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Abstract
We compute the homotopy Mackey functors of the KUG-local equivariant sphere
spectrum when G is a finite q-group for an odd prime q, building on the degree zero
case due to Bonventre and the third and fifth authors.

Keywords Equivariant homotopy theory · Chromatic homotopy theory · Bousfield
localization

1 Introduction

Work of Adams–Baird (unpublished) [1] and Ravenel [10, Theorems 8.10, 8.15],
(cf. [5, Corollaries 4.5, 4.6]) calculates the homotopy groups of the sphere spectrum
localized at complex K -theory.

Both the sphere spectrum S and the complex K -theory spectrum KU admit equiv-
ariant refinements. It is natural to ask if the calculation of Adams–Baird and Ravenel
can be done equivariantly.When q is an odd prime and G is a finite q-group, Bonventre
and the third and fifth authors calculated the homotopy Mackey functor π0L KUGSG

of the localization of the equivariant sphere spectrum SG with respect to equivariant
complex K -theory KUG [4, Theorem 1.1]. In this paper, we calculate the remaining
homotopy Mackey functors of this localization: πn L KUGSG for n �= 0.
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544 T. N. Carawan et al.

Theorem 1.1 Let G be a q-group for an odd prime q, and let � be any integer that
is primitive mod |G|. The homotopy Mackey functors of the KUG-local equivariant
sphere spectrum L KUGSG are as in the table below.

n πn L KUG SG

0 RQ ⊗ (Z ⊕ Z/2)†

−2 coker
(
RU

ψ�−1−−−−→ RU
)⊗ Q/Z

8k �= 0 or 8k + 2 RQ ⊗ Z/2

2k − 1 �= −1 RQ ⊗ π2k−1L KUS
[ 1

q ] ⊕ coker
(
RU∧

q {βk } ψ�−1−−−−→ RU∧
q {βk })

Otherwise 0

† [4, Theorem 1.1]

The structure of the cokernel of ψ� − 1 is described in Proposition 3.7.

Remark 1.2 These homotopy groups are independent of the choice of �, so long as it
is primitive modulo |G|.

To perform this computation, wemake use of a fiber sequence of equivariant spectra
involving Adams operations. For G any odd q-group and � primitive mod |G|, there
is a fiber sequence

L KUG/qSG −→ (KUG)∧q
ψ�−1−−−→ (KUG)∧q . (1.3)

To use this to understand the homotopy Mackey functors of L KUG/qSG , one must
contend with the action of ψ� − 1 on the homotopy Mackey functors of KUG . Recall
that π∗KUG ∼= RU [β, β−1], where |β| = 2 and that ψ� is a ring map with ψ�(β) =
�β. It is not too hard to see that the kernel of ψ� − 1 : π2k KUG → π2k KUG is
trivial for k �= 0. Thus the question is really to understand the cokernel of ψ� − 1.
We accomplish this in Sect. 3, where we give an explicit description of the values of
the Mackey functor coker(ψ� − 1). With these in hand, we then use the arithmetic
fracture square to obtain the global calculation in Sect. 4.

Remark 1.4 The sequence (1.3) is not a fiber sequence when q is equal to 2, as it
fails to be a fiber sequence of underlying spectra [5, Section 4]. Different methods are
therefore required for the q = 2 case. When G = C2, this calculation has been done
by Balderrama [3]. Moreover, when G is not a q-group, it is not known if (1.3) is a
fiber sequence of G-spectra.

Remark 1.5 In [4, Remark 6.6], it was noted that if G is a q-group then L KUG/qSG is
equivalent to the G-equivariant Borel completion F(EG+, L KU/qS), where L KU/qS

is given the trivial G-action. Thus, another interpretation of the results in Sect. 4.1 are
that they give a computation of the homotopy fixed points (L KU/qS)hG when G is a
q-group.
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The homotopy of the KUG-local... 545

This raises thequestionofwhether L KUGSG is aBorel completion F(EG+, L KUS).
But already the π0 calculation of [4] shows this to not be true. By applying homotopy
fixed points to the classical fracture square for L KUS, one can show that

π0(L KUS)hG ∼= Z ⊕ Z/2 ⊕ (IRQ(G))
∧
q ,

where IRQ(G) denotes the augmentation ideal of the rational representation ring of G.
This answer does not agree with π0(L KUGSG) ∼= RQ(G) ⊗ (Z ⊕ Z/2) as computed
in [4]. It follows that L KUGSG is not simply the Borel completion of L KUS.

1.1 Conventions

Throughout this paper, we fix an odd prime q and a finite q-group G. The integer �will
always be assumed to be coprime to the order of G, and at times � will furthermore be
assumed to be primitive modulo |G| = q j . For j > 2, this is equivalent to requiring
j to be primitive modulo q2 (see, for example, [9, Lemma 1.10]).

2 Preliminaries

2.1 Representation rings and green functors

Recall the following commutative rings associated to G:

• The complex (resp. rational) representation ring RU (G) (resp. RQ(G)) is the
Grothendieck group of isomorphism classes of finite-dimensional complex (resp.
rational) G-representations under direct sum. The product is induced by the tensor
product of G-representations.

• The ring of complex-valued class functions Cl(G,C) is the ring of functions
G → C which are constant on conjugacy classes of elements in G.

These rings are related by the following pair of ring homomorphisms:

RQ(G) RU (G) Cl(G,C)
χ

The first of these homomorphisms is base change from Q to C, and the second is the
character map. In particular, note that the character map χ : RU (G) → Cl(G,C) is
injective and embeds the complex representation ring as a subring of the ring of class
functions. It will occasionally be convenient to calculate in the image of the character
map rather than with complex representations themselves.

These four commutative rings can all be upgraded to Green functors. We denote
the Green functor versions of these rings by underlining them; for example, RQ is
the Green functor with RQ(G/H) = RQ(H). The same relationships hold among
the Green functors as do among the commutative rings: there is a sequence of Green
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546 T. N. Carawan et al.

functor homomorphisms

RQ RU Cl
χ

Let A(G) be the Burnside ring of G, and let A be the Burnside ring G-functor. There
is a Green functor homomorphism A → RQ given levelwise by taking a finite G-set
to the associated permutation representation. When G is a p-group, the Ritter–Segal
theorem [11, 12] says that A → RQ is surjective; we name its kernel J and deduce
an isomorphism A/J ∼= RQ. The ideal J (G) admits a nice description as the ideal of
A(G) generated by all virtual G-sets X such that |X g| = 0 for all g ∈ G. The article
[4] uses the notation A/J throughout, but here we use the simpler notation RQ.

2.2 Equivariant homotopy theory

Let SpG denote the category of genuine equivariant G-spectra. Examples include the
G-equivariant sphere spectrum SG and the G-spectrum of G-equivariant complex
topological K -theory KUG .

The homotopy of genuine G-spectra is naturally Mackey-functor valued. For the
primary spectra in question in this paper, we have

π0SG = A and π∗KUG = RU [β, β−1] with |β| = 2.

If E and X are G-spectra, let L E X denote the Bousfield localization of X at E .
In particular, when E = SG/p and X is any spectrum, this localization is the p-
completion of X , denoted by X∧

p := LSG/p X . If X is already a localization X = L E Y ,
the localization of X at SG/p may be written

L E/pY = LSG/p L E Y .

When E = SG ∧ HQ is the rational equivariant sphere, we obtain the rationalization
of X , denoted X ⊗ Q := L HGQ⊗A X .

The p-completion and the rationalization are related by a homotopy pullback square
of G-spectra, called the arithmetic fracture square. When X = L KUGSG , this is the
square:

L KUGSG
∏

p L KUG/pSG

Q ⊗ L KUGSG Q ⊗∏
p L KUG/pSG .

(2.1)

See [6, Proposition 2.2 of Chapter 6] for a general version of the arithmetic square,
from which (2.1) can be deduced. This is a useful tool for computing homotopy of
G-spectra.
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3 The cokernel of Ã� − 1 acting on �∗KUG

Recall that for � ∈ Z the Adams operation ψ� : KUG(X) → KUG(X) is a ring
homomorphism natural in the G-space X . In this section, we analyze ψ� −1 as a map
on the complex representation ring of G and on related objects. Recall our assumptions
(Sect. 1.1): G is a q-group for an odd prime q and the integer � is coprime to the order
of G. At times � will furthermore be assumed to be primitive modulo |G| = q j . The
computations in this section have been obtained for q = 2 by Balderrama [3] using
different techniques.

The following is Exercise 9.4 of [13].

Lemma 3.1 The Adams operation ψ� : RU (G) → RU (G) permutes the basis of
irreducible representations if � is coprime to |G|.
Proof Recall that a class function χ is the character of an irreducible representation if
and only if χ(e) ≥ 0 and 〈χ, χ〉 = 1. On a class function f , the Adams operation ψ�

acts as ψ�( f )(g) = f (g�). Since � is coprime to |G|, every element has an �th root,
so that the �th power determines a bijection on G. It follows that the Adams operation
preserves the inner product. 
�
Lemma 3.2 Suppose that � is coprime to |G|. The Adams operation ψ� on RU is a
homomorphism of Green functors.

Proof TheAdamsoperationψ� is a levelwise ringhomomorphism, and it is straightfor-
ward that ψ� commutes with restriction. The main point is to show that ψ� commutes
with induction of representations. To see this, we can use the character map to embed
RU into the Green functor of class functions. As this is levelwise an injection, it suf-
fices to see that ψ� commutes with induction for class functions. Here, the formula
(see [13, Section 7.2] is

IndGH( f )(g) = 1

|H |
∑

γ∈G,

γ −1gγ∈H

f (γ −1gγ ).

As ψ�( f )(g) = f (g�), comparing the formula for ψ�IndGH( f ) at g with IndGH(ψ� f )

at g, one finds that they differ only in that the former sums over γ −1g�γ in H , whereas
the latter sums over γ −1gγ in H . Since the �th power is a bijection on H , as in the
proof of Lemma 3.1, the two sums are the same. 
�

We next consider the endomorphism ψ� − 1 on RU . This will later appear as the
endomorphismψ�−1 on the nonnegative homotopyMackey functors of KUG , whose
Z-graded homotopy Mackey functors are RU [β±1], with β in degree 2. Recall that
ψ� acts on βd as multiplication by �d [2, Proposition 3.2.2].

Proposition 3.3 Suppose that � is coprime to |G|. The Mackey functor homomorphism
ψ� − 1 : RU {βd} → RU {βd} is injective for d > 0.
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Proof This proceeds as the proof of [4, Proposition 6.8]. It suffices to show that this
homomorphism is levelwise injective. By Lemma 3.1, ψ� acts by permuting the basis
of irreducibles in RU (G). If S is the associated permutation matrix, then ψ� − 1 acts
by �d S − I , where I is the identity matrix. To show that this matrix is injective as a
linear transformation, it suffices to show that it has a nonzero determinant.

If d > 0, this is a matrix with integer entries and det(�d S − I ) ≡ (−1)m (mod �),
where m is the number of rows of S. Therefore, det(�d S − I ) = a�+ (−1)m for some
a ∈ Z (note that � ≥ 2). In particular, it is nonzero. 
�
Remark 3.4 The statement of Proposition 3.3 in the case d = 0 does not hold. Indeed,
[4, Proposition 6.7] identifies the kernel of ψ� − 1 on RU (G) as RQ(G).

The result also holds for negative d, but there � must be invertible in the represen-
tation ring in order to define ψ� on RU {βd}. Otherwise, the Adams operation is not
defined. We therefore pass to q-completion, where the Adams operation is defined for
all d, as this will be the case in which this homomorphism is later considered.

Corollary 3.5 Suppose that � is coprime to |G|. The Mackey functor homomorphism
ψ� − 1 : RU∧

q {βd} → RU∧
q {βd} is injective for d �= 0.

Proof In the case thatd is positive, this follows fromProposition 3.3 byflat base change
along Z ↪→ Z

∧
q . For d < 0, we argue as in Proposition 3.3. First, det(�d S − I ) =

(�d)r det(S − �−d I ), where r is the number of rows in the matrix. Now S − �−d I is
an integer matrix with det(S − �−d I ) ≡ det(S) (mod �). The permutation matrix S
has nonzero determinant, so �d S − I does as well. 
�

Having considered the kernel, we now turn to the cokernel. In order to get a closed
form answer, we again pass to completions, first completing at q in Proposition 3.7
and then completing away from q in Proposition 3.11.

Notation 3.6 We will write cok{d} for the cokernel of ψ� − 1 : RU {βd} → RU {βd}.
We will also write cok∧

p {d} = cok{d}⊗Z
∧
p for the cokernel of ψ� − 1 : RU∧

p {βd} →
RU∧

p {βd}, and similarly for the q-complete version.When d = 0, we sometimes drop
the degree from the notation and simply write cok or cok∧

p .

Proposition 3.7 Let � be primitive mod |G| = q j . The Mackey functor cok∧
q {d} is

given at level G/H by:

(a) for d �= 0,

cok∧
q {d} ∼=

⊕

cyclic [C]
Z/

qνq (�dϕ(|C |)−1),

where the direct sum runs over conjugacy classes of cyclic subgroups C of H, ϕ

is Euler’s totient function, and νq is the q-adic valuation. When |C | = qk with
k �= 0, then

νq(�dϕ(|C|) − 1) = k + νq(d).
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(b) for d = 0,

cok∧
q

∼=
⊕

cyclic [C]
Z

∧
q ,

where the direct sum again runs over conjugacy classes of cyclic subgroups C of
H.

The restriction and transfer in the cokernel are inherited from those in RU∧
q .

Proof The cokernel is computed levelwise; at level G/H , we have

ψ� − 1 : RU (H)∧q {βd} → RU (H)∧q {βd}.

By Lemma 3.1, the Adams operationψ� permutes the basis of irreducibles of RU (H),
and it continues to do so after flat base change along Z → Z

∧
q . As in the proof of

Proposition 3.3, ψ� −1 acts by a matrix �d S − I , where S is a permutation matrix and
I the identity matrix. Reordering the basis of irreducibles if necessary, this becomes
a block-diagonal matrix with blocks

⎡

⎢⎢
⎢⎢⎢
⎣

−1 �d

−1 �d

. . .
. . .

−1 �d

�d −1

⎤

⎥⎥
⎥⎥⎥
⎦

∼

⎡

⎢⎢
⎢⎢⎢
⎣

1
1

. . .

1
�dt − 1

⎤

⎥⎥
⎥⎥⎥
⎦

which are equivalent to diagonal matrices as shown above, using a combination of
row and column operations, where t is the number of rows in this block. When d �= 0,
each block contributes a factor of Z∧

q /(�dt − 1) to the cokernel. When d = 0, each
block contributes a factor of Z∧

q .
It remains to count the number of blocks and their sizes. Each block corresponds to

a ψ�-orbit of irreducibles in RU (H). Since RU (H) is a free Z-module of finite rank,
we may base change to C and view the resulting ring as a C[ψ�]-module. Since the
character map C ⊗ RU (H) → Cl(H ,C) is a map of C[ψ�]-modules and C[ψ�] is a
PID, it suffices to understand the orbits of the ψ� action on a basis for class functions.
The Adams operation acts on class functions by ψ�( f )(g) = f (g�). Consider the
basis of Cl(H ,C) given by the indicator functions 1[g]. Since � is primitive mod |H |,
two indicator functions 1[g] and 1[h] are in the same ψ�-orbit if and only if g and
h generate conjugate cyclic subgroups of H . Hence, there are as many ψ�-orbits as
the number of conjugacy classes of cyclic subgroups of G. The size of an orbit is the
number of generators for a cyclic subgroup; if C is a nontrivial cyclic subgroup of G
with |C | = qk , this is ϕ(qk) = qk − qk−1 = qk−1(q − 1).

Finally, we must understand

Z
∧
q
/
(�d(q−1)qk−1 − 1)

∼= Z/
qνq (�d(q−1)qk−1−1).
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550 T. N. Carawan et al.

For this, we need to know the largest value r such that �d(q−1)qk−1 ≡ 1 (mod qr ).
It helps to work additively. There is an isomorphism of abelian groups (Z/qr )× ∼=
Z/((q −1)qr−1). Since � is a generator of (Z/qr )×, it maps to a generator of the right
hand side. Since dqk−1(q − 1) ≡ 0 (mod (q − 1)qr−1) when r ≤ k + vq(d), we
have

νq(�d(q−1)qk−1 − 1) = k + νq(d).

So if C is a nontrivial cyclic subgroup of order qk , then the ψ�-orbit corresponding
to the conjugacy class of C contributes a factor of

Z
∧
q
/
(�d(q−1)qk−1) − 1)

∼= Z/
qk+νq (d).

The trivial cyclic subgroup contributes Z∧
q /(�d − 1) ∼= Z/qνq (�d−1). 
�

Remark 3.8 The formula for the cokernel of ψ� −1 in the case d = 0 holds integrally,
before passage to q-completion, as can be seen from the proof.

Levelwise, the formula for cok∧
q suggests that it is a quotient of (RQ)∧q . We show

in Example 3.9 that this Mackey functor is not a cyclic A∧
q -module.

Example 3.9 We calculate cok∧
q for G = Cq2 . Recall the representation ring Green

functor RU∧
q :

Z
∧
q [x]/(xq2 − 1)

Z
∧
q [y]/(yq − 1)

Z
∧
q

x �→y yk �→
q−1∑

i=0

xiq+k

y �→1 1 �→
q−1∑

i=0

yi

Here, y is the class of the Cq -representation where the generator acts on the complex
plane by a q-th root of unity, and x is the class of the Cq2 -representation where the
generator acts by a primitive q2 root of unity. Since these are one-dimensional complex
representations, the Adams operation takes y to y� and x to x�. Hence, the Mackey
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functor homomorphism ψ� − 1 takes the form

Z
∧
q [x]/(xq2 − 1) Z

∧
q [x]/(xq2 − 1)

Z
∧
q [y]/(yq − 1) Z

∧
q [y]/(yq − 1)

Z
∧
q Z

∧
q

RU∧
q RU∧

q

res
C

q2
Cq

xk �→ xk� − xk

res
C

q2
Cq

tr
C

q2
Cq

res
Cq
e

yk �→ yk� − yk

tr
C

q2
Cq

res
Cq
etr

Cq
e

0

tr
C

q2
Cq

ψ�−1

At the Cq -level, the quotient by the image of ψ� − 1 identifies all nontrivial rep-
resentations because � is primitive mod q. At the top level, the quotient places the
nontrivial representations into two classes: the class of x and the class of xq . Hence,
the cokernel is:

Z
∧
q {1, x, xq}

Z
∧
q {1, y}

Z
∧
q

cok∧
3

(
1 0 1

0 1 0

)(
1 0 1

0 1 0

)
⎛

⎜
⎜
⎝

1 0

0 q

q−1 0

⎞

⎟
⎟
⎠

(
1 1

)
(

1

q−1

)

This Mackey functor is not free; it contains a copy of the Burnside Mackey functor
generated by the element 1 at the top level, and the quotient by this subfunctor has
q-torsion.
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Example 3.10 Let G = C9. Below we present the Mackey functors cok∧
3 {1} and

cok∧
3 {2}, which are the cokernels of ψ� − 1 on RU∧

3 {β} and RU∧
3 {β2}, respectively.

Z/3{x3} ⊕ Z/9{x}

Z/3{y}

0

cok∧
3 {1}

(
0 1

) (
0

3

)
Z/3{1, x3} ⊕ Z/9{x}

Z/3{1, y}

Z/3

cok∧
3 {2}

(
1 1 0

0 0 1

)
⎛

⎜
⎜
⎝

1 0

2 0

0 3

⎞

⎟
⎟
⎠

(
1 1

) (
1

2

)

In the case of completing at p different from q, it turns out that the cokernel of
ψ� − 1 has a familiar form.

Proposition 3.11 Let � be primitive mod |G| = q j and let p be a prime different from
q. There is an isomorphism of G-Mackey functors

cok∧
p

∼= (RQ)∧p .

To prove this proposition, we make use of explicit formulas for the equivalence
of categories [4, Proposition 7.6] (originally due to [7, Theorem A.9 and Proposition
A.12]):

Mack(G)(p)
(VH )−−→�

⊕

(H)

ModZ(p)[WG (H)]. (3.12)

Here, Mack(G)(p) is the localization of the category of G-Mackey functors at p, i.e.
Mackey functors valued in Z(p)-modules rather than abelian groups. The sum on the
right hand side of this equivalence runs over all conjugacy classes of subgroups of G.
The functor VH sends M ∈ Mack(G)(p) to the quotient of M(G/H) by the subgroup
generated by transfers from all proper subgroups of H [4, Proposition 7.10].

Proof of Proposition 3.11 Under the equivalence of categories (3.12), (RQ)∧p maps to

VH

(
(RQ)∧p

)
=
{
Z

∧
p H cyclic,

0 otherwise

by [4, Proposition 7.11]. It suffices to show that cok∧
p has isomorphic image under

this equivalence.
If H = Cqk is a cyclic subgroup of G, RU (Cqk )∧p ∼= Z

∧
p [x]/(xqk − 1). The ideal

of transfers from proper subgroups is generated by transfers from Cqk−1 ; each such
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transfer is a multiple of the cyclotomic polynomial φqk (x) = tr
Cqk

Cqk−1
(1). Therefore,

VC pk (RU∧
p ) ∼= Z

∧
p [x]/φqk (x).

See also [14, Example 6.7].
If H is not cyclic, there exists a surjection θ : H → Cq × Cq . In Lemma 3.14, we

will show that q ∈ RU (Cq ×Cq) lies in the image of transfers from proper subgroups.
A double coset formula yields the commuting diagram

⊕

C�Cq×Cq

RU (C)
⊕

C�Cq×Cq

RU (θ−1C)

RU (Cq × Cq) RU (H).

θ∗

tr tr
θ∗

Since θ∗ is a ring homomorphism, θ∗(q) = q. This shows that q ∈ RU (H) lies in the
image of transfers from proper subgroups. Since q becomes a unit after p-completion,
VH (RU∧

p ) is the quotient of RU∧
p (H) by the unit ideal and therefore vanishes. The

rational version of this statement appears, for example, in [[15], Section 9].
We have seen that

VH (RU∧
p ) =

{
Z

∧
p [x]/φqk (x) H cyclic and |H | = qk,

0 otherwise,

where φqk (x) is the qk-th cyclotomic polynomial. Hence, it remains to determine the
cokernel of

Z
∧
p [x]/φqk (x)

ψ�−1−−−→ Z
∧
p [x]/φqk (x) (3.13)

We may write Z∧
p [x]/φqk (x) ∼= Z

∧
p {x, x2, x3, . . . , x (q−1)qk−1}. The Adams oper-

ation ψ� cyclically permutes the q − 1 powers of xqk−1
in this basis. Thus we may

decompose

Z
∧
p [x]/φqk (x) ∼= A ⊕ B

as a Z∧
p [ψ�]-module, where

A = Z
∧
p {xiqk−1 | 1 ≤ i ≤ q − 1}

and

B = Z
∧
p {xn | qk−1 does not divide n, 1 ≤ n < (q − 1)qk−1}.
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It then follows that the cokernel of ψ� − 1 on A gives Z∧
p . We claim that on B the

cokernel vanishes.
Primitivity of � ensures that in RU (Cqk ) ∼= Z[x]/(xqk −1), twomonomials xn1 and

xn2 are in the same ψ�-orbit if and only if n1 and n2 have the same q-adic valuation,
where n1 and n2 are both assumed to be less than qk . It then follows that in the
cokernel of ψ� − 1 on RU (Cqk ), the polynomial φqk (x) · xn is equivalent to q · xn ,
so long as n is not divisible by qk−1. Thus in the cokernel of ψ� − 1 on the quotient
ring Z[x]/φqk (x), there is a relation q · xn = 0 when n is not divisible by qk−1. In
particular, after completing at p, which is different from q, it follows that xn vanishes
in the cokernel of ψ� − 1 on Z[x]/φqk (x).

Hence, cok∧
p corresponds to Z

∧
p supported on the cyclic subgroups, and under the

equivalence of categories, this is the same as (RQ)∧p . Since the equivalence (3.12)
preserves and creates cokernels, we are done. 
�
Lemma 3.14 The ideal of RU (Cq ×Cq) generated by transfers from proper subgroups
contains q.

Proof Let H = Cq ×Cq . The representation ring of H is isomorphic as a commutative
ring toZ[x, y]/(xq−1, yq−1),where x and y are the classes of rotation representations
of the left and right factors, respectively. If K is the subgroup of H generated by an
element (γ i , γ j ) with i �= 0, then

trH
K (1) =

q−1∑

k=0

(xi y j )k .

We claim that

q =
∑

K≤H

trH
K (1) − trH

L (1) · trH
R (1),

where L is the subgroup generated by (γ, e) and R is the subgroup generated by
(e, γ ). This is a calculation. Recall that H has q + 1 distinct subgroups of order q:
the subgroup R generated by (e, γ ), and subgroups generated by elements (γ, γ j ) for
j = 0, 1, . . . , q − 1.

∑

K≤H

trH
K (1) − trH

L (1) · trH
R (1)

=
q−1∑

j=0

trH
〈(γ,γ j )〉(1) + trH

R (1) − trH
L (1) · trH

R (1)

=
q−1∑

j=0

trH
〈(γ,γ j )〉(1) + trH

R (1) · (1 − trH
L (1))
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=
q−1∑

j=0

(
1 + xy j + x2y2 j + . . . + xq−1y j(q−1)

)

+
(
1 + y + y2 + . . . + yq−1

) (
−x − x2 − . . . − xq−1

)

= q +
q−1∑

j=0

(
xy j + x2y2 j + . . . + xq−1y j(q−1)

)

−
q−1∑

k=0

(
xyk + x2yk + . . . + xq−1yk

)
= q.

The last equality follows by a reindexing, recalling that these equations live in the ring
Z[x, y]/(xq − 1, yq − 1). 
�
Example 3.15 Let H = C3 × C3, and let L = 〈(γ, e)〉, C = 〈(γ, γ )〉, D = 〈(γ, γ 2)〉,
and R = 〈(e, γ )〉 be its four subgroups of order 3. Consider the representation ring
Green functor for C3 × C3. In this Green functor, we have:

trH
L (1) = 1 + x + x2

trH
C (1) = 1 + xy + x2y2

trH
D (1) = 1 + x2y + xy2

trH
R (1) = 1 + y + y2

We can directly see that 3 is contained in the ideal of RU (H) generated by images of
transfers from proper subgroups of H :

∑

K≤H

trH
K (1) − trH

L (1) · trH
R (1)

= (
trH

L (1) + trH
R (1) + trH

C (1) + trH
D (1)

)− trH
L (1) · trH

R (1)

=
(
1 + x + x2

)
+
(
1 + y + y2

)
+
(
1 + xy + x2y2

)
+
(
1 + x2y + y2x

)

−
(
1 + x + x2

) (
1 + y + y2

)

=
(
4 + x + y + x2 + xy + y2 + x2y + y2x + x2y2

)

−
(
1 + x + x2 + y + xyx2y + y2 + y2x + y2x2

)

= 3.

4 The homotopyMackey functors of LKUGSG

Our strategy for understanding L KUGSG is to use the fracture square (2.1). We begin
by describing the homotopy Mackey functors of the local factors L KUG/pSG , both in
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the case p = q and p �= q, using the work of Sect. 3. With the local computations in
hand, we then use the long exact sequence

· · · → Q ⊗
∏

p

πn+1L KUG/pSG

→ πn L KUGSG → πnQ ⊗ L KUGSG ×
∏

p

πn L KUG/pSG → . . . (4.1)

arising from the fracture square (2.1) to obtain the homotopy Mackey functors
πn L KUGSG .Wewill use the fact that the rationalizationQ⊗L KUGSG is the Eilenberg-
Mac Lane spectrum for the rational Mackey functor Q ⊗ RQ [4, Lemma 9.1].

4.1 Local computations for p = q

In this section, we compute the homotopy Mackey functors for L KUG/qSG . The key
tool is the following.

Proposition 4.2 [4, Propositions 5.3, 6.3] If � is primitive modulo |G|, then the Adams
operation ψ� : (KUG)∧q → (KUG)∧q is a well-defined map of G-spectra that partici-
pates in a fiber sequence

L KUG/qSG −→ (KUG)∧q
ψ�−1−−−→ (KUG)∧q . (4.3)

Note that the fiber is independent of � in the fiber sequence above.

Remark 4.4 The original proposition 5.3 in [4] contains the assumption that � is prim-
itive mod |G|, but by [8, Corollary 2.5], in order to show that ψ� extends to a map
of G-spectra, it suffices to assume that � is coprime to |G| = qk . On the other hand,
in order to identify the fiber as the KUG/q-local equivariant sphere, the additional
primitivity assumption is required.

Since π∗KUG ∼= RU [β, β−1] with β in degree 2, the long exact sequence of
homotopy Mackey functors associated to the fiber sequence (4.3) splits into four-term
exact sequences:

0 π2d L KUG/qSG RU∧
q {βd } RU∧

q {βd } π2d−1L KUG/qSG 0
ψ�−1

Thus the homotopy Mackey functors of L KUG/qSG follow from the work of Sect. 3.
Proposition 3.3 immediately implies the following.

Corollary 4.5 For d �= 0, π2d L KUG/qSG = 0.

The d = 0 case was previously computed:

Proposition 4.6 [4, Proposition 6.8] π0L KUG/qSG ∼= (RQ)∧q .
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Corollary 4.7 The Mackey functor π2d−1L KUG/qSG is

π2d−1L KUG/qSG ∼= cok∧
q {d} = coker

(
RU∧

q {βd} ψ�−1−−−→ RU∧
q {βd}

)
.

This cokernel was computed in Proposition 3.7.

Example 4.8 The Mackey functors cok∧
3 {1} and cok∧

3 {2} were computed for G = C9
in Example 3.10. According to Corollary 4.7, these agree with the homotopy Mackey
functors π1L KUC9/3SC9 and π3L KUC9/3SC9 .

4.2 Local computations for p �= q

Let p be a prime that does not divide |G| = qk . The calculation of the nonzero p-local
homotopy groups of L KUGSG was done in [4]. For an odd prime p, recall the homotopy
groups of L KU/pS as originally calculated by Adams–Baird [1] and Ravenel [10] and
described more recently in [16, Equation 2.3.8]:

πn L KU/pS ∼=

⎧
⎪⎨

⎪⎩

Z
∧
p if n ∈ {0,−1},

Z/pνp(k)+1 if n = 2k − 1 and (p − 1) | k,

0 otherwise.

For p = 2, the homotopy groups of L KU/2S are in [16, Equation 2.3.13]:

πn L KU/2S ∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z
∧
2 ⊕ Z/2 if n = 0,

Z
∧
2 if n = −1,

Z/2 ⊕ Z/2 if n ≡ 1 (mod 8),

Z/2 if n ≡ 0, 2 (mod 8), and n �= 0,

Z/2ν2(k)+3 if n = 4k − 1 and n �= −1,

0 otherwise.

Proposition 4.9 [4, Proposition 8.5] Let p �= q. There is an isomorphism of graded
Green functors

π∗L KUG/pSG ∼= RQ ⊗ π∗L KU/pS.

The above is a complete description of the p-complete homotopy Mackey functors
of L KUGSG , but Proposition 3.11 then gives the following description in the case
n = −1:

Corollary 4.10 For p �= q, we have π−1L KUG/pSG ∼= RQ ⊗ Z
∧
p

∼= cok∧
p .
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4.3 Local to global reassembly

Here we use the work of Sect. 4.1 and Sect. 4.2, in combination with the long exact
sequence (4.1), to deduce the homotopyMackey functorsπn L KUGSG . The case n = 0
was the focus of [4]. The cases n = −1 and n = −2 behave quite differently from the
rest, so we begin by considering the cases of n different from 0, −1, or −2.

Proposition 4.11 Let n = 2k be different from 0 and −2. Then

π2k L KUGSG ∼= RQ ⊗ π2k L KUS ∼= RQ ⊗ Z/2

for 2k ≡ 0, 2 (mod 8). This Mackey functor vanishes otherwise.

Proof Fix 2k different from 0 and −2. By Corollary 4.5 and Proposition 4.9, we have
that for p any odd prime (including p = q), then π2k

(
L KUG/pSG

)
vanishes. In the

case of p = 2, we have

π2k

(
L KUG/2SG

) ∼=
{

RQ ⊗ Z/2 2k ≡ 0, 2 (mod 8),

0 else.

Similarly, we find that π2k+1L KUG/pSG is nonzero (and levelwise finite) only for
finitely many primes p. It follows thatQ⊗∏

p π2k+1L KUG/pSG vanishes. The result
now follows from (4.1). 
�

In the case of n odd and different from −1, the answer is stated in terms of the
cokernel of ψ� − 1, where as usual � is primitive modulo the order of G.

Proposition 4.12 Let 2k − 1 �= −1. Then

π2k−1L KUGSG ∼= RQ ⊗ π2k−1L KUS
[ 1

q

]⊕ cok∧
q {k}.

Proof According to Sect. 4.2, the homotopy Mackey functors of L KUG/pSG are level-
wise finite in degrees 2k and 2k −1. Corollary 4.5 gives that π2k L KUG/qSG vanishes,
while Corollary 4.7 identifies π2k−1L KUG/qSG with cok∧

q {d}. By Proposition 3.7, this
is levelwise finite. 
�

We now turn our attention to the case n = −1.

Proposition 4.13 π−1L KUGSG = 0.

Proof By Proposition 3.7(b) and Corollary 4.7, the Mackey functor π−1L KUG/qSG

is torsion-free. The same is true of π−1L KUG/pSG for p �= q by Sect. 4.2. It follows
that the map

∏

p

π−1L KUG/pSG −→ Q ⊗
(
∏

p

π−1L KUG/pSG

)
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is injective. The long exact sequence (4.1) then shows thatπ−1L KUGSG is the cokernel
of

Q ⊗ RQ ×
∏

p

π0L KUG/pSG −→ Q ⊗
(
∏

p

π0L KUG/pSG

)

,

which may be rewritten as

Q ⊗ RQ ⊕ Z/2 ⊗ RQ ⊕
∏

p

(RQ)∧p −→ Q ⊗
(
∏

p

(RQ)∧p

)

.

It suffices to show that this is levelwise surjective. As the values of theMackey functor
RQ are all free abelian groups of finite rank, the result follows from Lemma 4.14. 
�
Lemma 4.14 Let B be a free abelian group of finite rank. Then the map

f : (Q ⊗ B) ⊕
∏

p

B∧
p −→ Q ⊗

(
∏

p

B∧
p

)

defined by

f

(
b0
n

, (bp)

)
= 1

n
(b0 − nbp)

is surjective.

Proof Left to the reader. 
�
Finally, we deal with the case n = −2.

Proposition 4.15 π−2L KUGSG ∼= Q/Z ⊗ cok.

Proof By Corollary 4.5 and Sect. 4.2, the Mackey functors π−2L KUG/pSG vanish for
all primes p. It follows from the long exact sequence (4.1) that π−2L KUGSG is the
cokernel of the rationalization map

∏

p

π−1L KUG/pSG −→ Q ⊗
(
∏

p

π−1L KUG/pSG

)

.

In other words, we have that

π−2L KUGSG ∼= Q/Z ⊗
(
∏

p

π−1L KUG/pSG

)

.
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By Corollary 4.7 and Corollary 4.10, this may be rewritten as

π−2L KUGSG ∼= Q/Z ⊗
(
∏

p

cok∧
p

)

.

Each Mackey functor cok∧
p is (levelwise) p-local, so that according to Lemma 4.16

we have an isomorphism

Q/Z ⊗
(
∏

p

cok∧
p

)
∼=
⊕

p

(
Qp/Zp ⊗ cok∧

p

) ∼=
⊕

p

(
Qp/Zp ⊗ cok

)

∼=
(
⊕

p

Qp/Zp

)

⊗ cok ∼= Q/Z ⊗ cok.


�
Lemma 4.16 Suppose for each prime p, Ap is an abelian group such that all primes
different than p act invertibly on Ap. Then

Q/Z ⊗
(
∏

p

Ap

)
∼=
⊕

p

(
Qp/Zp ⊗ Ap

)
.

Proof This follows from the decomposition of Q/Z as
⊕

r Qr/Zr as r runs over
primes, the expression of Qr/Zr as colimk Z/rk , and the fact that tensor product
commutes with colimits. 
�
Acknowledgements This work began at an NSF RTG-funded workshop held in Lexington, Virginia in
August 2022. We would like to thank Julie Bergner, Nick Kuhn, and the other organizers of this workshop.
We would also like to thank William Balderrama for numerous helpful discussions.

References

1. Adams, J.F.: Operations of the n-th kind in K -theory, and what we don’t know about RP∞. New Dev.
Topol. (1974). https://doi.org/10.1017/CBO9780511662607.002

2. Atiyah, M. F.: K -theory, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company,
Advanced Book Program, Redwood City, CA. Notes by D. W. Anderson (1989)

3. Balderrama, W.: The C2-equivariant K (1)-local sphere (2022), available at arXiv:2103.13895
4. Bonventre, P.J., Guillou, B.J., Stapleton, N.J.: On the KUG -local equivariant sphere, available at

arXiv:2204.03797
5. Bousfield,A.K.: The localization of spectrawith respect to homology. Topology 18(4), 257–281 (1979).

https://doi.org/10.1016/0040-9383(79)90018-1
6. Douglas, C.L., et al.: Topological modular forms, Mathematical Surveys and Monographs, vol. 201.

American Mathematical Society, Providence, RI (2014)
7. Greenlees, J.P.C., May, J.P.: Generalized Tate cohomology. Mem. Amer. Math. Soc. 113(543), 178

(1995). https://doi.org/10.1090/memo/0543
8. Hirata, K., Kono, A.: On the Bott cannibalistic classes. Publ. Res. Inst. Math. Sci. 18(3), 1187–1191

(1982). https://doi.org/10.2977/prims/1195183304

123

https://doi.org/10.1017/CBO9780511662607.002
http://arxiv.org/abs/2103.13895
http://arxiv.org/abs/2204.03797
https://doi.org/10.1016/0040-9383(79)90018-1
https://doi.org/10.1090/memo/0543
https://doi.org/10.2977/prims/1195183304


The homotopy of the KUG-local... 561

9. ladys law Narkiewicz W.: The development of prime number theory, Springer Monographs in Mathe-
matics, Springer-Verlag, Berlin From Euclid to Hardy and Littlewood (2000)

10. Ravenel, D.C.: Localization with respect to certain periodic homology theories. Amer. J. Math. 106(2),
351–414 (1984). https://doi.org/10.2307/2374308

11. Ritter, J.N.: Ein Induktionssatz für rationale Charaktere von nilpotenten Gruppen. J. Reine Angew.
Math. 254, 133–151 (1972). https://doi.org/10.1515/crll.1972.254.133

12. Segal, G.: Permutation representations of finite p-groups. Quart. J. Math. Oxford Ser. 2(23), 375–381
(1972). https://doi.org/10.1093/qmath/23.4.375

13. Serre, J.-P.: Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-
Verlag, New York-Heidelberg. Translated from the second French edition by Leonard L. Scott (1977)

14. Thévenaz, J.: Webb, Peter, The structure of Mackey functors. Trans. Amer. Math. Soc. 347(6), 1865–
1961 (1995). https://doi.org/10.2307/2154915

15. Thévenaz, J.: Some remarks on G-functors and the Brauer morphism. J. Reine Angew. Math. 384,
24–56 (1988). https://doi.org/10.1515/crll.1988.384.24

16. Zhang, N.: Analogs of Dirichlet L-functions in chromatic homotopy theory. Adv. Math. 399, 108267
(2022). https://doi.org/10.1016/j.aim.2022.108267

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Tanner N. Carawan1 · Rebecca Field2 · Bertrand J. Guillou3 · David Mehrle3 ·
Nathaniel J. Stapleton3

Tanner N. Carawan
tc2bb@virginia.edu

Rebecca Field
fieldre@jmu.edu

David Mehrle
davidm@uky.edu

Nathaniel J. Stapleton
nat.j.stapleton@uky.edu

1 Department of Mathematics, University of Virginia, 401 Kerchof Hall, 141 Cabell Drive,
Charlottesville, VA 22904, USA

2 Department of Mathematics and Statistics, James Madison University, 60 Bluestone Drive,
Harrisonburg, VA 22807, USA

3 Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA

123

https://doi.org/10.2307/2374308
https://doi.org/10.1515/crll.1972.254.133
https://doi.org/10.1093/qmath/23.4.375
https://doi.org/10.2307/2154915
https://doi.org/10.1515/crll.1988.384.24
https://doi.org/10.1016/j.aim.2022.108267

	The homotopy of the KUG-local equivariant sphere spectrum
	Abstract
	1 Introduction
	1.1 Conventions

	2 Preliminaries
	2.1 Representation rings and green functors
	2.2 Equivariant homotopy theory

	3 The cokernel of ψell-1 acting on underlineπ*KUG
	4 The homotopy Mackey functors of LKUGmathbbSG
	4.1 Local computations for p = q
	4.2 Local computations for p neqq
	4.3 Local to global reassembly

	Acknowledgements
	References




