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Abstract—Model predictive control (MPC) is a closed-loop
optimization framework that can solve the real-time control
challenges of inverter-based distributed energy resources (DERs)
in smart grids. This paper addresses the challenge of heavy
reliance of model predictive controllers on physics-based dynamic
models by proposing a data-driven MPC framework via sparse
regression (SR) theory and nonlinear model predictive control
(NLMPC) framework. Unlike existing approaches that rely on
approximate models based on physical principles or experiments,
the proposed framework directly captures the dynamics of the
DERs using measurements. This capability enables power sharing
among DERs and active/reactive load support with high precision.
The framework can capture uncertainties and drift dynamics of
DERs by updating the data-driven model on a timely manner for
running the MPC for effective power sharing. By employing this
approach, the overall effectiveness of active and reactive power
sharing is enhanced without compromising voltage and frequency
control. The proposed optimal control strategy is validated through
real-time simulations conducted on a 3-DER microgrid (MG) using
OPAL-RT. The results demonstrate the successful estimation of
DER dynamics using the SR method and accurate power sharing
through NLMPC. Furthermore, NLMPC not only achieves a high
degree of precision in power tracking but also outperforms other
MPC strategies that rely on successive linearization, with a mean
absolute percentage error (MAPE) of 6.83% for active power
and 5.71% for reactive power.

Index Terms—Predictive control, Distributed energy resources
(DERs), Sparse regression (SR), Nonlinear model predictive
control (NLMPC), Power sharing.

1. INTRODUCTION

HE pursuit of carbon neutrality by 2050 has intensified

T the shift from conventional energy sources to renewable

energy resources, with DERs playing a pivotal role in this

energy transition. MGs are at the vanguard of this shift,

emerging as a promising means to seamlessly integrate DERs

with existing distribution networks, thereby enhancing the
resilience and sustainability of the energy supply [1].

To maintain effective control within an MG, it is crucial
to adhere to operational constraints, necessitating the design
of an advanced multi-variable control approach. Traditionally,
MG operations have relied on a three-tier hierarchical con-
trol structure that includes primary, secondary, and tertiary
controllers [2]. However, the dynamics of MGs and the
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complexity of integrating various energy sources call for more
sophisticated control strategies. Table I presents a comparison
of Proportional-Integral (PI), Neural Network (NN)-based,
and NLMPC approaches for MG energy management. PI
controllers, while simple and robust for certain applications,
do not inherently handle nonlinear models or constraints and
lack optimal control capabilities [3]. NN-based controllers can
manage nonlinearities effectively through learned behaviors
from historical data; however, they are not intrinsically designed
for handling constraints or optimizing control actions. Their
efficiency in these areas heavily depends on the extent and
diversity of the data they have been trained on, without which
their ability to satisfy operational constraints and achieve
optimal performance may be compromised [4], [5]. The
proposed MPC excels in managing MG energy systems by
proficiently handling nonlinearities, constraints, and optimizing
control. It ensures reliable power distribution for both active
(P) and reactive (Q) demands and is adept at operating within
complex multi-input and multi-output (MIMO) environments.
The predictive nature of MPC, which forecasts and adjusts
to future system changes, significantly bolsters the system’s
adaptability and resilience, making it a robust solution for the
dynamic challenges in MG management. [6], [7].

Several studies, including those conducted by [8], [9],
[10], [11], have identified the potential of MPC for enabling
effective secondary control in microgrids. Authors in [8],
proposed MPC approach to ensure frequency stability in low
inertia power systems. In [9], a decentralized control approach
utilizing MPC with V-1 droop method to enhance power
quality in MG is presented. What is more, [10], introduces a
decentralized control strategy for multiple DGs by integrating
a voltage controller using MPC with a rapid current controller
utilizing discrete-time sliding-mode control to manage inverter
currents during overload situations. A centralized control
system for MGs, coordinating DERs through MPC algorithm
that optimizes steady-state and transient control separately,
while also implementing an energy management system to
coordinate load sharing is introduced in [11]. While these
approaches demonstrate accurate steady-state tracking and
exhibit robust and fast transient characteristics, they have not
fully accounted for the nonlinear behavior of the DER model.
Furthermore, their approach relies on a linear model predictive
controller, while MGs exhibit nonlinear characteristics.

To overcome these challenges, our research introduces a
centralized NLMPC approach tailored for microgrid systems.
NLMPC excels in handling continuous control variables, vital
for real-time power sharing and load balancing in microgrids
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Table 1. Comparison between the controllers for MG energy management.

Characteristics/ Ref Nonlinear model ~ Constraints ~ Optimal control Dispatchabili P, and Q load and MIMO system Real-time
Controller ) handling handling handling 1Sp ity demand satisfying handling implementation
PI [3] X X X X X X v
NN-based [41, [5] v X X v v v v
NLMPC Proposed v v v v v v v

Table II. Comparison between the state-Of-the-art model identification method.

Non-linear
Closed-form
Ref. Method Model Qalntinn Grey-box
Identification
[12], [13] Hammesterian X X v
[14], [15] NN v X v
[16] Iterative Least-square v v X
[17] Physics-informed NN v X X
[18], [19], [20] DMD X X X
Proposed SR v v v

in contrast to the discrete (integer) control sets of finite control
set MPC (FCS-MPC) [21], aligns better with the dynamic
requirements of our microgrid, facilitating effective and flexible
management of power distribution and load balance.

Nonlinear controllers, such as NLMPC have emerged as
effective solutions for managing MGs, offering predictable
performance across a wide range of operating conditions. As an
example, real-time implementation of rapid secondary control
utilizing NLMPC was proposed in [22]. Nonetheless, the
proposed approach only considered conventional MG structure
with simplified dynamics of synchronous generators and did
not account for DERs and their dynamics. In addition, the
heavy reliance of conventional NLMPC techniques on accurate
dynamic models of assets make it very challenging for real-
time control of MGs that have various assets with different
topologies and dynamic models. Hence, the absence of accurate
models poses significant obstacles for employing NLMPC-
based control in MGs that incorporate DERs for the purpose
of power sharing. The main research question in this paper
is “can data-driven modeling techniques resolve the modeling
challenge of NLMPC approaches for MG control?”

Recent machine learning advancements have introduced di-
verse methodologies for modeling dynamic systems, as detailed
in a comprehensive comparison in Table II. These include
Hammesterian, neural networks (NN), physics-informed neural
networks, Iterative least-square, dynamic mode decomposition
(DMD), and SR [23]. Each method varies in its ability to
identify non-linear models, provide closed-form solutions, and
the extent of prior knowledge dependency. For instance, the
Hammerstein model [12], [13], lacks in non-linear identification
and closed-form solution, yet offers grey-box insights, while
NN methods ([14], [15],[17]) excel in non-linear identification
but fall short in providing closed-form solutions, with varying
degrees of transparency in their modeling process. Among
these, SR stands out for its proficiency in non-linear model
identification, offering closed-form solutions within a grey-box
framework, marking a significant methodological advancement.
In contrast, DMD ([18], [19], [20]) primarily supports linear
dynamics and lacks both a closed-form solution and grey-box
classification. The Iterative Least-square method [16] strikes

a balance with its non-linear model identification and closed-
form solution, though it doesn’t qualify as a grey-box model.
Additionally, SR’s capability to work with limited data, its
fast convergence, reduced training time, and interpretability
positions it as a favorable option compared to other model
identification methods [23]. As a result, the main contribution
of this paper is to develop a data-driven NLMPC framework for
MGs using SR theory. To the best of our knowledge, no existing
studies have explored a data-driven NLMPC for MG control
that can solve the heavy reliance of MG MPC techniques on
accurate physics-based models.

In this paper, we address the limitation of previous stud-
ies by developing a data-driven NLMPC approach for MG
control. Specifically, the paper enumerates its distinguished
contributions as follows:

1) This paper presents a novel model identification method
for both nonlinear and linecar DERs in smart grids.
Compared with deep learning approaches, the proposed
method utilizes available DER measurements and elimi-
nates the need for extensive training.

2) By employing a data-driven framework, we simplify the
complex physics-based DER modeling approach com-
monly used, while still providing a scalable framework
for DER control. This framework effectively addresses
power sharing issues observed in conventional DER
control.

3) Obtained data-driven DER models in this study will be
utilized to develop a comprehensive framework for MG’s
NLMPC control. This framework enables simultaneous
control of the primary and secondary layers of the MG.
By integrating both layers into a single framework, the
control capabilities of the MG are enhanced and the
control design is simplified (compared with conventional
hierarchical controllers).

4) The robustness of the proposed data-driven NLMPC
is demonstrated, exhibiting superior performance in
comparison to a MPC controller that utilizes successive
linearization.

5) The experimental applicability of the proposed data-
driven NLMPC control has been validated using OPAL-
RT real-time simulation technologies, confirming its
effectiveness and reliability for real-world, real-time
operations.

The paper is outlined as follows: Section II covers the
proposed methodology with MG modeling. Section III focuses
on the data-driven modeling of the MG consist of DERs and
diesel generator using SR. Design of data-driven controller is
discussed in Section IV. Section V includes the case studies,
and finally, section VI concludes the paper.
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Fig. 1. The proposed schematic of SRc-based NLMPC framework for active and reactive power sharing.

II. METHODOLOGY
A. Proposed Model Description

Fig. 1 presents an illustrative depiction of the proposed
methodology for data-driven model identification utilizing SR
in conjunction with NLMPC. We opted for NLMPC over other
MPC approaches including distributed MPC or finite control
MPC due to the fact that microgrids are controlled centrally as
well as suitability of NLMPC in a centralized control context,
particularly for managing the three main resources of our
microgrid system. The system under consideration closely
resembles an islanded MG and comprises two inverter-based
resources, one diesel generator, and local loads.

Initially, the SR technique is employed to identify the
dynamic model of the solely through measured data. Sub-
sequently, the identified dynamics which can be represented
by £(k + 1) =_f (&£, wu) are integrated within the NLMPC
framework, thereby facilitating the formulation of a data-driven
optimal control problem with power sharing and load balancing
features embedded as constraints of the optimization. The
control inputs obtained from the NLMPC formulation, denoted
as uj, are sent to the MG in close to real-time for dispatching
the assets. In the following sections, physics-based modeling of
MG will be included as a ground truth for data-driven methods.

B. Microgrid Modeling

1) Modeling of the Inverter-based resources: For the inverter-
based resource model, a voltage source inverter with droop
control is considered (see Fig. 2). The DER’s effective terminal
voltage and phase angle after passing through the LC filters are
represented as V. 0. Our chosen Sth-order reduced-order model
in the dq frame is based on a balance between computational
efficiency and the ability to accurately capture the inverter’s

detailed dynamics. This model is validated against more
detailed models, as explored in [24] ensuring its reliability
for stability assessment in MGs. The model is described by
the following set of equations:

0 =w(t) — wo (1a)

T = wger(H) — @) — ka0 m(® (1b)
k n

TV = Ve (D — V(O — S—‘" Q,.® (1o)

LI 4=V (t)cos O(t) — Vo - RIa(t) + woLly(t) (1d)

LI ¢ =V (t) sin B(t) — RI4(t) — woLla(t) (le)

where V (t) in V and 0(t) in radians, represent the instantaneous
effective terminal voltage and phase angle of the DER,
respectively. Also, w(t) in radian/s denotes the frequency of
the DER and la(t) and I4(t) in A represent the dq-frame
components of the DER’s output current. The model also
incorporates the low-pass filters in the inverter power control
system, which is characterized by the bandwidth w. = t-1,
and kp and kg are the frequency and voltage droop gains,
respectively. The parameters of the this DER are further shown
in Table VI.

Furthermore, Sn represents the DER rating, while wser(t)
and Vseft) are the set points of frequency and voltage
controllers considered as inputs of the DER. Measured
instantaneous active and reactive powers, Pm(t) and Qm(t),
are given by Pm(t) = 5V (9)la(t) and Qm(t) = — LV (H)l«(b).
Finally, L = Lc+L;in mH and R = Re+R: in mQ represent
the combined inductance and resistance at the DER terminal.

2) Modeling of the Diesel Generator: In this study, the
generator model is represented by its load frequency control
(LFC) loop, focusing on its contributions to the active power
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Fig. 2. Overview of inverter-based resource control system: (a) displays the
configuration of the DER with an inverter, and (b) details the droop control
mechanism.

and frequency regulation in islanded MGs. Fig. 3 shows the
LFC loop composed of a governor, prime mover load, and
rotating mass model presented in state-space form as [25]:

AP = —1ap - L Aw )+ AP () (22)
v ng v IRTg d Tg ref
AP ;= - APy(t) — = APm(t) (2b)
[ ' |
Awa= __ APm(t) — — Awd(t) — __APLE)  (2¢)
2H 2H 2H

where [APu(t) APm(t) Awa(t)]T are states of the diesel gen-
erator and APL(t) is the input of the system with AP.f(t) = 0
[25]. In the above equations, the input governor’s command
APy is converted into a steam valve position APy, the governor
time constant Ty in seconds characterizes the response time
of the governor, and the Tr in seconds represtents turbine
time constant. The prime mover model, denoted as APm,
establishes a relationship between the mechanical power output
and variations in the steam valve position APy.

C. Control Oriented Model

It was shown that each DER is characterized by 5 dynamical
equations, while the diesel generator contributes 3 dynamical
equations. Consequently, the overall plant of the system

encompasses a total of 13 dynamical equations formulated
as:

x =flx)+gw+d

3
y =h(x) ©)

where
x=[01 w1 Vi la1 Ig1 02 w2 V2 1a2 Ig2 APy APm Awd]T
U =[Wgert Viet! Wserz Vserr AP]”

d=[wo 00 Vo O wo0O0Vo0O0O 0]
“4)
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Fig. 3. Schematic overview of diesel generator load frequency control: (a)
presents the block diagram of the automatic load frequency control system, and
(b) illustrates the detailed control loop components for the diesel generator.

and f(x) defined on the top of the page and g(u) is defined
as

00 0 0 0 :
1 0 0 0 0
Ou 1 O
oo = 0 0 0g
0 0 0 0 0
o o0 o o o O
gw="0 0 10 0 0 (5)
1
S0 0 0 L 0
4888 80
70 0 0o 0 o0
0 0 0 0 AP

To achieve efficient power sharing, it is crucial to satisfy

the load balance constraint, which can be expressed as
Pload(t) = Pinvl(t) + Pinv2(t) + Pdiesel(t)
Qioad(t) = Qinvi(t) + Qinv2(t)

In the given context, the variables Pioad(t) and Qioad(t)
represent the active and reactive power of the load, respec-
tively. The active power measurements of DERs are given
by Pinvi(t) = §V1(t)ld1(t) and Pinno(t) = 32V2(t)1d2(t). The
diesel generator’s measured active power is represented by
APm(t). Similarly, the reactive power of DER1 and DER2
are Qinvi(t) = ZVi(D)lq(t) and Qinva(t) = FVa(t)lg(t),
respectively. Equation (6) can be reformulated as Pioag =
5X3%4+ 5 X8X9 +X12 and Qioad = 52 X3X5 + §X9X1o, which
can be presented as y = h(x) of the problem [26].

In order to ensure the feasibility of the system operation,
the generation capacities of the MG components must be taken
into account as constraints. The active power constraints are
outlined as:

(6)

l:)invl,min = Pinvl(t) = Pinvl,max
pinvZ,min =< pian(t) = PinvZ,max

pdiesel,min =< pdiesel(t) = Pdiesel,max

™
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Similarly, the reactive power constraints can be expressed as:

Qinvl,min = Qinvl(t) S
Qinv2,min < QinVZ(t) S Qinv2,max

To ensure microgrid stability, it is essential to set appropriate
active (Kp) and reactive (Kq) droop gains to maintain energy
resources within specified voltage and frequency bounds. These
bounds are defined such that voltage and frequency should
remain within £5% of their nominal values [27], represented by
AV and Aw, respectively. The droop gains are calculated using
the formulae Kp = 22 and Kq = égvo Here, AP and AQ
denote the capacity limits of the DERs in active and reactive
power, respectively. These capacities are critical in ensuring
that the DERs can effectively manage their output within these
stability constraints.

Additionally, power distribution allocations are directly
influenced by these calculated droop gains. The allocations
are based on preliminary assessments and are represented by
equations oPinv2(t) Pinvi(t), PBPdiesei(t) = Pinvi(t), and
YQinv2(t) = Qinvi(t). The coefficients o, B, and y were
determined through these assessments to ensure optimal power
sharing among different generation sources. This takes into
account their capacity, efficiency, and response characteristics
to maintain system stability under varying load conditions. The
values of o, B, and y have been set as 1.1, 5.8, and 1.08,
respectively, to achieve this balance.

Qinv 1,max

®)

III. SR FOR IDENTIFYING MICROGRID DYNAMICS

In this section, we apply the SR algorithm as a data-
driven model identification step within the proposed NLMPC
framework. The process of determining the governing equations
from measured data involves three distinct steps, which are
outlined in the following.

A. Preparing Data for Identifying the Governing Equations

Most dynamical systems are represented by differential
equations in the form x° = _f (x, u). These systems typically
have a relatively small number of terms on the right-hand
side. To prepare data for measurement, we introduce small
perturbations to the input data—specifically, applying sine
waves that do not exceed 10% of the nominal values (as
detailed in [28]), This approach facilitates the acquisition of m
measurement samples, encompassing states, derivatives, and
inputs from the DERs and diesel generator. Consequently,
the dynamics of the MG can be deduced. This is achieved
by employing a library of potential functions, denoted as
@ € Rm», where p is the count of functions within the library
[23]. In most practical systems, access is typically limited to

x(t) and u(t), necessitating the numerical approximation of
the derivative measurements X (t). The process begins with
sampling the measurement data at intervals t1, t2, . ..
which are then systematically organized into a matrix, as
follows:

) tm,

O O
X1(t1) Xz(tl) an(t1)
x1(t2)  x2(t2) Xn, (t2)
=L L )
0 X1(tm) X2<tm) Xn_ (tm) 0
ui(ty))  uz(ty) un (t1)
ui(t2) uz(t2) Uun, (t2)
= N (10)
lll(.tm) uz(.tm) Un,, (tm)

To identify the dynamics from data (X, U), X is also needed.
In this work, the central difference approximation is adopted
due to its superior accuracy when dealing with smooth functions

[23]. Accordingly, the derivative matrix X is approximated as:

XG+1)—-X(G—1)

2sp

X =

(11)

Here, X(j + 1) denotes the measured data at sample j + 1,
and sp represents the sampling time of the simulation or data
collection platform.

B. Establishing Candidate Nonlinear Functions

In this step, a collection of candidate functions (@4 X, U))
can be assembled to effectively capture the temporal variations
of the state variables. In situations where prior knowledge
of the system’s dynamics is lacking, it becomes necessary to
select an expanded set of candidate functions that encompasses
all potential functions. It is notable that, in the context of
MGs, the function_f{(x, u) exhibits sparsity in the space of
all potential candidate functions, as only a limited number of
nonlinear terms are present, such as V sin 0, and V cos 0 [29].
The derivative data of the states , obtained using the measured
data X € Rmnx_ can be expressed as a linear combination of
columns from a candidate function library, such as polynomials
or sinusoids using the entries of the matrix Z € RrP*"x in
equation (12):

X =0O(X,U)E. (12)

Typical candidate functions include monomials and trigono-
metric functionspresented in equation (13):
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C. SR Algorithm

After estimating X and determining @(X, U ) using
the available X and U data, data-driven dynamics X =
O(X, U )E can be obtained by solving for the sparse matrix
of coefficients in E. This matrix represents the active terms
in the dynamics of X , which is accomplished by solving an
optimization problem as shown in equation (14).

& = arg min g 17||X — 0O, U)EAL.||2+11| |§Ai|\0 (14)

i

where, & represents the i-th column of = denoted by
1

Hi= & & Ep T. The term X ; corresponds to the
i-th column of X . The objective function in equation (14)
minimizes the error between the actual derivatives X and
the estimated derivatives obtained through a least-squares
problem using the calculated ;. The minimization is performed
using the L2 norm || - ||2. Furthermore, the LO norm || - ||o
is employed to minimize the number of nonzero elements
in §;, promoting sparsity in the coefficient matrix Z. The
regularization parameter 1 plays a crucial role in controlling
the degree of sparsity in the solution and can be fine-tuned
through hyper-parameter tuning techniques [30].

Algorithm 1: SR-Based Model Identification
Data: X, U (Measurements)
Data: X (Estimated derivatives)
Result: Sparse matrix &
Compute the coefficient matrix: & = @ \ X for
e=1:T do
Set the sparsity parameter: 1 Find indices of small
coefficients: indsmar = |E| <1);
Set small coefficients to zero: Z(indsmat) — 0;

for e=1:nx do
Find indices of remaining coefficients:

indbif = indsmau(;, €);
Update remaining coefficients:
E(indbpig, €) = O(:, indsig) \ X (3, €);

end
end

IV. DATA-DRIVEN CONTROL DESIGN

Fig. 4 provides an illustrative representation of MPC ap-
proach. The prediction model is constructed by incorporating
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Fig. 4. Schematic diagram of the MPC controller.

the controlled system model and the present state values. Subse-
quently, an optimization algorithm is employed to generate an
optimal sequence of control actions over a prediction horizon
[31]. In this study, in order to control the model obtained
through the SR technique, NLMPC will be employed to regulate
and control the MG assets. The objective of utilizing NLMPC
is to achieve power balance while ensuring that voltage and
frequency remain within permissible limits.

A. SR with optimal control problem formulation (SRc)

MPC minimizes a tracking error, aligning system states
with desired set-points, while also reducing controller rate
of change for increased longevity [32]. To achieve these
objectives, the system’s dynamics, obtained using the SR
method, can be represented by X = @ (£, w)E and discretized
for implementation in the MPC framework expressed by
®(k +1)=1f (®, u). By integrating the MG’s data-driven
dynamics described as £ (k + 1)=1f (%, u) with the inclusion
of physical and droop constraints imposed on the states, the
ultimate formulation of the NLMPC is presented as follows:

min (k) = (15)
Uk, ..., Uk+Np—1
-
19 (k +j) —yro(k+)%, + lAuk +j)l%,
Jj=0
st R(k +j+ D =F(R(k +j),uk+j), (16)
j=0,1,...,Np — 1
u<uk+j)<u j=0,1,....,Np—1 (17)
y<§(k+j)<y, j=12,....Np (18)
X0 = XpdKo) 19)

where, the notation Np € N* represents the prediction horizon,
while k := kts € R™* denotes the current time step based on
the sampling time ts. The penalty weights for the states and
control inputs are denoted by Q > 0 and R > 0 respectively.
The variables (k) € R, u(k) € R, and Au(k) € R«
represent the states, input, and rate of change of input at time
step k respectively. The desired set-points are represented by
yref € Rnewhich is the function of £ (k). Furthermore, x, u,
X, and U correspond to the minimum and maximum values for
the states and control inputs respectively. Lastly, the function
S :Rntu . Rnx denotes the discretized prediction model,
which exhibits varying formulations and is further elucidated
in the next subsection.
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1) Nonlinear MPC: NLMPC relies on a direct utilization of
the discretized nonlinear dynamics of the system x(k + 1) =
f(x(k), u(k)). Consequently, the prediction model over next
Np prediction horizons can be written as (16). The algorithm
for the implementation of the proposed SR-based NLMPC for
MG control in this study can be found in algorithm 2. To

Algorithm 2: SR-based NLMPC (SRc)

Data: Np, Q, R, T, nx, ny, x7¢, £(x, u)
Initialize x, € R, uo € R, k =0; for
k=0t T —1do
> Simulation time
for j=0 1t Np—1 do
Define and discretize the state space model;
Construct the data-driven model; Formulate the
quadratic cost function: J(a(k +j), wk +j)),
in equation (15);

end

Solve the optimization problem by minimizing J(k)
subject to the dynamic and state constraints
defined in Egs. (16)—(18);

Extract the optimal control sequence
[w*(0]K), ..., w(Np — 1]K)];

Apply only the first control action u*(0|Kk);

Predict the next state x(k + 1|K) using

equation (16);

Update the initial conditions for the next iteration:
x0 = x(k + 1|k) and uo = u*(0|k);

end

solve this NLMPC problem in equations (15) to (19), sequential
quadratic programming (SQP) was utilized. SQP is an iterative
technique widely employed for solving nonlinear constrained
optimization problems by sequentially solving a series of
quadratic programming (QP) sub-problems, as described in
equation (21) [33]. The SQP algorithm initiates with an initial
estimate xk for a given iteration index k, and it advances
through iterative updates given by xk*! := xk + apx, where
Pr denotes the search direction. The updated estimate x<*! is
subsequently utilized to solve the QP sub-problem, yielding p
as the solution. This iterative process generates a sequence of
xk values, aiming to converge towards a local minimum x*
as the iteration count k approaches infinity.

The decision variables (x*) for the formulated nonlinear
optimization problem encompass the rate of change of the
control input (AU € RnP) and the states (X € RnP),
The Lagrangian function associated with the nonlinear problem
presented in equations (15)-(19) is defined as[33]:

Ip_
Aihi(x) + wgAx)
=1

m

L
L(x, A, p) := f(x) +
=1

(20)

where the functions h : R» — Rm and g : R* — RP represent
the equality and inequality constraints, respectively, derived
from the concatenation of (16)-(18). Furthermore, n, m, and p
denote the number of decision variables, equality constraints,
and inequality constraints, respectively. The Lagrangian multi-

pliers for the associated equality and inequality constraints are
denoted as A € R™ and p € R~ respectively.

The formulation of the QP subproblem involves the approx-
imation of the Lagrangian function given in equation (20), as
well as the linearization of the nonlinear constraints specified
in equation (21).

min  pTH p+ Vix )Tp (21a)
PpER™ 2 k k

st. Vg(xn)Tp+gix) =0, Viel (21b)

Vegilx)Tp+gixk) <0, Vje) (21c)

where p represents the search direction originating from the
QP subproblem and H« denotes the Hessian matrix derived
from Eq. (20).

Subsequently, the solution to the QP subproblem, denoted as
Pk, is utilized to generate a new iterate x**! := xk + axpr.
The determination of the appropriate step size ak is crucial
to ensure a significant reduction in a merit function, which
measures the quality of the solution obtained during each
iteration.

2) MPC using successive linearization (MPC-SL): In the
MPC-SL method, a linear time-varying (LTV) model is utilized,
derived through successive linearization in the prediction model.
This method performs “online linearization” in each iteration,
based on the current operational points. The prediction model,
covering a span of Np, is integrated into (15) to determine
optimal control actions for the nonlinear controlled system.
The formulation of MPC-SL is referenced in [34], [35]. Two
main steps should be applied for this method:
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Fig. 5. Schematic diagram of the MPC controller using successive linearization.

(1) The state-space representation for the MG is formulated
using a linear approximation of the predicted continuous
nonlinear system dynamics.

Remark. The model is first linearized offline, based on its
T A
instant K around the operating points.

(2) The continuous state-space representation of the system
will be discretized. This process transforms the system into a
discrete-time model, expressible as a(k + 1) = A(K)x(k) +
BK)u(k).

During the MPC-SL implementation, steps (1) and (2), are
repeatedly conducted by linearizing the system around the
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measurement of the current states and the previous control
inputs (xo|k, uolKk) forallk €{0, ..., T — 1} (Fig. 5). Hence,
the prediction model is expressed as follows:
S
x(k +j) = Ai(k)x(k) + AiK)BK)uk + 1)
=0

+I+AKYITEK) Vije{l,..., N} (22)

where Ajk) € RMN™"x gignifies the time-varying
rediction matrix linked with current states measurement,
Ji;%)Al(k)B(k) e RVl corresponds to the
time-varying prediction matrix associated to the control se-
quence, and (I + A(k))-! € RNe">*"x represents the pre-
diction matrix of the affine term stemming from linearization.

V. SIMULATION RESULTS

To assess and verify the applicability of the proposed SRc-
based NLMPC approach for MG control, a representative MG
system as depicted in Fig. 1 (plant side) is employed. The
model is initially learned from available data and subsequently
utilized in control optimization using NLMPC. In this section,
five scenarios are conducted to evaluate the effectiveness of
SRc-based NLMPC.

A. Impact of Sparsity Parameter (1)

In SR, the sparsity parameter (1) regulates model sparsity,
controlling the number of non-zero coefficients in the coefficient
matrix (E) that represents dynamics. Optimal 1 balances
complexity and accuracy, preventing underfitting or overfitting.
As a consequence, choosing an appropriate value for 1 is crucial
in balancing model complexity and accuracy. In this scenario,
two distinct values of the sparsity parameter were examined.
Through a comprehensive analysis, it was determined that for
the DER model, n = 0.0001 yielded more accurate results, as
depicted in Fig. 6.

B. SR Accuracy Validation

The objective of this scenario is to evaluate the effectiveness
of SR on identifying MG dynamics. The model is trained on
a subset of the data (training set) and then evaluated on the
remaining subset (validation set). The aim is to assess how
well SR performs under different excitation conditions (on

unseen or new data) in the control signal. Fig. 7, illustrates
the training phase of the model, subjected to constant inputs
and sinusoidal excitation, with a simulation time-step (sp)
of 0.0001 seconds. This corresponds to a training duration
of 0.5 seconds, yielding 50,000 samples. In the subsequent
validation phase, which also spans 0.5 seconds, the model is
tested against variable step references. The results in Fig. 7,
illustrate that the proposed SR approach accurately identifies
the nonlinear and linear dynamics of the DER. The achieved
MAPE stands at 0.38 % for the exemplary parameter 0, while
for the primary state (APv ) of the diesel generator, the MAPE
becomes 1.03 %. This outcome underscores the effectiveness
of the proposed SR technique in capturing the dynamics of the
DER components.
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Fig. 6. Impact of sparsity parameter on model identification.

C. Adaptive SR method for Retraining After Parameter
Changes

Fig. 8 illustrates the effectiveness of retraining the SR
for system identification during parameter changes, without
changing the candidate function matrix @ and the regularization
parameter n.

‘ Original signal =====-- Identified signal ‘
200
= 150 =
100 f
0 2 4 to 116 8 10
0.1 ["_
£ 005
0 L
0 2 4 to 16 8 10
Time (sec)

Fig. 8. Adaptive SR validation for retraining after parameter change.

The figure captures the critical moments for model retrain-
ing, specifically when divergences are observed between the
estimated (identified signal) and actual measurements (original
signal) in the time interval from to to ti1. Despite the parameter
changes, the SR model is promptly retrained with the same
® and 1, which allows for a rapid realignment of the model
parameters to accurately match the current dynamics of the
system. This quick re-adaptation underscores the robustness
of the SR model and its capacity to maintain precise system
identification even in the face of changing system conditions.
The effectiveness of this approach without the need to alter @
and n during retraining is a testament to the resilience of the
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Fig. 7. Comparative analysis of time Series data for training and testing
validation of a) DER and b) diesel generator performance based on SR
accuracy.

Table III. Resistor Parameter change in the DER.

Parameter Time (s) Value (©)
R 0<t<5 160 x 1073
5<t<10 200 x 1073

model’s initial configuration. Algorithm 3 provides a detailed
description of the retraining process used in this method.

D. Data-Driven Power Sharing Results Using NLMPC

To assess the efficacy of the proposed data-driven NLMPC
controller, time-domain simulations are conducted on an
islanded mode MG using the MATLAB Simscape power system
toolbox. Assuming full observability of states (x), the control

Algorithm 3: Adaptive SR Method Algorithm with
Divergence Time Identification

Data: Initial Data
Result: Retrain Model
Output: Divergence Times: to, t1
Collect initial data
Find initial model
to < None
t1 < None
while Process not finished do
Collect more data
if Current time is to then
Mark to as the beginning of divergence
else if Current time is t1 then
Mark t1 as the end of divergence
if Model diverged between to and t1 then
Update model to handle divergence
to < None
t1 < None
end
else if Model diverged and to, tiare None then
‘ Update model to handle unexpected divergence
end
if to is not None and t1 is None then
Continue collecting data to confirm end of
divergence

end
Check if process is finished

end

of three DGs was implemented using NLMPC to achieve the
desired active and reactive power levels (Pioaa and Qioad)-

To achieve effective power sharing while maintaining voltage
and frequency stability, it is essential to satisfy the power
sharing among DGs. Furthermore, considering Equations (15)
to (19), it is necessary to optimally control the set-points of
voltage and frequency for the two DERSs (represented by inputs
u2, ui for DER 1, and us, us for DER 2, respectively) in
order to meet the specified reference points for Pioag and Qioad
presented in Table IV, as shown if Fig. 9a. By generating these
optimal control actions by NLMPC, the terminal voltage and
frequency of the inverters (represented by states x2, x3 for
inverter 1, and x7, xs for inverter 2, respectively) are maintained
at desired levels, previously explained in subsection II.C, and
it is presented in Fig. 9b, enabling efficient power sharing
among the DERs. Moreover, Fig. 9b presents an insightful
comparison between data-driven NLMPC and physics-based
NLMPC, highlighting their striking similarity and validating
our model-free control approach.

Based on the analysis presented in Fig. 10, the allocation
of active and reactive power generation among all DERs is
achieved through the implementation of optimal control actions
generated by the NLMPC algorithm. Additionally, in order to
provide a clear demonstration of the adherence of DERs to
their assigned distribution allocation coefficients (calculated in
section I1.C), which is one of the objectives of the NLMPC
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Fig. 9. NLMPC control actions and outputs.

algorithm, Fig. 11 is presented. The figure consists of three
subplots, each representing a different droop coefficient: a =
1.1 in the first subplot, f = 5.8 in the second subplot, and
y = 1.08 in the last subplot. This figure depicts the relationship
between the generated power and the corresponding frequency
deviation, highlighting the effectiveness of the control strategy
in maintaining the desired droop characteristics of the DERs.
Fig. 12 presents the state trajectories of each DER, providing
a representation of their tracking performance. The trajectory
plots demonstrate the ability of all DERs to closely follow
the reference active power as evidenced by MAPE = 3.46%,
which is set equal to the active power of the load, as well as
the reference reactive power, which corresponds to the reactive
power of the load with MAPE = 1.48%. This successful
tracking performance is consistent with the values provided in
Table IV.

E. Data-Driven Power Sharing Results Using NLMPC Under
Real-world Load Pattern Scenario

In this section, we utilize a normalized real-world load
pattern obtained from [36] to evaluate the performance of

10

Table IV. Reference points

Parameter Time (s) Values  Units
Pt =Pioaa 0<t<15 160 kW
15<t=40 170
Qret = Qoad 0 <T=24 15 kVAR
24 <t=<40 18
I I
.80 P
‘:";40 2-‘-‘1"' .
R, . : ‘mf ‘
10 ] ]
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Fig. 10. Active and reactive power sharing among DERs.

the NLMPC algorithm. The load pattern, obtained from the
Northwest region of China on December 3rd, 2018, represents
the variations in Plead and Quad over a 24-hour period. Fig.
13 illustrates the control actions generated by the NLMPC
algorithm in response to the uncertain load pattern. Despite the
presence of load uncertainties, the system successfully adheres
to the permissible voltage and frequency boundaries, as depicted
in Fig. 14. This demonstrates the effective performance of the
NLMPC algorithm in regulating the MG operation under uncer-
tain load conditions. The DERs are able to track the reference
trajectories as shown in Fig. 15, indicating the accurate and
reliable performance of the NLMPC algorithm in achieving the
desired power sharing objectives with MAPE = 5.19% for
active power and MAPE = 1.75% for reactive power. Overall,
the results provide empirical evidence of the effectiveness of
the NLMPC algorithm in regulating the operation of the MG,
even in the presence of uncertain load patterns.

Fig. 16 depicts the time delay across 15 iterations (each
iteration is a complete solution of NLMPC), evidencing the
NLMPC algorithm’s steadfast adherence to the demands of
real-time operation. Execution times per control step exhibited
minimal variation, with the average around 0.012 seconds,
well within the system’s 0.001 sample time. This indicates the

0 5 10 15 20 25 30 35 40
Time (sec)

Fig. 11. Power sharing allocation based on droop gain calculation.
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F. Comparison between NLMPC and MPC-SL

— Entanin® Distinct comparison b -

< 400 ] ey || parison between NLMPC and MPC-SL methods
g - is shown in Fig. 17. The system consists of two DERs. Within
~ 380 this system, the load profiles are dynamic; specifically, Pioad
exhibits a step change from 79 kW to 102 kW precisely
< 400 ,_f-r-\"’L_r-—f"‘rﬂ_L._H__ at the t = 70 s, while Qioad adjusts from 11.4 kVar to
R ] iy 10 kVar at t = 100 s. The analysis depicted in the figure
= 380 highlights the NLMPC’s substantial efficacy over MPC-SL
in adhering to the reference trajectory for both real and
reactive power. Furthermore, NLMPC’s capability to regulate
transient responses—characterized by its attenuated overshoot
and undershoot phenomena—is notably pronounced when the
376 system encounters abrupt changes in reference values. This

= AR EEENEEEERE robust control is essential for maintaining system stability and
¥ 377 ensuring seamless power sharing in MG. Furthermore, Table V
E also presents a comparison of the computational time required
Tl for each MPC solution, where it can be observed that NLMPC,

o N < © © o N < O «© o N < . . . . . . .
T h = < & & « despite its enhanced precision, requires only a marginally higher
Fig. 14. Output voltage and frequency of DERs for real-world scenario. computational time compared to MPC-SL, underscoring its

efficiency in complex control scenarios.
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Table V. Quantitative Performance of MPC-SL and NLMPC

MPC-SL  NLMPC
Each time solution of MPC (sec)  0.008 0.012
MAPE of P,y tracking (%) 71.22 6.83
MAPE of Qe tracking (%) 63.10 5.71

VI. STABILITY ANALYSIS

A fundamental requirement for the reliable operation of
control systems is the establishment of bounded-input bounded-
output (BIBO) stability. For a given system, BIBO stability
is attained if, for every input function u(t) that is bounded
by a finite scalar My, i.e., sup,r |u(t)| < My, the resulting
output function y(t) also remains bounded within a finite
scalar My, such that sup,r |Yy(t)| < My. Here, T signifies
the time domain over which the system is analyzed. In the
context of nonlinear dynamics, represented by Equation (3),
BIBO stability necessitates the existence of a bounding function
g :R — R, ensuring [f(u(t))| < g(supser lu(t)|), and ssubject
to g being finite for all ||ullz-ry < Mu This can
be further formalized through the employment of Lebesgue
integrals within an LP space, thereby defining [|f(a) || zy(r) <
G(llu|l<ry), where G is a monotonically non-decreasing
function that correlates the supremum norm of the input to the
Lr-norm of the output.

To ensure the stability of a nonlinear inverter model, we
linearize it for eigenvalue analysis, as shown in the pole map
(Fig. 18), which illustrates the effect of parameter R on stability.
Poles A1 and A2 are located in the left half-plane, indicating
stable behavior; however, their positions are significantly
influenced by variations in the resistance R. This implies that
the stability of the system can be compromised by these two
poles as the value of R changes, particularly at R = 200e-3Q.
Meanwhile, poles A3, A4, and As near the imaginary axis
highlight a variable stability margin. In parallel, NLMPC
controllers enhance robustness by preemptively constraining
system outputs and inputs, as per Equations (18) and (17).
This predictive approach, essential for BIBO stability, adjusts
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control inputs u within set bounds to maintain output y(t)
stability, corroborated by the pole map analysis.

VII. REAL-TIME VERIFICATION

In discrete-time simulations, system states depend on previ-
ous time step values. Offline simulations aim to obtain results
as quickly as possible based on the computer power and
complexity of the model. Conversely, real-time simulations
require accurate system representation. To be valid, a real-time
simulation must replicate the system’s variables and outputs in
the same time as the actual system. The computation for each
time step should be shorter than its real duration, allowing the
simulator to manage operations like I/O for connected devices,
ensuring simulation relevance [37].

This section involves real-time implementation of data-driven
active and reactive power tracking, showed in Section V.D,
using NLMPC on the OPAL-RT testbed shown in Fig. 20.
The DERs with NLMPC control is first built in Simulink®
and compiled with RT-LAB. This model then operates on
an OP4510 real-time target CPU core. Control is managed
via a TCP/IP connection from the Simulink® GUI on the
main computer. Finally, we ensure that desired measurements
are relayed in real-time to a digital oscilloscope, utilizing the
analog outputs of the OP4510 target.

Fig. 19 illustrates that the real-time waveforms for the
reference tracking of P and Q using the SR NLMPC controller
are in tight agreement with their pre-simulated equivalents
depicted in Fig. 12. The real-time trajectories for Ppers and
Qoers (indicated by the blue curve) closely match those for
Pioad and Quoad (indicated by the red curve), demonstrating a
high degree of correlation. This observation validates the SR
NLMPC controller’s capability for precise real-time application.

VIII. CONCLUSION

This study highlights the effectiveness of the SR-based
NLMPC framework for identifying and controlling nonlinear
dynamics in MGs for the purpose of power sharing. By
employing the SR technique known as SR, the nonlinear
dynamics of a 3-DER MG were accurately captured. These
dynamics were then integrated into the NLMPC framework,
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Fig. 19. Validating active and reactive power tracking of NLMPC for the section V.D in Real-time simulation setup.

Fig. 20. Real-time simulation setup.

resulting in guaranteed tracking performance and the ability
to accommodate varying desired state values and constraints,
such as power balance equations and droop gains. Moreover,
when tested with real-world load patterns and considering
load uncertainty, the proposed data-driven NLMPC approach
showcased its resilience and suitability for practical MG appli-
cations with the MAPE = 5.19% for active power tracking
and MAPE = 1.75% for reactive power tracking over 24
hour for real-world load pattern scenario. Also, it outperforms
other MPC strategies that rely on successive linearization, with
a MAPE of 6.83% for active power and 5.71% for reactive
power. Hence, this study presents a promising approach that
combines data-driven identification with NLMPC, offering
accurate modeling and robust control for MGs.

A forthcoming objective is to validate the effectiveness of the
proposed data-driven NLMPC for MG control in a hardware-
in-the-loop setup. Additionally, a comparison between the
proposed NLMPC controller and conventional droop controllers
will be considered.
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