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Abstract—Confidentiality and variability of the parameters 
of power converters motivate applying system identification in 
power electronic systems. In this paper, a novel identification 
framework based on the sparse regression technique is proposed 
for DC-DC converters operating in a microgrid in order to derive 
the nonlinear dynamics of the converter under test (CUT) for 
data-driven control and to estimate the small-signal impedance 
of the CUT for online stability analysis purposes. The CUT is 
perturbed by swept-sine and pseudo-random binary sequence 
(PRBS) excitation signals via an external source in order to col- 
lect dynamically-rich time- and frequency-domain measurements 
during the online operation of the CUT. The measurements are 
then fed to an optimization problem solved by the sequential 
thresholded least squares (STLS) algorithm to discover the 
nonlinear averaged dynamics and the sparse parameter-varying 
(SPV) impedance model of the CUT. The data-driven controllers 
designed using the identified dynamics are shown to exhibit close 
performance to their physics-based counterparts. Furthermore, 
the SPV impedance model is also shown to accurately track 
the measured impedance of the CUT and obviates the need for 
continuous perturbation of the system at each operating point. 
Real-time simulation results and frequency-domain analyses are 
presented to verify the effectiveness of the proposed framework. 

 
Index Terms—dc-dc converter, DC microgrid, real-time iden- 

tification, sparse regression, dynamical modeling, droop control, 
small-signal impedance model. 

 

I. INTRODUCTION 

Modeling of DC distribution systems and microgrids is 

typically conducted assuming the full knowledge of analytical 

models of switch-mode power converters, also referred to as 

white-box models [1]. However, with the proliferation of com- 

mercial off-the-shelf converters, detailed information about 

converter parameters is usually not available [2]. Moreover, 

the dynamics of power converters are subject to change due 

to aging [3] and faults [4], which motivates utilizing system 

identification techniques by leveraging measurement data [5]. 

Identified dynamic models of power converters can be used 

to design data-driven control [6] and development of digital 

twins [7], [8] for online stability and condition monitoring of 

power electronic systems. 

Identification of power converters can be conducted by 

black-box and grey-box modeling techniques. Linear black- 

box methods typically make use of the two-port model of 
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power converters to approximate transfer functions at fixed 

operating points [9], [10]. Linear models are, however, limited 

to applications such as small-signal analysis [11]. Being an 

integral part of DC distribution systems, DC-DC converters 

have been studied for nonlinear dynamics identification using 

polytopic [12]–[14] and Hammerstein [15], [16] black-box 

methods. Both Hammerstein and polytopic methods still rely 

on linear methods to estimate nonlinear dynamics, which 

renders them operating-point-dependent and thus unable to 

represent full non-linear dynamics. Non-linear black-box mod- 

eling methods based on wavelet and dynamic artificial neural 

networks (ANNs) are proposed in [1], [17], respectively. 

However, the main drawbacks of ANN-based identification 

methods are computational cost, requirement for large number 

of training data points, and the lack of physical interpretability. 

On the other hand, grey-box identification methods rely on 

the partial knowledge of the system model, which then serves 

as a foundation to estimate a complete model [18]. Grey-box 

identification of DC-DC buck converters using the NARMAX 

model is discussed in [19], [20] by using a priori knowledge 

of the static behavior of the converter. In [21], the prediction 

capability of the grey-box methods proposed in [19], [20] is 

improved by incorporating a priori knowledge of the converter 

static behavior in the structure selection of the model using 

the NARX technique. However, only the identification of 

voltage dynamics is addressed in [19]–[21] rather than a 

complete dynamic model. In [7], grey-box modeling using an 

iterative least-squares technique is conducted for a half-bridge 

converter to discover its state-space dynamic model. A prior 

knowledge of state-space equations and nominal parameters 

of the converter are required, which are not always accessible. 

A hybrid Wiener-Hammerstein grey-box modeling technique 

is also proposed in [22], which relies on the information 

provided in the data sheet of converters to predict the large- 

signal behavior, power consumption, and efficiency of DC-DC 

converters. In [23], a physics-informed deep neural network is 

proposed for estimating the parameters of a DC-DC buck con- 

verter. The method assumes prior knowledge of the parametric 

dynamic equations of the converter and also suffers from high 

computational costs and long training times. 

Small-signal output impedance of power converters is also 

a valuable parameter to represent the converter dynamics [24], 

making the impedance-based stability analysis the most com- 

mon method for online stability monitoring of power elec- 

tronic systems and microgrids [25]. In order to obtain the real- 

time impedance, the majority of online stability analysis tools 
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rely on perturbing the converter using wide- or narrow-band 

signals. Wide-band perturbation is used in [26] to measure 

the voltage loop gain and equivalent bus impedance of a 

DC microgrid. Online stability monitoring of a DC microgrid 

by measuring the output impedance of power converters is 

proposed in [27]. In [28], an impedance estimation method 

is proposed, which requires control loop measurement using 

the Middlebrook’s analog injection technique, which is only 

capable of estimating the impedance around the peak fre- 

quency. Vector fitting is also commonly used as a technique 

to fit the frequency-domain measurements to a linear para- 

metric impedance model [29]. The aforementioned impedance 

derivation methods are all based on measuring the small-signal 

impedance of the power converter at each operating point of 

the system, which requires continually perturbing the system. 

Imposing frequent perturbations to the system is considered 

invasive and computationally intensive in addition to not being 

ideal for online stability monitoring purposes where run-time 

efficiency is of great importance. Recent studies have tackled 

the operating-point dependency of small-signal impedance 

models for inverter-based resources using ANNs [30], [31]. 

However, the main drawback of ANNs for this purpose is the 

requirement for large amount of data since these methods use 

the frequency as one of the inputs of the ANN impedance 

predictor. 

To bridge the gap in the studies reviewed above, here 

an identification framework based on the sparse regression 

technique [32] is proposed for DC-DC converters. A half- 

bridge DC-DC converter operating under droop control in a 

microgrid is considered as the converter under test (CUT). In 

the proposed framework, the nonlinear dynamics of the CUT 

are directly discovered from a library of candidate functions 

by solely relying on measurement data that are available as 

the feedback signals of the CUT’s control system. It is shown 

in Table I that the proposed method is not only independent 

of linear models, but also results in closed-form dynamics 

with minimum prior knowledge of the CUT. Furthermore, 

the sparse regression technique is applied to estimate the 

output impedance of the CUT. The SPV impedance 

model obviates the need to perform a continuous 

perturbation of the system for the purpose of online 

impedance measurement and is shown to achieve an 

estimation time 10 times faster than the estimation time 

of the full nonlinear dynamics. 

The rest of the paper is organized as follows. Section II 

introduces the theory of sparse identification. In Section III, the 

identification of nonlinear dynamics of the CUT is discussed. 

In Section IV, the concept of data-driven SPV impedance 

using the proposed framework is presented. Various real- 

time case studies are provided in Section V to assess the 

performance of the proposed identification frameworks in time 

and frequency domains. Section VI concludes the paper. 

 

II. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS 

OF NON-HOMOGENEOUS SYSTEMS 

The underlying principle of the sparse identification method 

is that non-homogeneous dynamical systems of the form x˙ = 

f (x, u), given in (1), typically have only a few terms on the 

right-hand side of their state-space model [32]. 

d 
x(t) = x˙ (t) = f (x(t), u(t)) (1) 

dt 

where x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the input 

or control vector, and f (x(t), u(t)) : Rn × Rq → Rn. 

The function f only consists of few active terms from the 

space of possible right-hand side functions. The possible right- 
hand side terms can be represented by a library of candidate 

functions, Θ ∈ Rm×p, required for approximation of the 

dynamics of f . This library comprises a total of p candidate 

terms, typically including linear and nonlinear monomials of x 
and u and usually a constant term as well. In order to evaluate 

Θ, m time-series snapshots of the state x and the input u are 

collected either through simulations or experiments. Then, they 

are arranged into matrices of the forms 
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T
 

parametric output impedance model of the CUT, resulting 

in the sparse parameter-varying (SPV) impedance model. 

The SPV impedance model obviates the need to conduct a 

frequent perturbation of the system for the purpose of real-time 

impedance measurement, improving the run-time efficiency 

of impedance identification and reducing the computational 

X =  x(t1) x(t2) . . . x(tm) 

| | | | 
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burden of online stability monitoring tools. Table II demon- 

strates the advantages of the SPV impedance model over the 

state-of-the-art methods in the sense that it is operating-point 

independent and does not require frequency data points as an 
input to the model in the training stage. 

Therefore, for a system with n states, q inputs, and m time- 

series snapshots of data, X and U can be written as 
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identified by a sparse identification framework from 

dynamically-rich data collected during the online op- 

eration of the CUT in a microgrid. The performance 

of the data-driven controllers corrosponding to the 
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TABLE I: State-of-the-art research on nonlinear model identification of power converters. 
 

Reference Method Linear-model 
independent 

Closed-form 
identification 

Prior-knowledge 
independent 

[12]–[14] Polytopic ✗ ✗ ✓ 
[15], [16] Hammerstein ✗ ✗ ✓ 
[1], [17] Neural Network ✓ ✗ ✓ 

[19], [20] NARMAX ✓ ✗ ✗ 
[21] NARX ✓ ✗ ✗ 
[22] Wiener-Hammerstein ✗ ✗ ✗ 
[7] Iterative Least-squares ✓ ✓ ✗ 
[23] Physics-informed Neural Network ✓ ✗ ✗ 

Proposed Sparse Identification ✓ ✓ ✓ 

TABLE II: State-of-the-art impedance identification methods for power converters. 
 

Reference Method Operating-point 
independent 

Frequency-independent 
training 

[29] Vector Fitting ✗ N/A 
[30] Neural Network ✓ ✗ 
[31] Physics-informed Neural Network ✓ ✗ 

Proposed SPV Impedance ✓ ✓ 

 

The collected state and input measurements are then com- 

piled into the library Θ as given in (6), where higher order 

polynomials are denoted by functions P 2, P 3, etc. For 

using Taylor series expansion at specified mesh points. The 

derivative matrix can be approximated by the central difference 

method as 

example, P 2(X, U ) denotes the quadratic nonlinearities of 

states and inputs as given in (7). 
As can be seen in (6), the library of candidate functions 

Ẋ ≈ 
8X(ti+1) − 8X(ti−1) + X(ti−2) − X(ti+2) 

(10)
 

12h 

can include constant, polynomial and trigonometric terms. A 

general guideline is to first include simple functions such 

as polynomials, and then add more complex terms such as 

trigonometric functions to the library. However, considering 

the grey-box nature of the identification method, partial knowl- 

edge of the dynamical system can also be leveraged to decide 

what functions to include in the library [33]. 

P2(X, U ) = (7) 
 
x1(t1)u1(t1) x1(t1)u2(t1) . . . xn(t1)uq(t1)  

where X(ti) is the time-series sample i and h is the mesh 

spacing, which is considered the same as the simulation 

sample time used for collecting the data. 

 

B. Identification by Sparse Regression 

In the final step of the identification process, a sparse 

regression problem is formulated to solve for the sparse vectors 

of coefficients in Ξ, which determine what terms are active 

in the Ẋ  dynamics. The goal of sparse identification is to 

x1(t2)u1(t2) x1(t2)u2(t2) . . . xn(t2)uq(t2) arrive at the fewest terms in Ξ that result in a good fit for the 

collected data from the dynamical system. This is achieved by 
 

x1(tm)u1(tm)  x1(tm)u2(tm)  . . .  xn(tm)uq(tm) ξ  = arg min ||X − Θ(V , I )ξˆ || + λ ||ξˆ || (11) 

The obtained data matrices can then be used to represent the 
h
 

h 
ξˆh
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dynamical system of (1) as where ξh is the h-th column of Ξ represented by ξh = 

X˙ = Θ(X, U )Ξ (8) 

where Ξ is the matrix of coefficients for the candidate func- 

tions in Θ. The derivative matrix X˙ can also be written in its 

general form as 

ξ1 ξ . . . ξ . X˙ represents the h-th column of X˙ . The 
objective function in (11) comprises two norm functions. 

The ℓ2 norm denoted by ||.||2 solves for the least-squares 

problem. The ℓ0 norm, ||.||0, decides the number of nonzero elements in 

 
x  ̇T (t1)  

  

 
x˙1(t1) 

 
x˙2(t1) . . . 
x˙2(t2) . . . 

x˙n(t1)  

 

ξh, promoting sparsity in the coefficients matrix. 
The sparsity-promoting hyperparameter is represented by λh. 

The minimization problem of (11) is approximately solved 
Ẋ = 

 .   .
 . . . .

 
 

 

. 
 

 

 
 

(9) by the sequential thresholded least squares (STLS) proposed 

in [32]. The STLS is an iterative algorithm that according to 

 
 

A. Estimating the time derivative matrix X˙ 

Computation of the time derivative of the state matrix, X˙ , is 

required to complete the data collection for the identification 

process. Considering a smooth function in the neighborhood 

of a point, the derivatives can be accurately approximated 

k k 
j 

ξˆ0 =Θ(Vo, IL)†Xh (13) 

ξk+1 = argmin ∥Xh − Θ(Vo, IL)ξˆ
h∥2, k ≥ 0 

ξˆh∈Rp:supp(ξh)⊆Sk 

(14) 

x˙n(tm) [34] is defined by 

. . 
. . . . solving an optimization of the form 

ẋ  T (tm) x˙1(tm) 
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where  k  is  the  iteration  number.  For  an  integer 

p  ∈  N, [p]  :=  {1, 2, . . . , p}, Θ(X, U )† is the 

pseudo-inverse  of  Θ(X, U ),  defined  as  Θ(X, U )†  := 

duty cycle is required. Therefore, by neglecting the switching 

frequencies, the averaged state-space model of the CUT is 

derived as [35] 
[Θ(X, U )T Θ(X, U )]−1Θ(X, U )T . The support set of ξh d̄ i (t) 1 

is also defined by 
  L  

=
 

dt 
(v īn(t) − r¯iL(t) − v¯o(t) + d¯(t)v¯o(t)) (16) 

L 
supp(ξh) := {j ∈ [p] : ξj ̸= 0}. (15) dv¯o(t) 

= 
1 

(̄ i
 (t) − d̄ (t)̄ i (t) − ̄ i (t)) (17) 

dt C  
L L o 

The pseudocode for the STLS algorithm used to identify the 

CUT dynamics is given in Algorithm 1. 

 

Algorithm 1: STLS Algorithm for dynamics identifi- 

 cation of the CUT  

Data: Xh, Θ, λh, p, n (number of state equations) Result: 

where ¯iL and v¯o are the state variables, and d¯, ¯io, and v¯in are 

the inputs. The bar sign indicates an averaged value over a 

switching period of the converter. 

From equations (16) and (17), it is obvious that the dynamic 

equations of the CUT are independent of the load dynamics, 

which is referred to as an unterminated model [10]. Therefore, 

for 
Ξ 

h = 1 : n do 

ξ̂ 0 = Θ−1Xh; 

for k = 1 : p do 

Ismall ← |ξˆ
h| < λh; 

ξk(Ismall) ← 0; 
for all variables do 

Ibig ←∼ Ismall(:, ii); 
ξh(Ibig, ii) = Θ(:, Ibig)†Xh(:, ii) 

end 

end 

the rest of the network can be assumed anything from a 

simple resistive load to a complex network such as a microgrid 

without the loss of generality. 

 

B. Feedback Control Design 

Fig. 1(a) shows the voltage mode control structure of the 

CUT with a cascaded structure. Assuming d as the duty cycle 

of S1, the output of the current controller is decided by 

d =[(v∗ − vo)Gv(s) − iL]Gi(s) (18) 

Gv(s) =kpv + kiv/s (19) 

end 
 

The algorithm first preforms the least-squares regression 

(λh=0) to arrive at a nonsparse ξˆ
h. The nonsparse ξˆ

h will 

include some very small terms, which are then zeroed out. This 

procedure is repeated p times, which guarantees the algorithm 

convergence [34]. While increasing λh results in sparser ξh as 

the algorithm tries to minimize the objective function in (11), 

it can lead to an underfit model with a large error. On the 

Gi(s) =kpi + kii/s (20) 

where kpv and kiv are the proportional and integral gains for 

the outer voltage controller, and kpi and kii are the same gains 

for the inner current controller. In order to design the voltage 

and current PI gains, the nonlinear averaged equations of the 

CUT in (16) and (17) are linearized and the transfer functions 

of the closed-loop current (Ticl) and voltage (Tvcl) controls 

are then derived as 

other hand, small values of λh increase the complexity of 

the model by increasing the number of nonzero coefficients, 

resulting in a dynamic model that is not true to ground truth 

dynamics. Therefore, λh is tuned such that a good balance 

between sparsity and the least-squares error is achieved. 

Ticl 

 

Tvcl 

 

where 

  Gi(s)Gid(s)  
(s) = 

1 + Gi(s)Gid(s) 
 Gv(s)Gi(s)Gvd(s)  

(s) = 
1 + Gv(s)Gi(s)Gvd(s) + Gi(s)Gid(s) 

(21) 

 

(22) 

 

III. SPARSE IDENTIFICATION OF THE CUT DYNAMICS 

In this section, the proposed framework for dynamics iden- 

 

Gid 

 CVo + IL(1 − D)  
(s) = 

LCs2 + rCs + (1 − D)2 

  −LILs − rIL + Vin  

(23) 

tification of the CUT is discussed in detail. The identification 

framework is given in Fig. 1 and explained in the following. 
 

where Vo, I 

Gvd(s) = 
LCs2 + rCs + (1 − D)2 

(24)
 

L, and D represent the steady-state values of the 

A. State-Space Average Model of the CUT 

A bidirectional half-bridge converter is studied as the CUT 

for dynamics identification. Based on the conduction state of 

switches S1 and S2 in Fig. 1(a), the converter operates either in 

output voltage, inductor current, and duty cycle, respectively. 

Furthermore, Gi(s) Gv(s) are designed with phase margin of 

60 degrees at no load conditions a bandwidth of 2 kHz and 

200 Hz, respectively, to avoid interaction with the inner current 

loop. The reference voltage, v∗, is decided by the droop control 

the boost or buck mode. However, in order to design feedback as 

control for the CUT, a time-continuous model that includes the v∗ = vref − Zvio (25) 

 
 

| | | | | | | | | | | 
Θ(X, U ) =  1  X U P 2(X) P 2(X, U )  P 2(U )  . . .  sin(X)  sin(U )  sin(P 2(X, U ))  . . . (6) 

| | | | | | | | | | | 
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(a) Dynamic Modeling of the CUT 
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Fig. 1: Sparse identification framework for the identification of the CUT. (a) closed-loop dynamic model of the CUT. (b) 

data collection by the injection of a swept-sine signal. (c) building the library of candidate functions and applying the sparse 

regression. (d) discovery of the CUT dynamics by tuning the sparsity-promoting coefficient λh. 

 

where vref is the nominal output voltage and Zv is the droop 

gain. The droop gain is typically decided by the permissible 

voltage variations and the converter rating [36]. 

C. Data Collection 

1) System excitation: The next step in the identification 

process is to collect measurement data. To this end, the system 

should be excited by an identification signal. In this study, 

an external current source is used to perturb the CUT at its 

various operating points with a swept-sine signal, iinj, as 

shown in Fig. 1(a). The swept-sine signal is a sequence of 

sinusoidal signals with different frequencies that are applied 

successively [37]. The amplitude of the swept-sine should be 

selected such that the system is not significantly perturbed as 

it is being tested online. At the same time, it has to be large 

enough to generate rich data for identification purposes. The 

advantage of the proposed excitation approach is that it can 

TABLE III: Parameters of the swept-sine signal. 
 

Parameter Value 
 

 

Number of frequencies 30 

Minimum frequency 100 Hz 

Maximum frequency 10 kHz 

Sample time  10 µs 

Amplitude (peak-to-peak) 0.05×|io| 
 

 

 

2) Averaged values measurement: It is obvious from (16) 

and (17) that the state and input measurements of the CUT 

have to be the averaged values of switching waveforms of 

the CUT for inclusion in the library of candidate terms. The 

moving average operator of (26) can be directly applied to the 

measurements of vin, iL, vo for this purpose. 

1
  T

 

be performed without perturbing the converter control signals 

or interrupting the system. The parameters of the swept-sine 

x̄(t) = 
T 

 

t−T 

x(τ ) dτ (26) 

signal are given Table III. The excitation frequencies are 

logarithmically spaced between the minimum and maximum 

frequencies of the swept-sine signal. The frequency range of 

perturbations is selected so that a sweep up to half of the 

switching frequency is realized and very low frequencies are 

also excluded to reduce the measurement time. 

where x(t) is the variable to be averaged, and T is the 

switching period of the CUT. The averaged duty cycle d¯ 

is also derived by averaging the gate pulse function of the 

lower switch in Fig. 1(a). However, ¯io should not be directly 

computed by applying (26) since it might affect the pertur- 

bation signal frequency content. Instead, i¯o is calculated by 

T
im

e 
P

o
in

ts
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I 

I 

= 

¯iload − iinj . 

3) Sparse representation of dynamics: Next step is to 

decide the library of candidate terms Θ. The choice of the 

library of candidate terms mainly has minimum dependence 

on the expert’s knowledge of the system, which will be 

further discussed in section V-A. As depicted in Fig. 1(c), 

the candidate terms can be various monomial combinations of 

v¯in, ¯iL, v¯o, and d¯. Before applying the sparse identification 

technique, the collected data should be grouped into training 

and testing datasets. The STLS algorithm is then executed for 

different values of λh, starting from zero up to the value that 

results in a sparse dynamic model with the minimum cross- 

validated error according to Fig. 1(d). The resultant identified 

dynamical equations are 
d¯i 

TABLE IV: Parameters of the PRBS excitation signal 
 

Parameter Value 

Signal order 18 

Sampling time 10 µs 

No. of periods 1 

 Amplitude (peak-to-peak) 0.05×|io|  

In this section, an impedance estimation framework based 

on the sparse regression technique is proposed to obtain the 

SPV impedance model. Using the data-driven SPV impedance 

model, the parameteric closed-loop output impedance of the 

CUT is learned from the frequency-domain impedance data 

measured at different operating points of the CUT. The ob- 

 L =M v  ̄ + N ī + P v  ̄+ Qd¯v  ̄+ R ī + Sd  ̄
dt 

in L o o o 

+ T d̄ ī o + U d̄ v̄ in + V d̄ īL 

(27) tained SPV impedance will then be able to predict the small- 

signal impedance of the CUT at each operating point without 

the need to measure the impedance at each operating point by 
dv̄ o 

=F¯i
 

dt L 
+ Gd̄ īL + H̄ io + Id¯+ J v̄ in + Kv̄o (28) 

continuously perturbing the CUT. 

+ Ld̄ v̄ in + Bd̄ v̄ o + Ed̄ īo 

where M , N , P , Q, R, S, T , U , V , F , G, H, I, J , K, 

L, B, and E are the estimated scalar coefficients. In order 

to assess the identified model in the frequency domain, the 

estimated open-loop transfer functions of the CUT, which are 

denoted by a hat sign, can also be obtained by substituting 

the coefficients M , N , P , Q, F , G, H from (27) and (28) in 

(16) and (17) and linearizing the equations, which results in 

 

A. Impedance Data Collection 

Frequency scanning is utilized to collect impedance data at 

multiple operating points of the CUT. To this end, the system 

is first initialized at a specific operating point. Then the CUT 

is excited by PRBS-driven external current source (iinj) at its 

output terminals as shown in Fig. 2. The parameters of the 

PRBS signal are designed such that a sweep up to half of 

Z ôut 

−ṽ o 
(s) = 

˜i
 

−H(s − N ) 
I
v˜in,d˜=0 ∆ 

(29) 
the switching frequency of the CUT is ensured. The designed 

parameters are given in Table IV. 
Next, the impedance frequency-response data is obtained by 

Ĝid 

˜iL 

(s) = 
d  ̃I

 
 

 
ṽ in,̃ io=0 

= 
QVos + GIL(P + QD) 

∆ 
(30) performing fast Fourier transform (FFT) as 

Ĝvd(s) = 
v˜o 

d̃ I
ṽ in 

= 
,˜io=0 

QVo(F + GD) + GIL(s − N ) 

∆ 
Zfrd (s) = 

F[vo(t)] 

F[−io(t)] 
(35) 

 
−˜iL 

A  ̂ (s) = I 

 
−H(P + QD) = 

(31) 

(32) 

In order to obtain the parametric model of the measured 

impedance in the frequency domain, a transfer function with 
io ˜i

 I
vˆin,d˜=0 ∆ four poles and three zeros is fitted to the impedance frequency 

response data using the vector fitting method embedded in 

∆ = s2 − Ns − (P + QD)(F + GD) (33) 
the MATLAB® function tfest , resulting in Zmeas(s) for a 

where the tilde sign represents small-signal values. 

IV. SPARSE IDENTIFICATION OF CLOSED-LOOP 

IMPEDANCE 

specific operating point of the CUT. 

b3s3 + b2s2 + b1s + b0 Zmeas(s) = 
s4 + a s3 + a s2 + a s + a 

 

 
(36) 

3 2 1 0 

The estimated closed-loop output impedance of the CUT 

can be obtained as in (34) using the open-loop transfer 

functions obtained from the estimated averaged dynamics of 

the CUT. However, it is still required to have the transfer 

functions of the controllers, i.e., Gv(s) and Gi(s), as well as 

the droop gain Zv, in order to obtain the parametric impedance 

model Ẑocl (s) in (34). Moreover, estimating the full nonlinear 
dynamics of the system may not be required in applications 

such as online stability monitoring as the closed-loop output 

impedance of the converters provides enough information 

about the stability of the system. Readers can refer to [25], [38] 

for more information about impedance-based stability analysis 

methods in power electronic systems. 

The impedance data is collected at m different operating points 

of the CUT for the training of the sparse regression algorithm 

discussed next. 

 

 

B. SPV Impedance Model 

It can be observed from (29)-(33) that the analytical 

impedance model of the CUT in (34) is a function of the 

operating point specified by IL, Vo, and D. Since D can 

be represented as a function of Vo and IL, the (IL, Vo) pair 

suffices to represent the operating point of the CUT. Therefore, 

the SPV impedance model, ZSP V (s), of the CUT can be 

o 

o 
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 ̄ ¯¯  ̄

¯̄  

I 
o i id v i vd 

 ̂

(e) Regularization problem 

a 
 

 
 

 
 

1 I 
     

V
3  

I
3 
V 

2    

 

 
 

      
 

 
     

  

 = argmin X − (V , I )ˆ  +   
      

represented by the same structure as the measured impedance 

in (36). 

ZSP V (s) = 

f3(IL, Vo)s3 + f2(IL, Vo)s2 + f1(IL, Vo)s + f0(IL, Vo) 

s4 + g3(IL, Vo)s3 + g2(IL, Vo)s2 + g1(IL, Vo)s + g0(IL, Vo) 
(37) 

Each of the coefficient functions, f (.) and g(.) in (37) can be 

approximated by a linear combination of monomials of Vo and 

experimental setup is shown in Fig. 4. This setup is utilized to 

collect measurement data during the online operation of the 

microgrid and conduct time-domain verification of averaged 

and switching models of the CUT against identified models. 

 

 

A. Verification of Identified Nonlinear Dynamics 

A battery converter is considered as the CUT for dynamics 

identification with the parameters given in Table V. The 
IL. These monomials are identified from a library of candidate 
functions, Θ, resulting in sparse f (.) and g(.) functions. As swept-sine perturbation signal represnted by i inj is injected 

explained before, it is recommended to construct the library 

with low-degree monomials first and introduce more complex 

functions into the library until a good performance is achieved 

for the estimation problem. To this end, first the collected 

impedance data are arranged into X and Θ matrices, where 

at various steady-state operating points of the CUT while 

connected to the study microgrid as illustrated in Fig. 3. The 

STLS algorithm is then run to solve for the sparse coefficient 

matrix that yields the identified model in (27) and (28). The 

performance of the proposed framework is evaluated with two 

different libraries of candidate functions as follows 

X = Θ(Vo, IL)Ξ (38)  
| | | | | |  

X and Θ are given in (39) and (40) with n=8 and p=14. 
¯ 

Θ1 = v īn iL v̄ o  dv̄ o  diL io  (41) 

 
| | | | | | | |  

| | | | | | 
 
| | | | | | | | |  

X = b0 b1 b2 b3 a0 a1 a2 a3  
 

 

(39) Θ2 = v̄ in īL v̄o d̄v̄o d̄ īL īo d̄  d̄v̄in dio  

Finally, the problem of approximating the coefficient matrix 

Ξ is formulated as a similar ℓ0 regularization problem as (11). 

 

 

The identified models using Θ1 

 

 
and Θ2 

(42) 

 

are referred to as 

V. CASE STUDIES 

The microgrid of Fig. 3 is implemented in Simulink® using 

the SimscapeTM library on a host computer with Intel® Core™ 

i9-11900K Processor @ 5.30 GHz and 64 GB RAM. The 

microgrid of Fig. 3 is built in RT-LAB and executed in real- 

time on the OP4510 real-time simulator via a TCP/IP link. The 

Model I and Model II. Table VI compares the coefficients of 

the nonlinear terms in (27) and (28) for the analytical model 

with Model I, Model II-A, and Model II-B. Model I and Model 

II-A are obtained by the perturbation of 16 operating points of 

the CUT as the the training data, while Model II-B is trained 

using data collected from the perturbation of 30 operating 

points of the CUT. The cross validation is performed on the 

 
 

−v˜o Z (s) = = 
−

c
−Ẑout(s)

c
1 + Gi(s)Ĝid(s)

)
+Âio(s)Gi(s)Ĝvd(s) − ZvGv(s)Gi(s)Ĝvd(s)

)
  

(34) 
ocl ˜i I 

 
 

1 + G (s ) Ĝ  (s) + G (s)G (s ) Ĝ  (s) 

 

  
 

Fig. 2: Data-driven impedance identification framework to obtain the SPV impedance model 

| | | | | | | | 

v , i 
o  o 

 

PRBS 

 

+ Z 

 
Z 

frd 1 

Z 

   (d) Parametric impedance measurements 

Z 
 

       
b   s

3 

+ b   s
2 

+ b   s + b  

1  s + a   s + a   s + a   s + a  
   

     

m×n 
| | | | | | | | | 

ṽ ref ,ṽ i=0 
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Fig. 3: Implemented DC microgrid for dynamics identification 

of the CUT. 
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Fig. 5: Sparse model derivation by tuning λh. 

 

TABLE V: Simulation parameters of the CUT. 
 

Parameter Value 
 

Sample time  10 µs 

vin 250 V 

vref 380 V 

L 2.7 mH 

C 18.953 µF 

r 0.1 Ω 

Zv 3.45 Ω 

kpv, kiv 0.0339, 25.4 

kpi, kii 0.0723, 527 

Switching frequerncy  20 kHz 
 

 

 

Fig. 4: Real-time simulation setup used for verification. 

 

 

testing set containing unseen data and the cross validation error 

(CVE) is computed by 

The procedure for regularization factor (λh) tuning is illus- 

trated in Fig. 5 for Model I, where λh is gradually increased 

from zero (the least-squares solution) until the sparsity is 

realized for the dynamical equations of iL and vo. It can be 

seen that at the sparse point, the dynamical equations have 

fewer active library functions Θ1 than they have when λh=0. 

A further increase in λh results in an increase in CVEiL and 

CVE = 
∥X˙ 

test − Θtest(X, U )ξh∥2 

∥Ẋ 
test∥2 

(43) 
results in zero coefficients for all candidate functions from Θ1 
in the case of identification of vo dynamics. Therefore, λh=36 

and λh=200 result in sparse models close to the ground truth 

where X˙ 
test and Xtest are the derivative and state matrices 

for the testing set, respectively. The CVE is calculated to 

obtain identification error for both iL (CVEiL ) and vo (CVEvo ) 

dynamics. As shown in Table VI, Model I achieves very small 

estimation errors for both iL and vo dynamics, whereas Model 

II-A yields a relatively larger identification error. This larger 

error is caused by the choice of a larger library of candidate 

functions. However, it can be seen that Model II-B, which is 

trained by a larger training dataset, improves the estimation 

error of Model II-A significantly. 

dynamics for iL and vo, respectively. 

1) Performance under small-signal disturbance: The iden- 

tified nonlinear dynamic model of the CUT using Model I is 

compared with the analytical model in Fig. 6. At t =0.015 s, 

a white noise perturbation is applied to the input voltage to 

emulate the volatility of the input source. It can be seen that the 

inductor current exhibits higher frequency variations compared 

to the capacitor voltage. However, the identified model is able 

to closely follow the analytical values of the state variables 

for both the capacitor voltage and inductor current. 
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L 

TABLE VI: Identified dynamic models of the CUT compared with the 
analytical model under droop control. 

 

Parameter Analytical Model I Model II-A Model II-B 

Model 
 

M 370.3704 368.3827 354.2964 373.4869 

N -37.037 -37.6831 0 -42.5468 

P -370.3704 -368.2940 -362.2083 -372.3595 

Q 370.3704 368.1235 377.3022 370.1900 

R 0 0 0 0 

S 0 0 0 0 

T 0 0 0 0 

U 0 0 0 0 

V 0 0 0 0 

F 52762 52988 53339 53117 

G -52762 -53086 -54363 -53451 

H -52762 -52938 -52871 -52962 

I 0 0 0 0 

J 0 0 0 0 

K 0 0 0 0 

L 0 0 0 0 

B 0 0 0 0 

E 0 0 0 0 

CVEi N/A 9.6×10−5 0.0081 6.78×10−5 

CVEvo N/A 9.8×10−4 0.0026 6.21×10−4 
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Fig. 6: Analytical dynamic response of the CUT compared 

with the estimated model under disturbances. 

 

 

2) Performance under large-signal disturbance: Another 

case study is conducted to evaluate the performance of Model 

I under large-signal perturbations such as a fault, as depicted in 

Fig. 7. A large step increase in the output current of the CUT 

is applied at t =0.03 s to emulate a single line-to-ground fault 

on the DC bus. The fault clearance is emulated by applying a 

step decrease in the output current after 3 milliseconds. The 

identified model can be seen to closely follow the oscillations 

observed during the fault. 

3) Frequency-domain verification: The closed-loop output 

impedance of the CUT derived in (34) is compared for the 
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Fig. 7: Analytical dynamic response of the CUT compared 

with the estimated model under fault conditions. 

 

 

Fig. 8: Closed-loop output impedance of the CUT. 

 

 

analytical model and Model I in Fig. 8.(a) and Fig. 8.(b). It 

can be seen that the closed-loop impedance estimated from the 

identified model closely tracks its analytical counterpart in the 

entire frequency range without any major inconsistency. 

4) Performance of learning-based controllers: The esti- 

mated dynamics using Model I are utilized to update the 

voltage and current controller gains of the CUT. The learning- 

based voltage controller, Ĝ v  (s), and current controller, Ĝi (s), 

are designed based on the same criteria mentioned in Sec- 

tion III-B, but using the estimated dynamics. For this purpose, 

Gid(s) and Gvd(s) in (21) and (22) are substituted with 

their estimated counterparts derived in (30) and (31). The 

obtained gains for the learning-based controllers are calculated 

as in Table VII. Comparing these gains to the original ones 

given in Table V, it can be seen that the learned controller 

gains closely match the original ones. Fig. 9 shows the 

simulation results when a 500 W step increase in P1 is applied 

at t =1.2 s. It can be seen that the learning-based controllers 

exhibit close performance to the original controllers, proving 

the capability of the identification framework to adaptively 
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TABLE VII: Learning-based controllers gains. 
 

Parameter Value 
 

kpv, kiv 0.0337, 25.2 

kpi, kii 0.0735, 537.2 
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1.198 1.2 1.202 1.204 1.206 1.208 1.21 1.212 

Time [s] 

Fig. 9: Performance of learning-based controllers against the 

original controllers. 

 

 

tune the controllers based on the identified dynamics of the 

CUT. 

5) Performance against the switching model: A step change 

of 4 A is applied to the CUT’s local load in order to analyze 

the transient performance of Model I against the switching 

model of the CUT. The capacitor voltage and inductor current 

waveforms obtained from the identified model and detailed 

switching model are compared in Fig. 10 and Fig. 11. The 

identified model (red curves) can be seen to closely follow 

the moving-averaged dynamics of the switching signals (blue 

curves). The underdamped oscillations are also clearly re- 

flected by the identified averaged signals. 

6) Identification under constant voltage control: In order 

to verify the generalizability of the proposed identification 

framework under different control techniques, the identifica- 

tion process is conducted on the CUT, but under constant 

voltage control by setting the droop gain, Zv, to zero. The 

swept-sine perturbation signal, iinj, is injected at various 

steady-state operating points of the CUT. Similar to the droop- 

controlled case in Section V-A, the identified models using Θ1 
and Θ2 are referred to as Model I and Model II. Table VIII 

 

Fig. 10: Identified dynamic model of the output voltage 

compared with the switching model. 

 

 

 

 

 

Fig. 11: Identified dynamic model of the inductor current 

compared with the switching model. 

 
TABLE VIII: Identified dynamic models of the CUT compared with the 
analytical model under constant voltage control. 

 

Parameter Analytical Model I Model II-A Model II-B 

 Model  

M  370.3704 373.8207 353.4154 373.7065 

N  -37.037 -42.5127 0 -42.1288 

P  -370.3704 -372.7137 -361.71161 -372.6794 

Q  370.3704 370.5844 377.6432 370.7027 

R  0 0 0 0 

S  0 0 0 0 

T  0 0 0 0 

U  0 0 0 0 

V  0 0 0 0 

F  52762 53224 53224 53059 

G  -52762 -53900 -53900 -53160 

H  -52762 -52913 -52913 -53012 

I  0 0 0 0 

J  0 0 0 0 

K  0 0 0 0 

L  0 0 0 0 

B  0 0 0 0 

E  0 0 0 0 

CVEi  L 
N/A 4.32×10−5 0.001 4.9×10−5 

CVEvo N/A 4.34×10−4 4.34×10−4 3.57×10−4 

 
 

 

compares the coefficients of the nonlinear terms in (27) and 

(28) for the analytical model with Model I, Model II-A, and 

Model II-B. Model I and Model II-A are obtained by swept- 

sine perturbation at 16 different Vref values for the CUT as 

the the training data, while Model II-B is trained using data 

collected from the perturbation at 30 different Vref values. 

Table VIII shows that Model I achieves very small CVEiL 

and CVEvo , whereas Model II-A yields a larger CVEiL as it is 

not able to identify the coefficient N , which is much smaller 

than other coefficients present in the dynamical equation of 

iL. However, Model II-B, trained by a larger training dataset, 

improves the estimation error of Model II-A significantly. This 

is verified in Fig. 12 by comparing the estimated dynamics 

using Model II-B against the ground truth dynamics when 

the CUT is supplying a constant current load under constant 

voltage control mode. 

343 
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their analytical counterparts. Furthermore, the data-driven con- 

trollers developed using the identified model also show close 

performance to their physics-based counterparts. The identified 

small-signal impedance referred to as the SPV impedance 

model will enable fast estimation of the impedance at each 

operating point, which will assist with real-time impedance- 

based stability monitoring of DC-DC converters in microgrids 

by avoiding continuous perturbations conventionally used to 

measure the small-signal impedance. 
 

 

 

Fig. 12: Analytical dynamic response of the CUT compared 

with the estimated model under constant voltage control. 

 

B. SPV Impedance Model Validation 

Following the data-driven framework in Fig. 2, the 

impedance data of 90 different operating points (m = 90) 

are measured through perturbing the CUT with the PRBS 

signal. The collected data is then split such that 65 randomly 

selected data points are assigned to the training set and the 

remaining 25 data points are used for testing. The results of 

identification is shown in Table IX. It can be observed that the 

number of active terms for each estimated coefficient function 

is smaller than the number of candidate terms in (40), verifying 

the realization of sparsity. The total estimation time for the 

SPV impedance model is calculated to be 0.0103 seconds, 

excluding its training time. This is almost 10 times faster than 

the time for identifying the full dynamic model of the CUT and 

is thus a more suitable approach for online stability analysis 

purposes. 

The SPV impedance constructed using the estimated coef- 

ficient functions in Table IX is compared with the analytical 

impedance model in Fig. 13 at three distant operating points 

of the CUT selected from the testing set to illustrate its 

operating-point independence feature. Fig. 13 shows that the 

SPV impedance model closely fits its analytical counterpart 

over the entire frequency range. The maximum identification 

error occurs mostly at higher frequencies and around the 

resonant frequencies as shown in Fig. 14. 

 

VI. CONCLUSION 

A sparse identification framework is proposed to identify 

the averaged nonlinear dynamics and small-signal output 

impedance of droop-controlled DC-DC converters operating 

in a microgrid. It is shown that by exciting the CUT by 

swept-sine and PRBS signals, dynamically-rich data can be 

collected to identify the nonlinear dynamics and small-signal 

impedance of the CUT, respectively. The identified dynamic 

model and small-signal impedance are verified in both time 

and frequency domains and shown to exhibit a close fit to 
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TABLE IX: Coefficient functions of the SPV impedance model. 
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Fig. 13: Validation of the SPV impedance model against its analytical counterpart at (a) Vo =369.7 V, IL =4.4 A (b) 

Vo =383.4 V, IL =−1.5 A (c) Vo =376.2 V, IL =1.6 A. 

 

 

 

 

 

Fig. 14: Identification error of the SPV impedance model at (a) Vo =369.7 V, IL =4.4 A (b) Vo =383.4 V, IL =−1.5 A (c) 

Vo =376.2 V, IL =1.6 A. 
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