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Abstract—Model predictive control (MPC) is a closed-loop 
optimization framework that can solve the real-time control 
challenges of inverter-based distributed energy resources (DERs) 
in smart grids. This paper addresses the challenge of heavy 
reliance of model predictive controllers on physics-based dynamic 
models by proposing a data-driven MPC framework via sparse 
regression (SR) theory and nonlinear model predictive control 
(NLMPC) framework. Unlike existing approaches that rely on 
approximate models based on physical principles or experiments, 
the proposed framework directly captures the dynamics of the 
DERs using measurements. This capability enables power sharing 
among DERs and active/reactive load support with high precision. 
The framework can capture uncertainties and drift dynamics of 
DERs by updating the data-driven model on a timely manner for 
running the MPC for effective power sharing. By employing this 
approach, the overall effectiveness of active and reactive power 
sharing is enhanced without compromising voltage and frequency 
control. The proposed optimal control strategy is validated through 
real-time simulations conducted on a 3-DER microgrid (MG) using 
OPAL-RT. The results demonstrate the successful estimation of 
DER dynamics using the SR method and accurate power sharing 
through NLMPC. Furthermore, NLMPC not only achieves a high 
degree of precision in power tracking but also outperforms other 
MPC strategies that rely on successive linearization, with a mean 
absolute percentage error (MAPE) of 6.83% for active power 
and 5.71% for reactive power. 

Index Terms—Predictive control, Distributed energy resources 
(DERs), Sparse regression (SR), Nonlinear model predictive 
control (NLMPC), Power sharing. 

 

I. INTRODUCTION 

HE pursuit of carbon neutrality by 2050 has intensified 

the shift from conventional energy sources to renewable 

energy resources, with DERs playing a pivotal role in this 

energy transition. MGs are at the vanguard of this shift, 

emerging as a promising means to seamlessly integrate DERs 

with existing distribution networks, thereby enhancing the 

resilience and sustainability of the energy supply [1]. 

To maintain effective control within an MG, it is crucial 

to adhere to operational constraints, necessitating the design 

of an advanced multi-variable control approach. Traditionally, 

MG operations have relied on a three-tier hierarchical con- 

trol structure that includes primary, secondary, and tertiary 

controllers [2]. However, the dynamics of MGs and the 
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complexity of integrating various energy sources call for more 

sophisticated control strategies. Table I presents a comparison 

of Proportional-Integral (PI), Neural Network (NN)-based, 

and NLMPC approaches for MG energy management. PI 

controllers, while simple and robust for certain applications, 

do not inherently handle nonlinear models or constraints and 

lack optimal control capabilities [3]. NN-based controllers can 

manage nonlinearities effectively through learned behaviors 

from historical data; however, they are not intrinsically designed 

for handling constraints or optimizing control actions. Their 

efficiency in these areas heavily depends on the extent and 

diversity of the data they have been trained on, without which 

their ability to satisfy operational constraints and achieve 

optimal performance may be compromised [4], [5]. The 

proposed MPC excels in managing MG energy systems by 

proficiently handling nonlinearities, constraints, and optimizing 

control. It ensures reliable power distribution for both active 

(P) and reactive (Q) demands and is adept at operating within 

complex multi-input and multi-output (MIMO) environments. 

The predictive nature of MPC, which forecasts and adjusts 

to future system changes, significantly bolsters the system’s 

adaptability and resilience, making it a robust solution for the 

dynamic challenges in MG management. [6], [7]. 

Several studies, including those conducted by [8], [9], 

[10], [11], have identified the potential of MPC for enabling 

effective secondary control in microgrids. Authors in [8], 

proposed MPC approach to ensure frequency stability in low 

inertia power systems. In [9], a decentralized control approach 

utilizing MPC with V-I droop method to enhance power 

quality in MG is presented. What is more, [10], introduces a 

decentralized control strategy for multiple DGs by integrating 

a voltage controller using MPC with a rapid current controller 

utilizing discrete-time sliding-mode control to manage inverter 

currents during overload situations. A centralized control 

system for MGs, coordinating DERs through MPC algorithm 

that optimizes steady-state and transient control separately, 

while also implementing an energy management system to 

coordinate load sharing is introduced in [11]. While these 

approaches demonstrate accurate steady-state tracking and 

exhibit robust and fast transient characteristics, they have not 

fully accounted for the nonlinear behavior of the DER model. 

Furthermore, their approach relies on a linear model predictive 

controller, while MGs exhibit nonlinear characteristics. 

To overcome these challenges, our research introduces a 

centralized NLMPC approach tailored for microgrid systems. 

NLMPC excels in handling continuous control variables, vital 

for real-time power sharing and load balancing in microgrids 
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Table I. Comparison between the controllers for MG energy management. 
 

Characteristics/ 

Controller 
Ref. 

Nonlinear model 

handling 

Constraints 

handling 

Optimal control 

handling 
Dispatchability 

P, and Q load and 

demand satisfying 

MIMO system 

handling 

Real-time 

implementation 

PI [3] × × × × × × ✓ 

NN-based [4], [5] ✓ × × ✓ ✓ ✓ ✓ 

NLMPC Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

Table II. Comparison between the state-Of-the-art model identification method. 
 

 
Ref. 

 
Method 

Non-linear 
Closed-form 

Model 
Solution 

Grey-box 

  Identification   

[12], [13] Hammesterian × × ✓ 

[14], [15] NN ✓ × ✓ 
[16] Iterative Least-square ✓ ✓ × 
[17] Physics-informed NN ✓ × × 

[18], [19], [20] DMD × × × 

Proposed SR ✓ ✓ ✓ 

 

 

in contrast to the discrete (integer) control sets of finite control 

set MPC (FCS-MPC) [21], aligns better with the dynamic 

requirements of our microgrid, facilitating effective and flexible 

management of power distribution and load balance. 

Nonlinear controllers, such as NLMPC have emerged as 

effective solutions for managing MGs, offering predictable 

performance across a wide range of operating conditions. As an 

example, real-time implementation of rapid secondary control 

utilizing NLMPC was proposed in [22]. Nonetheless, the 

proposed approach only considered conventional MG structure 

with simplified dynamics of synchronous generators and did 

not account for DERs and their dynamics. In addition, the 

heavy reliance of conventional NLMPC techniques on accurate 

dynamic models of assets make it very challenging for real- 

time control of MGs that have various assets with different 

topologies and dynamic models. Hence, the absence of accurate 

models poses significant obstacles for employing NLMPC- 

based control in MGs that incorporate DERs for the purpose 

of power sharing. The main research question in this paper 

is “can data-driven modeling techniques resolve the modeling 

challenge of NLMPC approaches for MG control?” 

Recent machine learning advancements have introduced di- 

verse methodologies for modeling dynamic systems, as detailed 

in a comprehensive comparison in Table II. These include 

Hammesterian, neural networks (NN), physics-informed neural 

networks, Iterative least-square, dynamic mode decomposition 

(DMD), and SR [23]. Each method varies in its ability to 

identify non-linear models, provide closed-form solutions, and 

the extent of prior knowledge dependency. For instance, the 

Hammerstein model [12], [13], lacks in non-linear identification 

and closed-form solution, yet offers grey-box insights, while 

NN methods ([14], [15],[17]) excel in non-linear identification 

but fall short in providing closed-form solutions, with varying 

degrees of transparency in their modeling process. Among 

these, SR stands out for its proficiency in non-linear model 

identification, offering closed-form solutions within a grey-box 

framework, marking a significant methodological advancement. 

In contrast, DMD ([18], [19], [20]) primarily supports linear 

dynamics and lacks both a closed-form solution and grey-box 

classification. The Iterative Least-square method [16] strikes 

a balance with its non-linear model identification and closed- 

form solution, though it doesn’t qualify as a grey-box model. 

Additionally, SR’s capability to work with limited data, its 

fast convergence, reduced training time, and interpretability 

positions it as a favorable option compared to other model 

identification methods [23]. As a result, the main contribution 

of this paper is to develop a data-driven NLMPC framework for 

MGs using SR theory. To the best of our knowledge, no existing 

studies have explored a data-driven NLMPC for MG control 

that can solve the heavy reliance of MG MPC techniques on 

accurate physics-based models. 

In this paper, we address the limitation of previous stud- 

ies by developing a data-driven NLMPC approach for MG 

control. Specifically, the paper enumerates its distinguished 

contributions as follows: 

1) This paper presents a novel model identification method 

for both nonlinear and linear DERs in smart grids. 

Compared with deep learning approaches, the proposed 

method utilizes available DER measurements and elimi- 

nates the need for extensive training. 

2) By employing a data-driven framework, we simplify the 

complex physics-based DER modeling approach com- 

monly used, while still providing a scalable framework 

for DER control. This framework effectively addresses 

power sharing issues observed in conventional DER 

control. 

3) Obtained data-driven DER models in this study will be 

utilized to develop a comprehensive framework for MG’s 

NLMPC control. This framework enables simultaneous 

control of the primary and secondary layers of the MG. 

By integrating both layers into a single framework, the 

control capabilities of the MG are enhanced and the 

control design is simplified (compared with conventional 

hierarchical controllers). 

4) The robustness of the proposed data-driven NLMPC 

is demonstrated, exhibiting superior performance in 

comparison to a MPC controller that utilizes successive 

linearization. 

5) The experimental applicability of the proposed data- 

driven NLMPC control has been validated using OPAL- 

RT real-time simulation technologies, confirming its 

effectiveness and reliability for real-world, real-time 

operations. 

The paper is outlined as follows: Section II covers the 

proposed methodology with MG modeling. Section III focuses 

on the data-driven modeling of the MG consist of DERs and 

diesel generator using SR. Design of data-driven controller is 

discussed in Section IV. Section V includes the case studies, 

and finally, section VI concludes the paper. 
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Fig. 1. The proposed schematic of SRc-based NLMPC framework for active and reactive power sharing. 

 

II. METHODOLOGY 

A. Proposed Model Description 

Fig. 1 presents an illustrative depiction of the proposed 

detailed dynamics. This model is validated against more 

detailed models, as explored in [24] ensuring its reliability 

for stability assessment in MGs. The model is described by 

the following set of equations: 
methodology for data-driven model identification utilizing SR 

in conjunction with NLMPC. We opted for NLMPC over other θ˙ = ω(t) − ω0 (1a) 

MPC approaches including distributed MPC or finite control 

MPC due to the fact that microgrids are controlled centrally as 
τ ω  ̇= ω 

 
set 

(t) − ω(t) − 
kpω0 

P 
Sn 

m 
(t) (1b) 

well as suitability of NLMPC in a centralized control context, 

particularly for managing the three main resources of our 
τ V̇ = Vset 

(t) − V (t) − 
kq 

Q 
Sn  

m 
(t) (1c) 

microgrid system. The system under consideration closely 

resembles an islanded MG and comprises two inverter-based 

resources, one diesel generator, and local loads. 

Initially, the SR technique is employed to identify the 

dynamic model of the solely through measured data. Sub- 

sequently, the identified dynamics which can be represented 

by x̂ ( k  + 1) = f̃ ( x̂ ,  u) are integrated within the NLMPC 

framework, thereby facilitating the formulation of a data-driven 

optimal control problem with power sharing and load balancing 

features embedded as constraints of the optimization. The 

control inputs obtained from the NLMPC formulation, denoted 

as uj, are sent to the MG in close to real-time for dispatching 

the assets. In the following sections, physics-based modeling of 

MG will be included as a ground truth for data-driven methods. 

 

B. Microgrid Modeling 

1) Modeling of the Inverter-based resources: For the inverter- 

LI˙d = V (t) cos θ(t) − V0 − RId(t) + ω0LIq(t) (1d) 

LI˙q = V (t) sin θ(t) − RIq(t) − ω0LId(t) (1e) 

where V (t) in V and θ(t) in radians, represent the instantaneous 

effective terminal voltage and phase angle of the DER, 

respectively. Also, ω(t) in radian/s denotes the frequency of 

the DER and Id(t) and Iq(t) in A represent the dq-frame 

components of the DER’s output current. The model also 

incorporates the low-pass filters in the inverter power control 

system, which is characterized by the bandwidth wc = τ−1, 

and kp and kq are the frequency and voltage droop gains, 

respectively. The parameters of the this DER are further shown 

in Table VI. 

Furthermore, Sn represents the DER rating, while ωset(t) 
and Vset(t) are the set points of frequency and voltage 

controllers considered as inputs of the DER. Measured 

instantaneous active and reactive powers, Pm(t) and Qm(t), 
are given by Pm(t) = 3 V (t)Id(t) and Qm(t) = − 3 V (t)Iq(t). 

2 2 

based resource model, a voltage source inverter with droop 

control is considered (see Fig. 2). The DER’s effective terminal 

voltage and phase angle after passing through the LC filters are 

represented as V ∠θ. Our chosen 5th-order reduced-order model 

in the dq frame is based on a balance between computational 

efficiency and the ability to accurately capture the inverter’s 

Finally, L = Lc +Ll in mH and R = Rc +Rl in mΩ represent 

the combined inductance and resistance at the DER terminal. 

 

2) Modeling of the Diesel Generator: In this study, the 

generator model is represented by its load frequency control 

(LFC) loop, focusing on its contributions to the active power 
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(b) 

Fig. 2. Overview of inverter-based resource control system: (a) displays the 
configuration of the DER with an inverter, and (b) details the droop control 
mechanism. 

 

 

and frequency regulation in islanded MGs. Fig. 3 shows the 

LFC loop composed of a governor, prime mover load, and 

rotating mass model presented in state-space form as [25]: 

(b) 

Fig. 3. Schematic overview of diesel generator load frequency control: (a) 
presents the block diagram of the automatic load frequency control system, and 
(b) illustrates the detailed control loop components for the diesel generator. 

 

 

and f (x) defined on the top of the page and g(u) is defined 

as 

0 0 0 0 0 
 1 0 0 0 0 
 τ1 

 1  
∆˙P  1   1   1  

= − ∆P (t) − ∆ω (t) + ∆P (t) (2a)  τ1 
0 0 0  

v 
Tg 

v 

1 
RTg d 

1 
Tg 

ref 
0 0 0 0 0 

 0 0 0 0 0  
∆Ṗ  

m = T ∆Pv(t) − 
T

 ∆Pm(t) (2b) g(u) =  0 0 0 0  (5) 

∆˙ωd = 

T 
1 

∆Pm(t) − 

T 
D 

∆ωd(t) − 
1 

∆PL(t) (2c) 

τ2 

0 0 0  1 0 
  

2H 2H 2H 0 0 0 0 0  0 0 0 0 0  

where [∆Pv(t) ∆Pm(t) ∆ωd(t)]T are states of the diesel gen- 

erator and ∆PL(t) is the input of the system with ∆Pref(t) = 0 

[25]. In the above equations, the input governor’s command 

∆Pg is converted into a steam valve position ∆Pv, the governor 

time constant Tg in seconds characterizes the response time 

of the governor, and the TT in seconds represtents turbine 

time constant. The prime mover model, denoted as ∆Pm, 

establishes a relationship between the mechanical power output 

and variations in the steam valve position ∆Pv. 

 

C. Control Oriented Model 

 
0 0 0 0 0  

0 0 0 0 ∆PL 

To achieve efficient power sharing, it is crucial to satisfy 

the load balance constraint, which can be expressed as 

Pload(t) = Pinv1(t) + Pinv2(t) + Pdiesel(t) 
(6)

 

Qload(t) = Qinv1(t) + Qinv2(t) 

In the given context, the variables Pload(t) and Qload(t) 
represent the active and reactive power of the load, respec- 

tively. The active power measurements of DERs are given 

by Pinv1(t) = 3 V1(t)Id1(t) and Pinv2(t) = 3 V2(t)Id2(t). The 
2 2 

It was shown that each DER is characterized by 5 dynamical 

equations, while the diesel generator contributes 3 dynamical 

equations. Consequently, the overall plant of the system 

diesel generator’s measured active power is represented by 

∆Pm(t). Similarly, the reactive power of DER1 and DER2 

are Qinv1(t) = −3 V1(t)Iq1(t) and Qinv2(t) = −3 V2(t)Iq2(t), 2 2 

encompasses a total of 13 dynamical equations formulated 
as: 

respectively. Equation (6) can be reformulated as Pload = 
3 x3x4 + 3 x8x9 +x12 and Qload = −3 x3x5 + −3 x9x10, which 
2 2 2 2 

 

 
where 

x˙ = f (x) + g(u) + d 

y = h(x) 
(3) 

can be presented as y = h(x) of the problem [26]. 

In order to ensure the feasibility of the system operation, 

the generation capacities of the MG components must be taken 

into account as constraints. The active power constraints are 

x =[θ1 ω1 V1 Id1 Iq1 θ2 ω2 V2 Id2 Iq2 ∆Pv ∆Pm ∆ωd]T 

u =[ωset1 Vset1 ωset2 Vset2 ∆PL]T
 

d =[ω0 0 0 V0 0 ω0 0 0 V0 0 0 0 0]T 
(4) 

outlined as:  

Pinv1,min ≤ Pinv1(t) ≤ Pinv1,max 

Pinv2,min ≤ Pinv2(t) ≤ Pinv2,max 

Pdiesel,min ≤ Pdiesel(t) ≤ Pdiesel,max 

 

 

(7) 

 

(a) 

 

 1 
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= 
∆Q 

2 τ1 
2 Snτ1 

3 4 τ1 
3 Snτ1 

3 5 

L1 L1 L1 L1 

τ2 
7 Snτ2 

8 9 τ2 
8 Snτ2 

8 10 L2 
8 6 L2 

9 0 10 

1 1 2 1 nx 1 

 . . 
. . . .  

 . . 
. . . .  

∆P 

x 

˙ 

 
   

x ,    −  1 x + 
kp1 

ω0 x x , −  1 x + 
 kq1  x x , 

T
 

 − 1 x3 cos(x1) + R1 x4 + ω0x5, − 1 x3 sin(x1) + R1 x5 + ω0x4, x7,  
f (x) =  −  1 x + 

kp2 
ω0 x x , −  1 x + 

 kq2  x x , −  1  x cos(x ) + R2 x + ω x  ,  

− 1 x8 sin(x6) + R2 x10 + ω0x9, −  1  x11 −  1  x13,  1  x11 −  1  x12,  
L2 L2 

 1  x12 −  D x13
 

Tg CTg TT TT 

2H 2H 

 

Similarly, the reactive power constraints can be expressed as: 

Qinv1,min ≤ Qinv1(t) ≤ Qinv1,max 
(8)

 

Qinv2,min ≤ Qinv2(t) ≤ Qinv2,max 

To ensure microgrid stability, it is essential to set appropriate 

x(t) and u(t), necessitating the numerical approximation of 

the derivative measurements x˙ (t). The process begins with 

sampling the measurement data at intervals t1, t2, . . . , tm, 

which are then systematically organized into a matrix, as 

follows: 

active (Kp) and reactive (Kq) droop gains to maintain energy  
x (t ) x (t ) . . . x  (t )  

bounds are defined such that voltage and frequency should 

 

x1(t2) x2(t2) . . . xnx (t2) 
X =   (9) 

∆V and ∆ω, respectively. The droop gains are calculated using 

the formulae Kp ∆ω and Kq = ∆V . Here, ∆P and ∆Q 
x1(tm)  x2(tm)  . . .  xn (tm) 
 
u1(t1) u2(t1) . . . un (t1)  

denote the capacity limits of the DERs in active and reactive 

power, respectively. These capacities are critical in ensuring 

u 

u1(t2) u2(t2) . . . unu (t2) 
U =   

 
(10) 

 

stability constraints. 

Additionally, power distribution allocations are directly 

u1(tm)  u2(tm)  . . .  unu (tm) 

influenced by these calculated droop gains. The allocations To identify the dynamics from data (X, U ), Ẋ is also needed. 

are based on preliminary assessments and are represented by 

equations αPinv2(t) = Pinv1(t), βPdiesel(t) = Pinv1(t), and 

γQinv2(t) = Qinv1(t). The coefficients α, β, and γ were 

determined through these assessments to ensure optimal power 

In this work, the central difference approximation is adopted 
due to its superior accuracy when dealing with smooth functions 

[23]. Accordingly, the derivative matrix X˙ is approximated as: 

sharing among different generation sources. This takes into 

account their capacity, efficiency, and response characteristics 

to maintain system stability under varying load conditions. The 

X(j + 1) − X(j − 1) 
X ≈ 

2sp 
(11) 

values of α, β, and γ have been set as 1.1, 5.8, and 1.08, 

respectively, to achieve this balance. 

 

III. SR FOR IDENTIFYING MICROGRID DYNAMICS 

In this section, we apply the SR algorithm as a data- 

driven model identification step within the proposed NLMPC 

framework. The process of determining the governing equations 

from measured data involves three distinct steps, which are 

outlined in the following. 

 

A. Preparing Data for Identifying the Governing Equations 

Most dynamical systems are represented by differential 

equations in the form x˙ = f (x, u). These systems typically 

have a relatively small number of terms on the right-hand 

side. To prepare data for measurement, we introduce small 

perturbations to the input data—specifically, applying sine 

waves that do not exceed 10% of the nominal values (as 

detailed in [28]), This approach facilitates the acquisition of m 
measurement samples, encompassing states, derivatives, and 

inputs from the DERs and diesel generator. Consequently, 

the dynamics of the MG can be deduced. This is achieved 

by employing a library of potential functions, denoted as 

Θ ∈ m×p, where p is the count of functions within the library 

[23]. In most practical systems, access is typically limited to 

Here, X(j + 1) denotes the measured data at sample j + 1, 

and sp represents the sampling time of the simulation or data 

collection platform. 

 

 

B. Establishing Candidate Nonlinear Functions 

In this step, a collection of candidate functions (Θi(X, U )) 

can be assembled to effectively capture the temporal variations 

of the state variables. In situations where prior knowledge 

of the system’s dynamics is lacking, it becomes necessary to 

select an expanded set of candidate functions that encompasses 

all potential functions. It is notable that, in the context of 

MGs, the function f (x, u) exhibits sparsity in the space of 

all potential candidate functions, as only a limited number of 

nonlinear terms are present, such as V sin θ, and V cos θ [29]. 

The derivative data of the states , obtained using the measured 

data X ∈ m×nx , can be expressed as a linear combination of 

columns from a candidate function library, such as polynomials 

or sinusoids using the entries of the matrix Ξ ∈ p×nx in 

equation (12): 

X˙ = Θ(X, U )Ξ. (12) 

 

Typical candidate functions include monomials and trigono- 

metric functionspresented in equation (13): 

remain within ±5% of their nominal values [27], represented by 

resources within specified voltage and frequency bounds. These 

that the DERs can effectively manage their output within these 
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Qj Rj 

  

 

 
 

 
 

 

ΘT (X, U ) =  

 

 

1 

X 
X2 

U 

. 

sin(X, U ) 
cos(X, U ) 

X sin(X, U ) 

. 

 
 

 

 

 
 

 (13) 
 

 
 

 

 
 
 
 
 
 
 
 
 

 
Fig. 4. Schematic diagram of the MPC controller. 

 

 

the controlled system model and the present state values. Subse- 

C. SR Algorithm 

After estimating X˙ and determining Θ(X, U ) using 

the available X and U data, data-driven dynamics X˙ = 

Θ(X, U )Ξ can be obtained by solving for the sparse matrix 

of coefficients in Ξ. This matrix represents the active terms 

in the dynamics of X˙ , which is accomplished by solving an 

optimization problem as shown in equation (14). 

quently, an optimization algorithm is employed to generate an 

optimal sequence of control actions over a prediction horizon 

[31]. In this study, in order to control the model obtained 

through the SR technique, NLMPC will be employed to regulate 

and control the MG assets. The objective of utilizing NLMPC 

is to achieve power balance while ensuring that voltage and 

frequency remain within permissible limits. 

 

ξi = arg min ξˆ 1 
||Ẋ − Θ(X, U )ξˆ || + η||ξˆ || (14) A. SR with optimal control problem formulation (SRc) 

 
 

i 
2 

i i 2 i 0 

where, ξ represents the i-th column of Ξ denoted by MPC minimizes a tracking error, aligning system states 

Ξi = 

i 
T 

ξ1 ξ2 . . .  ξp . The term X˙ 
i corresponds to the 

with desired set-points, while also reducing controller rate 
of change for increased longevity [32]. To achieve these 

i- th column of X˙ . The objective function in equation (14) 

minimizes the error between the actual derivatives X˙ and 

the estimated derivatives obtained through a least-squares 

problem using the calculated ξi. The minimization is performed 

using the L2 norm || · ||2. Furthermore, the L0 norm || · ||0 

is employed to minimize the number of nonzero elements 
in ξi, promoting sparsity in the coefficient matrix Ξ. The 
regularization parameter η plays a crucial role in controlling 

objectives, the system’s dynamics, obtained using the SR 

method, can be represented by ẋ̂ = Θ ( x̂ ,  u)Ξ and discretized 
for implementation in the MPC framework expressed by 

x̂ ( k  + 1) = f̃ ( x̂ ,  u). By integrating the MG’s data-driven 

dynamics described as x̂ ( k  + 1) = f̃ ( x̂ ,  u) with the inclusion 
of physical and droop constraints imposed on the states, the 
ultimate formulation of the NLMPC is presented as follows: 

the degree of sparsity in the solution and can be fine-tuned 

through hyper-parameter tuning techniques [30]. 

min 
uk,...,uk+Np−1 

Np−1 

J(k) := (15) 

 

Algorithm 1: SR-Based Model Identification 

Data: X, U (Measurements) 

L 
∥ŷ (k + j) − yref (k + j)∥2 + ∥∆u(k + j)∥2 

Data: Ẋ  (Estimated derivatives) 
Result: Sparse matrix Ξ 

Compute the coefficient matrix: Ξ = Θ \ Ẋ 
ε = 1 : T do 

 

for 
 

 

Set the sparsity parameter: η Find indices of small 

coefficients: indsmall = |Ξ| < η; 

Set small coefficients to zero: Ξ(indsmall) ← 0; 
for ε = 1 : nx do 

Find indices of remaining coefficients: 

indbig ̸= indsmall(:, ε); 

Update remaining coefficients: 

Ξ(indbig, ε) = Θ(:, indbig) \ X˙ (:, ε); 
end 

end 

 

 
where, the notation Np ∈ + represents the prediction horizon, 

while k := kts ∈ + denotes the current time step based on 
the sampling time ts. The penalty weights for the states and 

control inputs are denoted by Q ≻ 0 and R ≻ 0 respectively. 

The variables x̂ ( k )  ∈ nx , u(k) ∈ nu , and ∆u(k) ∈ nu 

represent the states, input, and rate of change of input at time 

step k respectively. The desired set-points are represented by 
yref ∈ nx which is the function of x̂ (k ) .  Furthermore, x, u, 

x, and u correspond to the minimum and maximum values for 
the states and control inputs respectively. Lastly, the function 

IV. DATA-DRIVEN CONTROL DESIGN 

Fig. 4 provides an illustrative representation of MPC ap- 

proach. The prediction model is constructed by incorporating 

f˜: nx+nu → nx denotes the discretized prediction model, 

which exhibits varying formulations and is further elucidated 

in the next subsection. 

s.t. 

j=0 

x̂ (k + j + 1) = f̃ (x̂ (k + j), u(k + j)), (16) 

 j = 0, 1, . . . , Np − 1  

u ≤ u(k + j) ≤ u, j = 0, 1, . . . , Np − 1 (17) 

y ≤ ŷ (k + j) ≤ y, j = 1, 2, . . . , Np (18) 

x̂ 0 = xplant(k0)  (19) 
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1) Nonlinear MPC: NLMPC relies on a direct utilization of 

the discretized nonlinear dynamics of the system x(k + 1) = 

f̃ (x(k), u(k)). Consequently, the prediction model over next 

Np prediction horizons can be written as (16). The algorithm 

for the implementation of the proposed SR-based NLMPC for 

MG control in this study can be found in algorithm 2.  To 

pliers for the associated equality and inequality constraints are 

denoted as λ ∈ m and µ ∈ n, respectively. 

The formulation of the QP subproblem involves the approx- 

imation of the Lagrangian function given in equation (20), as 

well as the linearization of the nonlinear constraints specified 

in equation (21). 
 

Algorithm 2: SR-based NLMPC (SRc) 1 
min pT H p + ∇f(x )T p (21a) 

 
 

Data: Np, Q, R, T, nx, nu, xref , f (x, u) 
Initialize x0 ∈ nx , u0 ∈ nu , k = 0; for 

k = 0 to T − 1 do 

▷ Simulation time 

for j = 0 to Np − 1 do 

Define and discretize the state space model; 

Construct the data-driven model; Formulate the 

quadratic cost function: J(x(k + j), u(k + j)), 
in equation (15); 

end 

Solve the optimization problem by minimizing J(k) 

subject to the dynamic and state constraints 

defined in Eqs. (16)–(18); 
Extract the optimal control sequence 

[u∗(0|k), . . . , u∗(Np − 1|k)]; 

Apply only the first control action u∗(0|k); 

Predict the next state x(k + 1|k) using 
equation (16); 

Update the initial conditions for the next iteration: 

x0 = x(k + 1|k) and u0 = u∗(0|k); 
end 

 

 

solve this NLMPC problem in equations (15) to (19), sequential 

quadratic programming (SQP) was utilized. SQP is an iterative 

technique widely employed for solving nonlinear constrained 

optimization problems by sequentially solving a series of 

quadratic programming (QP) sub-problems, as described in 

equation (21) [33]. The SQP algorithm initiates with an initial 

estimate xk for a given iteration index k, and it advances 

through iterative updates given by xk+1 := xk + αpk, where 

pk denotes the search direction. The updated estimate xk+1 is 
subsequently utilized to solve the QP sub-problem, yielding p 
as the solution. This iterative process generates a sequence of 

xk values, aiming to converge towards a local minimum x∗ 
as the iteration count k approaches infinity. 

The decision variables (xk) for the formulated nonlinear 
optimization problem encompass the rate of change of the 

control input (∆U ∈ nuNp) and the states (X ∈ nxNp). 

The Lagrangian function associated with the nonlinear problem 

presented in equations (15)-(19) is defined as[33]: 

p∈Rm 2 k k 

s.t.  ∇gi(xk)T p + gi(xk) = 0, ∀ i ∈ I (21b) 

∇gj(xk)T p + gj(xk) ≤ 0, ∀ j ∈ J (21c) 

where p represents the search direction originating from the 

QP subproblem and Hk denotes the Hessian matrix derived 

from Eq. (20). 

Subsequently, the solution to the QP subproblem, denoted as 

pk, is utilized to generate a new iterate xk+1 := xk + αkpk. 

The determination of the appropriate step size αk is crucial 

to ensure a significant reduction in a merit function, which 

measures the quality of the solution obtained during each 

iteration. 

2) MPC using successive linearization (MPC-SL): In the 

MPC-SL method, a linear time-varying (LTV) model is utilized, 

derived through successive linearization in the prediction model. 

This method performs ”online linearization” in each iteration, 

based on the current operational points. The prediction model, 

covering a span of Np, is integrated into (15) to determine 

optimal control actions for the nonlinear controlled system. 

The formulation of MPC-SL is referenced in [34], [35]. Two 

main steps should be applied for this method: 
 

Fig. 5. Schematic diagram of the MPC controller using successive linearization. 

 

(1) The state-space representation for the MG is formulated 

using a linear approximation of the predicted continuous 

nonlinear system dynamics. 

Remark. The model is first linearized offline, based on its 

operating points. Subsequently, for the implementation of MPC- 
m p SL, the system dynamics are linearized at each specific time 

L(x, λ, µ) := f(x) + 
L 

λihi(x) + 
L 

µjgj(x) (20) instant k around the operating points. 

i=1 i=1 
(2) The continuous state-space representation of the system 

where the functions h : n → m and g : n → p represent 

the equality and inequality constraints, respectively, derived 

from the concatenation of (16)-(18). Furthermore, n, m, and p 
denote the number of decision variables, equality constraints, 

and inequality constraints, respectively. The Lagrangian multi- 

will be discretized. This process transforms the system into a 

discrete-time model, expressible as x(k + 1) = A(k)x(k) + 

B(k)u(k). 

During the MPC-SL implementation, steps (1) and (2), are 

repeatedly conducted by linearizing the system around the 
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L 

L 
A (k)B(k) ∈  corresponds to the 

 

measurement of the current states and the previous control 

inputs (x0|k, u0|k) for all k ∈ {0, . . . , T − 1} (Fig. 5). Hence, 

the prediction model is expressed as follows: 

j−1 

x(k + j) = Aj(k)x(k) + Ai(k)B(k)u(k + i) 
i=0 

+(I + A(k))j−1Γ(k)  ∀ j ∈ {1, . . . , Np} (22) 

where Aj(k) ∈ Npnx×nx signifies the time-varying 

prediction matrix linked with current states measurement, 
j−1 i Npnx×Np(nx+nu) 
i=0 

time-varying prediction matrix associated to the control se- 
quence, and (I + A(k))j−1 ∈ Npnx×nx represents the pre- 

diction matrix of the affine term stemming from linearization. 

 

V. SIMULATION RESULTS 

To assess and verify the applicability of the proposed SRc- 

based NLMPC approach for MG control, a representative MG 

system as depicted in Fig. 1 (plant side) is employed. The 

model is initially learned from available data and subsequently 

utilized in control optimization using NLMPC. In this section, 

five scenarios are conducted to evaluate the effectiveness of 

SRc-based NLMPC. 

 

A. Impact of Sparsity Parameter (η) 

In SR, the sparsity parameter (η) regulates model sparsity, 

controlling the number of non-zero coefficients in the coefficient 

matrix (Ξ) that represents dynamics. Optimal η balances 

complexity and accuracy, preventing underfitting or overfitting. 

As a consequence, choosing an appropriate value for η is crucial 

in balancing model complexity and accuracy. In this scenario, 

two distinct values of the sparsity parameter were examined. 

Through a comprehensive analysis, it was determined that for 

the DER model, η = 0.0001 yielded more accurate results, as 

depicted in Fig. 6. 

 

 
 

 

 

 

 
  

  
  

 

 

 
Fig. 6. Impact of sparsity parameter on model identification. 

 

 

C. Adaptive SR method for Retraining After Parameter 

Changes 

Fig. 8 illustrates the effectiveness of retraining the SR 

for system identification during parameter changes, without 

changing the candidate function matrix Θ and the regularization 

parameter η. 

 

B. SR Accuracy Validation 

The objective of this scenario is to evaluate the effectiveness 

of SR on identifying MG dynamics. The model is trained on 

a subset of the data (training set) and then evaluated on the 

remaining subset (validation set). The aim is to assess how 

well SR performs under different excitation conditions (on 
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8 10 

unseen or new data) in the control signal. Fig. 7, illustrates 

the training phase of the model, subjected to constant inputs 

and sinusoidal excitation, with a simulation time-step (sp) 

of 0.0001 seconds. This corresponds to a training duration 

of 0.5 seconds, yielding 50,000 samples. In the subsequent 

validation phase, which also spans 0.5 seconds, the model is 

tested against variable step references. The results in Fig. 7, 

illustrate that the proposed SR approach accurately identifies 

the nonlinear and linear dynamics of the DER. The achieved 

MAPE stands at 0.38 % for the exemplary parameter θ, while 

for the primary state (∆PV ) of the diesel generator, the MAPE 

becomes 1.03 %. This outcome underscores the effectiveness 

of the proposed SR technique in capturing the dynamics of the 

DER components. 

Fig. 8. Adaptive SR validation for retraining after parameter change. 

 

The figure captures the critical moments for model retrain- 

ing, specifically when divergences are observed between the 

estimated (identified signal) and actual measurements (original 

signal) in the time interval from t0 to t1. Despite the parameter 

changes, the SR model is promptly retrained with the same 

Θ and η, which allows for a rapid realignment of the model 

parameters to accurately match the current dynamics of the 

system. This quick re-adaptation underscores the robustness 

of the SR model and its capacity to maintain precise system 

identification even in the face of changing system conditions. 

The effectiveness of this approach without the need to alter Θ 
and η during retraining is a testament to the resilience of the 

6 
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(a) 

Algorithm 3: Adaptive SR Method Algorithm with 

Divergence Time Identification 
 

 

Data: Initial Data 
Result: Retrain Model 

Output: Divergence Times: t0, t1 
Collect initial data 
Find initial model 

t0 ← None 

t1 ← None 
while Process not finished do 

Collect more data 

if Current time is t0 then 

Mark t0 as the beginning of divergence 

else if Current time is t1 then 

Mark t1 as the end of divergence 

if Model diverged between t0 and t1 then 

Update model to handle divergence 

t0 ← None 

t1 ← None 
end 

else if Model diverged and t0, t1are None then 

Update model to handle unexpected divergence 

end 

if t0 is not None and t1 is None then 

Continue collecting data to confirm end of 
divergence 

end 

Check if process is finished 

end 

 

 
 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 7. Comparative analysis of time Series data for training and testing 
validation of a) DER and b) diesel generator performance based on SR 
accuracy. 

Table III. Resistor Parameter change in the DER. 
 

Parameter Time (s) Value (Ω) 
 

 

R 0 < t ≤ 5 160 × 10−3
 

5 < t ≤ 10 200 × 10−3 
 

 

 

 

model’s initial configuration. Algorithm 3 provides a detailed 

description of the retraining process used in this method. 

 

D. Data-Driven Power Sharing Results Using NLMPC 

To assess the efficacy of the proposed data-driven NLMPC 

controller, time-domain simulations are conducted on an 

islanded mode MG using the MATLAB Simscape power system 

toolbox. Assuming full observability of states (x), the control 

of three DGs was implemented using NLMPC to achieve the 

desired active and reactive power levels (Pload and Qload). 

To achieve effective power sharing while maintaining voltage 

and frequency stability, it is essential to satisfy the power 

sharing among DGs. Furthermore, considering Equations (15) 

to (19), it is necessary to optimally control the set-points of 

voltage and frequency for the two DERs (represented by inputs 

u2, u1 for DER 1, and u4, u3 for DER 2, respectively) in 

order to meet the specified reference points for Pload and Qload 

presented in Table IV, as shown if Fig. 9a. By generating these 

optimal control actions by NLMPC, the terminal voltage and 

frequency of the inverters (represented by states x2, x3 for 

inverter 1, and x7, x8 for inverter 2, respectively) are maintained 

at desired levels, previously explained in subsection II.C, and 

it is presented in Fig. 9b, enabling efficient power sharing 

among the DERs. Moreover, Fig. 9b presents an insightful 

comparison between data-driven NLMPC and physics-based 

NLMPC, highlighting their striking similarity and validating 

our model-free control approach. 

Based on the analysis presented in Fig. 10, the allocation 

of active and reactive power generation among all DERs is 

achieved through the implementation of optimal control actions 

generated by the NLMPC algorithm. Additionally, in order to 

provide a clear demonstration of the adherence of DERs to 

their assigned distribution allocation coefficients (calculated in 

section II.C), which is one of the objectives of the NLMPC 
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(a) Optimal control actions by NLMPC. 

Table IV. Reference points 
 

Parameter Time (s) Values Units 
 

Pref = Pload 0 < t ≤ 15 160 kW 

15 < t ≤ 40 170 
 

 

Qref = Qload 0 < t ≤ 24 15 kVAR 
24 < t ≤ 40 18 
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Fig. 10. Active and reactive power sharing among DERs. 

 

 

 

 

 

 
        

        

        

 

        

        

 

 

(b) Output voltage and frequency of DERs. 

Fig. 9. NLMPC control actions and outputs. 

 

algorithm, Fig. 11 is presented. The figure consists of three 

subplots, each representing a different droop coefficient: α = 

1.1 in the first subplot, β = 5.8 in the second subplot, and 

γ = 1.08 in the last subplot. This figure depicts the relationship 

between the generated power and the corresponding frequency 

deviation, highlighting the effectiveness of the control strategy 

in maintaining the desired droop characteristics of the DERs. 

Fig. 12 presents the state trajectories of each DER, providing 

a representation of their tracking performance. The trajectory 

plots demonstrate the ability of all DERs to closely follow 

the reference active power as evidenced by MAPE = 3.46%, 

which is set equal to the active power of the load, as well as 

the reference reactive power, which corresponds to the reactive 

power of the load with MAPE = 1.48%. This successful 

tracking performance is consistent with the values provided in 

Table IV. 

 

E. Data-Driven Power Sharing Results Using NLMPC Under 

Real-world Load Pattern Scenario 

In this section, we utilize a normalized real-world load 

pattern obtained from [36] to evaluate the performance of 

the NLMPC algorithm. The load pattern, obtained from the 

Northwest region of China on December 3rd, 2018, represents 

the variations in Pload and Qload over a 24-hour period. Fig. 

13 illustrates the control actions generated by the NLMPC 

algorithm in response to the uncertain load pattern. Despite the 

presence of load uncertainties, the system successfully adheres 

to the permissible voltage and frequency boundaries, as depicted 

in Fig. 14. This demonstrates the effective performance of the 

NLMPC algorithm in regulating the MG operation under uncer- 

tain load conditions. The DERs are able to track the reference 

trajectories as shown in Fig. 15, indicating the accurate and 

reliable performance of the NLMPC algorithm in achieving the 

desired power sharing objectives with MAPE = 5.19% for 

active power and MAPE = 1.75% for reactive power. Overall, 

the results provide empirical evidence of the effectiveness of 

the NLMPC algorithm in regulating the operation of the MG, 

even in the presence of uncertain load patterns. 
Fig. 16 depicts the time delay across 15 iterations (each 

iteration is a complete solution of NLMPC), evidencing the 

NLMPC algorithm’s steadfast adherence to the demands of 

real-time operation. Execution times per control step exhibited 

minimal variation, with the average around 0.012 seconds, 

well within the system’s 0.001 sample time. This indicates the 
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Fig. 11. Power sharing allocation based on droop gain calculation. 

        

        
        

         

        

        
        

 

        

        

        

         

        

        

 

        

        

        

 
        

        

 
        

        

 

http://www.ieee.org/publications/rights/index.html


This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2024.3365353 

11 

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on June 09,2024 at 16:25:19 UTC from IEEE Xplore. Restrictions apply. 
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information. 

 

 

0
 

2
 

4
 

0
 

 
 

200 
180 
160 
140 
120 
100 

 

30 

20 

10 

0 

 

 

 

 

5 10 15 20 25 30 35 40 
 

 

Fig. 12. Active and reactive Power load demand fulfilment. 
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Fig. 15. Reference point tracking for real-world scenario. 
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Fig. 16. Time delay of each NLMPC’s solution. 

 
 

 

algorithm’s capacity to deliver optimal control actions expedi- 

ently, capitalizing on the dynamic performance advantages of 

NLMPC. 
 

 

Fig. 13. Optimal control actions by NLMPC for real-world scenario. 
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Fig. 14. Output voltage and frequency of DERs for real-world scenario. 

F. Comparison between NLMPC and MPC-SL 

 

Distinct comparison between NLMPC and MPC-SL methods 

is shown in Fig. 17. The system consists of two DERs. Within 

this system, the load profiles are dynamic; specifically, Pload 

exhibits a step change from 79 kW to 102 kW precisely 

at the t = 70 s, while Qload adjusts from 11.4 kVar to 

10 kVar at t = 100 s. The analysis depicted in the figure 

highlights the NLMPC’s substantial efficacy over MPC-SL 

in adhering to the reference trajectory for both real and 

reactive power. Furthermore, NLMPC’s capability to regulate 

transient responses—characterized by its attenuated overshoot 

and undershoot phenomena—is notably pronounced when the 

system encounters abrupt changes in reference values. This 

robust control is essential for maintaining system stability and 

ensuring seamless power sharing in MG. Furthermore, Table V 

also presents a comparison of the computational time required 

for each MPC solution, where it can be observed that NLMPC, 

despite its enhanced precision, requires only a marginally higher 

computational time compared to MPC-SL, underscoring its 

efficiency in complex control scenarios. 
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Fig. 18. Pole map of the system with changes in R. 

 
 

Fig. 17. Comparison between MPC using SL and NLMPC. 

 

 

Table V. Quantitative Performance of MPC-SL and NLMPC 
 

 MPC-SL NLMPC 

Each time solution of MPC (sec) 0.008 0.012 

MAPE of Pref tracking (%) 71.22 6.83 

MAPE of Qref tracking (%) 63.10 5.71 

 

VI. STABILITY ANALYSIS 

A fundamental requirement for the reliable operation of 

control systems is the establishment of bounded-input bounded- 

output (BIBO) stability. For a given system, BIBO stability 

is attained if, for every input function u(t) that is bounded 

by a finite scalar Mu, i.e., supt∈T |u(t)| ≤ Mu, the resulting 

output function y(t) also remains bounded within a finite 
scalar My, such that supt∈T |y(t)| ≤ My. Here,  signifies 

the time domain over which the system is analyzed. In the 

context of nonlinear dynamics, represented by Equation (3), 

BIBO stability necessitates the existence of a bounding function 

g :  → , ensuring |f(u(t))| ≤ g(supt∈T |u(t)|), and is subject 

to g being finite for all ∥u∥L∞(T) ≤ Mu. This can 

be further formalized through the employment of Lebesgue 
integrals within an Lp space, thereby defining ∥f(u)∥Lp(T) ≤ 

G(∥u∥L∞(T)), where G is a monotonically non-decreasing 

function that correlates the supremum norm of the input to the 

Lp-norm of the output. 

To ensure the stability of a nonlinear inverter model, we 

linearize it for eigenvalue analysis, as shown in the pole map 

(Fig. 18), which illustrates the effect of parameter R on stability. 

Poles λ1 and λ2 are located in the left half-plane, indicating 

stable behavior; however, their positions are significantly 

influenced by variations in the resistance R. This implies that 

the stability of the system can be compromised by these two 

poles as the value of R changes, particularly at R = 200e−3Ω. 

Meanwhile, poles λ3, λ4, and λ5 near the imaginary axis 

highlight a variable stability margin. In parallel, NLMPC 

controllers enhance robustness by preemptively constraining 

system outputs and inputs, as per Equations (18) and (17). 

This predictive approach, essential for BIBO stability, adjusts 

control inputs u within set bounds to maintain output y(t) 
stability, corroborated by the pole map analysis. 

 

VII. REAL-TIME VERIFICATION 

In discrete-time simulations, system states depend on previ- 

ous time step values. Offline simulations aim to obtain results 

as quickly as possible based on the computer power and 

complexity of the model. Conversely, real-time simulations 

require accurate system representation. To be valid, a real-time 

simulation must replicate the system’s variables and outputs in 

the same time as the actual system. The computation for each 

time step should be shorter than its real duration, allowing the 

simulator to manage operations like I/O for connected devices, 

ensuring simulation relevance [37]. 

This section involves real-time implementation of data-driven 

active and reactive power tracking, showed in Section V.D, 

using NLMPC on the OPAL-RT testbed shown in Fig. 20. 

The DERs with NLMPC control is first built in Simulink® 

and compiled with RT-LAB. This model then operates on 

an OP4510 real-time target CPU core. Control is managed 

via a TCP/IP connection from the Simulink® GUI on the 

main computer. Finally, we ensure that desired measurements 

are relayed in real-time to a digital oscilloscope, utilizing the 

analog outputs of the OP4510 target. 

Fig. 19 illustrates that the real-time waveforms for the 

reference tracking of P and Q using the SR NLMPC controller 

are in tight agreement with their pre-simulated equivalents 

depicted in Fig. 12. The real-time trajectories for PDERs and 

QDERs (indicated by the blue curve) closely match those for 

Pload and Qload (indicated by the red curve), demonstrating a 

high degree of correlation. This observation validates the SR 

NLMPC controller’s capability for precise real-time application. 

 

VIII. CONCLUSION 

This study highlights the effectiveness of the SR-based 

NLMPC framework for identifying and controlling nonlinear 

dynamics in MGs for the purpose of power sharing. By 

employing the SR technique known as SR, the nonlinear 

dynamics of a 3-DER MG were accurately captured. These 

dynamics were then integrated into the NLMPC framework, 
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Fig. 19. Validating active and reactive power tracking of NLMPC for the section V.D in Real-time simulation setup. 

 
 

 
 

Fig. 20. Real-time simulation setup. 

 

 

resulting in guaranteed tracking performance and the ability 

to accommodate varying desired state values and constraints, 

such as power balance equations and droop gains. Moreover, 

when tested with real-world load patterns and considering 

load uncertainty, the proposed data-driven NLMPC approach 

showcased its resilience and suitability for practical MG appli- 

cations with the MAPE = 5.19% for active power tracking 

and MAPE = 1.75% for reactive power tracking over 24 

hour for real-world load pattern scenario. Also, it outperforms 

other MPC strategies that rely on successive linearization, with 

a MAPE of 6.83% for active power and 5.71% for reactive 

power. Hence, this study presents a promising approach that 

combines data-driven identification with NLMPC, offering 

accurate modeling and robust control for MGs. 

A forthcoming objective is to validate the effectiveness of the 

proposed data-driven NLMPC for MG control in a hardware- 

in-the-loop setup. Additionally, a comparison between the 

proposed NLMPC controller and conventional droop controllers 

will be considered. 
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