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13  Abstract 

14 Model predictive control (MPC) application has gained attention in water 

15 distribution systems (WDSs) due to its effectiveness in controlling multi- 

16  variable, highly nonlinear, and complex systems, all of which are inherent 

17  traits of WDSs, but rely on accurate dynamic models. Model misrepresen- 

18  tation can lead to nonoptimal solutions. Nevertheless, the emergence of uti- 

19  lizing high-resolution metering devices and historical data has enabled data- 

20  driven WDSs model identification, significantly reducing modeling challenges 

21  of MPC without losing the accuracy or robustness of the closed-loop control 

22  system. This paper contributes to developing a data-driven MPC framework 

23 for WDSs, eliminating the reliance on the WDSs’ physical models. Sparse 

24  regression is utilized to identify the dynamics of WDSs from the available 

25  sensory data. The identified data-driven model is then embedded in MPC 

26  frameworks with multiple prediction model formulations: 1) linear-time in- 
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27  variant, 2) linear time-varying, 3) and nonlinear models. Four interconnected 

28  water tank systems representing the nonlinear and cross-coupling of WDSs 

29 are selected as the test system to evaluate the effectiveness of the proposed 

30  data-driven MPC frameworks. Contrary to the existing WDS control de- 

31 signs, which heavily rely on detailed WDS models and extensive historical 

32  data, the proposed framework accurately captures the nonlinear dynamics 

33  using minimum available measurements. 

34  Keywords: Data-driven system identification; Sparse regression; Optimal 

35  scheduling; Nonlinear control; Water distribution systems; 
 

 
36  1. Introduction 

 
37 The resilience of the water supply system is imperative to adapt to hydro- 

38 climatic variations and socio-economic changes. Two main challenges under- 

39  line this importance: 1) The exacerbation of climate change, which can lead 

40  to water infrastructure damage and disrupt the distribution, and 2) shifts 

41  in social and economic conditions, leading to an increase in water demand. 

42  These factors place significant pressure on the governments and involved 

43  parties to cope with these challenges [1]. Furthermore, ensuring safe water 

44 supply is a complex procedure in and of itself, particularly for water distri- 

45  bution systems (WDSs). WDSs comprise interconnected components such 

46 as pipes, valves, pumps, storage tanks, and other components [2] contribut- 

47  ing to their operational complexity to ensure the safe and stable distribution 

48  of water. Furthermore, the prevalent use of pumps in WDSs contributes 

49  to elevated power consumption and operational costs [3]. Without suitable 

50 management, this could lead to unsustainable WDSs operations. To address 
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51  these concerns, gaining adaptive control, optimal operational scheduling of 

52  WDSs, and a complete understanding of their behavior are vital to enhancing 

53  their resiliency and sustainability. 

54 Various control techniques have been explored to design and provide op- 

55  timal management of WDSs [1]. Four control actions can be implemented 

56  in the water system: 1) feedforward control, 2) feedback control, 3) optimal 

57  control, and 4) heuristic control, which is based on a rules-of-thumb approach 

58 or experience-based strategy to control the system [4]. However, to fully in- 

59  corporate the complicated nature of WDSs, a control approach capable of 

60  handling multi-variable and multi-objective models, system constraints, and 

61  disturbances is required [5]. These aspects can be categorized under Model 

62  Predictive Control (MPC). In addition to that, MPC also integrates the 

63 aforementioned three control actions. First, MPC employs feedback control 

64  to minimize the deviation between desired setpoints and the controlled out- 

65  put. Furthermore, it utilizes feedforward control to adapt the control signal 

66  based on measured or predicted disturbances [4]. Additionally, MPC em- 

67  ploys optimal control to formulate a control law that minimizes a quadratic 

68  objective function developed from the system’s state space model [6]. Con- 

69  sequently, MPC emerges as an advanced and preferred control strategy. 

70 As a model-based controller, MPC utilizes the dynamic and static models 

71  of the system being controlled as the prediction model to optimize future 

72 control actions [7, 8]. A sequence of future control actions is determined by 

73 solving a finite-time horizon of an online model-based optimization at each 

74  sampling instant, using the plant’s current state as the initial state [9] subject 

75  to the objective functions (performance goals of the controlled system) and 
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76  constraints at future time instants [7]. MPC follows the receding horizon 

77 framework by applying only the first value of the optimized control inputs 

78  and disregarding the rest of the trajectory [10]. The internal model, used in 

79  MPC implementation to obtain the predicted output, can be represented in 

80  the state space form, which can be linear or non-linear models [11]. 

81 Different strategies of MPC can be implemented that differ from the pre- 

82  diction models, such as 1) the linear time-invariant (LTI) model, where the 

83  structure of the model does not change over time [12]; 2) the linear time- 

84  varying (LTV) model, where the dynamic behavior of the system varies over 

85 time due to varying operating points [13], and 3) nonlinear model that ac- 

86  counts for the nonlinear features present in the controlled system [14]. Linear 

87  prediction model has been widely used [15] as it offers a tractable control 

88  problem via a convex optimization problem that guarantees a global mini- 

89  mum with low computational cost [13, 16]. However, it may suffer from a lack 

90  of representation of an actual system that exhibits nonlinear behavior [17]. 

91  This motivates the application of nonlinear MPC that enables the control of 

92  nonlinear systems and offers a more accurate system representation [15, 18]. 

93 Nonetheless, nonlinear MPC (NMPC) also has its own drawbacks. NMPC 

94  applies a non-convex optimization problem, where the solution may converge 

95 to a local optimum, and provides computation-intensive control algorithms 

96  [11]. Therefore, finding a suitable prediction model to control WDSs is crit- 

97  ical to provide a trade-off between model accuracy, computation time, and 

98  tractability of the control problem [11]. 

99 In spite of MPC’s benefits, one of its liabilities is its heavy reliance on 

100  the dynamic model of the controlled system [17]. Consequently, a mismatch 
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101  between the plant model and the disturbances excluded from the model may 

102  lead to unfavorable control decisions [6, 19]. Furthermore, existing hydraulic 

103  models may not accurately reflect WDSs due to pipe deterioration (changing 

104  the roughness coefficient of the pipe), water loss, operational scheduling, and 

105  system topology, to name a few [20]. These divergences contribute to the 

106  difficulty in yielding optimal control solution for WDSs. This is because, 

107 in Considering the multi-variate, nonlinear, complex, and highly coupled 

108 dynamics of assets in WDSs [21], as well as the presence of varying distur- 

109  bances, and time-evolving objectives, the control-oriented model formulation 

110 of MPC continues to be more challenging. Nevertheless, this can be solved 

111  by leveraging data availability from the plant measurement. 

112 The drive to optimize the operation and management of WDSs, along 

113 with the goal of improving water infrastructure, has led to the development 

114  of advanced monitoring technologies. This has resulted in the deployment 

115  of smart sensors, including smart metering devices and wireless sensors [3]. 

116  Consequently, real-time and large data availability of WDSs can be obtained. 

117 This presents an opportunity to develop enhanced data-driven models that 

118 capture these systems’ complex and nonlinear nature, including their re- 

119  sponse to disturbances. Previous studies have explored data-driven model- 

120  ing approaches for various aspects of water systems. A wavelet-based arti- 

121  ficial neural network technique to predict daily water levels in WDSs was 

122  investigated in [22]. In [23], model identification of a hysteresis-controlled 

123  pump using sparse identification of nonlinear dynamics was studied and val- 

124  idated on a single input and single output system (SISO). Multitask multi- 

125  view learning methods to forecast water quality were employed by [24] on 
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126 an hourly basis by considering the spatial and spatiotemporal correlations 

127  between water treatment facilities. Other existing data-driven approaches 

128 include identifying water quality models via subspace identification method 

129  (SIM) [25], estimating drip tape irrigation discharge using temperature and 

130  pressure measurements [26], identifying reservoir operations using artificial 

131  neural networks and support vector regression [27], predicting water quality 

132  using various machine learning methods [28, 29], reduced network model to 

133 control WDSs using radial basis function neural models (RBFNN) [30], and 

134  forecasting reservoir water inflow using neural networks [31]. 

135 However, these studies have primarily focused on specific components or 

136  processes within the system and have not addressed the identification of non- 

137  linear dynamics at a system level. Furthermore, many existing approaches 

138  rely on machine learning techniques that require extensive training data and 

139  lack interpretability, making them less suitable for system-level control in 

140  WDSs. In addition, given the nonlinearities and uncertainties of WDSs op- 

141  eration, it is not known whether a data-driven MPC can provide tracking 

142  guarantees and enhanced control performance to the optimal operation of 

143  WDSs. Therefore, there is a need for research that utilizes data-driven tech- 

144  niques to identify the nonlinear dynamics of WDSs at a system level, enabling 

145  more effective control and management of these complex systems. 

 
146  1.1. Contributions of this work 

147 To address the existing challenges, this work investigates the application 

148  of sparse identification theory for data-driven model identification in WDSs. 

149  In addition, to analyze whether a data-driven MPC can provide tracking 

150  guarantees and improved control performance in WDSs, we have designed 



7  

 

 
151 three different techniques for formulating the optimal control problem in 

152  MPC to actuate the predicted data-driven dynamics and find suitable pre- 

153 diction models that comprehensively represent WDSs. Sparse identification 

154 theory is a viable method for accurately modeling the nonlinear dynamics of 

155  unknown systems [32–34]. It reduces training time and the need for neural 

156 networks for control and identification. To our best knowledge, no existing 

157  work has reported data-driven modeling of nonlinear dynamics of WDSs us- 

158  ing sparsity-promoting techniques and implementing the predicted nonlinear 

159  dynamics to different approaches of MPC. Therefore, the main contributions 

160  of this paper can be summarized as follows: 

161 1. A data-driven based on sparse regression technique is developed to 

162 identify the nonlinear dynamics of the benchmark quadruple water tank 

163 process that closely represent the nonlinear dynamics of WDSs. 

164 2. Data-driven control of nonlinear WDSs dynamics using various MPC 

165 strategies, including linear time-invariant MPC (LMPC), linear time- 

166 varying MPC through successive linearization technique (SLMPC), and 

167 nonlinear MPC (NMPC) is investigated. 

168 3. A comparative analysis involving computational burden, tracking per- 

169 formance, and robustness of data-driven MPC strategies with numerical 

170 results that further highlight the performance of different data-driven 

171 MPC approaches is provided. 

172 4. Detailed descriptions of the MPC algorithms for each control law are 

173 provided, along with a thorough formulation of the MPC solution 

174 method utilizing sequential quadratic programming (SQP). 

 
175 The rest of the paper is organized as follows: Section II describes the 
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176 proposed model description in addition to the dynamics of the quadruple 

177  tank systems, sparse identification of dynamics, and optimal control problem 

178  formulation (OCP) of MPC. Several case studies are presented and discussed 

179  in Section III to validate the proposed model identification through the sparse 

180  regression technique with different strategies of control, while Section IV 

181  concludes the paper. 

 
182  2. Methodology 

 
183 2.1. Proposed Model Description 

184 Fig. 1 exhibits an overview of the proposed data-driven model identifica- 

185  tion via the sparse regression-based nonlinear dynamics (SR-based) method 

186  combined with MPC to control a system that closely resembles WDSs. This 

187  work uses a quadruple tank process (QTP) from [35] that depicts simpli- 

188  fied WDSs, a set of interconnected water tanks subject to external in and 

189  outflows. First, the sparse regression model identification technique will be 

190  utilized to identify the dynamic equations of the system solely from mea- 

191  surements. It involves taking measurements from the outputs of the plant 

192 (yi), collecting the applied control inputs (ui), constructing a library of func- 

193  tions that might represent the system’s dynamics, and solving a sequentially 

194  thresholded least-square optimization problem using a sparse regression tech- 

195  nique. Then, the predicted dynamics are conveyed to the MPC framework to 

196  generate optimal control problem formulation exploiting various MPC tech- 

197 niques, such as linear, successive linearization, and nonlinear MPCs. Differ- 

198  ent techniques are proposed to provide different trade-offs in utilizing MPC 
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199 as the control strategy in WDSs. The process is described in details in Sec- 

tions 2.3 and 2.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Proposed data-driven control framework for identifying and controlling the dy- 

namics of a quadruple tank process. 

200 

 
201 2.2. Application of SR-MPC to a benchmark system 

202  2.2.1. Dynamic Model of Quadruple Tank Process (QTP) 

203 The dynamics of each tank in the quadruple water tank process in Fig. 2 is 

204  derived from the combination of mass balance in the tank (assuming constant 

205  density) and Bernoulli’s theorem with additional flow control valve (FCV) 

206  and pumps as the controllers. The governing equations can be represented 

207  by the following set of differential equations [35]: 
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ḣ (t) = 
−s1 

✓
2gh (t) + 

−s3 
✓

2gh (t) + 
γ1k1 

v (t) (1a) 

ḣ (t) = 
−s2 

✓
2gh (t) + 

−s4 
✓

2gh (t) + 
γ2k2 

v (t) (1b) 

ḣ (t) = 
−s3 

✓
2gh (t) + 

(1 − γ2)k2 
v (t) (1c) 

ḣ (t) = 
−s4 

✓
2gh (t) + 

(1 − γ1)k1 
v (t) (1d) 

  

208  where Si is the cross-sectional area of tank i, si is a cross-sectional area of 

209  the tank’s orifice in tank i, hi is the water level of tank i, vi is the voltage 

210 applied to pump i with a corresponding flow kivi. Parameters γi ∈ [0, 1] are 

211  determined from the settings of the valves. As illustrated in Fig. 2, γ1k1v1 

212 and (1 − γ1)k1v1 represent tanks 1 and 4 inflows, respectively. Similarly, the 

213  water flow to tank 2 is γ2k2v2, and the water flow to tank 3 is (1 − γ2)k2v2. 

214  The system is uniquely designed to exhibit the effect of multivariable zero on 

215  the system behavior with zero location either on the left or right-hand plane 

216 by changing the valve positions [35]. The system is represented as minimum 

217 phase (left-hand plane zero) for 1 < γ1 + γ2 < 2 and non-minimum phase for 

218  0 < γ1+γ2 < 1 (right-hand plane zero). The acceleration of gravity is denoted 

219 by g and output measurements can be computed with kch1 and kch2. Table 1 

220 displays the constant parameter values used in this work adopted from [35]. 

4 4 
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Table 1: QTP Parameters from [35] 
 

Parameters Unit Qty 

S1, S3 cm2 28 

S2, S4 cm2 32 

s1, s3 cm2 0.071 

s2, s4 cm2 0.057 
 

max 
i 

min 
i 

cm 15 

cm 0 
 

kc V/cm 1 

g cm/s2 981 

 
221  By re-arranging equations in Eq.(1), the state space model of the QTP can 

222  be expressed as follows: 
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223 which is equivalent to 

 
ẋ = f (x) + g(x)u (2c) 

y = h(x) (2d) 

h 

h 

0 

1 

T 
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224 In Eq.(2), x = [h1 h2 h3 h4]T is the state vector, while y = kcx is the 

225  output vector, and u = [v1 v2]T is the input vector of the system, which 

226  includes the voltage applied to the pumps. 
 

Fig. 2: Schematic of a quadruple tank process. 

 

227  2.2.2. Operating Points 

228 One of the objectives of this work is to identify the dynamic model pre- 

229  sented in Eq. (2) solely from the available measurements of the states, assum- 

230  ing that detailed information regarding the QTP system and its parameters 

231  is unavailable. Two distinct operating points will be examined to assess the 

232  robustness of the proposed model identification framework. These operating 

233  points were intentionally chosen based on the system’s behavior, with one 

234  exhibiting minimum phase (MP) characteristics and the other demonstrating 

235  nonminimum phase (NMP) behavior. This selection allows for a comprehen- 

236  sive validation of the proposed framework’s effectiveness. The two operating 

237  points are listed in Table 2. 
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Table 2: Operating points of quadruple tank process. 
 

Parameter MP operating point NMP operating point 

h1, h2 [cm] 12.4, 12.7 12.6, 13 

h3, h4 [cm] 1.8, 1.4 4.8, 4.9 

v1, v2 [V] 3, 3 3.15, 3.15 

k1, k2 3.33, 3.35 3.14, 3.29 

γ1, γ2 0.7, 0.6 0.43, 0.34 

 

238 Simulations were conducted to evaluate the system’s operation in these 

239  two operating points by perturbing the control inputs (pump voltages, vi) 

240  with a repetitive sequence waveform between 2 - 4 V (to activate the dynamic 

241  modes). Fig. 3 depicts the evolution of the states at two operating points 

242  over 100 s simulation in MATLAB. 

 
243  2.3. Data-Driven Identification of Nonlinear Dynamics 

244 To identify the nonlinear dynamical models of the studied QTP using 

245  measurements, the first step involves estimating the state derivatives ( ẋ  ). 

246  Subsequently, a library of candidate functions (ψi(x)) is constructed to de- 

247  scribe the temporal changes of the state variables. In cases without prior 

248  knowledge about the system’s dynamics, an extended basis of candidate 

249  functions can be chosen to accommodate all potential functions. Given that 

250  most dynamical systems exhibit a few nonlinear terms in their dynamics, 

251 techniques that promote sparsity can effectively identify the candidate func- 

252  tions that significantly contribute to the system’s dynamics. Therefore, this 

253  paper utilizes a sparse regression-based nonlinear dynamics model identifica- 

254 tion (SR), initially proposed in [32], and is further explained step-by-step in 
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(b) NMP operating point. 

Fig. 3: Trajectory of the states in different operating points. 

 

255  the following sections. 

 
256  2.3.1. Measurements 

257 SR technique utilizes symbolic regression and sparse representations to 

258  determine the system’s dynamics. This approach depends upon the fact that 

259  many dynamical systems which are represented by differential equations in 
 

 
260 the form of ẋ = f (x) have relatively few terms on the right-hand side [33]. 

261 In this work, the actual dynamics of the studied QTP is represented by ẋ = 

262  f (x) + g(x)u, where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the control 

263  input vector, and f (x(t), u(t)) := Rnx × Rnu → Rnx maps a space of control 

264  inputs and states dimension to a space nx dimension. Therefore, by collecting 

265  m measurement samples from the water tank levels and pump inputs, the 
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X =  .  =  . . 
x 

.  

xT (tm)  x1(tm) x2(tm)  . . .  xn (tm)  

U =  .  =  . . 
u 

.  

uT (tm)  u1(tm) u2(tm) . . .  un (tm)  

x 

u 

 

 

266  QTP dynamics can be identified by a library of candidate functions, Ψ ∈ 
m×p 

267  R , where p denotes the number of the library functions. To identify the 

268  governing equations of the system in Eq. (2), a time-history of the tank levels 

269  (state vector) x(t), pump inputs u(t), and derivatives of the states ẋ (t) are 

270  collected. Since only x(t) and u(t) might be available in most real-world 

271  systems, the derivative measurements ẋ (t) must be estimated first. This can 

272  be accomplished by numerically calculating the derivatives from the state 

273 measurements. To achieve this, the measurement data is first sampled at m 

274 intervals t1, t2, . . . , tm and arranged into [34]: 
 
xT (t1) 

  
x1(t1) x2(t1) . . . xn (t1)  

   x  

 x (t2)   x1(t2) x2(t2) . . . xn (t2)  
. . 

 .   . . .  
 

275  and inputs for tm samples are written into a matrix U such that 
 
uT (t1) 

  
u1(t1) u2(t1) . . . un (t1)  

   u  

 u (t2)   u1(t2) u2(t2) . . . un (t2)  
. . 

 .   . . .  
 

276  Then, the measurements for derivatives can be approximated numerically 

277 from X by following the procedure described in the subsequent section. 

 

278  2.3.2. Estimating the Derivatives, Ẋ 

279 Differential and partial differential equations can be solved numerically 

280  using methods such as difference approximation. It involves approximating 

281  the derivatives of a smooth function using Taylor series expansions at specific 

. (3) 

. (4) 
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282  mesh points. This study employs the central difference approximation due 

283  to its higher accuracy when dealing with smooth functions. Accordingly, Ẋ 

284  can be approximated by [36]: 
 

Ẋ X(j + 1) − X(j − 1) 

2st 
(5) 

285 where X(j + 1) is the measured data at sample j + 1 and st is the sampling 

286 time of the simulation or data collection platform. 

 
287  2.3.3. Sparse Identification of System Dynamics 

288 The states derivative data, obtained from utilizing the measured data 

289 X ∈ Rm×nx , is a linear combination of columns from the candidate function 

290  (e.g., polynomials, or sinusoids) library expressed by entries of the matrix 

291  Ξ ∈ Rp×nx such that [33]: 

 

Ẋ = Ψ(X, U)Ξ. (6) 

 

292 Having estimated Ẋ , Ψ(X, U) can be constructed by linear and nonlinear 

293  functions of the columns of X and U. Furthermore, monomials and trigono- 

294  metric functions are typically considered candidate functions for nonlinear 

295  systems. An example of such functions is represented in Eq. (7): 
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ΨT (X, U) =  

 

 

 

 

M0.5(X, U)   

X 

U 

M2(X, U) 

. 

sin(X, U) 

cos(X, U) 

sin(2X, U)  

 

 

 

 

 

(7) 

 
296 where Mi(X, U) corresponds a nonlinear combination of i-order monomials 

297 of X and U. For instance, M0.5(X, U) includes square-root functions that 

298  exist in the QTP system, or M2(X, U) involves polynomials up to the second 

 
299 order. Once the estimation of Ẋ and the determination of Ψ(X, U) based on 

 
300 the available X and U are performed, then Ẋ = Ψ(X, U)Ξ can be acquired 

301  by solving for the sparse vectors of coefficients in Ξ. These coefficients de- 

 
302 

 

 

303 

termine the active terms in the Ẋ 

optimization of the form [18]: 

dynamics. This is achieved by solving an 

ξ = arg min 
1

||Ẋ − Ψ(X, U)ξˆ || + η||ξˆ || (8) 

ξˆi 2 

 

i 2 i 0 
 

r  T 
˙
 

305 represents the i-th column of Ẋ . The objective function in (8) utilizes the 

 
306 L2 norm ∥.∥2 to minimize the error between the derivatives Ẋ and estimated 

307  derivatives using calculated ξi through a least-squares problem and the L0 

308  norm, ∥.∥0 minimizes the number of nonzero elements in ξi to promote spar- 

309  sity in the coefficients matrix Ξ. In addition, η is the regularizing parameter 

where ξi is the i-th column of Ξ represented by Ξi = ξ1 ξ2 . . . ξp 

i i 
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ξ̂ 0 =Ψ(X, U)‡Ẋ 
i (10) 

j 

 

 
 

310 
 

 
311 

 

 
312 

 

 
313 

critical in the SR technique to promote sparsity degree in the solution, which 

can be tuned using various hyperparameter tuning [37]. 

The minimization problem of (8) is solved by the sequentially thresholded 

least squares algorithm, which is an iterative algorithm defined by [38]: 

Cε =
 

j ∈ [p] : ξε ≥ η
 

, ∀ε ≥ 0 (9) 

 
i 

ξε+1 = argmin 
ξˆi∈Rp:supp(ξi)⊆Cε 

∥ Ẋ 
i − Ψ(X, U)ξ î∥2, (11) 

314 where ε is the iteration number, Ψ(X, U)‡ is the pseudo inverse of Ψ(X, U) 

315  defined as: 

 
Ψ(X, U)‡ := [Ψ(X, U)T Ψ(X, U)]−1Ψ(X, U)T (12) 

 

316  and the support set of ξj is defined by supp(ξj) := {j ∈ [p] : ξj ̸= 0}. 

317  The coefficients ξj can be computed using the sparse regression formulation 

318  exhibited in Algorithm 1. If the purpose is to identify the signal U for the 

319  feedback control, i.e., U = H(s)X, where H(s) is the transfer function of the 

320 controller, the matrix of inputs can be identified using U = Ψ(X)Ξu, where 

321  Ψ(X) is the matrix of candidate functions with the terms corresponding to 

322 U have been removed from Ψ(X, U) and Ξu can be found using the sparse 

323 regression algorithm similar to Ξ. 
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Algorithm 1 Sparse Regression-based Model Identification Algorithm 
Input: Measurements X, U 

Input: Estimated derivatives Ẋ 

1: procedure Sparsity Promoting Algorithm 

2: Ξ = Ψ\Ẋ 
 
▷ least-square solution 

 

3: 

4: 

for ε = 1 : T 

Set η 

do ▷ number of iterations 

▷ sparsification knob 

5: 

6: 

7: 

|Ξ| < η −→ indsmall 

Ξ(indsmall) −→ 0 

for ε = 1 : nx do 

 
 

 
▷ nx is state’s dimension X 

8: indbig ̸= indsmall(:, ε) 

9: Ξ(indbig, ε) = Ψ(:, indbig )\Ẋ (:, ε) 

10: end for 

11: end for 

12: end procedure 

Output: Sparse matrix Ξ and ẋ̂ = Ψ(x̂, u)Ξ 
 

 

 
324  2.4. Model Predictive Control 

325 MPC is a control strategy that solves multiple open-loop control problems 

326  over a receding time horizon, subject to constraints [1, 17], illustratively 

327 shown in Fig. 4. As shown from the figure, MPC is composed of four elements 

328 such as 1) a prediction model, 2) a set of constraints, 3) a cost function, and 

329  4) an optimization algorithm [6]. The prediction model is developed using 

330 the controlled system model and the current value of the states (assuming 

331  full state measurement, y = x). The model is typically represented using a 

332  transfer function or state space model (in this study, the latter is used). The 
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333  states can be written based on the actual states or the deviation between the 

334  desired and the actual states (error signal). A set of constraints is obtained 

335  by including the minimum and maximum values of the controlled system to 

336  limit the input and state variables, while the cost function is derived based 

337  on optimal control formulation over a finite horizon. Then the optimization 

338  algorithm, incorporating the above-mentioned three components, is utilized 

339  to yield a sequence of optimal control actions over a prediction horizon[6, 8]. 

340 MPC applies a receding horizon control (RHC) approach where the math- 

341  ematical optimization is solved online and reiterated forward in time over 

342  a finite-time horizon (continually shifted forward the horizon in a receding 

343  manner) as depicted in Fig. 4. After the optimization problem is solved, only 

344 the first control action of the optimized control sequence is actuated to the 

controlled system [1]. 

 

 
 Fig. 4: Schematics of model predictive control 

345  

 
346 In this paper, to further validate the model derived using the sparse 

 
347 regression (SR) technique, MPC will be utilized to control the water levels of 

 
348 the four tanks such that the objectives of the QTP can be obtained, including 
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349  minimizing the tracking error signal and rate of change of the controller, 

350  which will be further discussed in Section 2.4.1. 

 
351  Remark. Assuming full observability of the states (x = y), the prediction 

352  model and the optimal control problem formulation of MPC, henceforth, will 

353  be described solely based on the states and the control variables of the system. 

 
354  2.4.1. Optimal Control Problem Formulation 

355 This work adopts the general optimal control problem (OCP) formulation, 

356  which has been thoroughly described in [8, 12]. The objective is to minimize 

357  the tracking error signal such that the states follow the desired set-point 

358  values and to minimize the rate of change of the controller to ensure a longer 

359  lifespan. To formulate the OCP, the system’s dynamics generated from the 

360  SR method are utilized as follows: 

 
ẋ = f (x) + g(x)u (13) 

 

ẋ̂ = Ψ(x̂, u)Ξ (14) 

f̂ (

"
x̂

,.
,u) 

..
 

x̂(k + 1) = f̃ (x̂,  u) (15) 

 
361 where Eq. (13) describes the dynamic equations of the controlled system, 

362  detailed in Section 2.2, Eq. (14) corresponds to the predicted dynamics from 

363 the SR technique, and Eq. (15) describes the discretized predicted dynam- 

364  ics intended for MPC implementation. Fourth-order Runge-Kutta methods 

365  (RK4) are employed to discretize the function expressed in Eqs. (14)-(15) as 

366  follows [39, 40]: 
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L 
∥x̂ (k + j) − x (k + j)∥ Rj 

2 k 
2 

1 k 

3 k 
2 

2 k 

 

 

k1 = f̂ (x̂k , uk) (16a) 

k  = f̂

  

x̂ + 
ts 

k , u

 

(16b) 

k  = f̂

  

x̂ + 
ts 

k , u

 

(16c) 
 

k4 = f̂ ( x̂ k  + tsk3, uk) (16d) 
 

x̂ k + 1  = x̂k 
+ 

ts 
(k 

6 
1 + 2k2 + 2k3 + k4) (16e) 

 

367  where ki is the i-th slope, ts ∈ R+ is the sampling time (set as ts = 0.1) with 

368  given initial conditions of x0, u0 at t(0). In this work, the RK4 method is 

369  also interchangeably used in the successive linearization MPC (SR-SLMPC) 

370  framework to find numerical solutions from the differential equations. 

371 Combining the system’s dynamics in Eq. (15) and the physical constraints 

372  to the states and the inputs, depicted in Table 1, the final OCP formulation 

373  is displayed in Eq. (17). 
 

 
min 

uk,...,uk+Np−1 

 

J(k) := 

Np−1 
ref 2 

Qj 

j=0 

+ ∥∆u(k + j)∥2
 

(17a) 
 

s.t. x̂ (k + j + 1) = f̃ (x̂ (k + j), u(k + j)), (17b) 

j = 0, 1, . . . , Np − 1  

u ≤ u(k + j) ≤ u, j = 0, 1, . . . , Np − 1 (17c) 

x ≤ x̂ (k + j) ≤ x, 

x̂ 0 = xplant(t0) 

j = 1, 2, . . . , Np (17d) 

(17e) 

 

374  where Np ∈ N+ is the prediction horizon, k := kts ∈ R+ is the current time 

375  step at sampling time ts, Q ≻ 0 and R ≻ 0 are the penalty weights for 
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n 

i 

 

 

376 the states and the control inputs, respectively, x̂ (k )  ∈ Rnx , u(k) ∈ Rnu and 

377  ∆u(k) ∈ Rnu denote the states, input and input’s rate of change at time step 

378  k, respectively, xref ∈ Rnx is the desired set-points, x, u, x, u express the 

379  minimum and maximum of the states and control inputs, respectively, and ̃f : 

380  Rnx+nu → Rnx is the discretized prediction model with varying formulation, 

381  further described in Section 2.4.2. 

 
382  Remark. For clarity, the predicted states and dynamics from the SR tech- 

 
383 nique (ẋ̂ = f̂ ( x̂ ,  u)) are expressed in the notation of the actual states and 

 
384 dynamics (ẋ = f (x, u)). 

 
385  2.4.2. Prediction Model 

386 Prior to formulating the optimal control problem formulation, MPC re- 

387 quires the formulation of the prediction model based on the plant model 

388  (dynamics predicted by SR-based model identification) that will be used to 

389 optimize a sequence of future control actions. Therefore, a suitable choice of 

390  prediction model is crucial to obtain optimal performance of the controlled 

391  system. The present study utilizes three prediction models: linear time- 

392  invariant MPCs, linear time-varying MPCs, and nonlinear MPCs, which will 

393  be discussed in the following sections. To quantify the performance of differ- 

394  ent MPC strategies, Mean Absolute Percentage Error (MAPE) will be used, 

395  which can be computed as follows: 

1 L xi − x̂ i   
396 MAPE = 

n  
i=1 

x  × 100% (18) 

397 where, n represents the total number of samples, xi represents the desired 

398  value, and x̂ i  represents the predicted value. 
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.. 

.. 

3 

4 

δh1(t) = 
2
✓

hop 
(h1(t) − h1 ) +

2
✓

hop 
(h3(t) − h3 ) +ξ15 (v1(t) − v1 ) 

δh2(t) = 
2
✓

hop 
(h2(t) − h2 ) +

2
✓

hop 
(h4(t) − h4 ) +ξ26 (v2(t) − v2 ) 

 

 

399  2.4.2.1. Linear Time-Invariant (LTI). 

400  The first model utilizes a linear time-invariant approximation of the nonlinear 

401 model predicted from the SR technique in Eq. (14), subsequently referred to 

402  as SR-LMPC. The system’s dynamics is linearized around the MP operating 

403 points (xop, uop) displayed in Table 2 with linearized predicted models as 

404  follows [35]: 
 

˙  ξ11  op  ξ13  op op 
 

 

1 
 
 

 

˙  ξ22  

δh

"
1

,.
(t) 

..
 

 

 

op 

3 
 
 

 

  ξ24  
 

 

δh

"
3

,.
(t) 

..
 

 

 

op 

δv

"
1

,.
(t) 

 
(19a) 

op 

2 
 
 

 

˙  ξ33  

δh

"
2

,.
(t) 

..
 δh

"
4

,.
(t) 

..
 δv

"
2

,.
(t) 

 
(19b) 

δh3(t) = 
2
✓

hop 
δh3(t) + ξ46 δv2(t) (19c) 

˙  ξ44  
 
 
 
 

 
405 

 

 
406 

δh4(t) = 
2
✓

hop 
δh4(t) + ξ35 δv1(t) (19d) 

where ξij represents the active terms of the i-th row and j-th column of the 

sparse matrix, ΞT , obtained from SR-based model identification in Algo- 
op op 

407  rithm 1, hm and vn correspond to the operating points of the m-th tanks’ 

408  water levels and the n-th pumps’ voltage, used to linearize the system, respec- 

409  tively. Then the linearized state space model representation can be expressed 

410  as follows: 

4 
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h h 

h    

√ 
 4  

L 

 2 
op   
1 

op 
3  ξ15 0 

 2 
op 
3    

d d 

 

i=0 

 

 
√ξ 1 1   0 √ξ 1 3   0 

 
  

 0 √ξ 2 2   0 √ξ 2 4      
ẋ  =  2  hop   

 
 

2 hop  
δh

 (t) + 
 0 ξ26  

δv (t) (20) 
2 4   m   n 

 0 0 √ξ 3 3   0   0 ξ46  
 

0 0 0 
 

ξ44 
2  hop ξ35 0 

 
A
",.

c 

..  
B
",.

c 

.. 

411  Next, the continuous state space model in Eq. (20) is discretized and rewrit- 

412  ten as follows: 

 
413 xLTI(k + 1) = AdxLTI(k) + BduLTI(k) (21) 

 

414  where k is the time instant, Ad ∈ Rnx×nx and Bd ∈ Rnx×nu correspond to 

415  the time-invariant system’s matrices with subscript d denoting the discrete 

416  time. Thereafter, the linear prediction model over the prediction horizon can 

417  be written as follows: 

j−1 

418 xLTI(k + j) = Aj xLTI(k) + Ai BduLTI(k + i) ∀ j ∈ {1, . . . Np}  (22) 

419  where xLTI(0) is the current state measurement of the states at time instant 

420  k = 0. The LTI model formulated in Eq. (21) assumes that the system 

421 dynamics remain constant over time. In addition, the problem in Eq. (17) 

422 is a convex optimization formulated under linear constraints and quadratic 

423  objectives. Therefore, LMPC can be considered mathematically tractable 

424  and computationally efficient. To reduce the number of decision variables to 

425  be solved in Eq. (17), the problem is formulated in terms of the incremental 

426  form of the control inputs: ∆u(k) := u(k) − u(k − 1) which has been 

427  comprehensively discussed in [8, 12]. Complete implementation of LMPC is 

428  exhibited in Algorithm 2. 

2 



26  

 
 

 
 

Algorithm 2 Linear Time Invariant MPC (LMPC) 

1: Input Np, Q, R, T, ts, nx, nu, xref , xop, uop, f (x, u) 

2: Initialize x0 ∈ Rnx , u0 ∈ Rnu , k = 0 

3: Linearize & Discretize nonlinear dynamics from f (x, u) around 

xop, uop at ts, Eq. (20) 

4: Return LTI model, Eq. (21) 

5: for k = 0 → T − 1 do ▷ Simulation time 

6: for j = 0 to Np − 1 do 

7: Construct prediction model, Eq. (22) 

8: Formulate quadratic cost: J(x(k + j), u(k + j)), Eq. (17a) 

9: end for 

10: Solve J(k) s.t. Eqs. (17b)-(17d) 

11: Return [∆u∗(0|k), . . . , ∆u∗(Np − 1|k)] 

12: Extract [u∗(0|k), . . . , u∗(Np − 1|k)] 

13: Apply only u∗(0|k) ▷ Receding horizon control (RHC) 

14: Measure x(k + 1|k) from Eq. (21) 

15: Update for k + 1, x0 = x(k + 1|k) and u0 = u∗(0|k) 

16: end for 
 

 

429 2.4.2.2. Linear Time-Varying via Successive Linearization MPC. 

430 

 

431  The second prediction model utilizes the linear time-varying (LTV) model via 

432  a successive linearization method, in this paper referred to as SR-SLMPC. 

433  SR-SLMPC differs from SR-LMPC mainly due to its approach to lineariz- 

434  ing the nonlinear model. While SR-LMPC linearizes the nonlinear model 

435  around steady state conditions using constant systems’ matrices for predic- 
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ξ44
√

x4 ξ35 0 

 

 
436 tion, SR-SLMPC performs online linearization of the nonlinear model using 

437  the current operating points. Then the formulated prediction model over 

438  Np is used in Eq. (17) to obtain a sequence of optimal control actions. SR- 

439  SLMPC is formulated as follows [13, 41, 42]: 

 
440 1. Formulate a state space representation of the QTP using the predicted 

441 continuous nonlinear system dynamics in Eq. (14), which can be ex- 

442 pressed as follows: 

ξ11
√

x1 + ξ13
√

x3  ξ15 0 
 

ẋ = 
ξ22

√
x2 + ξ24

√
x4

 
+ 

 0 ξ26  
u (23a) 

 ξ  
√

x   0 ξ46  

 
33 3 

 
 

   

= f (x, u) (23b) 

 
443 2. Linearize the continuous nonlinear state space model in Eq. (23) at cur- 

444 rent operating points with detailed formulation in Eq. (19) and rewrit- 

445 ten as follows: 

 
op op 

ẋ l = ẋ + Ac(t)(xl − x  ) + Bc(t)(ul − u  ) (24a) 
 

= Ac(t)(xl) + Bc(t)uL + Γc(t) 

x  ̇−Ac(t)

 
x

"
op

,.
−

..
Bc ( t)uop  

(24b) 

 

 
446 where Ac(i, j) = ∂fi 

xj 
nx×nx , Bc(i, j) = ∂fi 

uj 
nx×nu and Γc ∈ Rnx

 

447 is the constant form of the linearization and subscript l corresponds 

448 to linearized model. Note that the system’s matrices associated with 

449 time t are different than that in Eq. (20). This is to indicate that SR- 

450 SLMPC utilizes time-varying matrices. Initially, the model is linearized 

∈ R ∈ R 
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 c  

c 

L 
d d 

i=0 

 

 
451 offline at the MP operating points defined in Table 2. Then, during 

452 SR-SLMPC implementation, the dynamics will be linearized around 

453 the operating points at time instant k. 

454 3. Integrate Eq. (24) with RK4 numerical integration scheme, described 

455 in Eq. (16). 

 

xl(t) = eAc(t)xl(0) + 
t 

eAc(t−τ )(Bcul(τ) + Γc)dτ (25) 
0 

456 4. Discretization of the continuous state space representation. 

 
xl(k + 1) = eActs xl(k) + A−1(eActs − I)Bc ul(k) 

 
A

"
d

,.
( k

..
)

  
B

"
d

,.
( k )  

.. 

+ A−1(eActs − I)Γc (26) 

Γd

"
(

,.
k) 

..
 

457 where ts is the discretization time step, equivalent to the sampling time 

458 employed in MPC. 

459 5. The final discrete state space model in LTV-MPC that will be used for 

460 the formulation of the prediction model is described below: 

 
461 xLTV (k + 1) = Ad(k)xLTV (k) + Bd(k)uLTV (k) (27) 

 
462  During the SR-SLMPC implementation, steps 1-5 are repeatedly conducted 

463  by linearizing the system around the measurement of the current states and 

464 the previous control inputs (x0|k, u0|k) for all k ∈ {0, . . . , T − 1}. Using 

465  Eq. (27), the prediction model is then expressed as follows: 
 

j−1 

xLTV (k + j) = Aj (k)xLTV (k) + Ai (k)Bd(k)uLTV (k + i) 
 

+ (I + Ad(k))j−1Γd(k) ∀ j ∈ {1, . . . Np} (28) 

- 
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d 

i=0 d 

 

 
 

466 where Aj (k) ∈ R Npnx×nx is the time-varying prediction matrix associated 

467  with current states measurement, 
Lj−1 

Ai (k)Bd(k) ∈ RNpnx×Np(nx+nu) cor- 

468  responds to the time-varying prediction matrix associated to the control se- 

469  quence, and (I + Ad(k))j−1 ∈ RNpnx×nx represents the prediction matrix 

470  of the affine term from the linearization. All system matrices are formu- 

471  lated over the prediction horizon. Similar to SR-LMPC, OCP in Eq. (17) is 

472  formulated in the incremental form of control signals [41]. An overview of 

473  SR-SLMPC implementation can be found in Algorithm 3. 
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Algorithm 3 LTV Model Predictive Control (SLMPC) 

1: Input Np, ts, Q, R, T, nx, nu, xref , f (x, u) 

2: Initialize x0 ∈ Rnx , u0 ∈ Rnu , k = 0 

3: for k = 0 → T − 1 do ▷ Simulation time 

4: for j = 0 to Np − 1 do 

5: Integrate & Linearize f (x, u) around x0, u0 

6: Return LTV model, Eq. (27) 

7: Discretize Eq. (27), return Ad(k) and Bd(k) 

8: Construct prediction model, Eq. (28) 

9: Formulate quadratic cost: J(x(k + j), u(k + j)), Eq. (17a) 

10: end for 

11: Solve J(k) s.t. Eqs. (17b)-(17d) 

12: Return [∆u∗(0|k), . . . , ∆u∗(Np − 1|k)] 

13: Extract [u∗(0|k), . . . , u∗(Np − 1|k)] 

14: Apply only u∗(0|k) ▷ RHC 

15: Measure x(k + 1|k) from Eq. (27) 

16: Update for k + 1, x0 = x(k + 1|k) and u0 = u∗(0|k) 

17: end for 
 

 

474  2.4.2.3. Nonlinear MPC. 

475  The main difference between nonlinear MPC, herein referred to as SR-NMPC, 

476  compared to the above-mentioned MPCs is that the prediction model directly 

477  utilizes the discretized nonlinear dynamics of the system to represent the con- 

478 trolled system sufficiently. In this work, the discretized system’s dynamic in 

479  Eq. (23) is expressed as follows: 
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x(k + 1) = f̃ (x(k), u(k)) (29) 

 
480  Therefore, the prediction model over the prediction horizon can be expressed 

481  as follows: 

 

x(k + j + 1) = ̃f (x(k + j), u(k + j)) ∀j ∈ {0, . . . , Np − 1} (30) 

 
482 Given that the prediction model uses a nonlinear model, Eq. (17) is no longer 

483  convex. Thus, convergence to a global minimum may not be guaranteed. 

484  An overview of SR-NMPC implementation in this work can be found in 

485  Algorithm 4. 
 

Algorithm 4 Nonlinear Model Predictive Control (NMPC) 
 

1: Input: Np, Q, R, T, nx, nu, xref , f (x, u) 

2: Initialize x0 ∈ Rnx , u0 ∈ Rnu , k = 0 

3: for k = 0 → T − 1 do ▷ Simulation time 

4: for j = 0 to Np − 1 do 

5: Define & Discretize state space model, from Eq. (14) to Eq. (29) 

6: Construct prediction model, Eq. (30) 

7: Formulate quadratic cost: J(x(k + j), u(k + j)), Eq. (17a) 

8: end for 

9: Solve J(k) s.t. Eqs. (17b)-(17d) 

10: Extract [u∗(0|k), . . . , u∗(Np − 1|k)]. 

11: Apply only u∗(0|k) ▷ RHC 

12: Measure x(k + 1|k) from Eq. (29) 

13: Update for k + 1, x0 = x(k + 1|k) and u0 = u∗(0|k) 

14: end for 
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486  2.4.3. Solution method 

487 Considering the nonlinearity of the quadruple tanks’ dynamics used as 

488 the equality constraint in the OCP formulation (when implementing SR- 

489  NMPC), sequential quadratic programming (SQP) is selected in this study to 

490  solve the OCP in Eq (17). SQP is an iterative method that solves nonlinear 

491  constrained optimization by solving a sequence of quadratic programming 

492  (QP) sub-problems given in Eq. (32) [43]. SQP starts with an initial guess 

493  for xk for a given iterate k and continues iteratively by updating xk+1 := 

494  xk +αpk. A new iterate xk+1 is then used again to solve the QP subproblem 

495  to obtain p such that a sequence of xk is created to converge to a local 

496  minimum x∗ as k → ∞. In this study, the rate of change of the control 

497  input (∆U ∈ RnuNp) (for SR-SLMPC and SR-LMPC) as well as the states 

498  (X ∈ RnxNp), additionally for SR-NMPC, are the decision variables (xk) for 

499  the formulated nonlinear optimization problem. 

500 The associated Lagrangian function to the nonlinear problem in Eq (17) 

501  is expressed by [43]: 
 

m p 

L(x, λ, µ) := f(x) + 
L 

λihi(x) + 
L 

µjgj(x) (31) 

 

502  where the functions h : Rn → Rm and g : Rn → Rp describe the equality 

503  and inequality constraints, respectively, concatenated from Eqs. (17b)-(17d). 

504 In addition, n, m, and p are the number of decision variables, equality con- 

505  straints, and inequality constraints, respectively, with λ ∈ Rm and µ ∈ Rn as 

506  the Lagrangian multipliers for the associated equality and inequality con- 

507  straints. Then the QP subproblem is formulated by approximating the 

508  Lagrangian of Eq. (31) and linearizing the nonlinear constraints shown in 

i=1 i=1 
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509 Eq. (32).  

 
min 
p∈Rm 

 

 
1 

pT H 
2 

k
 

 

 

p + ∇f(xk 

 

 
)T p (32a) 

s.t. ∇gi(xk)T p + gi(xk) = 0, ∀ i ∈ I (32b) 

∇gj(xk) p + gj(xk) ≤ 0, ∀ j ∈ J (32c) 

 
510 where p is the search direction from the QP subproblem and Hk and is the 

511  Hessian matrix of Eq. (31). However, to avoid the computational complexity 

512  of Hessian computation, an approximate Hessian Matrix Bk can be computed 

513  in place of Hk from Eq. (32) and updated for each iteration. In this study, 

514  Bk is computed and updated using the Broyden-Fletcher-Goldfarb-Shanno 

515  (BFGS) method. For a detailed description of the BFGS method, readers 

516 are encouraged to refer to [43, 44]. Furthermore, the solution to the QP 

517  subproblem (pk) is used to form a new iterate, xk+1 := xk +αkpk, where the 

518  step size αk should be determined to ensure a sufficient decrease in a merit 

519  function. 
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Algorithm 5 Sequential quadratic programming 

1: for k ∈ {1, 2..., n} do ▷ number of iterations 

2: Input x0, H0 

3: Set k ← 0 

4: repeat until a convergence is satisfied 

5: Evaluate f(xk), ∇xL(xk, λk, µk) 

6: Solve QP subproblems in Eq. (32) to obtain pk 

7: Compute step size αk such that m(xk + +αkpk) ≤ m(xk) 

8: Set xk+1 ← xk + αkpk 

9: Update Bk+1 using the BFGS method 

10: Set k ← k + 1 

11: end (repeat) 

12: end for 
 

 
 

520  3. Case Studies 

 
521 In this study, a bi-level process is presented where data-enabled model- 

522 free identification of the quadruple tank process dynamics is first imple- 

523  mented solely from available measurement data and then used to control 

524  the system using MPC. To validate the accuracy of the proposed data-driven 

525  identification of the QTP dynamics, time-domain simulations are carried out. 

526  Furthermore, the predicted dynamics are continued to be actuated by com- 

527  paring different MPC strategies. All simulations are carried out in MATLAB 

528 R2022b on a processor of Intel Core CPU i7-6700 at 3.40 GHz and 32GB 

529  RAM. 
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530  3.1. Case study 1: Validation for SR-based Method Model Identification 

531 The first case study involves conducting parameter identification com- 

532 parisons and time-domain simulations. The water levels of the tanks are 

533 observed by perturbing the inputs of the pumps. The objective is to validate 

534  the accuracy and effectiveness of the identified nonlinear dynamic models in 

535  capturing the actual system dynamics. 

 
536  3.1.1. Model Identification 

537 First, data was collected on states and inputs of a quadruple tank system 

538 simulated in MATLAB, using the parameters provided in [35] for training 

539  purposes. Then the estimated values of the derivative for each state were 

540  generated using central difference approximation, explained in Section 2.3.2. 

541  Utilizing the measurements from the states and perturbing the inputs (pump 

542  voltages, vi) with a repetitive sequence waveform between 2 - 4 V (to acti- 

543  vate the dynamic modes) over 100 seconds of simulation, the results of the 

544  estimated derivatives for MP and NMP operating points of the QTP are il- 

545 lustrated in Fig. 5. It is observed that the estimated derivative is capable of 

546  representing the measured derivative accurately. 
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(a) MP operation point. 
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(b) NMP operating point. 

Fig. 5: Derivative estimation. 

547 Accordingly, various candidate terms were considered for the function li- 

548  brary Ψ(X, U), such as square-root functions, polynomials up to degree 2, 

549 and sinusoidal functions. In this work, 18 candidate terms are included with 
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550  variables such as xi, ui, 
√

xi, xiuj, x2, exp(xi), xi cos xj, xi sin xj, ui cos xj, 

551 and ui sin xj. Following this, a sparse identification method was employed to 

552  determine the sparse matrix of coefficients, denoted as Ξ, with a sparsifica- 

553  tion hyperparameter set to η = 0.01 for both operating points. The identified 

554  coefficients were then utilized to construct a data-driven model and control 

555  of the quadruple tank system in MATLAB. A comparison was conducted 

556 between the parameters of the physical model (via simulation) and the iden- 

557 tified model (via SR-based nonlinear dynamics model identification) for both 

558  MP and NMP operating points, as presented in Tables 3 and 4. The results 

559  show that all active terms from Ξ closely configure the actual parameters that 

560 reside in the system’s dynamics. This proves that the identified data-driven 

model accurately captures the dynamics of the physical model. 

Table 3: Parameter identification using SR-based technique at MP operating point. 
 

Dynamics Term Term Term Term Term Term 
 

x˙1 
a1

√
2g √

x
 

A1 
0
√

x2 
a3

√
2g √

x
 

A1 
0
√

x4 
γ1k1 

v 
A1 

 
0 v2 

Physical −0.1123 0 0.1123 0 0.0833 0 

Identified −0.1125 0 0.1125 0 0.0834 0 
 

x˙2 0
√

x1 
a2

√
2g √

x
 

A2 
0
√

x3 
a4

√
2g √

x
 

A2 

 
0v1 

γ2k2 
v 

A2 

 

 
 

 
 

3 1 2 3 4 1 
3 

 

 
 

x˙ 0v 
4 4 

− 

− 

1 3 1 

2 4 2 

Physical 0 −0.0789 0 0.0789 0 0.0628 

Identified 0 -0.079 0 0.079 0 0.0629 

x˙ 0
√

x 0
√

x 
a3

√
2g √ 

− x 0
√

x 0v 
(1 − γ2)k2 

v
 

A 
2

 
3 

Physical 0 0 −0.1123 0 0 0.0479 

Identified 0 

0
√

x 

0 

0
√

x 

−0.1125 

0
√

x 

0 

a4
√

2g √ 
− x 

0 

(1 − γ1)k1 
v
 

0.0480 

4 1 2 3 A 
4

 A 
1
 

2 

 Physical 0 0 0 -0.0789 0.0314 0 

 Identified 0 0 0 -0.0790 0.0312 0 
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Table 4: Parameter identification using SR-based technique at NMP operating point. 
 

Dynamics Term Term Term Term Term Term 
 

x˙1 
a1

√
2g √

x
 

A1 
0
√

x2 
a3

√
2g √

x
 

A1 
0
√

x4 
γ1k1 

v 
A1 

 
0 v2 

Physical −0.1123 0 0.1123 0 0.0482 0 

 
 
 

2 1 2 3 1 
2 2 

 

 
 
 

3 1 2 3 4 1 
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x˙ 0v 
4 4 

 
 

 
562 3.1.2. Time-domain Validation 

563 In the second part (testing), the identified model obtained through the 

564  SR-based method was evaluated by comparing it with the physical model 

565 of the quadruple tank process in various operational scenarios. Specifically, 

566  the control signal (u(t)) underwent several step changes at different time 

567  instances. At 100 seconds, a step change was introduced from 3V to 4V. 

568  Subsequently, at 120 seconds, another step change occurred to decrease u(t) 

569  from 4V to 2.2V. At 150 seconds, a 0.5 step change was added for u(t) to 

570  increase the pump voltage. Lastly, after 170 seconds, u(t) is returned to the 

571  initial condition. Different control signals compared to the training period 

572 were implemented to validate the identified model. 

573 A comparison was made between the physical system and the identified 

574  model as depicted in Fig. 6 at MP and NMP operating points. Mean absolute 

− 1 3 1 
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575  percentage error (MAPE) using Eq. (18) is also used to quantify the error 

576  of the predicted dynamics during time series validation of the tanks’ water 

577  levels. As illustrated, the system was forced with a control signal (u(t)) 

578  showing a repetitive triangle waveform for the first 100 seconds to train the 

579  SR method while the following 100 seconds were implemented to validate the 

580 identified model using varying control signal values. It is observed from the 

581  figure and MAPE ranging from 0.01% - 0.02% that the proposed data-driven 

582 model identification approach (SR-based technique) exhibits a high level of 

583  accuracy in identifying the nonlinear dynamics of the QTP system. Further- 

584  more, a slight deviation between the predicted and the original dynamics 

585 can be attributed to their inherent sparsity [18], which further confirms that 

586 the SR technique promotes the interpretability of the predicted models that 

587 prevents overfitting [32]. Consequently, the proposed data-driven model can 

588  serve as a reliable substitute for complex physics-based models, offering a 

589 simplified yet effective alternative for understanding and controlling large- 

590 scale water distribution systems. 

 
591  3.2. Case study 2: Comparative Analysis of Three MPC Control Laws 

592 Given the accuracy of using the SR-based method as described in the 

593  first case study (Section 3.1), this case study further utilized the predicted 

594  dynamic models of QTP in Eq. (14) using MPC with techniques described 

595  in Section 2.4. Taking into account that all states are assumed to be fully 

596  observable (y = x), four water levels were controlled by MPC to meet the 

597  desired water level values. Three references with initial conditions at MP 

598  operating points were used, as shown in Table 5 with model parameters in 

599  Table 6. 
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Fig. 6: Case study 1: Time-domain validation of the identified model 

 

Table 6: Model parameters of the QTP 
 

Parameter Values Parameter Values 

Q diag[1 1 1 1] R diag[0.001 0.001] 

x 0.2 m x 15 m 

u 
40 

0 V u 7 V 

x0|k [12.4 12.7 1.8 1.4] u0|k [3 3] 
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Table 5: Reference points over time 
 

 
Time (s) h1 (cm) h2 (cm) h3 (cm) h4 (cm) 

Ref1 t = 0 12.4 12.7 1.80 1.40 

Ref2 0 < t ≤ 400 10.0 12.0 1.77 0.956 

Ref3 t > 400 and t ≤ 800 12.0 14.0 2.01 1.19 

Ref4 800 < t ≤ 1200 8.00 10.0 1.53 0.721 

 

600 From the OCP in Eq. (17), the pump voltage is required to control the 

601  water levels of the four tanks to meet the reference points in Table 5 while 

602  minimizing the voltage change rate between two consecutive time steps. The 

603  model was run for 1200 s with a 0.1 s sampling time (ts) and a prediction 

604 horizon of Np = 10, generating 12000 samples. 

605 Fig. 7 illustrates the evolution of the water levels of the four tanks as a re- 

606  sponse to the reference point changes controlled by SR-LMPC, SR-SLMPC, 

607  and SR-NMPC. As depicted, a change in the reference value was introduced 

608  at t= 400 s, causing a jump in the reference signal. Similarly, at t= 800 s, 

609  the reference value was altered, resulting in a drop in the reference signal. 

610  As shown from the figure, the present findings obtained from using differ- 

611  ent MPC techniques, incorporating the predicted dynamics derived from the 

612  sparse regression-based nonlinear dynamics model identification (SR-based 

613  method), revealed similar behavior (i.e., similar time evolution of states) with 

614 prior studies investigating model-based control approaches for the quadruple 

615  tank system [11, 19, 45]. This further confirms the feasibility of the SR-based 

616  method to be applied to different control approaches. 

617 According to the top sub-plots from Fig. 7, the water levels of Tanks 1 and 
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618  2 followed the reference points using all controllers. Furthermore, with vary- 

619  ing reference points, Tanks 1 and 2 water levels remain within the constraints 

620  without any overshoots observed. As observed from the two subplots at the 

621  bottom of Fig. 7, all controllers managed to maintain the water levels of 

622  Tanks 3 and 4 within the bound, with overshoots (or undershoots) observed 

623  in both tanks. It is observed that SR-NMPC and SR-SLMPC demonstrate 

624  satisfactory tracking performance. In contrast, the SR-LMPC controller dis- 

625  played limitations in reaching the reference points, as evidenced by notable 

626  deviations in Tank 3 and a minor error signal in Tank 4. This is expected 

627 as SR-LMPC relies on linearizing the model of the nonlinear dynamics at 

628 a constant operating point. Therefore, when the system’s behavior differs 

629 from the operating points, the tracking performance of SR-LMPC can de- 

630 grade. In addition, the QTP system is designed with cross-coupling effects 

631  in its dynamics, making it challenging to control Tank 3 without affecting 

632  the tracking performance in Tank 1. 

633 The response of the pumps’ voltages in all controllers aligns with the 

634  changing reference values shown in Fig. 8. The results indicate that all con- 

635 trol strategies followed a similar pattern to achieve tracking performance, 

636 irrespective of the control performance objective. This is indicated by the 

637  sudden changes in the pumps’ voltages when reference points were mod- 

638  ified. These outcomes were expected since the simulation setup assigned 

639  higher penalty weights to minimize the error signal of the states. Despite the 

640  abrupt adjustments to the pump voltage, depicted by maximizing the volt- 

641 age level during reference jumps and minimizing it during reference drops, 

642  all controllers successfully maintained the voltage level within the physical 



43  

 
 
 

 

Fig. 7: Evolution of the four tanks over time: state bounds (dash-dotted lines) 

 

643  limits. 

644 Furthermore, it is observed that during reference changes, SR-SLMPC 

645  (represented by dashed red lines) exhibited faster adjustments (approx. 1 s) 

646  in the pump voltages compared to the SR-NMPC and SR-LMPC controllers. 

647  Additionally, both SR-NMPC and SR-LMPC controllers required a duration 

648  of 5 seconds to reach the maximum or minimum values of the pump voltages 

649  during the transition period. In contrast, SR-SLMPC required a shorter time 

650  at 4.46 s with slightly smoother control actions, similarly seen in [41]. 

651 In Fig. 9, the state trajectory of Tanks 1 and 2 is displayed for all con- 

652  trol strategies, further highlighting the tracking performance. Four reference 

653  points were depicted with yellow markers. Ref1 corresponds to the initial 
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Fig. 8: Evolution of pumps’ voltage over time: control bounds (dash-dotted lines) 

 

654  conditions at MP operating points, while Ref4 denotes the last change of the 

655 reference point. In terms of tracking the performance, SR-NMPC demon- 

656  strates superiority over SR-SLMPC and SR-LMPC, consistently reaching 

657  the reference points with identical final states. This highlights the capability 

658  of SR-NMPC to accurately represent and control systems with nonlineari- 

659  ties, making it a suitable choice for a controller. This finding aligns with 

660  the description of SR-NMPC’s main functionality as stated in [14], which 

661 focuses on stabilization and tracking objectives. As depicted in Fig. 9, both 

662  SR-SLMPC and SR-LMPC controllers exhibit non-zero offsets and do not 

663 achieve perfect tracking. However, the trajectory of SR-SLMPC closely re- 

664  sembles that of SR-NMPC, indicating a better overall performance compared 

665  to SR-LMPC. 

666 Similarly, SR-NMPC repeatedly reached the reference points for Tanks 3 
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Fig. 9: State trajectory of Tanks 1 and 2 

 

667  and 4, as depicted in Fig. 10. SR-SLMPC followed the trajectories of SR- 

668  NMPC to reach the reference points. This is because SR-SLMPC leverages 

669  the system’s nonlinearities to compute the time-varying operating points for 

670  each time step to linearize the system. Thereby, the linearized dynamics 

671 follow the trajectory of the nonlinear model. In contrast, SR-LMPC showed 

672  a different trajectory than SR-SLMPC and SR-NMPC and performed rela- 

673  tively less satisfactory tracking purposes in Tanks 3 and 4 for each reference 

674  point. 

675 Table 7 displays a mean absolute percentage error (MAPE) between the 

676  predicted and reference states, and the maximum elapsed time for executing 

677 the control to the water levels of the tanks. All controllers showed an error 

678  percentage below 5%, with SR-LMPC higher than the rest. Interestingly, SR- 

679  SLMPC showed lower MAPE than SR-NMPC when tracking the reference 
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Fig. 10: State trajectory of Tanks 3 and 4 

 

680  for h1 and h2. It is observed that during sudden changes of the reference 

681  points, SR-SLMPC decreased the error signal at each time step with greater 

682  magnitude than SR-NMPC to reach the steady state condition. This is 

683 because SR-SLMPC utilizes a series of convex optimization problems, which 

684  guarantees a global minimum solution [46]. Slightly higher MAPE is seen for 

685  SR-SLMPC compared to SR-NMPC, which may be due to the cross-coupling 

686  dynamics of the QTP system. 

687 In contrast to the tracking analysis, Table 7 reveals that SR-LMPC out- 

688  performs SR-NMPC and SR-SLMPC in terms of execution time, as it pro- 

689  vides feasible control actions to the QTP system more quickly, albeit with the 

690  trade-off of not precisely reaching zero offsets. It can be observed that SR- 

691  LMPC and SR-SLMPC executed their control actions 93% and 81.3% faster 

692  than SR-NMPC, respectively. The longer execution time of SLMPC com- 

693  pared to SR-LMPC is expected since SR-SLMPC involves additional steps, 
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694  such as linearization for each time step, to solve the MPC optimization prob- 

lem. 

Table 7: Quantitative Performance of MPC with Varying Prediction Model 

 

 

 

 

MAPE (%) 

Max elapsed time (s) 0.545 0.102 0.040 

695 

696  4. Conclusion 

 
697 In this paper, a data-driven identification of nonlinear dynamics of the 

698 four interconnected water tanks using the sparse regression technique (SR 

699  technique) was studied. The predicted dynamics were further actuated in 

700  the MPC framework by varying the prediction models utilized in the optimal 

701  control formulation, such as linear time-invariant MPC (SR-LMPC), linear 

702 time-varying via successive linearization MPC (SR-SLMPC), and nonlinear 

703  MPC (SR-NMPC). 

704 The proposed model-free identification framework successfully delivers 

705  the nonlinear dynamics of the quadruple tank process, verified by the close 

706  tracking of system states with MAPE ranging from 0.01% - 0.02% when 

707  implementing time series validation and varying control signals to the sys- 

708  tem. Furthermore, the sparse regression-based MPC provides guaranteed 

709  tracking performance with tracking error below 5% and demonstrates the 

 
NMPC SLMPC LMPC 

h1 0.31% 0.09% 0.51% 

h2 

h3 

0.30% 

3.34% 

0.02% 

3.67% 

0.61% 

4.69% 

h4 1.34% 1.50% 8.39% 
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710  advancement of control strategy for easy performance tuning subject to con- 

711  straints and varying desired state values. All studied controllers performed 

712  successfully in reference tracking, with SR-NMPC outperforming the rest, 

713  reaching zero offsets. Albeit with the tracking error up to 4.7%, SR-LMPC 

714  exhibits the fastest execution time compared to the rest of the controllers. 

715  The SR-SLMPC framework presents an opportunity to provide a trade-off, 

716  demonstrating similar outcomes to SR-NMPC while achieving an execution 

717  time that is 80% faster. 

718 The proposed work will be extended in future work to identify the nonlin- 

719  ear dynamics and to control large-scale WDSs with multiple pumping stations 

720 and complex distribution systems from available measurements. 
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793 hysteresis-controlled pump system using sindy, in: 2020 24th Inter- 

794 national Conference on System Theory, Control and Computing (IC- 

795 STCC), IEEE, 2020, pp. 457–464. 

 
796  [24] Y. Liu, Y. Zheng, Y. Liang, S. Liu, D. S. Rosenblum, Urban water qual- 

797 ity prediction based on multi-task multi-view learning, in: Proceedings 

798 of the 25th international joint conference on artificial intelligence, 2016. 



52  

 

 
799  [25] S. Wang, A. Chakrabarty, A. F. Taha, Data-driven identification of dy- 

800 namic quality models in drinking water networks, Journal of Water Re- 

801 sources Planning and Management 149 (4) (2023) 04023008. 

 
802  [26] A. Seyedzadeh, S. Maroufpoor, E. Maroufpoor, J. Shiri, O. Bozorg- 

803 Haddad, F. Gavazi, Artificial intelligence approach to estimate discharge 

804 of drip tape irrigation based on temperature and pressure, Agricultural 

805 Water Management 228 (2020) 105905. 

 
806  [27] D. Zhang, J. Lin, Q. Peng, D. Wang, T. Yang, S. Sorooshian, X. Liu, 

807 J. Zhuang, Modeling and simulating of reservoir operation using the arti- 

808 ficial neural network, support vector regression, deep learning algorithm, 

809 Journal of Hydrology 565 (2018) 720–736. 

 
810  [28] A. N. Ahmed, F. B. Othman, H. A. Afan, R. K. Ibrahim, C. M. Fai, 

811 M. S. Hossain, M. Ehteram, A. Elshafie, Machine learning methods for 

812 better water quality prediction, Journal of Hydrology 578 (2019) 124084. 

 
813  [29] N. Nasir, A. Kansal, O. Alshaltone, F. Barneih, M. Sameer, A. Shan- 

814 ableh, A. Al-Shamma’a, Water quality classification using machine 

815 learning algorithms, Journal of Water Process Engineering 48 (2022) 

816 102920. 

 
817  [30] K. M. Balla, T. N. Jensen, J. D. Bendtsen, C. S. Kallesøe, Model predic- 

818 tive control using linearized radial basis function neural models for water 

819 distribution networks, in: 2019 IEEE Conference on Control Technology 

820 and Applications (CCTA), IEEE, 2019, pp. 368–373. 



53  

 

 
821  [31] T. Yang, A. A. Asanjan, E. Welles, X. Gao, S. Sorooshian, X. Liu, 

822 Developing reservoir monthly inflow forecasts using artificial intelligence 

823 and climate phenomenon information, Water Resources Research 53 (4) 

824 (2017) 2786–2812. 

 
825  [32] S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equa- 

826 tions from data by sparse identification of nonlinear dynamical systems, 

827 Proceedings of the national academy of sciences 113 (15) (2016) 3932– 

828 3937. 

 
829  [33] S. L. Brunton, J. L. Proctor, J. N. Kutz, Sparse identification of nonlin- 

830 ear dynamics with control (sindyc), IFAC-PapersOnLine 49 (18) (2016) 

831 710–715. 

 
832  [34] J. Khazaei, R. S. Blum, Model-free distributed control of dynamical 

833 systems, International Journal of Information and Communication En- 

834 gineering 16 (10) (2022) 475–480. 

 
835  [35] K. H. Johansson, The quadruple-tank process: A multivariable labo- 

836 ratory process with an adjustable zero, IEEE Transactions on control 

837 systems technology 8 (3) (2000) 456–465. 
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866 H. Scheu, W. Marquardt, R. Negenborn, B. De Schutter, F. Valencia, 

867 et al., A comparative analysis of distributed mpc techniques applied 

868 to the hd-mpc four-tank benchmark, Journal of Process Control 21 (5) 

869 (2011) 800–815. 

 
870  [46] P. Couchman, B. Kouvaritakis, M. Cannon, Ltv models in mpc for sus- 

871 tainable development, International Journal of Control 79 (1) (2006) 

872 63–73. 


