Section V concludes the paper. 
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In equations (5)-(7), x = [h1 h2 h3 h4]T is the state vector, 
y = x is the output vector, and u = [v1 v2]T is the input 
vector of the system, which includes the voltage applied 
to the pumps. 

1.2 Operating Points 
 

 

 

Fig. 1. Schematic of a quadruple tank process. 

 
1.1 Dynamic Model of Quadruple Tank Process 

The quadruple water tank process in Fig. 1 can be 
represented by the following set of differential equations 
Johansson (2000): 

Assuming detailed information about Quadruple tank 
process system and its parameters are not available, the 
objective is to identify the dynamic model presented 
in equations (5)-(7) from available measurements of the 
states. Two separate operating points will be studied 
to validate the effectiveness of the proposed model 
identification framework. These two different operating 
points were selected specifically as the system shows 
a minimum phase (MP) characteristics in one of the 
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(4) 2. DATA-DRIVEN IDENTIFICATION OF DYNAMICS 

where Ai is the cross-sectional area of tank i, ai is a 
cross-sectional area of the outlet hole in tank i, hi is the 

We will utilize sparse identification of nonlinear dynamics 
to identify equations (5)-(7) from measurements. An 
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The rest of the paper is organized as follows: Section 
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3 A 

Parameter MP operating point NMP operating point 

h1, h2 [cm] 12.4, 12.7 12.6, 13 
h3, h4 [cm] 1.8, 1.4 4.8, 4.9 
v1, v2 [V] 3, 3 3.15, 3.15 

k1, k2 3.33, 3.35 3.14, 3.29 
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Fig. 2. Proposed data-driven framework for identifying the dynamics of a quadruple tank process. 
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Fig. 3. Trajectory of the states in MP operating point 
(Left), and trajectory of the states in NMP operating 
point (right). 

 
overview of the proposed data-driven model identification 
approach for the quadruple tank process is depicted in Fig. 
2. By taking the measurements from the water tank levels, 
hi, and the inputs applied to pumps, vi, and constructing 
a library of functions that could represent the quadruple 
tank dynamics, a sequentially thresholded least-square 
optimization problem is solved to obtain the nonlinear 
dynamics using sparse regression technique. The process 
is explained in detail in the following. 

To identify nonlinear dynamics of the dynamical systems 
from measurements, the first step is to estimate the 
derivatives of the states (ẋ ) from measurements and 
then construct a library of candidate functions (θi(x)) 
that describe how state variables vary with time. If no 

This method is known as sparse identification of nonlinear 
dynamics (SINDy), which was originally proposed in 
Brunton et al. (2016a), and is explained step-by-step in 
the following. 

 
2.1 Measurements 

 
SINDy uses symbolic regression and sparse representations 
to determine the dynamics of the system. This approach 
relies on the fact that most dynamical systems that are 
represented by differential equations to the form x˙ = 
f (x, u) have a relatively few terms on the right hand 
side. The actual dynamics of a quadruple tank process 
is represented by ˙x = f (x) + g(x)u, where x(t) Rn 
is the state vector, u(t) Rq is the input or control 
vector, and f (x(t), u(t)) : Rn Rq Rn.  By  collecting 
m measurement samples from the water tank levels and 
pump inputs, the quadruple tank process dynamics can 
be identified by a library of candidate functions, Θ 
Rm×p. To identify the governing equations of the system in 
(5)-(7), we collect a time-history of the tank levels (state 
vector) x(t), pump inputs u(t), and derivatives of the 
states ˙x(t). Since only x(t) and u(t) might be available 
in most real-world systems, the derivative measurements 
˙x(t) must be estimated first. This can be done through 
numerical derivative calculations from measurements of 
the states. To do so, first, the measurement data is sampled 
at m intervals t1, t2, .. ., tm and arranged into: 

information about the dynamics of the system is known, 
an extended basis of candidate functions can be selected 
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to cover all possible functions. Since most dynamical 
systems have few nonlinear terms in the dynamics, sparsity 
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. . . .  (9) i-order monomials of X and U. For example, M0.5(X, U) 
includes square-root functions that exist in the quadruple 

uT (tm) u1(tm) u2(tm) . .. un(tm) tank system, or P2(X, U) involves polynomials up to the 

the measurements for derivatives can be approximated second order. Having estimated Ẋ and finding Θ(X, U) 
numerically from X following the procedure. using available X, U, we can solve for Ẋ = Θ(X, U)Ξ 

by solving for the sparse vectors of coefficients in Ξ that 
2.2 Estimating the Derivatives, Ẋ decide what terms are active in the Ẋ dynamics. This is 

By using difference approximation, ordinary differential 
achieved by solving an optimization of the form: 

ξh = arg min | |Ẋ 
h − Θ(X, U)ξˆ

h||2 + λ||ξˆ
h||0 (13) 

equations and partial differential equations can be numerically ξˆh 

solved. At specified mesh points, the derivatives of 
a smooth function can be approximated using Taylor 
series expansion. This paper uses the central difference 
approximation because it is more accurate for smooth 

functions. Consequently, Ẋ  can be approximated by 

where ξh is the h-th column of ξ represented by ξh = 

[ξ1 ξ2 . .. ξp]
T 

and Ẋ  represents the h-th column of 

Ẋ . The objective function in (13) utilizes the L2 norm 

||.||2 to minimize the error between the derivatives Ẋ 
Larsson and Thom´ee (2003): and estimated derivatives using calculated ξ through a 

Ẋ ≈ 
X(i + 1) − X(i − 1) 

(10)
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least-squares problem and the L0 norm, . 0 minimizes 
the number of nonzero elements in ξh to promote 
sparsity in the coefficients matrix ξ. In addition, λ is the 

where X(i + 1) is the measured data at sample i + 1 and 
h is the sampling time of the simulation or data collection 
platform. Utilizing the measurements from the states and 

sparsity-promoting hyperparameter. 

The minimization problem of (13) is solved by the 
sequentially thresholded least squares method, which is an 
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where k is the iteration number, Θ(X, U)† is the pseudo 
inverse of Θ(X, U) defined as: 

Θ(X, U)† := [Θ(X, U)T Θ(X, U)]−1Θ(X, U)T (17) 

and the support set of ξh is defined by supp(ξh) := j 
[p] : ξj = 0 . The coefficients ξh can be found using the 
sparse regression formulation presented in Algorithm 1. 
If the intent is to identify the signal U for feedback control, 
i.e., U = G(s)X, where G(s) is the transfer function of 
the controller, the matrix of inputs can be identified using 

Fig. 4. Derivative estimation for MP operation point. 

perturbing the inputs (pump voltages, vi) with a sinusoidal 
signal (to excite the dynamic modes), the results of the 

U = Θ(X)Γu, where Θ(X) is the matrix of candidate 
functions with the terms corresponding to U have been 
removed from Θ(X, U) and Γu can be found using the 
sparse regression algorithm similar to Ξ. 

estimated derivatives for minimum phase (MP) operating   
points of the quadruple tank process are shown in Fig. 4. 
As it can be seen, the estimated derivative can accurately 
represent the measured derivative. 

2.3 Sparse Identification of System Dynamics 

By utilizing the measured data X Rm×n to obtain the 
derivatives of the states, the derivative data is a linear 
combination of columns from the candidate function (e.g., 
polynomials, or sinusoids) library expressed by entries of 

Algorithm 1 Sparse Regression Algorithm 
 

 

Input: Measurements X, U 

Input: Estimated derivatives Ẋ 
1: procedure Sparsity Promoting Algorithm 

2: Γ  = Θ Ẋ (least-square solution) 
3: for k = 1 : 10 do (number of iterations) 
4: Set λ (sparsity knob) 
5: Ξ <λ  indsmall 
6: Ξ(indsmall) 0 
7: for k = 1 : n do (n dimension of state X) 

the matrix Ξ ∈ Rp×n such that Brunton et al. (2016a): 8: ind big ̸= ind small (:, k) 
Ẋ = Θ(X, U)Ξ. (11) 

Having estimated Ẋ , Θ(X, U) can be constructed by 
linear and nonlinear functions of the columns of X and 
U. Typically, the candidate functions include monomials 
and trigonometric functions for nonlinear systems. An 

9: Ξ(indbig, k) = Θ(:, indbig) Ẋ (:, k) 
10: end for 
11: end for 

Output: sparse matrix Ξ 
 

 



Faegheh Moazeni et al. / IFAC PapersOnLine 56-2 (2023) 2389–2394 2393 
 

 

− 
√

x 

∈ 
∈ 

√ 

 

 
  

Θ(X, U) =  M0.5(X, U) X  U M2(X, U) . .. sin(X, U) cos(X, U) sin(2(X, U)) . ..  (12) 
 

Table 2. Parameter identification using SINDy. 
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3. TIME-DOMAIN SIMULATIONS 

To validate the effectiveness of the proposed data-enabled 

another step change was applied at 100 seconds to reduce 
v1 from 4 to 2 V. In addition, a step change was applied 
to the pump 2’s voltage v2 at 50 seconds to increase it 

model-free identification of quadruple tank process dynamics, from 3 to 4V and another step change was applied at 
time-domain simulations using MATLAB was carried 
out and the states were observed by perturbing the 
inputs of the pumps. The models were run for 300 
seconds with 50µsec sampling time and the training data 
set includes a state matrix X  R4×6000 and input 
matrix size of U  R2×6000. The Hyperparameter λ 
was tuned manually and chosen as 0.01 for sparse model 
identification. The proposed framework has also been 
validated with comparisons with physical models. 

150 seconds to reduce v1 from 4 to 2 V. The physical 
system was compared with the identified data-driven 
model using SINDy as shown in Fig. 5. The results 
indicate the effectiveness of the proposed data-driven 
model identification approach (SINDy) for accurately 
identifying the nonlinear dynamics of quadruple tank 
process system. Such model identification can significantly 
simplify the complex physics-based modeling of large-scale 
water distribution systems. 

3.1 Model Identification 

First, data was collected on states and input of a physical 
quadruple tank system that was simulated in MATLAB 
using the parameters provided in Johansson (2000). Since 
it is assumed that the original model of the system is 
not known, the candidate terms for Θ(X, U) included 
square-root functions, polynomials up to degree 2, and 
sinusoidal functions, i.e., u , x ,  x , x x , x2, x cos x , 
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xi sin xj, ui cos xj, ui sin xj, respectively. 
Sparse regression was then carried out to identify the 
sparse matrix of coefficients, Ξ. The identified Ξ for 
the studied model were used to develop a data-driven 
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quadruple tank model in MATLAB. A comparison between 
the parameters of the physical model and the identified 
model is shown in Table. 2, which confirms the identified 
data-driven model accurately represents the dynamics of 
the physical model. 

 
3.2 Time-domain Validation 

 
In the second case study, the obtained SINDy model of the 
quadruple tank process was compared with the physical 
model in several scenarios. A step change from 3V to 4V 
was applied to the pump 1’s voltage v1 at 25 seconds and 

   

Fig. 5. Time-domain validation of the identified model. 

 
3.3 Noisy Measurements 

 
In this case, the impact of measurement noise on dynamics 
identification is studied. The state measurements were 
augmented with Gaussian-distributed random noise, with 
mean of 0 and variance of 0.1. The collected noisy data 
was then utilized in the identification process. In order 
to minimize the impact of measurement noise on the 
identification process, a filtering process using Savitzky 
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Golay filter Savitzky and Golay (1964) was first carried 
out. The physical noisy system was compared with the 
identified data-driven model using SINDy as shown in Fig. 
6. The results exhibit the effectiveness and accuracy of the 
proposed approach for identifying the nonlinear dynamics 
of quadruple tank system from noisy measurements. 
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Fig. 6. The identified model with noisy measurement. 

 
4. CONCLUSION 

 
In this paper, a model-free data-driven identification of 
dynamics was proposed for a quadruple tank process that 
incorporates the nonlinear behavior of water distribution 
networks. Using sparse identification of nonlinear dynamics 
with control and utilizing the available measurements, we 
predicted the nonlinear dynamics of the multi-tank system 
was through a library of candidate functions. The learned 
dynamics demonstrated the effectiveness of the sparse 
identification theory for data-driven model identification 
of nonlinear water distribution systems. Time-domain 
simulations validated the close tracking of system states 
using the data-driven model. Future research will focus on 
expanding the analysis to a large-scale water distribution 
system model identification using sparse regression. 
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