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Abstract

Model predictive control (MPC) application has gained attention in water
distribution systems (WDSs) due to its effectiveness in controlling multi-
variable, highly nonlinear, and complex systems, all of which are inherent
traits of WDSs, but rely on accurate dynamic models. Model misrepresen-
tation can lead to nonoptimal solutions. Nevertheless, the emergence of uti-
lizing high-resolution metering devices and historical data has enabled data-
driven WDSs model identification, significantly reducing modeling challenges
of MPC without losing the accuracy or robustness of the closed-loop control
system. This paper contributes to developing a data-driven MPC framework
for WDSs, eliminating the reliance on the WDSs’ physical models. Sparse
regression is utilized to identify the dynamics of WDSs from the available
sensory data. The identified data-driven model is then embedded in MPC

frameworks with multiple prediction model formulations: 1) linear-time in-
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variant, 2) linear time-varying, 3) and nonlinear models. Four interconnected
water tank systems representing the nonlinear and cross-coupling of WDSs
are selected as the test system to evaluate the effectiveness of the proposed
data-driven MPC frameworks. Contrary to the existing WDS control de-
signs, which heavily rely on detailed WDS models and extensive historical
data, the proposed framework accurately captures the nonlinear dynamics

using minimum available measurements.
Keywords: Data-driven system identification; Sparse regression; Optimal

scheduling; Nonlinear control; Water distribution systems;

1. Introduction

The resilience of the water supply system is imperative to adapt to hydro-
climatic variations and socio-economic changes. Two main challenges under-
line this importance: 1) The exacerbation of climate change, which can lead
to water infrastructure damage and disrupt the distribution, and 2) shifts
in social and economic conditions, leading to an increase in water demand.
These factors place significant pressure on the governments and involved
parties to cope with these challenges [1]. Furthermore, ensuring safe water
supply is a complex procedure in and of itself, particularly for water distri-
bution systems (WDSs). WDSs comprise interconnected components such
as pipes, valves, pumps, storage tanks, and other components [2] contribut-
ing to their operational complexity to ensure the safe and stable distribution
of water. Furthermore, the prevalent use of pumps in WDSs contributes
to elevated power consumption and operational costs [3]. Without suitable

management, this could lead to unsustainable WDSs operations. To address
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these concerns, gaining adaptive control, optimal operational scheduling of
WDSs, and a complete understanding of their behavior are vital to enhancing
their resiliency and sustainability.

Various control techniques have been explored to design and provide op-
timal management of WDSs [1]. Four control actions can be implemented
in the water system: 1) feedforward control, 2) feedback control, 3) optimal
control, and 4) heuristic control, which is based on a rules-of-thumb approach
or experience-based strategy to control the system [4]. However, to fully in-
corporate the complicated nature of WDSs, a control approach capable of
handling multi-variable and multi-objective models, system constraints, and
disturbances is required [5]. These aspects can be categorized under Model
Predictive Control (MPC). In addition to that, MPC also integrates the
aforementioned three control actions. First, MPC employs feedback control
to minimize the deviation between desired setpoints and the controlled out-
put. Furthermore, it utilizes feedforward control to adapt the control signal
based on measured or predicted disturbances [4]. Additionally, MPC em-
ploys optimal control to formulate a control law that minimizes a quadratic
objective function developed from the system’s state space model [6]. Con-
sequently, MPC emerges as an advanced and preferred control strategy.

As a model-based controller, MPC utilizes the dynamic and static models
of the system being controlled as the prediction model to optimize future
control actions [7, 8]. A sequence of future control actions is determined by
solving a finite-time horizon of an online model-based optimization at each
sampling instant, using the plant’s current state as the initial state [9] subject

to the objective functions (performance goals of the controlled system) and
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constraints at future time instants [7]. MPC follows the receding horizon
framework by applying only the first value of the optimized control inputs
and disregarding the rest of the trajectory [10]. The internal model, used in
MPC implementation to obtain the predicted output, can be represented in
the state space form, which can be linear or non-linear models [11].

Different strategies of MPC can be implemented that differ from the pre-
diction models, such as 1) the linear time-invariant (LTI) model, where the
structure of the model does not change over time [12]; 2) the linear time-
varying (LTV) model, where the dynamic behavior of the system varies over
time due to varying operating points [13], and 3) nonlinear model that ac-
counts for the nonlinear features present in the controlled system [14]. Linear
prediction model has been widely used [15] as it offers a tractable control
problem via a convex optimization problem that guarantees a global mini-
mum with low computational cost [13, 16]. However, it may suffer from a lack
of representation of an actual system that exhibits nonlinear behavior [17].
This motivates the application of nonlinear MPC that enables the control of
nonlinear systems and offers a more accurate system representation [15, 18].
Nonetheless, nonlinear MPC (NMPC) also has its own drawbacks. NMPC
applies a non-convex optimization problem, where the solution may converge
to a local optimum, and provides computation-intensive control algorithms
[11]. Therefore, finding a suitable prediction model to control WDSs is crit-
ical to provide a trade-off between model accuracy, computation time, and
tractability of the control problem [11].

In spite of MPC’s benefits, one of its liabilities is its heavy reliance on

the dynamic model of the controlled system [17]. Consequently, a mismatch
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between the plant model and the disturbances excluded from the model may
lead to unfavorable control decisions [6, 19]. Furthermore, existing hydraulic
models may not accurately reflect WDSs due to pipe deterioration (changing
the roughness coefficient of the pipe), water loss, operational scheduling, and
system topology, to name a few [20]. These divergences contribute to the

difficulty in yielding optimal control solution for WDSs. This is because,
in Considering the multi-variate, nonlinear, complex, and highly coupled
dynamics of assets in WDSs [21], as well as the presence of varying distur-
bances, and time-evolving objectives, the control-oriented model formulation
of MPC continues to be more challenging. Nevertheless, this can be solved
by leveraging data availability from the plant measurement.

The drive to optimize the operation and management of WDSs, along
with the goal of improving water infrastructure, has led to the development
of advanced monitoring technologies. This has resulted in the deployment
of smart sensors, including smart metering devices and wireless sensors [3].
Consequently, real-time and large data availability of WDSs can be obtained.
This presents an opportunity to develop enhanced data-driven models that
capture these systems’ complex and nonlinear nature, including their re-
sponse to disturbances. Previous studies have explored data-driven model-
ing approaches for various aspects of water systems. A wavelet-based arti-
ficial neural network technique to predict daily water levels in WDSs was
investigated in [22]. In [23], model identification of a hysteresis-controlled
pump using sparse identification of nonlinear dynamics was studied and val-
idated on a single input and single output system (SISO). Multitask multi-

view learning methods to forecast water quality were employed by [24] on
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an hourly basis by considering the spatial and spatiotemporal correlations
between water treatment facilities. Other existing data-driven approaches
include identifying water quality models via subspace identification method
(SIM) [25], estimating drip tape irrigation discharge using temperature and
pressure measurements [26], identifying reservoir operations using artificial

neural networks and support vector regression [27], predicting water quality
using various machine learning methods [28, 29], reduced network model to

control WDSs using radial basis function neural models (RBFNN) [30], and
forecasting reservoir water inflow using neural networks [31].

However, these studies have primarily focused on specific components or
processes within the system and have not addressed the identification of non-
linear dynamics at a system level. Furthermore, many existing approaches
rely on machine learning techniques that require extensive training data and
lack interpretability, making them less suitable for system-level control in
WDSs. In addition, given the nonlinearities and uncertainties of WDSs op-
eration, it is not known whether a data-driven MPC can provide tracking
guarantees and enhanced control performance to the optimal operation of
WDSs. Therefore, there is a need for research that utilizes data-driven tech-
niques to identify the nonlinear dynamics of WDSs at a system level, enabling

more effective control and management of these complex systems.

1.1. Contributions of this work

To address the existing challenges, this work investigates the application
of sparse identification theory for data-driven model identification in WDSs.
In addition, to analyze whether a data-driven MPC can provide tracking

guarantees and improved control performance in WDSs, we have designed

6
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three different techniques for formulating the optimal control problem in

MPC to actuate the predicted data-driven dynamics and find suitable pre-
diction models that comprehensively represent WDSs. Sparse identification
theory is a viable method for accurately modeling the nonlinear dynamics of
unknown systems [32—34]. It reduces training time and the need for neural
networks for control and identification. To our best knowledge, no existing

work has reported data-driven modeling of nonlinear dynamics of WDSs us-
ing sparsity-promoting techniques and implementing the predicted nonlinear
dynamics to different approaches of MPC. Therefore, the main contributions
of this paper can be summarized as follows:

1. A data-driven based on sparse regression technique is developed to
identify the nonlinear dynamics of the benchmark quadruple water tank
process that closely represent the nonlinear dynamics of WDSs.

2. Data-driven control of nonlinear WDSs dynamics using various MPC
strategies, including linear time-invariant MPC (LMPC), linear time-
varying MPC through successive linearization technique (SLMPC), and
nonlinear MPC (NMPC) is investigated.

3. A comparative analysis involving computational burden, tracking per-
formance, and robustness of data-driven MPC strategies with numerical
results that further highlight the performance of different data-driven
MPC approaches is provided.

4. Detailed descriptions of the MPC algorithms for each control law are
provided, along with a thorough formulation of the MPC solution

method utilizing sequential quadratic programming (SQP).

The rest of the paper is organized as follows: Section II describes the
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proposed model description in addition to the dynamics of the quadruple
tank systems, sparse identification of dynamics, and optimal control problem
formulation (OCP) of MPC. Several case studies are presented and discussed
in Section III to validate the proposed model identification through the sparse
regression technique with different strategies of control, while Section IV

concludes the paper.

2. Methodology

2.1. Proposed Model Description

Fig. 1 exhibits an overview of the proposed data-driven model identifica-
tion via the sparse regression-based nonlinear dynamics (SR-based) method
combined with MPC to control a system that closely resembles WDSs. This
work uses a quadruple tank process (QTP) from [35] that depicts simpli-
fied WDSs, a set of interconnected water tanks subject to external in and
outflows. First, the sparse regression model identification technique will be
utilized to identify the dynamic equations of the system solely from mea-
surements. It involves taking measurements from the outputs of the plant
(v, collecting the applied control inputs (u;), constructing a library of func-
tions that might represent the system’s dynamics, and solving a sequentially
thresholded least-square optimization problem using a sparse regression tech-
nique. Then, the predicted dynamics are conveyed to the MPC framework to
generate optimal control problem formulation exploiting various MPC tech-
niques, such as linear, successive linearization, and nonlinear MPCs. Differ-

ent techniques are proposed to provide different trade-offs in utilizing MPC
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tions 2.3 and 2.4.
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Fig. 1: Proposed data-driven control framework for identifying and controlling the dy-

namics of a quadruple tank process.
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2.2. Application of SR-MPC to a benchmark system

=4

2

S
]

2.2.1. Dynamic Model of Quadruple Tank Process (QTP)
0 The dynamics of each tank in the quadruple water tank process in Fig. 2 is
x4 derived from the combination of mass balance in the tank (assuming constant

2

o

s density) and Bernoulli’s theorem with additional flow control valve (FCV)

2

o

s and pumps as the controllers. The governing equations can be represented

27 by the following set of differential equations [35]:
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where S; is the cross-sectional area of tank i, s; is a cross-sectional area of
the tank’s orifice in tank i, h; is the water level of tank i, v; is the voltage
applied to pump i with a corresponding flow kv; Parameters y; € [0, 1] are
determined from the settings of the valves. As illustrated in Fig. 2, yikivs
and (1 — y1)kivi represent tanks 1 and 4 inflows, respectively. Similarly, the
water flow to tank 2 is y2k2v2, and the water flow to tank 3 is (1 — y2)kave.
The system is uniquely designed to exhibit the effect of multivariable zero on
the system behavior with zero location either on the left or right-hand plane
by changing the valve positions [35]. The system is represented as minimum
phase (left-hand plane zero) for 1 < y: + y2 < 2 and non-minimum phase for
0 < y1+Y2 < 1 (right-hand plane zero). The acceleration of gravity is denoted
by g and output measurements can be computed with kch: and kche. Table 1

displays the constant parameter values used in this work adopted from [35].

10



Table 1: QTP Parameters from [35]

Parameters Unit Qty

Si, Ss cm? 28
So, Sy cm? 32
S1, S3 cm? 0.071
Sa2, S4 cm? 0.057
hmex cm 15
hmin cm 0

ke V/em 1

g cm/s2 981

21 By re-arranging equations in Eq.(1), the state space model of the QTP can

m be expressed as follows:

i J
s 2g\/X_+53 2g\/X_

N ! St 3. J%% 0
. S 22g \/X_Q L S 22g\/x_4 . o Msgzkg :
X= V— A 1-yok - ¥ (23
| _SS\S/Sgg \/*3_ o 0 S, .
S4 2g \/_ * ) 1—V kl 0
— X4 S4
Szg " —
T
Y= ke X1 X2” X3 X4 (2b)
. .
23 which is equivalent to
x =f(x) + gxu (20)
y = h(x) (2d)

11
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In Eq.(2), x = [h: h2 hs hy]7 is the state vector, while y = kox is the

»s output vector, and u = [vi v2]T is the input vector of the system, which

26 includes the voltage applied to the pumps.
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Fig. 2: Schematic of a quadruple tank process.

2.2.2. Operating Points

One of the objectives of this work is to identify the dynamic model pre-
sented in Eq. (2) solely from the available measurements of the states, assum-
ing that detailed information regarding the QTP system and its parameters
is unavailable. Two distinct operating points will be examined to assess the
robustness of the proposed model identification framework. These operating
points were intentionally chosen based on the system’s behavior, with one
exhibiting minimum phase (MP) characteristics and the other demonstrating
nonminimum phase (NMP) behavior. This selection allows for a comprehen-
sive validation of the proposed framework’s effectiveness. The two operating

points are listed in Table 2.

12
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Table 2: Operating points of quadruple tank process.

Parameter MP operating point NMP operating point

h;, h, [em] 12.4, 12.7 12.6, 13

hs, h, [cm] 1.8, 1.4 4.8, 4.9

vy, Vo [V] 33 3-15, 3-15
ki, ko 3-33,3-35 3-14, 3.29
Yu Yz 0.7,0.6 0.43, 0.34

Simulations were conducted to evaluate the system’s operation in these
two operating points by perturbing the control inputs (pump voltages, v;)
with a repetitive sequence waveform between 2 - 4 V (to activate the dynamic
modes). Fig. 3 depicts the evolution of the states at two operating points

over 100 s simulation in MATLAB.

2.3. Data-Driven Identification of Nonlinear Dynamics

To identify the nonlinear dynamical models of the studied QTP using
measurements, the first step involves estimating the state derivatives ().
Subsequently, a library of candidate functions ({i(x)) is constructed to de-
scribe the temporal changes of the state variables. In cases without prior
knowledge about the system’s dynamics, an extended basis of candidate
functions can be chosen to accommodate all potential functions. Given that
most dynamical systems exhibit a few nonlinear terms in their dynamics,
techniques that promote sparsity can effectively identify the candidate func-
tions that significantly contribute to the system’s dynamics. Therefore, this
paper utilizes a sparse regression-based nonlinear dynamics model identifica-

tion (SR), initially proposed in [32], and is further explained step-by-step in

13
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Fig. 3: Trajectory of the states in different operating points.

2

a

s the following sections.

s6 2.3.1. Measurements

257 SR technique utilizes symbolic regression and sparse representations to
»s determine the system’s dynamics. This approach depends upon the fact that

» many dynamical systems which are represented by differential equations in
x the form of x = f(x) have relatively few terms on the right-hand side [33].
21 In this work, the actual dynamics of the studied QTP is represented by x =

2

o
N}

f(x) + g(x)u, where x(t) € R™ is the state vector, u(t) € R is the control
263 input vector, and f(x(t), u(t)) := R™ X R — R™ maps a space of control
24 inputs and states dimension to a space nx dimension. Therefore, by collecting

s m measurement samples from the water tank levels and pump inputs, the

14
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281

QTP dynamics can be identified by a library of candidate functions, ¥ €
Rmxp, where p denotes the number of the library functions. To identify the
governing equations of the system in Eq. (2), a time-history of the tank levels
(state vector) x(t), pump inputs u(t), and derivatives of the states x(t) are
collected. Since only x(t) and u(t) might be available in most real-world
systems, the derivative measurements x(t) must be estimated first. This can
be accomplished by numerically calculating the derivatives from the state

measurements. To achieve this, the measurement data is first sampled at m

intervals t, to, ey tm and .arra.nged into [34]:
xT (tl) Xl(tl) X2(t1) . Xn (tl)
1
X< X €t2) L X1(F2) Xz('-tz) Xn X{tz) : (3)
xT (tm) Xl(tm) Xz(tm) - an(tm)

and inputs for t,, samples are written into a matrix U such that

uT(t1) U1(t1) U2(t1) ... Un (tl)
Ui ) uet) . une(t) W
uTitm) ul'(tm) u2-(tm) unu.(tm)

Then, the measurements for derivatives can be approximated numerically

from X by following the procedure described in the subsequent section.

2.3.2. Estimating the Derivatives, X
Differential and partial differential equations can be solved numerically
using methods such as difference approximation. It involves approximating

the derivatives of a smooth function using Taylor series expansions at specific

15
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295

mesh points. This study employs the central difference approximation due
to its higher accuracy when dealing with smooth functions. Accordingly, X

can be approximated by [36]:

. X(j+1)—X(G—1)
X os, (5)

where X(j + 1) is the measured data at sample j + 1 and s; is the sampling

time of the simulation or data collection platform.

2.3.3. Sparse Identification of System Dynamics

The states derivative data, obtained from utilizing the measured data
X € Rm*nx_ig a linear combination of columns from the candidate function
(e.g., polynomials, or sinusoids) library expressed by entries of the matrix

8 € Rpxnx guch that [33]:
X = Y(X, U)E. (6)

Having estimated X, W(X, U) can be constructed by linear and nonlinear
functions of the columns of X and U. Furthermore, monomials and trigono-
metric functions are typically considered candidate functions for nonlinear

systems. An example of such functions is represented in Eq. (7):

16
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Mo 5(X, U)
X
U
WX, U) = M:(X, U) o
sin(X, U)
cos(X, U)

sin(2X, U)

where Mi(X, U) corresponds a nonlinear combination of i-order monomials
of X and U. For instance, Mo 5(X, U) includes square-root functions that
exist in the QTP system, or M2(X, U) involves polynomials up to the second
order. Once the estimation of X and the determination of Y(X, U) based on
the available X and U are performed, then X = W(X, U)E can be acquired
by solving for the sparse vectors of coefficients in E. These coefficients de-
termine the active terms in the X dynamics. This is achieved by solving an

optimization of the form [18]:

.13 2 2
£ =argmin X~ WX ) || +ll€ || ®)

§: 2

where &; is the i-th column of E represented by E; = r§1 & ... & ' and X;
represents the i-th column of X. The objective function in (8) utilizes the

L2 norm ||.||» to minimize the error between the derivatives X and estimated
derivatives using calculated &; through a least-squares problem and the Lo
norm, ||.||o minimizes the number of nonzero elements in &; to promote spar-

sity in the coefficients matrix E. In addition, n is the regularizing parameter

17
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critical in the SR technique to promote sparsity degree in the solution, which
can be tuned using various hyperparameter tuning [37].
The minimization problem of (8) is solved by the sequentially thresholded

least squares algorithm, which is an iterative algorithm defined by [38]:

Ce= jelpl: & =20 ,Ve =0 9)
£ =WX U)X, (10)
&+ = argmin | X i—‘I’(X,U)§Ai||2, (11)

~

§ i€RP:supp(§H=C*

where ¢ is the iteration number, W(X, U)* is the pseudo inverse of (X, U)

defined as:
YX U =[PX U)X U)]"PX, U)T (12)

and the support set of &; is defined by supp() := {j € [p] : §/= o}
The coefficients & can be computed using the sparse regression formulation
exhibited in Algorithm 1. If the purpose is to identify the signal U for the
feedback control, i.e., U = H(s)X, where H(s) is the transfer function of the
controller, the matrix of inputs can be identified using U = W(X)Eu, where
W(X) is the matrix of candidate functions with the terms corresponding to
U have been removed from W(X, U) and Eu can be found using the sparse

regression algorithm similar to E.
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Algorithm 1 Sparse Regression-based Model Identification Algorithm
Input: Measurements X, U

Input: Estimated derivatives X

1: procedure Sparsity Promoting Algorithm

2: E=w\X D least-square solution
3: fore=1:T do > number of iterations
4: Set n > sparsification knob
5: |E| <n —— indsman
6: E(indsma) —— 0
7: fore=1:n,do > n, is state’s dimension X
8: indpif/ = indsmau(:, €)
9: E(indpig, €) = W(:,indpig) \X(:, £)

10: end for

11: end for

12: end procedure

Output: Sparse matrix & and & = ¥(£, wE

2.4. Model Predictive Control

MPC is a control strategy that solves multiple open-loop control problems
over a receding time horizon, subject to constraints [1, 17], illustratively
shown in Fig. 4. As shown from the figure, MPC is composed of four elements
such as 1) a prediction model, 2) a set of constraints, 3) a cost function, and
4) an optimization algorithm [6]. The prediction model is developed using
the controlled system model and the current value of the states (assuming
full state measurement, y = x). The model is typically represented using a

transfer function or state space model (in this study, the latter is used). The
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348

states can be written based on the actual states or the deviation between the
desired and the actual states (error signal). A set of constraints is obtained
by including the minimum and maximum values of the controlled system to
limit the input and state variables, while the cost function is derived based
on optimal control formulation over a finite horizon. Then the optimization
algorithm, incorporating the above-mentioned three components, is utilized
to yield a sequence of optimal control actions over a prediction horizon[6, 8].

MPC applies a receding horizon control (RHC) approach where the math-
ematical optimization is solved online and reiterated forward in time over
a finite-time horizon (continually shifted forward the horizon in a receding
manner) as depicted in Fig. 4. After the optimization problem is solved, only
the first control action of the optimized control sequence is actuated to the

controlled system [1].

A e
) @) Lasty),  Future Reference trajectory
y N —o
Control C Controlled system )Tput Predicted output
¥ Measured output
Cost (r) ‘*T || p
; Constraints  Reference ] I o —— ok
function ¢ ¢ | ,T * | Optimal control action
i ufto ' L trajectory
Optimization Control horizon '
. Ny Past control action
i k+j|Prediction f N s e s e e
/ k-l kktl o k#Ne-1 k+Ny-1 Applied optimal
Control action ‘Prediction horizon (NFQ control action
MPC CONTROLLER kI Receding horizon k+N,-1

Fig. 4: Schematics of model predictive control

In this paper, to further validate the model derived using the sparse
regression (SR) technique, MPC will be utilized to control the water levels of

the four tanks such that the objectives of the QTP can be obtained, including
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minimizing the tracking error signal and rate of change of the controller,

which will be further discussed in Section 2.4.1.

Remark. Assuming full observability of the states (x = y), the prediction
model and the optimal control problem formulation of MPC, henceforth, will

be described solely based on the states and the control variables of the system.

2.4.1. Optimal Control Problem Formulation

This work adopts the general optimal control problem (OCP) formulation,
which has been thoroughly described in [8, 12]. The objective is to minimize
the tracking error signal such that the states follow the desired set-point
values and to minimize the rate of change of the controller to ensure a longer
lifespan. To formulate the OCP, the system’s dynamics generated from the

SR method are utilized as follows:

x =f(x) + gx)u (13)

X =WR,WE (14)
TRiw

£k +1)=1(& w (15)

where Eq. (13) describes the dynamic equations of the controlled system,
detailed in Section 2.2, Eq. (14) corresponds to the predicted dynamics from
the SR technique, and Eq. (15) describes the discretized predicted dynam-
ics intended for MPC implementation. Fourth-order Runge-Kutta methods
(RK4) are employed to discretize the function expressed in Egs. (14)-(15) as
follows [39, 40]:
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ki = £(Rk, wi) (16a)
k=T &+ t—;kl,uk (16b)
k =F &+ t—2k u, (16¢)
ke = F(R & + toks, up) (16d)
R, = "k+t§(k1+ oks + 2k3 + ku) (16€)

%7 where k; is the i-th slope, ts € R+ is the sampling time (set as ts = 0.1) with

368
369
370
37
372
373

min
Uk, - -+, Uk+Np—1

S.t.

given initial conditions of xo, uo at t(0). In this work, the RK4 method is
also interchangeably used in the successive linearization MPC (SR-SLMPC)
framework to find numerical solutions from the differential equations.

Combining the system’s dynamics in Eq. (15) and the physical constraints
to the states and the inputs, depicted in Table 1, the final OCP formulation
is displayed in Eq. (17).

Np—1

09 == ]_LO 20+ —x (e * NAule + il
(172)
R(k +j+1) =T(R Kk +j),uk+j), (17b)

j=0,1,...,.Np—1

u<uk+j)<u, j=0,1,...,.Np—1 (17¢)
x<®(k+p)<x j=12,....Np (17d)
Xo = Xpdto) (17€)

s where N, € N* is the prediction horizon, k := kts € R* is the current time

ws step at sampling time ts, Q > 0 and R > 0 are the penalty weights for
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the states and the control inputs, respectively, £ (k) € R», u(k) € R™ and
Au(k) € Rm denote the states, input and input’s rate of change at time step
k, respectively, xr¢f € R~ is the desired set-points, x, u, &, wexpress the
minimum and maximum of the states and control inputs, respectively, and f :
Rne+w — Rnx i the discretized prediction model with varying formulation,

further described in Section 2.4.2.

Remark. For clarity, the predicted states and dynamics from the SR tech-
nique (Jl‘c =f(#, u)) are expressed in the notation of the actual states and

dynamics (x = f(x, w)).

2.4.2. Prediction Model
Prior to formulating the optimal control problem formulation, MPC re-
quires the formulation of the prediction model based on the plant model
(dynamics predicted by SR-based model identification) that will be used to
optimize a sequence of future control actions. Therefore, a suitable choice of
prediction model is crucial to obtain optimal performance of the controlled
system. The present study utilizes three prediction models: linear time-
invariant MPCs, linear time-varying MPCs, and nonlinear MPCs, which will
be discussed in the following sections. To quantify the performance of differ-
ent MPC strategies, Mean Absolute Percentage Error (MAPE) will be used,

which can be computed as follows:

1l % — %
MAPE =

=1

X 100% (18)

Xi

where, n represents the total number of samples, x; represents the desired

value, and X ; represents the predicted value.
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2.4.2.1. Linear Time-Invariant (LTI).

The first model utilizes a linear time-invariant approximation of the nonlinear
model predicted from the SR technique in Eq. (14), subsequently referred to
as SR-LMPC. The system’s dynamics is linearized around the MP operating
points (xop, ucr) displayed in Table 2 with linearized predicted models as

follows [35]:

: _§—11 0] El 0 o)
() = Vs (@ 1)+ VS g0+ 1) s () - v

6h 1 (9 6h 3 (1) v (D
(192)
’ jﬂ— 0 2 0] 0
Sha(t) =~V 5 (he(0) = h)+ . o () =1, +Ea0 (Va0 - v,)
2 h sh > (9 hp oh 4 (0 502 (9
(19b)
: a3
Shs(t) = 0 v ﬁShS(t) + €46 Sva(t) (19C)
3
: RITE
Shy(t) = ) v ﬁ8h4(t) + &5 6va(t) (19d)
4

where £; represents the active terms of the i-th row and j-th column of the
sparse matrix, E7, obtained from SR-based model identification in Algo-

op op
rithm 1, h,, and v,, correspond to the operating points of the m-th tanks’

water levels and the n-th pumps’ voltage, used to linearize the system, respec-
tively. Then the linearized state space model representation can be expressed

as follows:
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~ o A g
. hP 2 P El 0
2 1 3 5
"o J22 0 2 ‘ §a6
X = . h o © + ov (t) (20)
2 2 h%% . Shm . n
\533 0 .
o 0 0 2 hgp ' 0 54_6
0 0 0 5 &Ga 235” o~
" 4 —
AL: B

Next, the continuous state space model in Eq. (20) is discretized and rewrit-

ten as follows:
XLT(k + 1) = AgxlT(k) + BaulT(k) (21)

where k is the time instant, Aq € R and B4y € R™*™ correspond to
the time-invariant system’s matrices with subscript d denoting the discrete
time. Thereafter, the linear prediction model over the prediction horizon can

be written as follows:
it
xIT(k +j) = AjxLT(k) + AiBadl(k +1i) Vje{...Np} (22)

=0
where xL7(0) is the current state measurement of the states at time instant
k = 0. The LTI model formulated in Eq. (21) assumes that the system
dynamics remain constant over time. In addition, the problem in Eq. (17)

is a convex optimization formulated under linear constraints and quadratic
objectives. Therefore, LMPC can be considered mathematically tractable
and computationally efficient. To reduce the number of decision variables to

be solved in Eq. (17), the problem is formulated in terms of the incremental
form of the control inputs: Au(k) := u(k) — u(k — 1) which has been
comprehensively discussed in [8, 12]. Complete implementation of LMPC is

exhibited in Algorithm 2.
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Algorithm 2 Linear Time Invariant MPC (LMPC)
1: Input Np,, Q, R, T, ts, ny, ny, xref, xop, up, f(x, u)

2: Initialize xo € R™,uo € R, k=0

3: Linearize & Discretize nonlinear dynamics from f(x,u) around
xop, u%r at ts, Eq. (20)

4: Return LTI model, Eq. (21)

5: fork=0—-T—-1do > Simulation time

6: forj=0toN,—1do

7: Construct prediction model, Eq. (22)
8: Formulate quadratic cost: J(x(k +j), u(k +j)), Eq. (17a)
9: end for

10: Solve J(k) s.t. Egs. (17b)-(17d)

11: Return [Au*(0|k),..., Auw*(N, — 1|k)]

12: Extract [u*(0]k),...,u*(Np — 1|K)]

13: Apply only u*(0|k) > Receding horizon control (RHC)
14: Measure x(k + 1|k) from Eq. (21)

15: Update for k + 1, xo = x(k + 1/k) and uo = u*(0|k)

16: end for

2 2.4.2.2. Linear Time-Varying via Successive Linearization MPC.
0

s The second prediction model utilizes the linear time-varying (LTV) model via
2 a successive linearization method, in this paper referred to as SR-SLMPC.
a3 SR-SLMPC differs from SR-LMPC mainly due to its approach to lineariz-
s+ ing the nonlinear model. While SR-LMPC linearizes the nonlinear model

45 around steady state conditions using constant systems’ matrices for predic-
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a% tion, SR-SLMPC performs online linearization of the nonlinear model using
a7 the current operating points. Then the formulated prediction model over
a8 Npis used in Eq. (17) to obtain a sequence of optimal control actions. SR-

a9 SLMPC is formulated as follows [13, 41, 42]:

” 1. Formulate a state space representation of the QTP using the predicted
a1 continuous nonlinear system dynamics in Eq. (14), which can be ex-

“ pressed as follows:
VARV
2§11\/X1 + 2§'13,\/Xg &5 O
L " &0 X%+§24 X-4— 0 &yt

x= . J + u (23a)
§ X "0 &6
33\/ 3 _
Saa X4 &5 O
= f(x, u) (23b)
“ 2. Linearize the continuous nonlinear state space model in Eq. (23) at cur-
” rent operating points with detailed formulation in Eq. (19) and rewrit-
s ten as follows:
, . op op
xi=x+AD—x )+BO)(uwr—u ) (24a)
= Adt)(x) + Bd(ur + Le(t) (24b)
X -ALD x°P-Bo(Huor
46 where A(i,j) = %J c R™"™, Bi,j) = %J e R™™ and I'c € R™
w7 is the constant form of the linearization and subscript 1 corresponds
” to linearized model. Note that the system’s matrices associated with
w9 time t are different than that in Eq. (20). This is to indicate that SR-
450 SLMPC utilizes time-varying matrices. Initially, the model is linearized
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451 offline at the MP operating points defined in Table 2. Then, during
v SR-SLMPC implementation, the dynamics will be linearized around
453 the operating points at time instant k.

454 3. Integrate Eq. (24) with RK4 numerical integration scheme, described

455 in Eq. (16).

t
xi(t) = eAUx(0) +  eA"I(Bau(t) + Le)dt (25)

(0]

456 4. Discretization of the continuous state space representation.

xi(k + 1) = eAt x(k) + A-1(eAs — DB ul(k)
"o, C

A g 7( k.) B 4 7( k)
+ A;l(eA‘ft;f — DI'c (26)
Ta (”k) i

457 where ts is the discretization time step, equivalent to the sampling time
458 employed in MPC.
459 5. The final discrete state space model in LTV-MPC that will be used for
460 the formulation of the prediction model is described below:
461 xLTV(k + 1) = Aa(K)xLTV (k) + Ba(k)ul?V (k) (27)

s2 During the SR-SLMPC implementation, steps 1-5 are repeatedly conducted
s« by linearizing the system around the measurement of the current states and
w4 the previous control inputs (xo|k, uo|k) for all k € {o,...,T — 1}. Using
s Eq. (27), the prediction model is then expressed as follows:

xLTV(k +j) = Aj(K)xLTV (k) + - AL(K)Ba(k)ul™v (k + i)

=0

+ (I + Ad))Tak) Vje{s,...Np} (28)
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473

where Aj(k) € RM™"= s the time-varying prediction matrix associated
with current states measurement, 1!35'1Ati(k)Bd(k) € RNenNplncmd eop-
responds to the time-varying prediction matrix associated to the control se-
quence, and (I + Aq(k)y* € RN"™ "< represents the prediction matrix
of the affine term from the linearization. All system matrices are formu-
lated over the prediction horizon. Similar to SR-LMPC, OCP in Eq. (17) is
formulated in the incremental form of control signals [41]. An overview of

SR-SLMPC implementation can be found in Algorithm 3.
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Algorithm 3 LTV Model Predictive Control (SLMPC)

1: Input Np, ts, Q, R, T, nx ny, X7, f(x, u)

2: Initialize xo € R™, uo € R, k=0

3 fork=0—-T-1do > Simulation time
4: forj=0toN,—1do

5: Integrate & Linearize f(x, u) around xo, uo

6: Return LTV model, Eq. (27)

7: Discretize Eq. (27), return Aq4(k) and Ba(k)

8: Construct prediction model, Eq. (28)

9: Formulate quadratic cost: J(x(k +j), u(k +j)), Eq. (17a)
10: end for
11: Solve J(k) s.t. Egs. (17b)-(17d)

12: Return [Au*(0]k),..., Au*(Np — 1|k)]
13: Extract [u*(0]k),...,u*(Np — 1|K)]
14: Apply only u*(0|k) > RHC
15: Measure x(k + 1|k) from Eq. (27)
16: Update for k + 1, xo = x(k + 1/k) and uo = u*(0|k)
17: end for

2.4.2.3. Nonlinear MPC.
The main difference between nonlinear MPC, herein referred to as SR-NMPC,

compared to the above-mentioned MPCs is that the prediction model directly

utilizes the discretized nonlinear dynamics of the system to represent the con-

trolled system sufficiently. In this work, the discretized system’s dynamic in

Eq. (23) is expressed as follows:
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x(k + 1) = F(x(k), u(k)) (29)

s Therefore, the prediction model over the prediction horizon can be expressed

s as follows:

x(k+j+1) = e+, uk+7) Vjeio,...,Ny—1  (30)

s Given that the prediction model uses a nonlinear model, Eq. (17) is no longer

3 convex. Thus, convergence to a global minimum may not be guaranteed.

4 An overview of SR-NMPC implementation in this work can be found in

w5 Algorithm 4.

Algorithm 4 Nonlinear Model Predictive Control (NMPC)

1: Input: Np, Q,R, T, ny ny, X, f(x, u)

2: Initialize xo € R™, uo € R, k=0

33 fork=0—-T-1do > Simulation time
4: forj=0toN,—1do

5: Define & Discretize state space model, from Eq. (14) to Eq. (29)
6: Construct prediction model, Eq. (30)

7 Formulate quadratic cost: J(x(k + j), u(k +j)), Eq. (17a)

8: end for

9: Solve J(k) s.t. Egs. (17b)-(17d)

10: Extract [u*(0[k),..., u*(Np, — 1|K)].

11: Apply only u*(0|k) > RHC
12: Measure x(k + 1|k) from Eq. (29)

13: Update for k + 1, xo = x(k + 1/k) and uo = u*(0|k)

14: end for
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2.4.3. Solution method

Considering the nonlinearity of the quadruple tanks’ dynamics used as
the equality constraint in the OCP formulation (when implementing SR-
NMPC), sequential quadratic programming (SQP) is selected in this study to
solve the OCP in Eq (17). SQP is an iterative method that solves nonlinear
constrained optimization by solving a sequence of quadratic programming
(QP) sub-problems given in Eq. (32) [43]. SQP starts with an initial guess
for xk for a given iterate k and continues iteratively by updating xk+1 :=
xk+apk. A new iterate x**! is then used again to solve the QP subproblem
to obtain p such that a sequence of x* is created to converge to a local
minimum x* as k — co. In this study, the rate of change of the control
input (AU € R'P) (for SR-SLMPC and SR-LMPC) as well as the states
(X € RP), additionally for SR-NMPC, are the decision variables (x*) for
the formulated nonlinear optimization problem.

The associated Lagrangian function to the nonlinear problem in Eq (17)

is expressed by [43]:

m p
L L
L(x, A, 1) 1= f(x) +i= Ahd(x) + . wigix) (31)

1

where the functions h : R* — Rm and g : R» — Rer describe the equality
and inequality constraints, respectively, concatenated from Egs. (17b)-(17d).
In addition, n, m, and p are the number of decision variables, equality con-
straints, and inequality constraints, respectively, withA € Rmand p € R as
the Lagrangian multipliers for the associated equality and inequality con-
straints. Then the QP subproblem is formulated by approximating the

Lagrangian of Eq. (31) and linearizing the nonlinear constraints shown in
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Eq. (32).

.1 TH
min P Hyp 4 Vi(xx)Tp (32a)
peRm 2
st. Vgi{x)Tp+gdxx) =0, Viel (32b)
Vgi(xi) p+gixx) <o, Vjel (32¢)

where p is the search direction from the QP subproblem and Hx and is the
Hessian matrix of Eq. (31). However, to avoid the computational complexity
of Hessian computation, an approximate Hessian Matrix Bx can be computed
in place of Hx from Eq. (32) and updated for each iteration. In this study,
By is computed and updated using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method. For a detailed description of the BFGS method, readers
are encouraged to refer to [43, 44]. Furthermore, the solution to the QP

subproblem (px) is used to form a new iterate, xk+! := x* + axpx, where the
step size ax should be determined to ensure a sufficient decrease in a merit

function.
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Algorithm 5 Sequential quadratic programming

1. for k € {1,2..,n} do > number of iterations
2: Input xo, Ho

3: Setk <~ 0

4: repeat until a convergence is satisfied

5: Evaluate f(xx), VxL(xx, Ak 1)

6: Solve QP subproblems in Eq. (32) to obtain p«

7: Compute step size ax such that m(x* + +axpr) < m(xk)
8: Set Xi+1 <~ Xk + APk

9: Update B+ using the BFGS method
10: Setk —k+1
11: end (repeat)

12: end for

3. Case Studies

In this study, a bi-level process is presented where data-enabled model-
free identification of the quadruple tank process dynamics is first imple-
mented solely from available measurement data and then used to control
the system using MPC. To validate the accuracy of the proposed data-driven
identification of the QTP dynamics, time-domain simulations are carried out.
Furthermore, the predicted dynamics are continued to be actuated by com-
paring different MPC strategies. All simulations are carried out in MATLAB
R2022b on a processor of Intel Core CPU i7-6700 at 3.40 GHz and 32GB
RAM.

34



530

531

532

533

534

535

536

537

538

539

541

542

543

544

545

546

3.1. Case study 1: Validation for SR-based Method Model Identification

The first case study involves conducting parameter identification com-
parisons and time-domain simulations. The water levels of the tanks are
observed by perturbing the inputs of the pumps. The objective is to validate
the accuracy and effectiveness of the identified nonlinear dynamic models in

capturing the actual system dynamics.

3.1.1. Model Identification

First, data was collected on states and inputs of a quadruple tank system
simulated in MATLAB, using the parameters provided in [35] for training
purposes. Then the estimated values of the derivative for each state were
generated using central difference approximation, explained in Section 2.3.2.
Utilizing the measurements from the states and perturbing the inputs (pump
voltages, v;) with a repetitive sequence waveform between 2 - 4 V (to acti-
vate the dynamic modes) over 100 seconds of simulation, the results of the
estimated derivatives for MP and NMP operating points of the QTP are il-
lustrated in Fig. 5. It is observed that the estimated derivative is capable of

representing the measured derivative accurately.
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547 Accordingly, various candidate terms were considered for the function li-
s brary W(X, U), such as square-root functions, polynomials up to degree 2,

s and sinusoidal functions. In this work, 18 candidate terms are included with
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sso variables such as x;, uj,

Xi, Xillj, X2, exp(X;), X;COSXj, X;SIN Xj, U;COS Xj,

ss1 and u;sin x;. Following this, a sparse identification method was employed to

s determine the sparse matrix of coefficients, denoted as &, with a sparsifica-
ss3 tion hyperparameter set ton = 0.01 for both operating points. The identified
ss« coefficients were then utilized to construct a data-driven model and control
sss of the quadruple tank system in MATLAB. A comparison was conducted
sss between the parameters of the physical model (via simulation) and the iden-
ss7 tified model (via SR-based nonlinear dynamics model identification) for both

sss MP and NMP operating points, as presented in Tables 3 and 4. The results

9 show that all active terms from E closely configure the actual parameters that

o reside in the system’s dynamics. This proves that the identified data-driven

model accurately captures the dynamics of the physical model.

Table 3: Parameter identification using SR-based technique at MP operating point.

Dynamics Term Term Term Term Term Term
o0 \/__ _ o0/ k
X1 7%\/X1 0\/X2 M\/XS 0\/ lLI_AVI 0 Va
Aq Aq Ay
Physical —0.1123 0 0.1123 0 0.0833 o)
Identified —0.1125 0 0.1125 0 0.0834 0
. — daz 2E \/ — — dg 2E \/ —_— XZI—Q\
0 == 0 o v
X 2 X1 A Xo X3 A 4 \'%1 A 2
Physical 0 —0.0789 0 0.0789 0 0.0628
Identified 0 -0.079 0 0.079 0 0.0629
55 —
X .3 o'x o'x; B az 28 po o T4 ov, (1 Ayz ko ve
Ag 3
Physical 0 0 —0.1123 0 0 0.0479
Identified 0 0 —0.J125 \/0 0 0.0480
0 x 0 x 0 x — a4 2§ % 1 — vk
X4 1 2 3 A, 4 A, v ovz
Physical 0 0 0 -0.0789 0.0314 0
Identified 0 0 0 -0.0790 0.0312 0

561
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Table 4: Parameter identification using SR-based technique at NMP operating point.

Dynamics Term Term Term Term Term Term
. ai 2g v— - a3 2g+v/— — viki
X 1 — A X1 0 Xo A X3 0 x4 A, Vi 0 V2
Physical —0.1123 0 0.1123 0 0.0482 o)
Identified —0.1129 \/0 0.1129 0 0.0485 0
| d2 23 . a ; \/7 ¥2k2
X' 0 X/ — X2 0 X, a4 28V ov, A
A2 AZ 4 A2
i - 0.0350
Physical 0 0.0789 0o 0.0789 0 35
Identified 0 -0.0793 0 0.0793 0 0.0351
2 —
X5 o'x o'x; az 28 o 0'x; ov, ( Ayzlk2V2
A, 3
Physical 0 0 —0.1123 0 0 0.0776
Identified 0 0 —0.1129 JO 0 0.0779
0'x 0 x 0 x _3 BV, (1-—vydk
X4 1 2 3 A 4 A Y1 ovz
4 4
Physical 0 0 0 -0.0789 0.0586 0
Identified 0 0 0 -0.0793 0.0562 0

3.1.2. Time-domain Validation

In the second part (testing), the identified model obtained through the
SR-based method was evaluated by comparing it with the physical model
of the quadruple tank process in various operational scenarios. Specifically,
the control signal (u(t)) underwent several step changes at different time
instances. At 100 seconds, a step change was introduced from 3V to 4V.
Subsequently, at 120 seconds, another step change occurred to decrease u(t)
from 4V to 2.2V. At 150 seconds, a 0.5 step change was added for u(t) to
increase the pump voltage. Lastly, after 170 seconds, u(t) is returned to the
initial condition. Different control signals compared to the training period
were implemented to validate the identified model.

A comparison was made between the physical system and the identified

model as depicted in Fig. 6 at MP and NMP operating points. Mean absolute
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percentage error (MAPE) using Eq. (18) is also used to quantify the error
of the predicted dynamics during time series validation of the tanks’ water
levels. As illustrated, the system was forced with a control signal (u(t))

showing a repetitive triangle waveform for the first 100 seconds to train the
SR method while the following 100 seconds were implemented to validate the
identified model using varying control signal values. It is observed from the
figure and MAPE ranging from 0.01% - 0.02% that the proposed data-driven
model identification approach (SR-based technique) exhibits a high level of
accuracy in identifying the nonlinear dynamics of the QTP system. Further-
more, a slight deviation between the predicted and the original dynamics
can be attributed to their inherent sparsity [18], which further confirms that

the SR technique promotes the interpretability of the predicted models that

prevents overfitting [32]. Consequently, the proposed data-driven model can
serve as a reliable substitute for complex physics-based models, offering a
simplified yet effective alternative for understanding and controlling large-

scale water distribution systems.

3.2. Case study 2: Comparative Analysis of Three MPC Control Laws

Given the accuracy of using the SR-based method as described in the
first case study (Section 3.1), this case study further utilized the predicted
dynamic models of QTP in Eq. (14) using MPC with techniques described
in Section 2.4. Taking into account that all states are assumed to be fully
observable (y = x), four water levels were controlled by MPC to meet the
desired water level values. Three references with initial conditions at MP
operating points were used, as shown in Table 5 with model parameters in

Table 6.
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Fig. 6: Case study 1: Time-domain validation of the identified model

Table 6: Model parameters of the QTP

Parameter Values Parameter Values
Q diag[1111] R diag[0.001 0.001]
X 0.2m X 15 m
u oV v u 7V

Xolk [12.4 12.71.8 1.4] wolk [33]
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Table 5: Reference points over time

Time (s) h; (cm) h, (cm) hs (cm) hy (cm)
Ref1 t=o0 12.4 12.7 1.80 1.40
Ref2 0 <t <400 10.0 12.0 1.77 0.956
Ref3 t>400andt <800 12.0 14.0 2.01 1.19
Ref4 800 <t < 1200 8.00 10.0 1.53 0.721

From the OCP in Eq. (17), the pump voltage is required to control the
water levels of the four tanks to meet the reference points in Table 5 while
minimizing the voltage change rate between two consecutive time steps. The
model was run for 1200 s with a 0.1 s sampling time (ts) and a prediction
horizon of N, = 10, generating 12000 samples.

Fig. 7 illustrates the evolution of the water levels of the four tanks as a re-
sponse to the reference point changes controlled by SR-LMPC, SR-SLMPC,
and SR-NMPC. As depicted, a change in the reference value was introduced
at t= 400 s, causing a jump in the reference signal. Similarly, at t= 800 s,
the reference value was altered, resulting in a drop in the reference signal.
As shown from the figure, the present findings obtained from using differ-
ent MPC techniques, incorporating the predicted dynamics derived from the
sparse regression-based nonlinear dynamics model identification (SR-based
method), revealed similar behavior (i.e., similar time evolution of states) with
prior studies investigating model-based control approaches for the quadruple
tank system [11, 19, 45]. This further confirms the feasibility of the SR-based
method to be applied to different control approaches.

According to the top sub-plots from Fig. 7, the water levels of Tanks 1 and
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2 followed the reference points using all controllers. Furthermore, with vary-

ing reference points, Tanks 1 and 2 water levels remain within the constraints
without any overshoots observed. As observed from the two subplots at the

bottom of Fig. 7, all controllers managed to maintain the water levels of
Tanks 3 and 4 within the bound, with overshoots (or undershoots) observed
in both tanks. It is observed that SR-NMPC and SR-SLMPC demonstrate
satisfactory tracking performance. In contrast, the SR-LMPC controller dis-
played limitations in reaching the reference points, as evidenced by notable
deviations in Tank 3 and a minor error signal in Tank 4. This is expected
as SR-LMPC relies on linearizing the model of the nonlinear dynamics at

a constant operating point. Therefore, when the system’s behavior differs
from the operating points, the tracking performance of SR-LMPC can de-

grade. In addition, the QTP system is designed with cross-coupling effects
in its dynamics, making it challenging to control Tank 3 without affecting
the tracking performance in Tank 1.

The response of the pumps’ voltages in all controllers aligns with the
changing reference values shown in Fig. 8. The results indicate that all con-
trol strategies followed a similar pattern to achieve tracking performance,
irrespective of the control performance objective. This is indicated by the
sudden changes in the pumps’ voltages when reference points were mod-

ified. These outcomes were expected since the simulation setup assigned
higher penalty weights to minimize the error signal of the states. Despite the
abrupt adjustments to the pump voltage, depicted by maximizing the volt-
age level during reference jumps and minimizing it during reference drops,

all controllers successfully maintained the voltage level within the physical
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Fig. 7: Evolution of the four tanks over time: state bounds (dash-dotted lines)

limits.

Furthermore, it is observed that during reference changes, SR-SLMPC
(represented by dashed red lines) exhibited faster adjustments (approx. 1s)
in the pump voltages compared to the SR-NMPC and SR-LMPC controllers.
Additionally, both SR-NMPC and SR-LMPC controllers required a duration
of 5 seconds to reach the maximum or minimum values of the pump voltages
during the transition period. In contrast, SR-SLMPC required a shorter time
at 4.46 s with slightly smoother control actions, similarly seen in [41].

In Fig. 9, the state trajectory of Tanks 1 and 2 is displayed for all con-
trol strategies, further highlighting the tracking performance. Four reference

points were depicted with yellow markers. RefI corresponds to the initial
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Fig. 8: Evolution of pumps’ voltage over time: control bounds (dash-dotted lines)

conditions at MP operating points, while Ref4 denotes the last change of the
reference point. In terms of tracking the performance, SR-NMPC demon-
strates superiority over SR-SLMPC and SR-LMPC, consistently reaching
the reference points with identical final states. This highlights the capability
of SR-NMPC to accurately represent and control systems with nonlineari-
ties, making it a suitable choice for a controller. This finding aligns with
the description of SR-NMPC’s main functionality as stated in [14], which
focuses on stabilization and tracking objectives. As depicted in Fig. 9, both
SR-SLMPC and SR-LMPC controllers exhibit non-zero offsets and do not
achieve perfect tracking. However, the trajectory of SR-SLMPC closely re-
sembles that of SR-NMPC, indicating a better overall performance compared
to SR-LMPC.

Similarly, SR-NMPC repeatedly reached the reference points for Tanks 3
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Fig. 9: State trajectory of Tanks 1 and 2

and 4, as depicted in Fig. 10. SR-SLMPC followed the trajectories of SR-

NMPC to reach the reference points. This is because SR-SLMPC leverages
the system’s nonlinearities to compute the time-varying operating points for

each time step to linearize the system. Thereby, the linearized dynamics
follow the trajectory of the nonlinear model. In contrast, SR-LMPC showed
a different trajectory than SR-SLMPC and SR-NMPC and performed rela-
tively less satisfactory tracking purposes in Tanks 3 and 4 for each reference
point.

Table 7 displays a mean absolute percentage error (MAPE) between the
predicted and reference states, and the maximum elapsed time for executing
the control to the water levels of the tanks. All controllers showed an error
percentage below 5%, with SR-LMPC higher than the rest. Interestingly, SR-
SLMPC showed lower MAPE than SR-NMPC when tracking the reference
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for h; and h.. It is observed that during sudden changes of the reference
points, SR-SLMPC decreased the error signal at each time step with greater
magnitude than SR-NMPC to reach the steady state condition. This is
because SR-SLMPC utilizes a series of convex optimization problems, which
guarantees a global minimum solution [46]. Slightly higher MAPE is seen for
SR-SLMPC compared to SR-NMPC, which may be due to the cross-coupling
dynamics of the QTP system.

In contrast to the tracking analysis, Table 7 reveals that SR-LMPC out-
performs SR-NMPC and SR-SLMPC in terms of execution time, as it pro-
vides feasible control actions to the QTP system more quickly, albeit with the
trade-off of not precisely reaching zero offsets. It can be observed that SR-
LMPC and SR-SLMPC executed their control actions 93% and 81.3% faster
than SR-NMPC, respectively. The longer execution time of SLMPC com-
pared to SR-LMPC is expected since SR-SLMPC involves additional steps,
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s« such as linearization for each time step, to solve the MPC optimization prob-

lem.

Table 7: Quantitative Performance of MPC with Varying Prediction Model

NMPC SLMPC LMPC

h, 0.31% 0.09% 0.51%

h, 0.30%  0.02% 0.61%
MAPE (%)

hs 3.34% 3.67% 4.69%

h, 1.34% 1.50% 8.39%

Max elapsed time (s) 0.545 0.102 0.040

695

0 4. Conclusion

697 In this paper, a data-driven identification of nonlinear dynamics of the
s four interconnected water tanks using the sparse regression technique (SR
s» technique) was studied. The predicted dynamics were further actuated in
70 the MPC framework by varying the prediction models utilized in the optimal
70 control formulation, such as linear time-invariant MPC (SR-LMPC), linear
72 time-varying via successive linearization MPC (SR-SLMPC), and nonlinear
73 MPC (SR-NMPC).

704 The proposed model-free identification framework successfully delivers
s the nonlinear dynamics of the quadruple tank process, verified by the close
w6 tracking of system states with MAPE ranging from 0.01% - 0.02% when
77 implementing time series validation and varying control signals to the sys-
s tem. Furthermore, the sparse regression-based MPC provides guaranteed

7

o

s tracking performance with tracking error below 5% and demonstrates the
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advancement of control strategy for easy performance tuning subject to con-
straints and varying desired state values. All studied controllers performed
successfully in reference tracking, with SR-NMPC outperforming the rest,
reaching zero offsets. Albeit with the tracking error up to 4.7%, SR-LMPC
exhibits the fastest execution time compared to the rest of the controllers.
The SR-SLMPC framework presents an opportunity to provide a trade-off,
demonstrating similar outcomes to SR-NMPC while achieving an execution
time that is 80% faster.

The proposed work will be extended in future work to identify the nonlin-
ear dynamics and to control large-scale WDSs with multiple pumping stations

and complex distribution systems from available measurements.
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