

DATA-DRIVEN PREDICTIVE CONTROL STRATEGIES OF WATER SYSTEMS

Saskia A. Putri^a, Faegheh Moazeni^{b,*}, and Javad Khazaei^c

^a Civil & Environmental Engineering Department, Lehigh University, 1 West Packer Ave, Bethlehem, PA 18015. USA.

sap322@lehigh.edu

^b Civil & Environmental Engineering Department, Lehigh University, 1 West Packer Ave, Bethlehem, PA 18015. USA.

moazeni@lehigh.edu

¹⁰ ^c Electrical & Computer Engineering Department, Lehigh University, 19 Memorial Drive
¹¹ West Bethlehem, PA 18015. USA

khazaei@lehigh.edu

13 Abstract

14 Model predictive control (MPC) application has gained attention in water
15 distribution systems (WDSs) due to its effectiveness in controlling multi-
16 variable, highly nonlinear, and complex systems, all of which are inherent
17 traits of WDSs, but rely on accurate dynamic models. Model misrepresen-
18 tation can lead to nonoptimal solutions. Nevertheless, the emergence of uti-
19 lizing high-resolution metering devices and historical data has enabled data-
20 driven WDSs model identification, significantly reducing modeling challenges
21 of MPC without losing the accuracy or robustness of the closed-loop control
22 system. This paper contributes to developing a data-driven MPC framework
23 for WDSs, eliminating the reliance on the WDSs' physical models. Sparse
24 regression is utilized to identify the dynamics of WDSs from the available
25 sensory data. The identified data-driven model is then embedded in MPC
26 frameworks with multiple prediction model formulations: 1) linear-time in-

*Corresponding author. Tel: +1-610-758-3530. Email: moazeni@lehigh.edu (Faegheh Moazeni).

27 variant, 2) linear time-varying, 3) and nonlinear models. Four interconnected
28 water tank systems representing the nonlinear and cross-coupling of WDSs
29 are selected as the test system to evaluate the effectiveness of the proposed
30 data-driven MPC frameworks. Contrary to the existing WDS control de-
31 signs, which heavily rely on detailed WDS models and extensive historical
32 data, the proposed framework accurately captures the nonlinear dynamics
33 using minimum available measurements.

34 *Keywords:* Data-driven system identification; Sparse regression; Optimal
35 scheduling; Nonlinear control; Water distribution systems;

36 **1. Introduction**

37 The resilience of the water supply system is imperative to adapt to hydro-
38 climatic variations and socio-economic changes. Two main challenges under-
39 line this importance: 1) The exacerbation of climate change, which can lead
40 to water infrastructure damage and disrupt the distribution, and 2) shifts
41 in social and economic conditions, leading to an increase in water demand.
42 These factors place significant pressure on the governments and involved
43 parties to cope with these challenges [1]. Furthermore, ensuring safe water
44 supply is a complex procedure in and of itself, particularly for water distri-
45 bution systems (WDSs). WDSs comprise interconnected components such
46 as pipes, valves, pumps, storage tanks, and other components [2] contribut-
47 ing to their operational complexity to ensure the safe and stable distribution
48 of water. Furthermore, the prevalent use of pumps in WDSs contributes
49 to elevated power consumption and operational costs [3]. Without suitable
50 management, this could lead to unsustainable WDSs operations. To address

51 these concerns, gaining adaptive control, optimal operational scheduling of
52 WDSs, and a complete understanding of their behavior are vital to enhancing
53 their resiliency and sustainability.

54 Various control techniques have been explored to design and provide op-
55 timal management of WDSs [1]. Four control actions can be implemented
56 in the water system: 1) feedforward control, 2) feedback control, 3) optimal
57 control, and 4) heuristic control, which is based on a rules-of-thumb approach
58 or experience-based strategy to control the system [4]. However, to fully in-
59 corporate the complicated nature of WDSs, a control approach capable of
60 handling multi-variable and multi-objective models, system constraints, and
61 disturbances is required [5]. These aspects can be categorized under Model
62 Predictive Control (MPC). In addition to that, MPC also integrates the
63 aforementioned three control actions. First, MPC employs feedback control
64 to minimize the deviation between desired setpoints and the controlled out-
65 put. Furthermore, it utilizes feedforward control to adapt the control signal
66 based on measured or predicted disturbances [4]. Additionally, MPC em-
67 ploys optimal control to formulate a control law that minimizes a quadratic
68 objective function developed from the system's state space model [6]. Con-
69 sequently, MPC emerges as an advanced and preferred control strategy.

70 As a model-based controller, MPC utilizes the dynamic and static models
71 of the system being controlled as the prediction model to optimize future
72 control actions [7, 8]. A sequence of future control actions is determined by
73 solving a finite-time horizon of an online model-based optimization at each
74 sampling instant, using the plant's current state as the initial state [9] subject
75 to the objective functions (performance goals of the controlled system) and

⁷⁶ constraints at future time instants [7]. MPC follows the receding horizon
⁷⁷ framework by applying only the first value of the optimized control inputs
⁷⁸ and disregarding the rest of the trajectory [10]. The internal model, used in
⁷⁹ MPC implementation to obtain the predicted output, can be represented in
⁸⁰ the state space form, which can be linear or non-linear models [11].

⁸¹ Different strategies of MPC can be implemented that differ from the pre-
⁸² diction models, such as 1) the linear time-invariant (LTI) model, where the
⁸³ structure of the model does not change over time [12]; 2) the linear time-
⁸⁴ varying (LTV) model, where the dynamic behavior of the system varies over
⁸⁵ time due to varying operating points [13], and 3) nonlinear model that ac-
⁸⁶ counts for the nonlinear features present in the controlled system [14]. Linear
⁸⁷ prediction model has been widely used [15] as it offers a tractable control
⁸⁸ problem via a convex optimization problem that guarantees a global mini-
⁸⁹ mum with low computational cost [13, 16]. However, it may suffer from a lack
⁹⁰ of representation of an actual system that exhibits nonlinear behavior [17].
⁹¹ This motivates the application of nonlinear MPC that enables the control of
⁹² nonlinear systems and offers a more accurate system representation [15, 18].
⁹³ Nonetheless, nonlinear MPC (NMPC) also has its own drawbacks. NMPC
⁹⁴ applies a non-convex optimization problem, where the solution may converge
⁹⁵ to a local optimum, and provides computation-intensive control algorithms
⁹⁶ [11]. Therefore, finding a suitable prediction model to control WDSs is crit-
⁹⁷ ical to provide a trade-off between model accuracy, computation time, and
⁹⁸ tractability of the control problem [11].

⁹⁹ In spite of MPC's benefits, one of its liabilities is its heavy reliance on
¹⁰⁰ the dynamic model of the controlled system [17]. Consequently, a mismatch

101 between the plant model and the disturbances excluded from the model may
102 lead to unfavorable control decisions [6, 19]. Furthermore, existing hydraulic
103 models may not accurately reflect WDSs due to pipe deterioration (changing
104 the roughness coefficient of the pipe), water loss, operational scheduling, and
105 system topology, to name a few [20]. These divergences contribute to the
106 difficulty in yielding optimal control solution for WDSs. This is because,
107 in Considering the multi-variate, nonlinear, complex, and highly coupled
108 dynamics of assets in WDSs [21], as well as the presence of varying distur-
109 bances, and time-evolving objectives, the control-oriented model formulation
110 of MPC continues to be more challenging. Nevertheless, this can be solved
111 by leveraging data availability from the plant measurement.

112 The drive to optimize the operation and management of WDSs, along
113 with the goal of improving water infrastructure, has led to the development
114 of advanced monitoring technologies. This has resulted in the deployment
115 of smart sensors, including smart metering devices and wireless sensors [3].
116 Consequently, real-time and large data availability of WDSs can be obtained.
117 This presents an opportunity to develop enhanced data-driven models that
118 capture these systems' complex and nonlinear nature, including their re-
119 sponse to disturbances. Previous studies have explored data-driven model-
120 ing approaches for various aspects of water systems. A wavelet-based arti-
121 ficial neural network technique to predict daily water levels in WDSs was
122 investigated in [22]. In [23], model identification of a hysteresis-controlled
123 pump using sparse identification of nonlinear dynamics was studied and val-
124 idated on a single input and single output system (SISO). Multitask multi-
125 view learning methods to forecast water quality were employed by [24] on

126 an hourly basis by considering the spatial and spatiotemporal correlations
127 between water treatment facilities. Other existing data-driven approaches
128 include identifying water quality models via subspace identification method
129 (SIM) [25], estimating drip tape irrigation discharge using temperature and
130 pressure measurements [26], identifying reservoir operations using artificial
131 neural networks and support vector regression [27], predicting water quality
132 using various machine learning methods [28, 29], reduced network model to
133 control WDSs using radial basis function neural models (RBFNN) [30], and
134 forecasting reservoir water inflow using neural networks [31].

135 However, these studies have primarily focused on specific components or
136 processes within the system and have not addressed the identification of non-
137 linear dynamics at a system level. Furthermore, many existing approaches
138 rely on machine learning techniques that require extensive training data and
139 lack interpretability, making them less suitable for system-level control in
140 WDSs. In addition, given the nonlinearities and uncertainties of WDSs op-
141 eration, it is not known whether a data-driven MPC can provide tracking
142 guarantees and enhanced control performance to the optimal operation of
143 WDSs. Therefore, there is a need for research that utilizes data-driven tech-
144 niques to identify the nonlinear dynamics of WDSs at a system level, enabling
145 more effective control and management of these complex systems.

146 1.1. Contributions of this work

147 To address the existing challenges, this work investigates the application
148 of sparse identification theory for data-driven model identification in WDSs.
149 In addition, to analyze whether a data-driven MPC can provide tracking
150 guarantees and improved control performance in WDSs, we have designed

151 three different techniques for formulating the optimal control problem in
152 MPC to actuate the predicted data-driven dynamics and find suitable pre-
153 diction models that comprehensively represent WDSs. Sparse identification
154 theory is a viable method for accurately modeling the nonlinear dynamics of
155 unknown systems [32–34]. It reduces training time and the need for neural
156 networks for control and identification. To our best knowledge, no existing
157 work has reported data-driven modeling of nonlinear dynamics of WDSs us-
158 ing sparsity-promoting techniques and implementing the predicted nonlinear
159 dynamics to different approaches of MPC. Therefore, the main contributions
160 of this paper can be summarized as follows:

- 161 1. A data-driven based on sparse regression technique is developed to
162 identify the nonlinear dynamics of the benchmark quadruple water tank
163 process that closely represent the nonlinear dynamics of WDSs.
- 164 2. Data-driven control of nonlinear WDSs dynamics using various MPC
165 strategies, including linear time-invariant MPC (LMPC), linear time-
166 varying MPC through successive linearization technique (SLMPC), and
167 nonlinear MPC (NMPC) is investigated.
- 168 3. A comparative analysis involving computational burden, tracking per-
169 formance, and robustness of data-driven MPC strategies with numerical
170 results that further highlight the performance of different data-driven
171 MPC approaches is provided.
- 172 4. Detailed descriptions of the MPC algorithms for each control law are
173 provided, along with a thorough formulation of the MPC solution
174 method utilizing sequential quadratic programming (SQP).

175 The rest of the paper is organized as follows: Section II describes the

¹⁷⁶ proposed model description in addition to the dynamics of the quadruple
¹⁷⁷ tank systems, sparse identification of dynamics, and optimal control problem
¹⁷⁸ formulation (OCP) of MPC. Several case studies are presented and discussed
¹⁷⁹ in Section III to validate the proposed model identification through the sparse
¹⁸⁰ regression technique with different strategies of control, while Section IV
¹⁸¹ concludes the paper.

¹⁸² **2. Methodology**

¹⁸³ *2.1. Proposed Model Description*

¹⁸⁴ Fig. 1 exhibits an overview of the proposed data-driven model identifica-
¹⁸⁵ tion via the sparse regression-based nonlinear dynamics (SR-based) method
¹⁸⁶ combined with MPC to control a system that closely resembles WDSs. This
¹⁸⁷ work uses a quadruple tank process (QTP) from [35] that depicts simpli-
¹⁸⁸ fied WDSs, a set of interconnected water tanks subject to external in and
¹⁸⁹ outflows. First, the sparse regression model identification technique will be
¹⁹⁰ utilized to identify the dynamic equations of the system solely from mea-
¹⁹¹ surements. It involves taking measurements from the outputs of the plant
¹⁹² (y_i), collecting the applied control inputs (u_i), constructing a library of func-
¹⁹³ tions that might represent the system's dynamics, and solving a sequentially
¹⁹⁴ thresholded least-square optimization problem using a sparse regression tech-
¹⁹⁵ nique. Then, the predicted dynamics are conveyed to the MPC framework to
¹⁹⁶ generate optimal control problem formulation exploiting various MPC tech-
¹⁹⁷ niques, such as linear, successive linearization, and nonlinear MPCs. Differ-
¹⁹⁸ ent techniques are proposed to provide different trade-offs in utilizing MPC

199 as the control strategy in WDSs. The process is described in details in Sections 2.3 and 2.4.

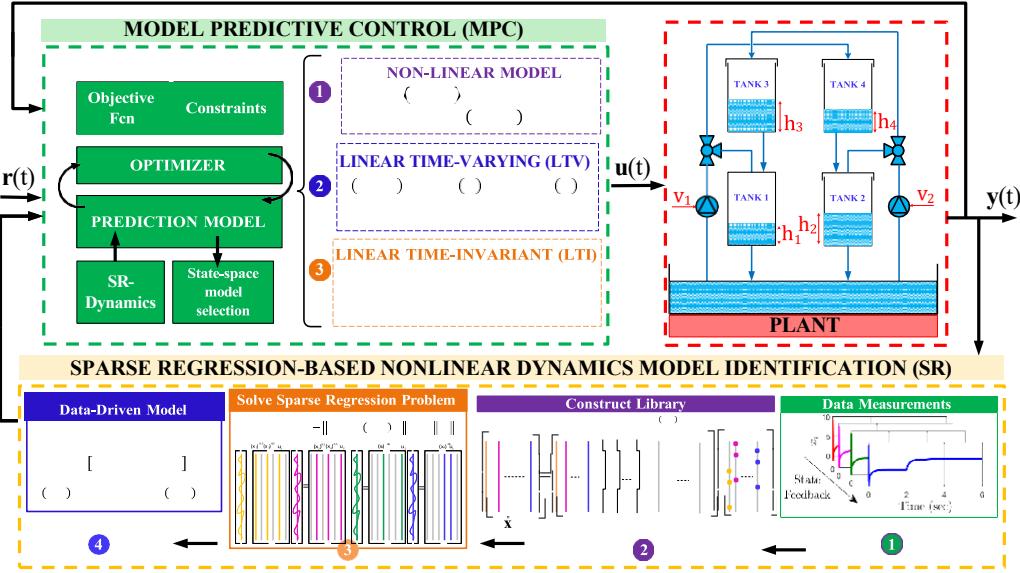


Fig. 1: Proposed data-driven control framework for identifying and controlling the dynamics of a quadruple tank process.

200

201 *2.2. Application of SR-MPC to a benchmark system*

202 *2.2.1. Dynamic Model of Quadruple Tank Process (QTP)*

203 The dynamics of each tank in the quadruple water tank process in Fig. 2 is
 204 derived from the combination of mass balance in the tank (assuming constant
 205 density) and Bernoulli's theorem with additional flow control valve (FCV)
 206 and pumps as the controllers. The governing equations can be represented
 207 by the following set of differential equations [35]:

$$\begin{aligned}
& \frac{1}{S_1} \frac{1}{S_1} \frac{3}{S_1} \frac{1}{S_1} \\
\dot{h}_1(t) &= \frac{-s_1}{2gh_1(t)} + \frac{-s_3}{2gh_3(t)} + \frac{\gamma_1 k_1 v_1(t)}{S_1} \quad (1a) \\
\dot{h}_2(t) &= \frac{-s_2}{S_2} \sqrt{\frac{2gh_2(t)}{2gh_1(t)}} + \frac{-s_4}{S_2} \sqrt{\frac{2gh_4(t)}{2gh_3(t)}} + \frac{\gamma_2 k_2 v_2(t)}{S_2} \quad (1b) \\
\dot{h}_3(t) &= \frac{-s_3}{S_3} \sqrt{\frac{2gh_3(t)}{2gh_1(t)}} + \frac{(1 - \gamma_2) k_2 v_2(t)}{S_3} \quad (1c) \\
\dot{h}_4(t) &= \frac{-s_4}{S_4} \sqrt{\frac{2gh_4(t)}{2gh_3(t)}} + \frac{(1 - \gamma_1) k_1 v_1(t)}{S_4} \quad (1d)
\end{aligned}$$

where S_i is the cross-sectional area of tank i , s_i is a cross-sectional area of the tank's orifice in tank i , h_i is the water level of tank i , v_i is the voltage applied to pump i with a corresponding flow $k_i v_i$. Parameters $\gamma_i \in [0, 1]$ are determined from the settings of the valves. As illustrated in Fig. 2, $\gamma_1 k_1 v_1$ and $(1 - \gamma_1) k_1 v_1$ represent tanks 1 and 4 inflows, respectively. Similarly, the water flow to tank 2 is $\gamma_2 k_2 v_2$, and the water flow to tank 3 is $(1 - \gamma_2) k_2 v_2$. The system is uniquely designed to exhibit the effect of multivariable zero on the system behavior with zero location either on the left or right-hand plane by changing the valve positions [35]. The system is represented as minimum phase (left-hand plane zero) for $1 < \gamma_1 + \gamma_2 < 2$ and non-minimum phase for $0 < \gamma_1 + \gamma_2 < 1$ (right-hand plane zero). The acceleration of gravity is denoted by g and output measurements can be computed with $k_1 h_1$ and $k_2 h_2$. Table 1 displays the constant parameter values used in this work adopted from [35].

Table 1: QTP Parameters from [35]

Parameters	Unit	Qty
S_1, S_3	cm^2	28
S_2, S_4	cm^2	32
s_1, s_3	cm^2	0.071
s_2, s_4	cm^2	0.057
h_i^{max}	cm	15
h_i^{min}	cm	0
k_c	V/cm	1
g	cm/s^2	981

221 By re-arranging equations in Eq.(1), the state space model of the QTP can

222 be expressed as follows:

$$\dot{\mathbf{x}} = \begin{bmatrix} \cdot & -\frac{s_1 \sqrt{2g}}{S_1} \sqrt{\frac{x_1}{x_3}} + \frac{s_3 \sqrt{2g}}{S_1} \sqrt{\frac{x_3}{x_1}} & \cdot & \cdot & \cdot & \cdot \\ \cdot & \frac{y_1 k_1}{S_1} & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & -\frac{s_2 \sqrt{2g}}{S_2} \sqrt{\frac{x_2}{x_4}} + \frac{s_4 \sqrt{2g}}{S_2} \sqrt{\frac{x_4}{x_2}} & \cdot & \cdot & 0 & \frac{y_2 k_2}{S_2} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & -\frac{s_3 \sqrt{2g}}{S_3} \sqrt{\frac{x_3}{x_1}} & \cdot & \cdot & 0 & \frac{(1 - y_2) k_2}{S_3} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & -\frac{s_4 \sqrt{2g}}{S_4} \sqrt{\frac{x_4}{x_2}} & \cdot & \cdot & \frac{(1 - y_1) k_1}{S_4} & 0 \end{bmatrix} u \quad (2a)$$

$$\mathbf{y} = k_c \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T \quad (2b)$$

223 which is equivalent to

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})u \quad (2c)$$

$$\mathbf{y} = \mathbf{h}(\mathbf{x}) \quad (2d)$$

224 In Eq.(2), $\mathbf{x} = [h_1 \ h_2 \ h_3 \ h_4]^T$ is the state vector, while $\mathbf{y} = k_o \mathbf{x}$ is the
 225 output vector, and $\mathbf{u} = [v_1 \ v_2]^T$ is the input vector of the system, which
 226 includes the voltage applied to the pumps.

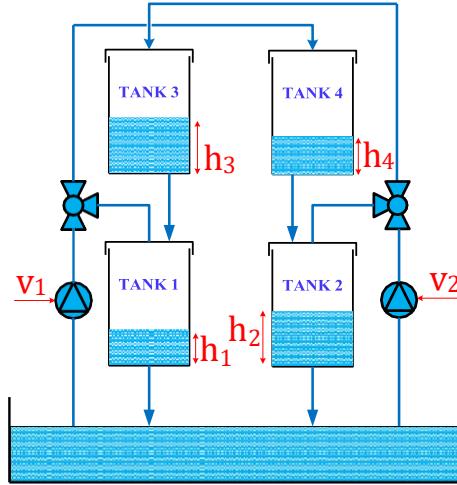


Fig. 2: Schematic of a quadruple tank process.

227 *2.2.2. Operating Points*

228 One of the objectives of this work is to identify the dynamic model pre-
 229 sented in Eq. (2) solely from the available measurements of the states, assum-
 230 ing that detailed information regarding the QTP system and its parameters
 231 is unavailable. Two distinct operating points will be examined to assess the
 232 robustness of the proposed model identification framework. These operating
 233 points were intentionally chosen based on the system's behavior, with one
 234 exhibiting minimum phase (MP) characteristics and the other demonstrating
 235 nonminimum phase (NMP) behavior. This selection allows for a comprehen-
 236 sive validation of the proposed framework's effectiveness. The two operating
 237 points are listed in Table 2.

Table 2: Operating points of quadruple tank process.

Parameter	MP operating point	NMP operating point
h_1, h_2 [cm]	12.4, 12.7	12.6, 13
h_3, h_4 [cm]	1.8, 1.4	4.8, 4.9
v_1, v_2 [V]	3, 3	3.15, 3.15
k_1, k_2	3.33, 3.35	3.14, 3.29
γ_1, γ_2	0.7, 0.6	0.43, 0.34

238 Simulations were conducted to evaluate the system's operation in these
 239 two operating points by perturbing the control inputs (pump voltages, v_i)
 240 with a repetitive sequence waveform between 2 - 4 V (to activate the dynamic
 241 modes). Fig. 3 depicts the evolution of the states at two operating points
 242 over 100 s simulation in MATLAB.

243 *2.3. Data-Driven Identification of Nonlinear Dynamics*

244 To identify the nonlinear dynamical models of the studied QTP using
 245 measurements, the first step involves estimating the state derivatives (\dot{x}).
 246 Subsequently, a library of candidate functions ($\psi_i(x)$) is constructed to de-
 247 scribe the temporal changes of the state variables. In cases without prior
 248 knowledge about the system's dynamics, an extended basis of candidate
 249 functions can be chosen to accommodate all potential functions. Given that
 250 most dynamical systems exhibit a few nonlinear terms in their dynamics,
 251 techniques that promote sparsity can effectively identify the candidate func-
 252 tions that significantly contribute to the system's dynamics. Therefore, this
 253 paper utilizes a sparse regression-based nonlinear dynamics model identifica-
 254 tion (SR), initially proposed in [32], and is further explained step-by-step in

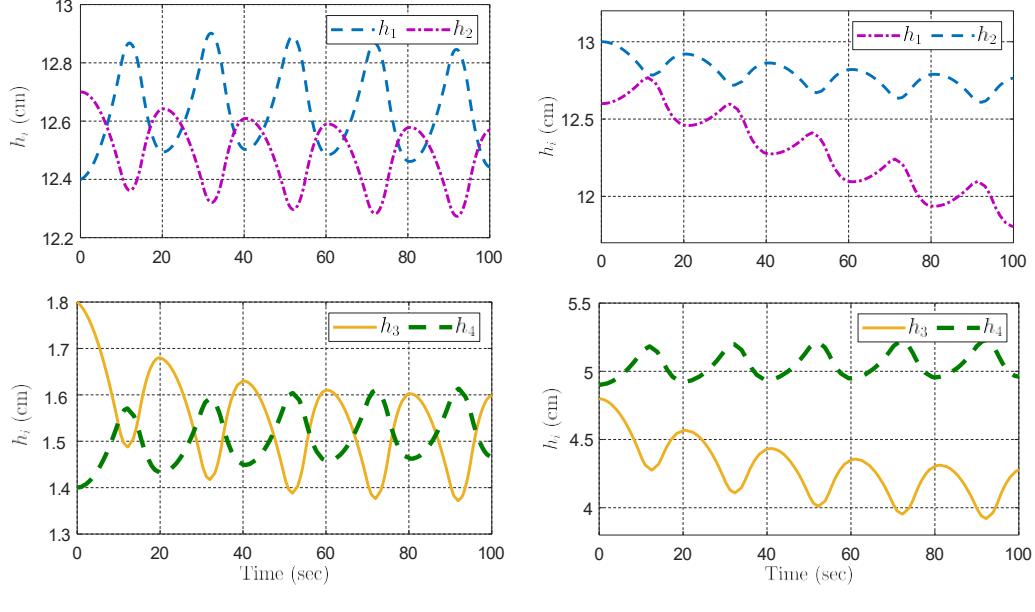


Fig. 3: Trajectory of the states in different operating points.

255 the following sections.

256 *2.3.1. Measurements*

257 SR technique utilizes symbolic regression and sparse representations to
 258 determine the system's dynamics. This approach depends upon the fact that
 259 many dynamical systems which are represented by differential equations in
 260 the form of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ have relatively few terms on the right-hand side [33].
 261 In this work, the actual dynamics of the studied QTP is represented by $\dot{\mathbf{x}} =$
 262 $\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u}$, where $\mathbf{x}(t) \in \mathbb{R}^{n_x}$ is the state vector, $\mathbf{u}(t) \in \mathbb{R}^{n_u}$ is the control
 263 input vector, and $\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) := \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \rightarrow \mathbb{R}^{n_x}$ maps a space of control
 264 inputs and states dimension to a space n_x dimension. Therefore, by collecting
 265 m measurement samples from the water tank levels and pump inputs, the

266 QTP dynamics can be identified by a library of candidate functions, $\Psi \in$
 267 $\mathbb{R}^{m \times p}$, where p denotes the number of the library functions. To identify the
 268 governing equations of the system in Eq. (2), a time-history of the tank levels
 269 (state vector) $\mathbf{x}(t)$, pump inputs $\mathbf{u}(t)$, and derivatives of the states $\dot{\mathbf{x}}(t)$ are
 270 collected. Since only $\mathbf{x}(t)$ and $\mathbf{u}(t)$ might be available in most real-world
 271 systems, the derivative measurements $\dot{\mathbf{x}}(t)$ must be estimated first. This can
 272 be accomplished by numerically calculating the derivatives from the state
 273 measurements. To achieve this, the measurement data is first sampled at m
 274 intervals t_1, t_2, \dots, t_m and arranged into [34]:
 .

$$\mathbf{X} = \begin{array}{c} \mathbf{x}^T(t_1) \\ \vdots \\ \mathbf{x}^T(t_2) \\ \vdots \\ \mathbf{x}^T(t_m) \end{array} = \begin{array}{c} x_1(t_1) & x_2(t_1) & \dots & x_n(t_1) \\ \vdots & \vdots & & \vdots \\ x_1(t_2) & x_2(t_2) & \dots & x_n(t_2) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(t_m) & x_2(t_m) & \dots & x_n(t_m) \end{array} \quad (3)$$

275 and inputs for t_m samples are written into a matrix \mathbf{U} such that

$$\mathbf{U} = \begin{array}{c} \mathbf{u}^T(t_1) \\ \vdots \\ \mathbf{u}^T(t_2) \\ \vdots \\ \mathbf{u}^T(t_m) \end{array} = \begin{array}{c} u_1(t_1) & u_2(t_1) & \dots & u_n(t_1) \\ \vdots & \vdots & & \vdots \\ u_1(t_2) & u_2(t_2) & \dots & u_n(t_2) \\ \vdots & \vdots & \ddots & \vdots \\ u_1(t_m) & u_2(t_m) & \dots & u_n(t_m) \end{array} \quad (4)$$

276 Then, the measurements for derivatives can be approximated numerically
 277 from \mathbf{X} by following the procedure described in the subsequent section.

278 *2.3.2. Estimating the Derivatives, $\dot{\mathbf{X}}$*

279 Differential and partial differential equations can be solved numerically
 280 using methods such as difference approximation. It involves approximating
 281 the derivatives of a smooth function using Taylor series expansions at specific

²⁸² mesh points. This study employs the central difference approximation due
²⁸³ to its higher accuracy when dealing with smooth functions. Accordingly, $\dot{\mathbf{X}}$
²⁸⁴ can be approximated by [36]:

$$\dot{\mathbf{X}} \approx \frac{\mathbf{X}(j+1) - \mathbf{X}(j-1)}{2s_t} \quad (5)$$

²⁸⁵ where $\mathbf{X}(j+1)$ is the measured data at sample $j+1$ and s_t is the sampling
²⁸⁶ time of the simulation or data collection platform.

²⁸⁷ 2.3.3. *Sparse Identification of System Dynamics*

²⁸⁸ The states derivative data, obtained from utilizing the measured data
²⁸⁹ $\mathbf{X} \in \mathbb{R}^{m \times n_x}$, is a linear combination of columns from the candidate function
²⁹⁰ (e.g., polynomials, or sinusoids) library expressed by entries of the matrix
²⁹¹ $\mathbf{\Xi} \in \mathbb{R}^{p \times n_x}$ such that [33]:

$$\dot{\mathbf{X}} = \mathbf{\Psi}(\mathbf{X}, \mathbf{U})\mathbf{\Xi}. \quad (6)$$

²⁹² Having estimated $\dot{\mathbf{X}}$, $\mathbf{\Psi}(\mathbf{X}, \mathbf{U})$ can be constructed by linear and nonlinear
²⁹³ functions of the columns of \mathbf{X} and \mathbf{U} . Furthermore, monomials and trigono-
²⁹⁴ metric functions are typically considered candidate functions for nonlinear
²⁹⁵ systems. An example of such functions is represented in Eq. (7):

$$\begin{aligned}
& \mathbf{M}_{0.5}(\mathbf{X}, \mathbf{U}) \\
& \mathbf{X} \\
& \vdots \quad \mathbf{U} \\
& \mathbf{M}_2(\mathbf{X}, \mathbf{U}) \\
\mathbf{\Psi}^T(\mathbf{X}, \mathbf{U}) = & \begin{array}{c} \cdot \quad \cdot \\ \cdot \quad \cdot \end{array} \quad (7) \\
& \cdot \quad \cdot \\
& \cdot \quad \sin(\mathbf{X}, \mathbf{U}) \\
& \cdot \quad \cos(\mathbf{X}, \mathbf{U}) \\
& \cdot \quad \sin(2\mathbf{X}, \mathbf{U}) \\
& \cdot \quad \cdot
\end{aligned}$$

296 where $\mathbf{M}_i(\mathbf{X}, \mathbf{U})$ corresponds a nonlinear combination of i -order monomials
297 of \mathbf{X} and \mathbf{U} . For instance, $\mathbf{M}_{0.5}(\mathbf{X}, \mathbf{U})$ includes square-root functions that
298 exist in the QTP system, or $\mathbf{M}_2(\mathbf{X}, \mathbf{U})$ involves polynomials up to the second
299 order. Once the estimation of $\dot{\mathbf{X}}$ and the determination of $\mathbf{\Psi}(\mathbf{X}, \mathbf{U})$ based on
300 the available \mathbf{X} and \mathbf{U} are performed, then $\dot{\mathbf{X}} = \mathbf{\Psi}(\mathbf{X}, \mathbf{U})\mathbf{\Xi}$ can be acquired
301 by solving for the sparse vectors of coefficients in $\mathbf{\Xi}$. These coefficients de-
302 termine the active terms in the $\dot{\mathbf{X}}$ dynamics. This is achieved by solving an
303 optimization of the form [18]:

$$\hat{\boldsymbol{\xi}}_i = \arg \min_{\hat{\boldsymbol{\xi}}_i} \frac{1}{2} \|\dot{\mathbf{X}}_i - \mathbf{\Psi}(\mathbf{X}, \mathbf{U})\hat{\boldsymbol{\xi}}_i\|_2^2 + \eta \|\hat{\boldsymbol{\xi}}_i\|_0 \quad (8)$$

304 where $\hat{\boldsymbol{\xi}}_i$ is the i -th column of $\mathbf{\Xi}$ represented by $\mathbf{\Xi}_i = \begin{array}{c} \mathbf{\Xi}_1 \\ \mathbf{\Xi}_2 \\ \vdots \\ \mathbf{\Xi}_p \end{array}^T$ and $\dot{\mathbf{X}}_i$
305 represents the i -th column of $\dot{\mathbf{X}}$. The objective function in (8) utilizes the
306 L2 norm $\|\cdot\|_2$ to minimize the error between the derivatives $\dot{\mathbf{X}}$ and estimated
307 derivatives using calculated $\hat{\boldsymbol{\xi}}_i$ through a least-squares problem and the L0
308 norm, $\|\cdot\|_0$ minimizes the number of nonzero elements in $\hat{\boldsymbol{\xi}}_i$ to promote spar-
309 sity in the coefficients matrix $\mathbf{\Xi}$. In addition, η is the regularizing parameter

310 critical in the SR technique to promote sparsity degree in the solution, which
 311 can be tuned using various hyperparameter tuning [37].

312 The minimization problem of (8) is solved by the sequentially thresholded
 313 least squares algorithm, which is an iterative algorithm defined by [38]:

$$C^\varepsilon = \{j \in [p] : \xi_j^\varepsilon \geq \eta, \forall \varepsilon \geq 0 \quad (9)$$

$$\hat{\xi}_i^0 = \Psi(\mathbf{X}, \mathbf{U})^\dagger \dot{\mathbf{X}}_i \quad (10)$$

$$\hat{\xi}^{\varepsilon+1} = \underset{\hat{\xi}_i \in \mathbb{R}^p: \text{supp}(\hat{\xi}_i) \subseteq C^\varepsilon}{\operatorname{argmin}} \|\dot{\mathbf{X}}_i - \Psi(\mathbf{X}, \mathbf{U}) \hat{\xi}_i\|_2, \quad (11)$$

314 where ε is the iteration number, $\Psi(\mathbf{X}, \mathbf{U})^\dagger$ is the pseudo inverse of $\Psi(\mathbf{X}, \mathbf{U})$
 315 defined as:

$$\Psi(\mathbf{X}, \mathbf{U})^\dagger := [\Psi(\mathbf{X}, \mathbf{U})^T \Psi(\mathbf{X}, \mathbf{U})]^{-1} \Psi(\mathbf{X}, \mathbf{U})^T \quad (12)$$

316 and the support set of ξ_j is defined by $\text{supp}(\xi_j) := \{j \in [p] : \xi_j \neq 0\}.$
 317 The coefficients ξ_j can be computed using the sparse regression formulation
 318 exhibited in **Algorithm 1**. If the purpose is to identify the signal \mathbf{U} for the
 319 feedback control, i.e., $\mathbf{U} = H(s)\mathbf{X}$, where $H(s)$ is the transfer function of the
 320 controller, the matrix of inputs can be identified using $\mathbf{U} = \Psi(\mathbf{X})\Xi_u$, where
 321 $\Psi(\mathbf{X})$ is the matrix of candidate functions with the terms corresponding to
 322 \mathbf{U} have been removed from $\Psi(\mathbf{X}, \mathbf{U})$ and Ξ_u can be found using the sparse
 323 regression algorithm similar to Ξ .

Algorithm 1 Sparse Regression-based Model Identification Algorithm

Input: Measurements \mathbf{X}, \mathbf{U}

Input: Estimated derivatives $\dot{\mathbf{X}}$

1: **procedure** Sparsity Promoting Algorithm

2: $\mathbf{\Xi} = \mathbf{\Psi} \setminus \dot{\mathbf{X}}$ ▷ least-square solution

3: **for** $\varepsilon = 1 : T$ **do** ▷ number of iterations

4: Set η ▷ sparsification knob

5: $|\mathbf{\Xi}| < \eta \rightarrow \text{ind}_{small}$

6: $\mathbf{\Xi}(\text{ind}_{small}) \rightarrow 0$

7: **for** $\varepsilon = 1 : n_x$ **do** ▷ n_x is state's dimension \mathbf{X}

8: $\text{ind}_{big} = \text{ind}_{small}(:, \varepsilon)$

9: $\mathbf{\Xi}(\text{ind}_{big}, \varepsilon) = \mathbf{\Psi}(:, \text{ind}_{big}) \setminus \dot{\mathbf{X}}(:, \varepsilon)$

10: **end for**

11: **end for**

12: **end procedure**

Output: Sparse matrix $\mathbf{\Xi}$ and $\dot{\mathbf{x}} = \mathbf{\Psi}(\hat{\mathbf{x}}, \mathbf{u})\mathbf{\Xi}$

324 2.4. Model Predictive Control

325 MPC is a control strategy that solves multiple open-loop control problems

326 over a receding time horizon, subject to constraints [1, 17], illustratively

327 shown in Fig. 4. As shown from the figure, MPC is composed of four elements

328 such as 1) a prediction model, 2) a set of constraints, 3) a cost function, and

329 4) an optimization algorithm [6]. The prediction model is developed using

330 the controlled system model and the current value of the states (assuming

331 full state measurement, $\mathbf{y} = \mathbf{x}$). The model is typically represented using a

332 transfer function or state space model (in this study, the latter is used). The

333 states can be written based on the actual states or the deviation between the
 334 desired and the actual states (error signal). A set of constraints is obtained
 335 by including the minimum and maximum values of the controlled system to
 336 limit the input and state variables, while the cost function is derived based
 337 on optimal control formulation over a finite horizon. Then the optimization
 338 algorithm, incorporating the above-mentioned three components, is utilized
 339 to yield a sequence of optimal control actions over a prediction horizon[6, 8].

340 MPC applies a receding horizon control (RHC) approach where the math-
 341 ematical optimization is solved online and reiterated forward in time over
 342 a finite-time horizon (continually shifted forward the horizon in a receding
 343 manner) as depicted in Fig. 4. After the optimization problem is solved, only
 344 the first control action of the optimized control sequence is actuated to the
 controlled system [1].

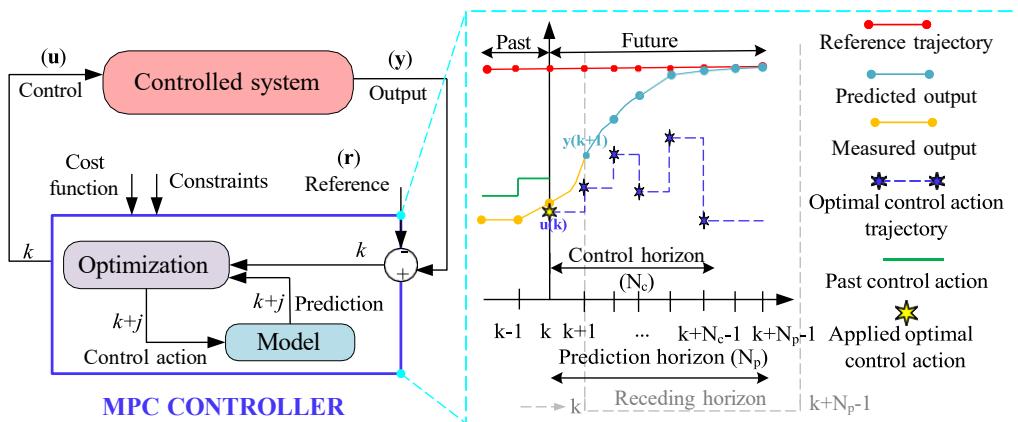


Fig. 4: Schematics of model predictive control

345
 346 In this paper, to further validate the model derived using the sparse
 347 regression (SR) technique, MPC will be utilized to control the water levels of
 348 the four tanks such that the objectives of the QTP can be obtained, including

³⁴⁹ minimizing the tracking error signal and rate of change of the controller,
³⁵⁰ which will be further discussed in Section 2.4.1.

³⁵¹ **Remark.** Assuming full observability of the states ($\mathbf{x} = \mathbf{y}$), the prediction
³⁵² model and the optimal control problem formulation of MPC, henceforth, will
³⁵³ be described solely based on the states and the control variables of the system.

³⁵⁴ 2.4.1. Optimal Control Problem Formulation

³⁵⁵ This work adopts the general optimal control problem (OCP) formulation,
³⁵⁶ which has been thoroughly described in [8, 12]. The objective is to minimize
³⁵⁷ the tracking error signal such that the states follow the desired set-point
³⁵⁸ values and to minimize the rate of change of the controller to ensure a longer
³⁵⁹ lifespan. To formulate the OCP, the system's dynamics generated from the
³⁶⁰ SR method are utilized as follows:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u} \quad (13)$$

$$\dot{\hat{\mathbf{x}}} = \Psi(\hat{\mathbf{x}}, \mathbf{u})\Xi \quad (14)$$

$\overline{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u})$

$$\hat{\mathbf{x}}(k+1) = \tilde{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u}) \quad (15)$$

³⁶¹ where Eq. (13) describes the dynamic equations of the controlled system,
³⁶² detailed in Section 2.2, Eq. (14) corresponds to the predicted dynamics from
³⁶³ the SR technique, and Eq. (15) describes the discretized predicted dynam-
³⁶⁴ ics intended for MPC implementation. Fourth-order Runge-Kutta methods
³⁶⁵ (RK4) are employed to discretize the function expressed in Eqs. (14)-(15) as
³⁶⁶ follows [39, 40]:

$$k_1 = \hat{\mathbf{f}}(\hat{\mathbf{x}}_k, \mathbf{u}_k) \quad (16a)$$

$$k_2 = \hat{\mathbf{f}}(\hat{\mathbf{x}}_k + \frac{t_s}{2}k_1, \mathbf{u}_k) \quad (16b)$$

$$k_3 = \hat{\mathbf{f}}(\hat{\mathbf{x}}_k + \frac{t_s}{2}k_2, \mathbf{u}_k) \quad (16c)$$

$$k_4 = \hat{\mathbf{f}}(\hat{\mathbf{x}}_k + t_s k_3, \mathbf{u}_k) \quad (16d)$$

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_k + \frac{t_s}{6}(k_1 + 2k_2 + 2k_3 + k_4) \quad (16e)$$

367 where k_i is the i -th slope, $t_s \in \mathbb{R}^+$ is the sampling time (set as $t_s = 0.1$) with
 368 given initial conditions of $\mathbf{x}_0, \mathbf{u}_0$ at $t(0)$. In this work, the RK4 method is
 369 also interchangeably used in the successive linearization MPC (SR-SLMPC)
 370 framework to find numerical solutions from the differential equations.

371 Combining the system's dynamics in Eq. (15) and the physical constraints
 372 to the states and the inputs, depicted in Table 1, the final OCP formulation
 373 is displayed in Eq. (17).

$$\min_{u_k, \dots, u_{k+N_p-1}} J(k) := \sum_{j=0}^{N_p-1} \|\hat{\mathbf{x}}(k+j) - \mathbf{x}^{ref}(k+j)\|_{\mathbf{Q}_j}^2 + \|\Delta \mathbf{u}(k+j)\|_{\mathbf{R}_j}^2 \quad (17a)$$

$$\text{s.t. } \hat{\mathbf{x}}(k+j+1) = \tilde{\mathbf{f}}(\hat{\mathbf{x}}(k+j), \mathbf{u}(k+j)), \quad (17b)$$

$$j = 0, 1, \dots, N_p - 1$$

$$\underline{\mathbf{u}} \leq \mathbf{u}(k+j) \leq \bar{\mathbf{u}}, \quad j = 0, 1, \dots, N_p - 1 \quad (17c)$$

$$\underline{\mathbf{x}} \leq \hat{\mathbf{x}}(k+j) \leq \bar{\mathbf{x}}, \quad j = 1, 2, \dots, N_p \quad (17d)$$

$$\hat{\mathbf{x}}_0 = \mathbf{x}_{pkr}(t_0) \quad (17e)$$

374 where $N_p \in \mathbb{N}^+$ is the prediction horizon, $k := kt_s \in \mathbb{R}^+$ is the current time
 375 step at sampling time t_s , $\mathbf{Q} \succ 0$ and $\mathbf{R} \succ 0$ are the penalty weights for

376 the states and the control inputs, respectively, $\hat{\mathbf{x}}(k) \in \mathbb{R}^{nx}$, $\mathbf{u}(k) \in \mathbb{R}^{nu}$ and
 377 $\Delta\mathbf{u}(k) \in \mathbb{R}^{nu}$ denote the states, input and input's rate of change at time step
 378 k , respectively, $\mathbf{x}^{ref} \in \mathbb{R}^{nx}$ is the desired set-points, $\underline{\mathbf{x}}$, $\bar{\mathbf{x}}$, $\underline{\mathbf{u}}$, $\bar{\mathbf{u}}$ express the
 379 minimum and maximum of the states and control inputs, respectively, and $\tilde{\mathbf{f}} :$
 380 $\mathbb{R}^{nx+nu} \rightarrow \mathbb{R}^{nx}$ is the discretized prediction model with varying formulation,
 381 further described in Section 2.4.2.

382 **Remark.** For clarity, the predicted states and dynamics from the SR tech-
 383 nique $\dot{\hat{\mathbf{x}}} = \hat{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u})$ are expressed in the notation of the actual states and
 384 dynamics ($\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$).

385 *2.4.2. Prediction Model*

386 Prior to formulating the optimal control problem formulation, MPC re-
 387 quires the formulation of the prediction model based on the plant model
 388 (dynamics predicted by SR-based model identification) that will be used to
 389 optimize a sequence of future control actions. Therefore, a suitable choice of
 390 prediction model is crucial to obtain optimal performance of the controlled
 391 system. The present study utilizes three prediction models: linear time-
 392 invariant MPCs, linear time-varying MPCs, and nonlinear MPCs, which will
 393 be discussed in the following sections. To quantify the performance of differ-
 394 ent MPC strategies, Mean Absolute Percentage Error (MAPE) will be used,
 395 which can be computed as follows:

$$396 \text{MAPE} = \frac{1}{n} \sum_{i=1}^n \frac{|x_i - \hat{x}_i|}{x_i} \times 100\% \quad (18)$$

397 where, n represents the total number of samples, x_i represents the desired
 398 value, and \hat{x}_i represents the predicted value.

399 2.4.2.1. *Linear Time-Invariant (LTI)*.

400 The first model utilizes a linear time-invariant approximation of the nonlinear
 401 model predicted from the SR technique in Eq. (14), subsequently referred to
 402 as SR-LMPC. The system's dynamics is linearized around the MP operating
 403 points $(\mathbf{x}^{op}, \mathbf{u}^{op})$ displayed in Table 2 with linearized predicted models as
 404 follows [35]:

$$\dot{\delta h_1(t)} = \frac{\sqrt{\frac{\xi_{11}}{h_1^{op}}}}{2} \left(\frac{h_1(t) - h_1^{op}}{\delta h_1(t)} \right) + \frac{\sqrt{\frac{\xi_{13}}{h_3^{op}}}}{2} \left(\frac{h_3(t) - h_3^{op}}{\delta h_3(t)} \right) + \xi_{15} \left(\frac{v_1(t) - v_1^{op}}{\delta v_1(t)} \right) \quad (19a)$$

$$\dot{\delta h_2(t)} = \frac{\sqrt{\frac{\xi_{22}}{h_2^{op}}}}{2} \left(\frac{h_2(t) - h_2^{op}}{\delta h_2(t)} \right) + \frac{\sqrt{\frac{\xi_{24}}{h_4^{op}}}}{2} \left(\frac{h_4(t) - h_4^{op}}{\delta h_4(t)} \right) + \xi_{26} \left(\frac{v_2(t) - v_2^{op}}{\delta v_2(t)} \right) \quad (19b)$$

$$\dot{\delta h_3(t)} = \frac{\sqrt{\frac{\xi_{33}}{h_3^{op}}}}{2} \delta h_3(t) + \xi_{46} \delta v_2(t) \quad (19c)$$

$$\dot{\delta h_4(t)} = \frac{\sqrt{\frac{\xi_{44}}{h_4^{op}}}}{2} \delta h_4(t) + \xi_{35} \delta v_1(t) \quad (19d)$$

405 where ξ_{ij} represents the active terms of the i-th row and j-th column of the
 406 sparse matrix, Ξ^T , obtained from SR-based model identification in **Algo-**
 407 **rithm 1**, h_m^{op} and v_n^{op} correspond to the operating points of the m-th tanks'
 408 water levels and the n-th pumps' voltage, used to linearize the system, respec-
 409 tively. Then the linearized state space model representation can be expressed
 410 as follows:

$$\dot{x} = \begin{bmatrix} \frac{\dot{x}_{11}}{2h_1^{op}} & 0 & \frac{\dot{x}_{13}}{2h_3^{op}} & 0 \\ 0 & \frac{\dot{x}_{22}}{2h_2^{op}} & 0 & \frac{\dot{x}_{24}}{2h_4^{op}} \\ 0 & 0 & \frac{\dot{x}_{33}}{2h_3^{op}} & 0 \\ 0 & 0 & 0 & \frac{\dot{x}_{44}}{2h_4^{op}} \end{bmatrix} \delta h^m(t) + \begin{bmatrix} \xi_{15} & 0 \\ 0 & \xi_{26} \\ 0 & \xi_{46} \\ \xi_{35} & 0 \end{bmatrix} \delta v_n(t) \quad (20)$$

411 Next, the continuous state space model in Eq. (20) is discretized and rewrite-
 412 ten as follows:

$$413 \quad \mathbf{x}^{LTI}(k+1) = \mathbf{A}_d \mathbf{x}^{LTI}(k) + \mathbf{B}_d \mathbf{u}^{LTI}(k) \quad (21)$$

414 where k is the time instant, $\mathbf{A}_d \in \mathbb{R}^{n_x \times n_x}$ and $\mathbf{B}_d \in \mathbb{R}^{n_x \times n_u}$ correspond to
 415 the time-invariant system's matrices with subscript d denoting the discrete
 416 time. Thereafter, the linear prediction model over the prediction horizon can
 417 be written as follows:

$$418 \quad \mathbf{x}^{LTI}(k+j) = \mathbf{A}_d^j \mathbf{x}^{LTI}(k) + \sum_{i=0}^{j-1} \mathbf{A}_d^i \mathbf{B}_d \mathbf{u}^{LTI}(k+i) \quad \forall j \in \{1, \dots, N_p\} \quad (22)$$

419 where $\mathbf{x}^{LTI}(0)$ is the current state measurement of the states at time instant
 420 $k = 0$. The LTI model formulated in Eq. (21) assumes that the system
 421 dynamics remain constant over time. In addition, the problem in Eq. (17)
 422 is a convex optimization formulated under linear constraints and quadratic
 423 objectives. Therefore, LMPC can be considered mathematically tractable
 424 and computationally efficient. To reduce the number of decision variables to
 425 be solved in Eq. (17), the problem is formulated in terms of the incremental
 426 form of the control inputs: $\Delta \mathbf{u}(k) := \mathbf{u}(k) - \mathbf{u}(k-1)$ which has been
 427 comprehensively discussed in [8, 12]. Complete implementation of LMPC is
 428 exhibited in **Algorithm 2**.

Algorithm 2 Linear Time Invariant MPC (LMPC)

- 1: **Input** $N_p, \mathbf{Q}, \mathbf{R}, T, t_s, n_x, n_u, \mathbf{x}^{ref}, \mathbf{x}^{op}, \mathbf{u}^{op}, \mathbf{f}(\mathbf{x}, \mathbf{u})$
- 2: **Initialize** $\mathbf{x}_0 \in \mathbb{R}^{n_x}, \mathbf{u}_0 \in \mathbb{R}^{n_u}, k = 0$
- 3: **Linearize & Discretize** nonlinear dynamics from $\mathbf{f}(\mathbf{x}, \mathbf{u})$ around $\mathbf{x}^{op}, \mathbf{u}^{op}$ at t_s , Eq. (20)
- 4: **Return** LTI model, Eq. (21)
- 5: **for** $k = 0 \rightarrow T - 1$ **do** ▷ Simulation time
- 6: **for** $j = 0$ to $N_p - 1$ **do**
- 7: **Construct** prediction model, Eq. (22)
- 8: **Formulate** quadratic cost: $J(\mathbf{x}(k + j), \mathbf{u}(k + j))$, Eq. (17a)
- 9: **end for**
- 10: **Solve** $J(k)$ s.t. Eqs. (17b)-(17d)
- 11: **Return** $[\Delta \mathbf{u}^*(0|k), \dots, \Delta \mathbf{u}^*(N_p - 1|k)]$
- 12: **Extract** $[\mathbf{u}^*(0|k), \dots, \mathbf{u}^*(N_p - 1|k)]$
- 13: **Apply** only $\mathbf{u}^*(0|k)$ ▷ Receding horizon control (RHC)
- 14: **Measure** $\mathbf{x}(k + 1|k)$ from Eq. (21)
- 15: **Update** for $k + 1$, $\mathbf{x}_0 = \mathbf{x}(k + 1|k)$ and $\mathbf{u}_0 = \mathbf{u}^*(0|k)$
- 16: **end for**

429 *2.4.2.2. Linear Time-Varying via Successive Linearization MPC.*

430

431 The second prediction model utilizes the linear time-varying (LTV) model via
432 a successive linearization method, in this paper referred to as SR-SLMPC.
433 SR-SLMPC differs from SR-LMPC mainly due to its approach to lineariz-
434 ing the nonlinear model. While SR-LMPC linearizes the nonlinear model
435 around steady state conditions using constant systems' matrices for predic-

436 tion, SR-SLMPC performs online linearization of the nonlinear model using
 437 the current operating points. Then the formulated prediction model over
 438 N_p is used in Eq. (17) to obtain a sequence of optimal control actions. SR-
 439 SLMPC is formulated as follows [13, 41, 42]:

440 1. Formulate a state space representation of the QTP using the predicted
441 continuous nonlinear system dynamics in Eq. (14), which can be ex-
442 pressed as follows:

$$\dot{\mathbf{x}} = \begin{bmatrix} \sqrt{\frac{x_1}{\xi_{11}}} + \sqrt{\frac{x_3}{\xi_{13}}} \\ \sqrt{\frac{x_2}{\xi_{22}}} + \sqrt{\frac{x_4}{\xi_{24}}} \\ \sqrt{\frac{x}{\xi}} \\ \sqrt{\frac{x_4}{\xi_{44}}} \end{bmatrix} + \begin{bmatrix} \xi_{15} & 0 \\ 0 & \xi_{26} \\ 0 & \xi_{46} \\ \xi_{35} & 0 \end{bmatrix} \mathbf{u} \quad (23a)$$

$$= \mathbf{f}(\mathbf{x}, \mathbf{u}) \quad (23b)$$

443 2. Linearize the continuous nonlinear state space model in Eq. (23) at cur-
444 rent operating points with detailed formulation in Eq. (19) and rewrit-
445 ten as follows:

$$\dot{\mathbf{x}}_l = \dot{\mathbf{x}} + \mathbf{A}_c(t)(\mathbf{x}_l - \mathbf{x}^{op}) + \mathbf{B}_c(t)(\mathbf{u}_l - \mathbf{u}^{op}) \quad (24a)$$

$$= \mathbf{A}_c(t)(\mathbf{x}_l) + \mathbf{B}_c(t)\mathbf{u}_L + \mathbf{\Gamma}_c(t) \quad (24b)$$

$$\mathbf{x}^{\cdot} = \mathbf{A}_c(t) \mathbf{x}^{op} - \mathbf{B}_c(t) \mathbf{u}^{op}$$

446 where $\mathbf{A}_c(i, j) = \frac{\partial \mathbf{f}_i}{\partial \mathbf{x}_j} \in \mathbb{R}^{n_x \times n_x}$, $\mathbf{B}_c(i, j) = \frac{\partial \mathbf{f}_i}{\partial \mathbf{u}_j} \in \mathbb{R}^{n_x \times n_u}$ and $\mathbf{\Gamma}_c \in \mathbb{R}^{n_x}$
 447 is the constant form of the linearization and subscript l corresponds
 448 to linearized model. Note that the system's matrices associated with
 449 time t are different than that in Eq. (20). This is to indicate that SR-
 450 SLMPC utilizes time-varying matrices. Initially, the model is linearized

451 offline at the MP operating points defined in Table 2. Then, during
 452 SR-SLMPC implementation, the dynamics will be linearized around
 453 the operating points at time instant k .

454 3. Integrate Eq. (24) with RK4 numerical integration scheme, described
 455 in Eq. (16).

$$\mathbf{x}_l(t) = e^{\mathbf{A}_c t} \mathbf{x}_l(0) + \int_0^t e^{\mathbf{A}_c(t-\tau)} (\mathbf{B}_c \mathbf{u}_l(\tau) + \mathbf{\Gamma}_c) d\tau \quad (25)$$

456 4. Discretization of the continuous state space representation.

$$\begin{aligned} \mathbf{x}_l(k+1) &= e^{\mathbf{A}_c t_s} \mathbf{x}_l(k) + \mathbf{A}_c^{-1} (e^{\mathbf{A}_c t_s} - \mathbf{I}) \mathbf{B}_c \mathbf{u}_l(k) \\ &\quad + \mathbf{A}_c^{-1} (e^{\mathbf{A}_c t_s} - \mathbf{I}) \mathbf{\Gamma}_c \\ &\quad + \mathbf{A}_c^{-1} (e^{\mathbf{A}_c t_s} - \mathbf{I}) \mathbf{\Gamma}_d(k) \end{aligned} \quad (26)$$

457 where t_s is the discretization time step, equivalent to the sampling time
 458 employed in MPC.

459 5. The final discrete state space model in LTV-MPC that will be used for
 460 the formulation of the prediction model is described below:

$$\mathbf{x}^{LTV}(k+1) = \mathbf{A}_d(k) \mathbf{x}^{LTV}(k) + \mathbf{B}_d(k) \mathbf{u}^{LTV}(k) \quad (27)$$

462 During the SR-SLMPC implementation, steps 1-5 are repeatedly conducted
 463 by linearizing the system around the measurement of the current states and
 464 the previous control inputs $(\mathbf{x}_0|k, \mathbf{u}_0|k)$ for all $k \in \{0, \dots, T-1\}$. Using
 465 Eq. (27), the prediction model is then expressed as follows:

$$\begin{aligned} \mathbf{x}^{LTV}(k+j) &= \mathbf{A}_d^j(k) \mathbf{x}^{LTV}(k) + \sum_{i=0}^{j-1} \mathbf{A}_d^i(k) \mathbf{B}_d(k) \mathbf{u}^{LTV}(k+i) \\ &\quad + (\mathbf{I} + \mathbf{A}_d(k))^{j-1} \mathbf{\Gamma}_d(k) \quad \forall j \in \{1, \dots, N_p\} \end{aligned} \quad (28)$$

⁴⁶⁶ where $\mathbf{A}_d^j(k) \in \mathbb{R}^{N_p n_x \times n_x}$ is the time-varying prediction matrix associated
⁴⁶⁷ with current states measurement, $\bigcup_{i=0}^{j-1} \mathbf{A}^i(k) \mathbf{B}_d(k) \in \mathbb{R}^{N_p n_x \times N_p(n_x + n_u)}$ cor-
⁴⁶⁸ responds to the time-varying prediction matrix associated to the control se-
⁴⁶⁹ quence, and $(\mathbf{I} + \mathbf{A}_d(k))^{j-1} \in \mathbb{R}^{N_p n_x \times n_x}$ represents the prediction matrix
⁴⁷⁰ of the affine term from the linearization. All system matrices are formu-
⁴⁷¹ lated over the prediction horizon. Similar to SR-LMPC, OCP in Eq. (17) is
⁴⁷² formulated in the incremental form of control signals [41]. An overview of
⁴⁷³ SR-SLMPC implementation can be found in **Algorithm 3**.

Algorithm 3 LTV Model Predictive Control (SLMPC)

- 1: **Input** $N_p, t_s, \mathbf{Q}, \mathbf{R}, T, n_x, n_u, \mathbf{x}^{ref}, \mathbf{f}(\mathbf{x}, \mathbf{u})$
- 2: **Initialize** $\mathbf{x}_0 \in \mathbb{R}^{n_x}, \mathbf{u}_0 \in \mathbb{R}^{n_u}, k = 0$
- 3: **for** $k = 0 \rightarrow T - 1$ **do** ▷ Simulation time
- 4: **for** $j = 0$ to $N_p - 1$ **do**
- 5: **Integrate & Linearize** $\mathbf{f}(\mathbf{x}, \mathbf{u})$ around $\mathbf{x}_0, \mathbf{u}_0$
- 6: **Return** LTV model, Eq. (27)
- 7: **Discretize** Eq. (27), **return** $A_d(k)$ and $B_d(k)$
- 8: **Construct** prediction model, Eq. (28)
- 9: **Formulate** quadratic cost: $J(\mathbf{x}(k + j), \mathbf{u}(k + j))$, Eq. (17a)
- 10: **end for**
- 11: **Solve** $J(k)$ s.t. Eqs. (17b)-(17d)
- 12: **Return** $[\Delta \mathbf{u}^*(0|k), \dots, \Delta \mathbf{u}^*(N_p - 1|k)]$
- 13: **Extract** $[\mathbf{u}^*(0|k), \dots, \mathbf{u}^*(N_p - 1|k)]$
- 14: **Apply** only $\mathbf{u}^*(0|k)$ ▷ RHC
- 15: **Measure** $\mathbf{x}(k + 1|k)$ from Eq. (27)
- 16: **Update** for $k + 1$, $\mathbf{x}_0 = \mathbf{x}(k + 1|k)$ and $\mathbf{u}_0 = \mathbf{u}^*(0|k)$
- 17: **end for**

⁴⁷⁴ *2.4.2.3. Nonlinear MPC.*

⁴⁷⁵ The main difference between nonlinear MPC, herein referred to as SR-NMPC,
⁴⁷⁶ compared to the above-mentioned MPCs is that the prediction model directly
⁴⁷⁷ utilizes the discretized nonlinear dynamics of the system to represent the con-
⁴⁷⁸ trolled system sufficiently. In this work, the discretized system's dynamic in
⁴⁷⁹ Eq. (23) is expressed as follows:

$$\mathbf{x}(k+1) = \tilde{\mathbf{f}}(\mathbf{x}(k), \mathbf{u}(k)) \quad (29)$$

⁴⁸⁰ Therefore, the prediction model over the prediction horizon can be expressed
⁴⁸¹ as follows:

$$\mathbf{x}(k+j+1) = \tilde{\mathbf{f}}(\mathbf{x}(k+j), \mathbf{u}(k+j)) \quad \forall j \in \{0, \dots, N_p - 1\} \quad (30)$$

⁴⁸² Given that the prediction model uses a nonlinear model, Eq. (17) is no longer
⁴⁸³ convex. Thus, convergence to a global minimum may not be guaranteed.
⁴⁸⁴ An overview of SR-NMPC implementation in this work can be found in
⁴⁸⁵ **Algorithm 4**.

Algorithm 4 Nonlinear Model Predictive Control (NMPC)

- 1: **Input:** $N_p, \mathbf{Q}, \mathbf{R}, T, n_x, n_u, \mathbf{x}^{ref}, \mathbf{f}(\mathbf{x}, \mathbf{u})$
- 2: **Initialize** $\mathbf{x}_0 \in \mathbb{R}^{n_x}, \mathbf{u}_0 \in \mathbb{R}^{n_u}, k = 0$
- 3: **for** $k = 0 \rightarrow T - 1$ **do** ▷ Simulation time
- 4: **for** $j = 0$ to $N_p - 1$ **do**
- 5: **Define & Discretize** state space model, from Eq. (14) to Eq. (29)
- 6: **Construct** prediction model, Eq. (30)
- 7: **Formulate** quadratic cost: $J(\mathbf{x}(k+j), \mathbf{u}(k+j))$, Eq. (17a)
- 8: **end for**
- 9: **Solve** $J(k)$ s.t. Eqs. (17b)-(17d)
- 10: **Extract** $[\mathbf{u}^*(0|k), \dots, \mathbf{u}^*(N_p - 1|k)]$.
- 11: **Apply** only $\mathbf{u}^*(0|k)$ ▷ RHC
- 12: **Measure** $\mathbf{x}(k+1|k)$ from Eq. (29)
- 13: **Update** for $k + 1$, $\mathbf{x}_0 = \mathbf{x}(k+1|k)$ and $\mathbf{u}_0 = \mathbf{u}^*(0|k)$
- 14: **end for**

486 2.4.3. Solution method

487 Considering the nonlinearity of the quadruple tanks' dynamics used as
 488 the equality constraint in the OCP formulation (when implementing SR-
 489 NMPC), sequential quadratic programming (SQP) is selected in this study to
 490 solve the OCP in Eq (17). SQP is an iterative method that solves nonlinear
 491 constrained optimization by solving a sequence of quadratic programming
 492 (QP) sub-problems given in Eq. (32) [43]. SQP starts with an initial guess
 493 for \mathbf{x}^k for a given iterate k and continues iteratively by updating $\mathbf{x}^{k+1} :=$
 494 $\mathbf{x}^k + \alpha \mathbf{p}_k$. A new iterate \mathbf{x}^{k+1} is then used again to solve the QP subproblem
 495 to obtain \mathbf{p} such that a sequence of \mathbf{x}^k is created to converge to a local
 496 minimum \mathbf{x}^* as $k \rightarrow \infty$. In this study, the rate of change of the control
 497 input ($\Delta \mathbf{U} \in \mathbb{R}^{nuNp}$) (for SR-SLMPC and SR-LMPC) as well as the states
 498 ($\mathbf{X} \in \mathbb{R}^{nxNp}$), additionally for SR-NMPC, are the decision variables (\mathbf{x}^k) for
 499 the formulated nonlinear optimization problem.

500 The associated Lagrangian function to the nonlinear problem in Eq (17)
 501 is expressed by [43]:

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) := f(\mathbf{x}) + \sum_{i=1}^m \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^p \mu_j g_j(\mathbf{x}) \quad (31)$$

502 where the functions $h : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g : \mathbb{R}^n \rightarrow \mathbb{R}^p$ describe the equality
 503 and inequality constraints, respectively, concatenated from Eqs. (17b)-(17d).
 504 In addition, n , m , and p are the number of decision variables, equality con-
 505 straints, and inequality constraints, respectively, with $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$ as
 506 the Lagrangian multipliers for the associated equality and inequality con-
 507 straints. Then the QP subproblem is formulated by approximating the
 508 Lagrangian of Eq. (31) and linearizing the nonlinear constraints shown in

509 Eq. (32).

$$\min_{p \in \mathbb{R}^m} \frac{1}{2} \mathbf{p}^T \mathbf{H}_k \mathbf{p} + \nabla f(\mathbf{x}_k)^T \mathbf{p} \quad (32a)$$

$$\text{s.t. } \nabla g_i(\mathbf{x}_k)^T \mathbf{p} + g_i(\mathbf{x}_k) = 0, \quad \forall i \in I \quad (32b)$$

$$\nabla g_j(\mathbf{x}_k)^T \mathbf{p} + g_j(\mathbf{x}_k) \leq 0, \quad \forall j \in J \quad (32c)$$

510 where \mathbf{p} is the search direction from the QP subproblem and \mathbf{H}_k and is the
 511 Hessian matrix of Eq. (31). However, to avoid the computational complexity
 512 of Hessian computation, an approximate Hessian Matrix \mathbf{B}_k can be computed
 513 in place of \mathbf{H}_k from Eq. (32) and updated for each iteration. In this study,
 514 \mathbf{B}_k is computed and updated using the Broyden-Fletcher-Goldfarb-Shanno
 515 (BFGS) method. For a detailed description of the BFGS method, readers
 516 are encouraged to refer to [43, 44]. Furthermore, the solution to the QP
 517 subproblem (\mathbf{p}_k) is used to form a new iterate, $\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{p}_k$, where the
 518 step size α_k should be determined to ensure a sufficient decrease in a merit
 519 function.

Algorithm 5 Sequential quadratic programming

```
1: for  $k \in \{1, 2, \dots, n\}$  do ▷ number of iterations
2:   Input  $\mathbf{x}_0, \mathbf{H}_0$ 
3:   Set  $k \leftarrow 0$ 
4:   repeat until a convergence is satisfied
5:   Evaluate  $f(\mathbf{x}_k), \nabla_{\mathbf{x}} L(\mathbf{x}_k, \lambda_k, \mu_k)$ 
6:   Solve QP subproblems in Eq. (32) to obtain  $\mathbf{p}_k$ 
7:   Compute step size  $\alpha_k$  such that  $m(\mathbf{x}^k + \alpha_k \mathbf{p}_k) \leq m(\mathbf{x}^k)$ 
8:   Set  $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{p}_k$ 
9:   Update  $\mathbf{B}_{k+1}$  using the BFGS method
10:  Set  $k \leftarrow k + 1$ 
11: end (repeat)
12: end for
```

520 **3. Case Studies**

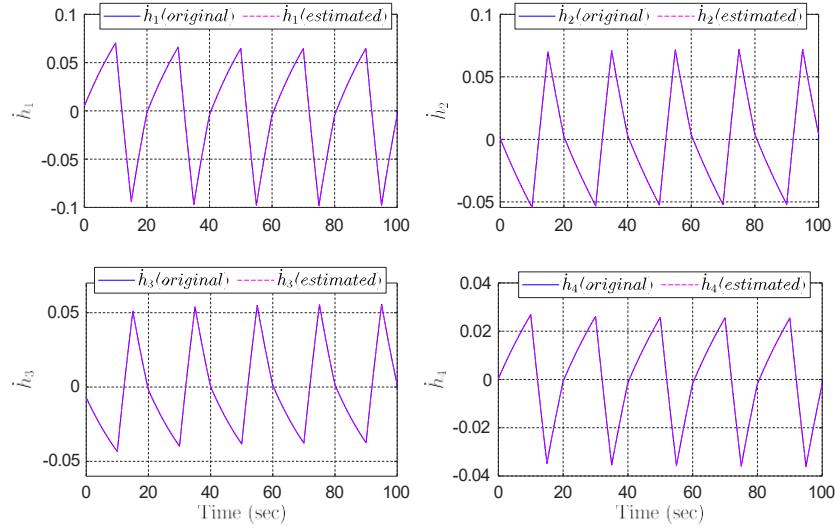
521 In this study, a bi-level process is presented where data-enabled model-
522 free identification of the quadruple tank process dynamics is first imple-
523 mented solely from available measurement data and then used to control
524 the system using MPC. To validate the accuracy of the proposed data-driven
525 identification of the QTP dynamics, time-domain simulations are carried out.
526 Furthermore, the predicted dynamics are continued to be actuated by com-
527 paring different MPC strategies. All simulations are carried out in MATLAB
528 R2022b on a processor of Intel Core CPU i7-6700 at 3.40 GHz and 32GB
529 RAM.

530 *3.1. Case study 1: Validation for SR-based Method Model Identification*

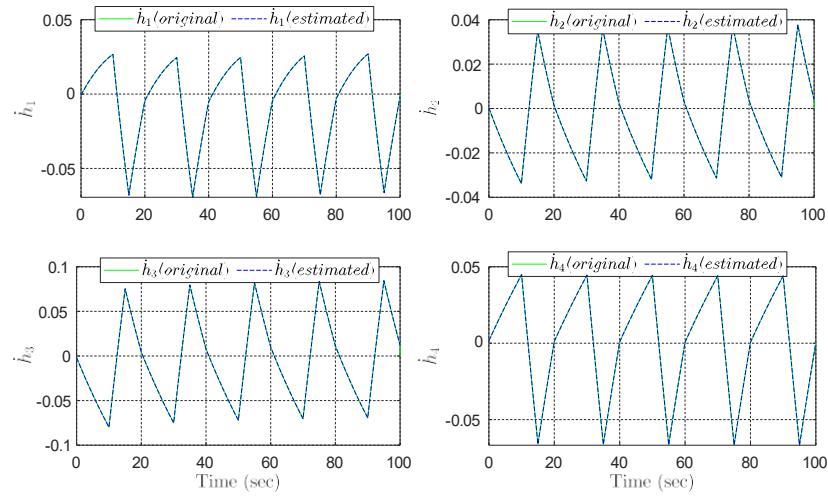
531 The first case study involves conducting parameter identification com-
532 parisons and time-domain simulations. The water levels of the tanks are
533 observed by perturbing the inputs of the pumps. The objective is to validate
534 the accuracy and effectiveness of the identified nonlinear dynamic models in
535 capturing the actual system dynamics.

536 *3.1.1. Model Identification*

537 First, data was collected on states and inputs of a quadruple tank system
538 simulated in MATLAB, using the parameters provided in [35] for training
539 purposes. Then the estimated values of the derivative for each state were
540 generated using central difference approximation, explained in Section 2.3.2.
541 Utilizing the measurements from the states and perturbing the inputs (pump
542 voltages, v_i) with a repetitive sequence waveform between 2 - 4 V (to acti-
543 vate the dynamic modes) over 100 seconds of simulation, the results of the
544 estimated derivatives for MP and NMP operating points of the QTP are il-
545 lustrated in Fig. 5. It is observed that the estimated derivative is capable of
546 representing the measured derivative accurately.



(a) MP operation point.



(b) NMP operating point.

Fig. 5: Derivative estimation.

547 Accordingly, various candidate terms were considered for the function li-
 548 brary $\Psi(\mathbf{X}, \mathbf{U})$, such as square-root functions, polynomials up to degree 2,
 549 and sinusoidal functions. In this work, 18 candidate terms are included with

550 variables such as x_i , u_i , $\sqrt{x_i}$, $x_i u_j$, x_i^2 , $\exp(x_i)$, $x_i \cos x_j$, $x_i \sin x_j$, $u_i \cos x_j$,
 551 and $u_i \sin x_j$. Following this, a sparse identification method was employed to
 552 determine the sparse matrix of coefficients, denoted as Ξ , with a sparsifica-
 553 tion hyperparameter set to $\eta = 0.01$ for both operating points. The identified
 554 coefficients were then utilized to construct a data-driven model and control
 555 of the quadruple tank system in MATLAB. A comparison was conducted
 556 between the parameters of the physical model (via simulation) and the iden-
 557 tified model (via SR-based nonlinear dynamics model identification) for both
 558 MP and NMP operating points, as presented in Tables 3 and 4. The results
 559 show that all active terms from Ξ closely configure the actual parameters that
 560 reside in the system's dynamics. This proves that the identified data-driven
 model accurately captures the dynamics of the physical model.

Table 3: Parameter identification using SR-based technique at MP operating point.

Dynamics	Term	Term	Term	Term	Term	Term
x_1	$-\frac{a_1 \sqrt{2g} \sqrt{x_1}}{A_1}$	$0 \sqrt{x_2}$	$\frac{a_3 \sqrt{2g} \sqrt{x_3}}{A_1}$	$0 \sqrt{x_4}$	$\frac{\gamma_1 k_1}{A_1} v_1$	$0 v_2$
Physical	-0.1123	0	0.1123	0	0.0833	0
Identified	-0.1125	0	0.1125	0	0.0834	0
x_2	$0 \sqrt{x_1}$	$-\frac{a_2 \sqrt{2g} \sqrt{x_2}}{A_2}$	$0 \sqrt{x_3}$	$\frac{a_4 \sqrt{2g} \sqrt{x_4}}{A_2}$	$0 v_1$	$\frac{\gamma_2 k_2}{A_2} v_2$
Physical	0	-0.0789	0	0.0789	0	0.0628
Identified	0	-0.079	0	0.079	0	0.0629
x_3	$0 \sqrt{x_1}$	$0 \sqrt{x_2}$	$-\frac{a_3 \sqrt{2g} \sqrt{x_3}}{A_3}$	$0 \sqrt{x_4}$	$0 v_1$	$\frac{(1 - \gamma_2) k_2}{A_3} v_2$
Physical	0	0	-0.1123	0	0	0.0479
Identified	0	0	-0.1125	0	0	0.0480
x_4	$0 \sqrt{x_1}$	$0 \sqrt{x_2}$	$0 \sqrt{x_3}$	$-\frac{a_4 \sqrt{2g} \sqrt{x_4}}{A_4}$	$\frac{(1 - \gamma_1) k_1}{A_4} v_1$	$0 v_2$
Physical	0	0	0	-0.0789	0.0314	0
Identified	0	0	0	-0.0790	0.0312	0

Table 4: Parameter identification using SR-based technique at NMP operating point.

Dynamics	Term	Term	Term	Term	Term	Term
\dot{x}_1	$-\frac{a_1 \sqrt{2g} \sqrt{x_1}}{A_1}$	$0 \sqrt{x_2}$	$\frac{a_3 \sqrt{2g} \sqrt{x_3}}{A_1}$	$0 \sqrt{x_4}$	$\frac{\gamma_1 k_1}{A_1} v_1$	$0 v_2$
Physical	-0.1123	0	0.1123	0	0.0482	0
Identified	-0.1129	0	0.1129	0	0.0485	0
\dot{x}_2	$0 \sqrt{x_1}$	$-\frac{a_2 \sqrt{2g} \sqrt{x_2}}{A_2}$	$0 \sqrt{x_3}$	$\frac{a_4 \sqrt{2g} \sqrt{x_4}}{A_2}$	$0 v_1$	$\frac{\gamma_2 k_2}{A_2} v_2$
Physical	0	-0.0789	0	$\frac{A_2^2}{0.0789}$	0	0.0350
Identified	0	-0.0793	0	0.0793	0	0.0351
\dot{x}_3	$0 \sqrt{x_1}$	$0 \sqrt{x_2}$	$-\frac{a_3 \sqrt{2g} \sqrt{x_3}}{A_3}$	$0 \sqrt{x_4}$	$0 v_1$	$\frac{(1 - \gamma_2) k_2}{A_3} v_2$
Physical	0	0	-0.1123	0	0	0.0776
Identified	0	0	-0.1129	0	0	0.0779
\dot{x}_4	$0 \sqrt{x_1}$	$0 \sqrt{x_2}$	$0 \sqrt{x_3}$	$-\frac{a_4 \sqrt{2g} \sqrt{x_4}}{A_4}$	$\frac{(1 - \gamma_1) k_1}{A_4} v_1$	$0 v_2$
Physical	0	0	0	-0.0789	0.0586	0
Identified	0	0	0	-0.0793	0.0562	0

562 3.1.2. Time-domain Validation

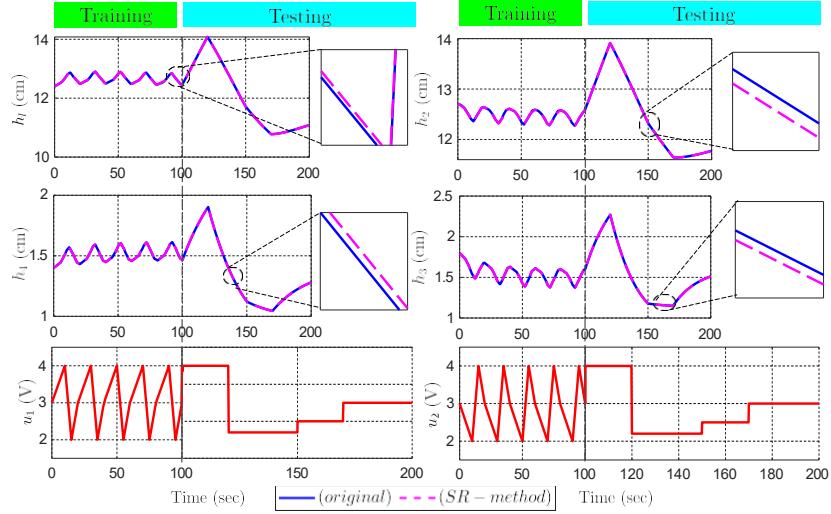
563 In the second part (testing), the identified model obtained through the
 564 SR-based method was evaluated by comparing it with the physical model
 565 of the quadruple tank process in various operational scenarios. Specifically,
 566 the control signal ($u(t)$) underwent several step changes at different time
 567 instances. At 100 seconds, a step change was introduced from 3V to 4V.
 568 Subsequently, at 120 seconds, another step change occurred to decrease $u(t)$
 569 from 4V to 2.2V. At 150 seconds, a 0.5 step change was added for $u(t)$ to
 570 increase the pump voltage. Lastly, after 170 seconds, $u(t)$ is returned to the
 571 initial condition. Different control signals compared to the training period
 572 were implemented to validate the identified model.

573 A comparison was made between the physical system and the identified
 574 model as depicted in Fig. 6 at MP and NMP operating points. Mean absolute

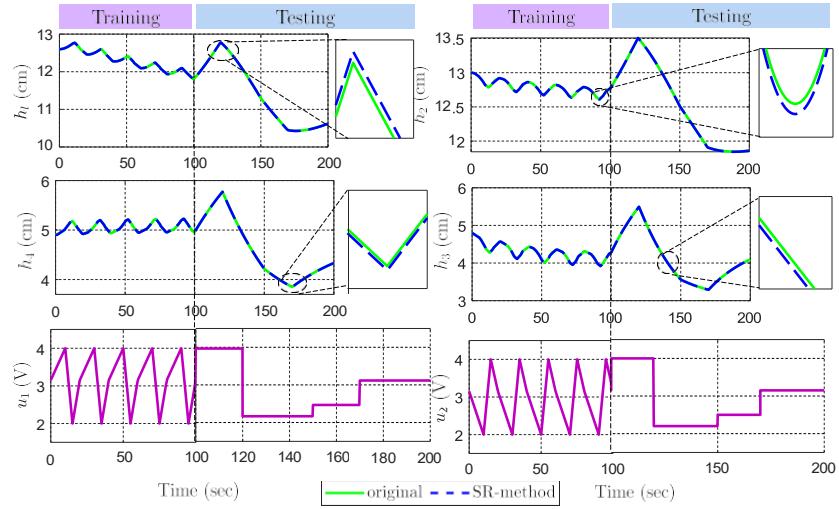
percentage error (MAPE) using Eq. (18) is also used to quantify the error of the predicted dynamics during time series validation of the tanks' water levels. As illustrated, the system was forced with a control signal ($u(t)$) showing a repetitive triangle waveform for the first 100 seconds to train the SR method while the following 100 seconds were implemented to validate the identified model using varying control signal values. It is observed from the figure and MAPE ranging from 0.01% - 0.02% that the proposed data-driven model identification approach (SR-based technique) exhibits a high level of accuracy in identifying the nonlinear dynamics of the QTP system. Furthermore, a slight deviation between the predicted and the original dynamics can be attributed to their inherent sparsity [18], which further confirms that the SR technique promotes the interpretability of the predicted models that prevents overfitting [32]. Consequently, the proposed data-driven model can serve as a reliable substitute for complex physics-based models, offering a simplified yet effective alternative for understanding and controlling large-scale water distribution systems.

3.2. Case study 2: Comparative Analysis of Three MPC Control Laws

Given the accuracy of using the SR-based method as described in the first case study (Section 3.1), this case study further utilized the predicted dynamic models of QTP in Eq. (14) using MPC with techniques described in Section 2.4. Taking into account that all states are assumed to be fully observable ($y = x$), four water levels were controlled by MPC to meet the desired water level values. Three references with initial conditions at MP operating points were used, as shown in Table 5 with model parameters in Table 6.



(a) MP operating point.



(b) NMP operating point.

Fig. 6: Case study 1: Time-domain validation of the identified model

Table 6: Model parameters of the QTP

Parameter	Values	Parameter	Values
Q	diag[1 1 1 1]	R	diag[0.001 0.001]
x	0.2 m	̄x	15 m
u	0 V	̄u	7 V
x₀ k	[12.4 12.7 1.8 1.4]	u₀ k	[3 3]

Table 5: Reference points over time

	Time (s)	h_1 (cm)	h_2 (cm)	h_3 (cm)	h_4 (cm)
<i>Ref1</i>	$t = 0$	12.4	12.7	1.80	1.40
<i>Ref2</i>	$0 < t \leq 400$	10.0	12.0	1.77	0.956
<i>Ref3</i>	$t > 400$ and $t \leq 800$	12.0	14.0	2.01	1.19
<i>Ref4</i>	$800 < t \leq 1200$	8.00	10.0	1.53	0.721

600 From the OCP in Eq. (17), the pump voltage is required to control the
 601 water levels of the four tanks to meet the reference points in Table 5 while
 602 minimizing the voltage change rate between two consecutive time steps. The
 603 model was run for 1200 s with a 0.1 s sampling time (t_s) and a prediction
 604 horizon of $N_p = 10$, generating 12000 samples.

605 Fig. 7 illustrates the evolution of the water levels of the four tanks as a re-
 606 sponse to the reference point changes controlled by SR-LMPC, SR-SLMPC,
 607 and SR-NMPC. As depicted, a change in the reference value was introduced
 608 at $t = 400$ s, causing a jump in the reference signal. Similarly, at $t = 800$ s,
 609 the reference value was altered, resulting in a drop in the reference signal.
 610 As shown from the figure, the present findings obtained from using differ-
 611 ent MPC techniques, incorporating the predicted dynamics derived from the
 612 sparse regression-based nonlinear dynamics model identification (SR-based
 613 method), revealed similar behavior (i.e., similar time evolution of states) with
 614 prior studies investigating model-based control approaches for the quadruple
 615 tank system [11, 19, 45]. This further confirms the feasibility of the SR-based
 616 method to be applied to different control approaches.

617 According to the top sub-plots from Fig. 7, the water levels of Tanks 1 and

618 2 followed the reference points using all controllers. Furthermore, with vary-
619 ing reference points, Tanks 1 and 2 water levels remain within the constraints
620 without any overshoots observed. As observed from the two subplots at the
621 bottom of Fig. 7, all controllers managed to maintain the water levels of
622 Tanks 3 and 4 within the bound, with overshoots (or undershoots) observed
623 in both tanks. It is observed that SR-NMPC and SR-SLMPC demonstrate
624 satisfactory tracking performance. In contrast, the SR-LMPC controller dis-
625 played limitations in reaching the reference points, as evidenced by notable
626 deviations in Tank 3 and a minor error signal in Tank 4. This is expected
627 as SR-LMPC relies on linearizing the model of the nonlinear dynamics at
628 a constant operating point. Therefore, when the system's behavior differs
629 from the operating points, the tracking performance of SR-LMPC can de-
630 grade. In addition, the QTP system is designed with cross-coupling effects
631 in its dynamics, making it challenging to control Tank 3 without affecting
632 the tracking performance in Tank 1.

633 The response of the pumps' voltages in all controllers aligns with the
634 changing reference values shown in Fig. 8. The results indicate that all con-
635 trol strategies followed a similar pattern to achieve tracking performance,
636 irrespective of the control performance objective. This is indicated by the
637 sudden changes in the pumps' voltages when reference points were mod-
638 ified. These outcomes were expected since the simulation setup assigned
639 higher penalty weights to minimize the error signal of the states. Despite the
640 abrupt adjustments to the pump voltage, depicted by maximizing the volt-
641 age level during reference jumps and minimizing it during reference drops,
642 all controllers successfully maintained the voltage level within the physical

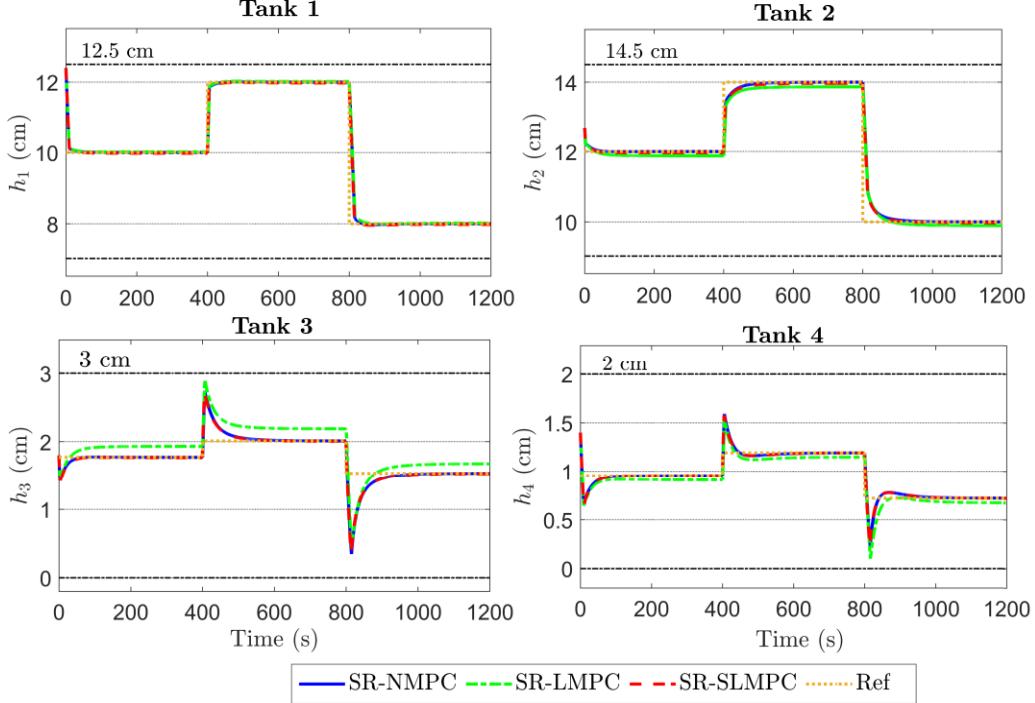


Fig. 7: Evolution of the four tanks over time: state bounds (dash-dotted lines)

643 limits.

644 Furthermore, it is observed that during reference changes, SR-SLMPC
 645 (represented by dashed red lines) exhibited faster adjustments (approx. 1 s)
 646 in the pump voltages compared to the SR-NMPC and SR-LMPC controllers.
 647 Additionally, both SR-NMPC and SR-LMPC controllers required a duration
 648 of 5 seconds to reach the maximum or minimum values of the pump voltages
 649 during the transition period. In contrast, SR-SLMPC required a shorter time
 650 at 4.46 s with slightly smoother control actions, similarly seen in [41].

651 In Fig. 9, the state trajectory of Tanks 1 and 2 is displayed for all con-
 652 trol strategies, further highlighting the tracking performance. Four reference
 653 points were depicted with yellow markers. *Ref1* corresponds to the initial

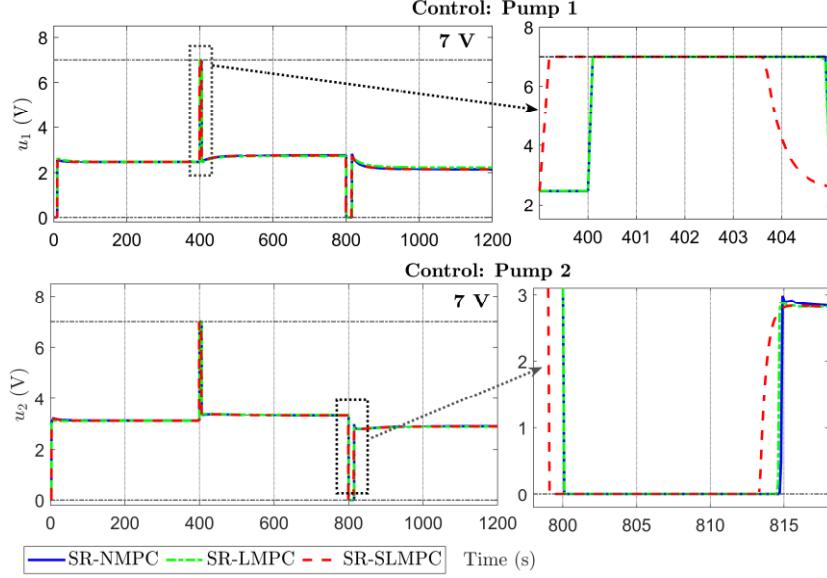


Fig. 8: Evolution of pumps' voltage over time: control bounds (dash-dotted lines)

conditions at MP operating points, while *Ref4* denotes the last change of the reference point. In terms of tracking the performance, SR-NMPC demonstrates superiority over SR-SLMPC and SR-LMPC, consistently reaching the reference points with identical final states. This highlights the capability of SR-NMPC to accurately represent and control systems with nonlinearities, making it a suitable choice for a controller. This finding aligns with the description of SR-NMPC's main functionality as stated in [14], which focuses on stabilization and tracking objectives. As depicted in Fig. 9, both SR-SLMPC and SR-LMPC controllers exhibit non-zero offsets and do not achieve perfect tracking. However, the trajectory of SR-SLMPC closely resembles that of SR-NMPC, indicating a better overall performance compared to SR-LMPC.

Similarly, SR-NMPC repeatedly reached the reference points for Tanks 3

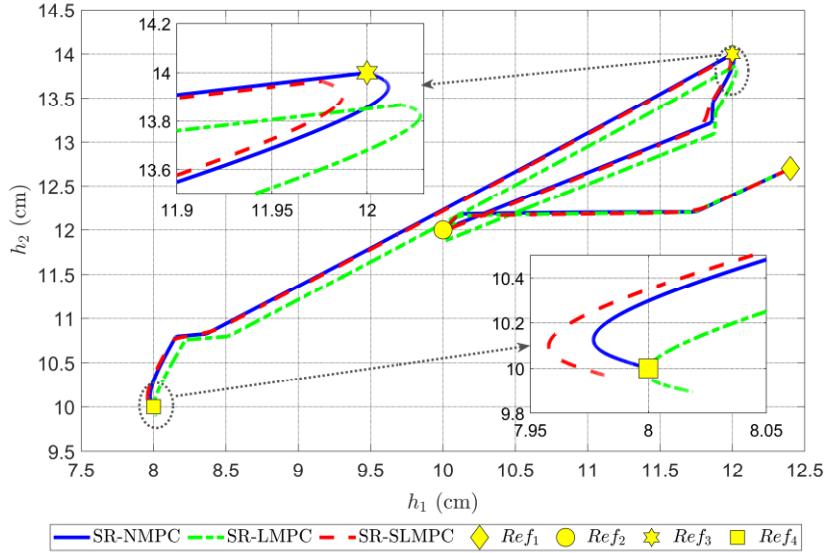


Fig. 9: State trajectory of Tanks 1 and 2

and 4, as depicted in Fig. 10. SR-SLMPC followed the trajectories of SR-NMPC to reach the reference points. This is because SR-SLMPC leverages the system's nonlinearities to compute the time-varying operating points for each time step to linearize the system. Thereby, the linearized dynamics follow the trajectory of the nonlinear model. In contrast, SR-LMPC showed a different trajectory than SR-SLMPC and SR-NMPC and performed relatively less satisfactory tracking purposes in Tanks 3 and 4 for each reference point.

Table 7 displays a mean absolute percentage error (MAPE) between the predicted and reference states, and the maximum elapsed time for executing the control to the water levels of the tanks. All controllers showed an error percentage below 5%, with SR-LMPC higher than the rest. Interestingly, SR-SLMPC showed lower MAPE than SR-NMPC when tracking the reference

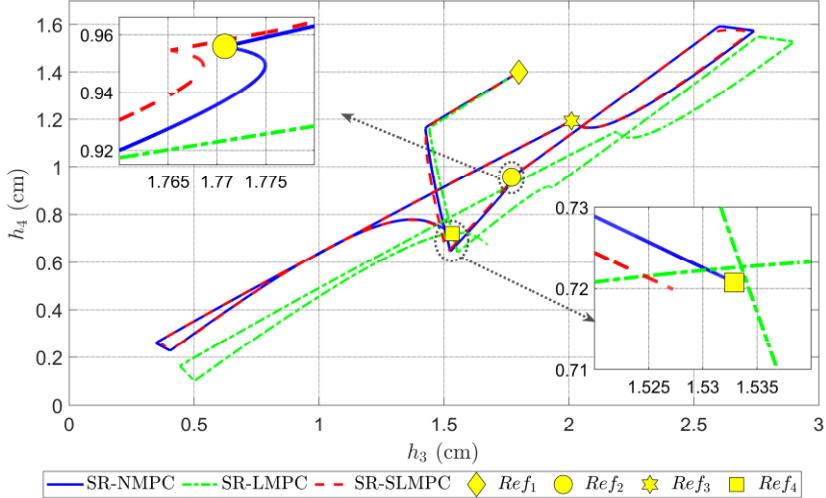


Fig. 10: State trajectory of Tanks 3 and 4

for h_1 and h_2 . It is observed that during sudden changes of the reference points, SR-SLMPC decreased the error signal at each time step with greater magnitude than SR-NMPC to reach the steady state condition. This is because SR-SLMPC utilizes a series of convex optimization problems, which guarantees a global minimum solution [46]. Slightly higher MAPE is seen for SR-SLMPC compared to SR-NMPC, which may be due to the cross-coupling dynamics of the QTP system.

In contrast to the tracking analysis, Table 7 reveals that SR-LMPC outperforms SR-NMPC and SR-SLMPC in terms of execution time, as it provides feasible control actions to the QTP system more quickly, albeit with the trade-off of not precisely reaching zero offsets. It can be observed that SR-LMPC and SR-SLMPC executed their control actions 93% and 81.3% faster than SR-NMPC, respectively. The longer execution time of SLMPC compared to SR-LMPC is expected since SR-SLMPC involves additional steps,

694 such as linearization for each time step, to solve the MPC optimization prob-
lem.

Table 7: Quantitative Performance of MPC with Varying Prediction Model

		NMPC	SLMPC	LMPC
MAPE (%)	h_1	0.31%	0.09%	0.51%
	h_2	0.30%	0.02%	0.61%
	h_3	3.34%	3.67%	4.69%
	h_4	1.34%	1.50%	8.39%
Max elapsed time (s)		0.545	0.102	0.040

695

696 4. Conclusion

697 In this paper, a data-driven identification of nonlinear dynamics of the
698 four interconnected water tanks using the sparse regression technique (SR
699 technique) was studied. The predicted dynamics were further actuated in
700 the MPC framework by varying the prediction models utilized in the optimal
701 control formulation, such as linear time-invariant MPC (SR-LMPC), linear
702 time-varying via successive linearization MPC (SR-SLMPC), and nonlinear
703 MPC (SR-NMPC).

704 The proposed model-free identification framework successfully delivers
705 the nonlinear dynamics of the quadruple tank process, verified by the close
706 tracking of system states with MAPE ranging from 0.01% - 0.02% when
707 implementing time series validation and varying control signals to the sys-
708 tem. Furthermore, the sparse regression-based MPC provides guaranteed
709 tracking performance with tracking error below 5% and demonstrates the

710 advancement of control strategy for easy performance tuning subject to con-
711 straints and varying desired state values. All studied controllers performed
712 successfully in reference tracking, with SR-NMPC outperforming the rest,
713 reaching zero offsets. Albeit with the tracking error up to 4.7%, SR-LMPC
714 exhibits the fastest execution time compared to the rest of the controllers.
715 The SR-SLMPC framework presents an opportunity to provide a trade-off,
716 demonstrating similar outcomes to SR-NMPC while achieving an execution
717 time that is 80% faster.

718 The proposed work will be extended in future work to identify the nonlin-
719 ear dynamics and to control large-scale WDSs with multiple pumping stations
720 and complex distribution systems from available measurements.

721 **Funding**

722 This research was in part under support from the National Science Foun-
723 dation under Grant NSF-EPCN 2221784.

724 **References**

725 [1] A. Castelletti, A. Ficch `i, A. Cominola, P. Segovia, M. Giuliani, W. Wu,
726 S. Lucia, C. Ocampo-Martinez, B. De Schutter, J. M. Maestre, Model
727 predictive control of water resources systems: A review and research
728 agenda, *Annual Reviews in Control* (2023).

729 [2] US EPA, Six-year review of drinking water standards (2022).

730 URL <https://www.epa.gov/dwsixyearreview>

731 [3] H. Oh, I. Guk, S. Chung, Y. Lee, Energy saving through modifications of
732 the parallel pump schedule at a pumping station: A case study, *Journal*
733 of Water Process Engineering 54 (2023) 104035.

734 [4] P.-J. Van Overloop, Model predictive control on open water systems,
735 IOS Press, 2006.

736 [5] V. Fambrini, C. Ocampo-Martinez, Modelling and Decentralized Model
737 Predictive Control of Drinking Water Networks, Institut de Robotica
738 Informatica Industrial (IRI) (2009) 56.

739 [6] G. Conde, N. Quijano, C. Ocampo-Martinez, Modeling and control in
740 open-channel irrigation systems: A review, *Annual Reviews in Control*
741 51 (2021) 153–171.

742 [7] R. K. Ringset, Efficient Optimization in Model Predictive Control,
743 Ph.D. thesis, Norwegian University of Science and Technology (Jul.
744 2009).

745 [8] J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall,
746 2002.

747 [9] D. Q. Mayne, Model predictive control: Recent developments
748 and future promise, *Automatica* 50 (12) (2014) 2967–2986.
749 doi:10.1016/j.automatica.2014.10.128.

750 [10] M. Schwenzer, M. Ay, T. Bergs, D. Abel, Review on model predic-
751 tive control: an engineering perspective, *The International Journal*
752 of Advanced Manufacturing Technology 117 (5-6) (2021) 1327–1349.
753 doi:10.1007/s00170-021-07682-3.

754 [11] P. C. Blaud, P. Chevrel, F. Claveau, P. Haurant, A. Mouraud, Four mpc
755 implementations compared on the quadruple tank process benchmark:
756 pros and cons of neural mpc, *IFAC-PapersOnLine* 55 (16) (2022) 344–
757 349.

758 [12] L. Wang, *Model Predictive Control System Design and Implementation Using MATLAB®*, 1st Edition, *Advances in Industrial Control*,
759 Springer London, 2009. doi:10.1007/978-1-84882-331-0.
760 URL <https://doi.org/10.1007/978-1-84882-331-0>

762 [13] Á. Domina, V. Tihanyi, Ltv-mpc approach for automated vehicle path
763 following at the limit of handling, *Sensors* 22 (15) (2022) 5807.

764 [14] L. Grüne, J. Pannek, L. Grüne, J. Pannek, *Nonlinear model predictive
765 control*, Springer, 2017.

766 [15] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, M. Diehl, From linear
767 to nonlinear mpc: bridging the gap via the real-time iteration, *International
768 Journal of Control* 93 (1) (2020) 62–80.

769 [16] A. Bamimore, O. Taiwo, R. King, Comparison of two nonlinear model
770 predictive control methods and implementation on a laboratory three
771 tank system, in: *2011 50th IEEE Conference on Decision and Control
772 and European Control Conference*, IEEE, 2011, pp. 5242–5247.

773 [17] E. Kaiser, J. N. Kutz, S. L. Brunton, Sparse identification of nonlinear
774 dynamics for model predictive control in the low-data limit, *Proceedings
775 of the Royal Society A* 474 (2219) (2018) 20180335.

776 [18] U. Fasel, E. Kaiser, J. N. Kutz, B. W. Brunton, S. L. Brunton, Sindy
777 with control: A tutorial, in: 2021 60th IEEE Conference on Decision
778 and Control (CDC), IEEE, 2021, pp. 16–21.

779 [19] M. Askari, M. Moghavvemi, H. A. Almurib, K. M. Muttaqi, Multi-
780 variable offset-free model predictive control for quadruple tanks system,
781 IEEE transactions on industry applications 52 (2) (2015) 1882–1890.

782 [20] J. Diaz-Ortiz, P. Alvarado-Medellin, A. M. Ramirez-Aguilera,
783 H. Badillo-Almaraz, R. O. Gomez, C. B. Capetillo, Water distribution
784 system calibration using the finite element method coupled to a genetic
785 algorithm, Journal of Water Process Engineering 54 (2023) 104017.

786 [21] T. M. Tung, Z. M. Yaseen, et al., A survey on river water quality mod-
787 elling using artificial intelligence models: 2000–2020, Journal of Hydrol-
788 ogy 585 (2020) 124670.

789 [22] Y. Seo, S. Kim, O. Kisi, V. P. Singh, Daily water level forecasting using
790 wavelet decomposition and artificial intelligence techniques, Journal of
791 Hydrology 520 (2015) 224–243.

792 [23] G. Thiele, A. Fey, D. Sommer, J. Krüger, System identification of a
793 hysteresis-controlled pump system using sindy, in: 2020 24th Inter-
794 national Conference on System Theory, Control and Computing (IC-
795 STCC), IEEE, 2020, pp. 457–464.

796 [24] Y. Liu, Y. Zheng, Y. Liang, S. Liu, D. S. Rosenblum, Urban water qual-
797 ity prediction based on multi-task multi-view learning, in: Proceedings
798 of the 25th international joint conference on artificial intelligence, 2016.

799 [25] S. Wang, A. Chakrabarty, A. F. Taha, Data-driven identification of dy-
800 namic quality models in drinking water networks, *Journal of Water Re-*
801 *sources Planning and Management* 149 (4) (2023) 04023008.

802 [26] A. Seyedzadeh, S. Maroufpoor, E. Maroufpoor, J. Shiri, O. Bozorg-
803 Haddad, F. Gavazi, Artificial intelligence approach to estimate discharge
804 of drip tape irrigation based on temperature and pressure, *Agricultural*
805 *Water Management* 228 (2020) 105905.

806 [27] D. Zhang, J. Lin, Q. Peng, D. Wang, T. Yang, S. Sorooshian, X. Liu,
807 J. Zhuang, Modeling and simulating of reservoir operation using the arti-
808 ficial neural network, support vector regression, deep learning algorithm,
809 *Journal of Hydrology* 565 (2018) 720–736.

810 [28] A. N. Ahmed, F. B. Othman, H. A. Afan, R. K. Ibrahim, C. M. Fai,
811 M. S. Hossain, M. Ehteram, A. Elshafie, Machine learning methods for
812 better water quality prediction, *Journal of Hydrology* 578 (2019) 124084.

813 [29] N. Nasir, A. Kansal, O. Alshaltone, F. Barneih, M. Sameer, A. Shan-
814 ableh, A. Al-Shamma'a, Water quality classification using machine
815 learning algorithms, *Journal of Water Process Engineering* 48 (2022)
816 102920.

817 [30] K. M. Balla, T. N. Jensen, J. D. Bendtsen, C. S. Kallesøe, Model predic-
818 tive control using linearized radial basis function neural models for water
819 distribution networks, in: 2019 IEEE Conference on Control Technology
820 and Applications (CCTA), IEEE, 2019, pp. 368–373.

821 [31] T. Yang, A. A. Asanjan, E. Welles, X. Gao, S. Sorooshian, X. Liu,
822 Developing reservoir monthly inflow forecasts using artificial intelligence
823 and climate phenomenon information, *Water Resources Research* 53 (4)
824 (2017) 2786–2812.

825 [32] S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equa-
826 tions from data by sparse identification of nonlinear dynamical systems,
827 *Proceedings of the national academy of sciences* 113 (15) (2016) 3932–
828 3937.

829 [33] S. L. Brunton, J. L. Proctor, J. N. Kutz, Sparse identification of nonlin-
830 ear dynamics with control (sindyc), *IFAC-PapersOnLine* 49 (18) (2016)
831 710–715.

832 [34] J. Khazaei, R. S. Blum, Model-free distributed control of dynamical
833 systems, *International Journal of Information and Communication En-*
834 *gineering* 16 (10) (2022) 475–480.

835 [35] K. H. Johansson, The quadruple-tank process: A multivariable labo-
836 ratory process with an adjustable zero, *IEEE Transactions on control*
837 *systems technology* 8 (3) (2000) 456–465.

838 [36] S. Larsson, V. Thomée, *Partial differential equations with numerical*
839 *methods*, Vol. 45, Springer, 2003.

840 [37] B. Bhadriraju, J. S.-I. Kwon, F. Khan, Risk-based fault prediction of
841 chemical processes using operable adaptive sparse identification of sys-
842 *tems (oasis)*, *Computers & Chemical Engineering* 152 (2021) 107378.

843 [38] L. Zhang, H. Schaeffer, On the convergence of the sindy algo-
844 rithm, *Multiscale Modeling & Simulation* 17 (3) (2019) 948–972.
845 doi:10.1137/18M1189828.

846 [39] S. C. Chapra, R. P. Canale, *Numerical methods for engineers*, McGraw-
847 hill, 2020.

848 [40] G. Sánchez, M. Murillo, L. Genzelis, N. Deniz, L. Giovanini, Mpc for
849 nonlinear systems: A comparative review of discretization methods, in:
850 2017 XVII Workshop on Information Processing and Control (RPIC),
851 IEEE, 2017, pp. 1–6.

852 [41] A. Zhakatayev, B. Rakhim, O. Adiyatov, A. Baimyshev, H. A. Varol,
853 Successive linearization based model predictive control of variable stiff-
854 ness actuated robots, in: 2017 IEEE international conference on ad-
855 vanced intelligent mechatronics (AIM), IEEE, 2017, pp. 1774–1779.

856 [42] M. H. Murillo, A. C. Limache, P. S. Rojas Fredini, L. L. Giovanini, Gen-
857 eralized nonlinear optimal predictive control using iterative state-space
858 trajectories: Applications to autonomous flight of uavs, *International
859 Journal of Control, Automation and Systems* 13 (2015) 361–370.

860 [43] J. Nocedal, S. Wright, *Numerical Optimization*, 2nd Edition, Springer
861 Series in Op. Res. and Fin. Eng., New York, NY, 2006.

862 [44] MathWorks, Constrained nonlinear optimization algorithms,
863 <https://www.mathworks.com/constrained-nonlinear-optimization-algorithms.html>, accessed on May 5, 2023 (2023).

865 [45] I. Alvarado, D. Limon, D. M. De La Peña, J. M. Maestre, M. Ridao,
866 H. Scheu, W. Marquardt, R. Negenborn, B. De Schutter, F. Valencia,
867 et al., A comparative analysis of distributed mpc techniques applied
868 to the hd-mpc four-tank benchmark, *Journal of Process Control* 21 (5)
869 (2011) 800–815.

870 [46] P. Couchman, B. Kouvaritakis, M. Cannon, Ltv models in mpc for sus-
871 tainable development, *International Journal of Control* 79 (1) (2006)
872 63–73.