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Abstract—Confidentiality and variability of the parameters
of power converters motivate applying system identification in
power electronic systems. In this paper, a novel identification
framework based on the sparse regression technique is proposed
for DC-DC converters operating in a microgrid in order to derive
the nonlinear dynamics of the converter under test (CUT) for
data-driven control and to estimate the small-signal impedance
of the CUT for online stability analysis purposes. The CUT is
perturbed by swept-sine and pseudo-random binary sequence
(PRBS) excitation signals via an external source in order to col-
lect dynamically-rich time- and frequency-domain measurements
during the online operation of the CUT. The measurements are
then fed to an optimization problem solved by the sequential
thresholded least squares (STLS) algorithm to discover the
nonlinear averaged dynamics and the sparse parameter-varying
(SPV) impedance model of the CUT. The data-driven controllers
designed using the identified dynamics are shown to exhibit close
performance to their physics-based counterparts. Furthermore,
the SPV impedance model is also shown to accurately track
the measured impedance of the CUT and obviates the need for
continuous perturbation of the system at each operating point.
Real-time simulation results and frequency-domain analyses are
presented to verify the effectiveness of the proposed framework.

Index Terms—dc-dc converter, DC microgrid, real-time iden-
tification, sparse regression, dynamical modeling, droop control,
small-signal impedance model.

1. INTRODUCTION

Modeling of DC distribution systems and microgrids is
typically conducted assuming the full knowledge of analytical
models of switch-mode power converters, also referred to as
white-box models [1]. However, with the proliferation of com-
mercial off-the-shelf converters, detailed information about
converter parameters is usually not available [2]. Moreover,
the dynamics of power converters are subject to change due
to aging [3] and faults [4], which motivates utilizing system
identification techniques by leveraging measurement data [5].
Identified dynamic models of power converters can be used
to design data-driven control [6] and development of digital
twins [7], [8] for online stability and condition monitoring of
power electronic systems.

Identification of power converters can be conducted by
black-box and grey-box modeling techniques. Linear black-
box methods typically make use of the two-port model of
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power converters to approximate transfer functions at fixed
operating points [9], [10]. Linear models are, however, limited
to applications such as small-signal analysis [11]. Being an
integral part of DC distribution systems, DC-DC converters
have been studied for nonlinear dynamics identification using
polytopic [12]-[14] and Hammerstein [15], [16] black-box
methods. Both Hammerstein and polytopic methods still rely
on linear methods to estimate nonlinear dynamics, which
renders them operating-point-dependent and thus unable to
represent full non-linear dynamics. Non-linear black-box mod-
eling methods based on wavelet and dynamic artificial neural
networks (ANNs) are proposed in [1], [17], respectively.
However, the main drawbacks of ANN-based identification
methods are computational cost, requirement for large number
of training data points, and the lack of physical interpretability.
On the other hand, grey-box identification methods rely on
the partial knowledge of the system model, which then serves
as a foundation to estimate a complete model [18]. Grey-box
identification of DC-DC buck converters using the NARMAX
model is discussed in [19], [20] by using a priori knowledge
of the static behavior of the converter. In [21], the prediction
capability of the grey-box methods proposed in [19], [20] is
improved by incorporating a priori knowledge of the converter
static behavior in the structure selection of the model using
the NARX technique. However, only the identification of
voltage dynamics is addressed in [19]-[21] rather than a
complete dynamic model. In [7], grey-box modeling using an
iterative least-squares technique is conducted for a half-bridge
converter to discover its state-space dynamic model. A prior
knowledge of state-space equations and nominal parameters
of the converter are required, which are not always accessible.
A hybrid Wiener-Hammerstein grey-box modeling technique
is also proposed in [22], which relies on the information
provided in the data sheet of converters to predict the large-
signal behavior, power consumption, and efficiency of DC-DC
converters. In [23], a physics-informed deep neural network is
proposed for estimating the parameters of a DC-DC buck con-
verter. The method assumes prior knowledge of the parametric
dynamic equations of the converter and also suffers from high
computational costs and long training times.
Small-signal output impedance of power converters is also
a valuable parameter to represent the converter dynamics [24],
making the impedance-based stability analysis the most com-
mon method for online stability monitoring of power elec-
tronic systems and microgrids [25]. In order to obtain the real-
time impedance, the majority of online stability analysis tools
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rely on perturbing the converter using wide- or narrow-band
signals. Wide-band perturbation is used in [26] to measure
the voltage loop gain and equivalent bus impedance of a
DC microgrid. Online stability monitoring of a DC microgrid
by measuring the output impedance of power converters is
proposed in [27]. In [28], an impedance estimation method
is proposed, which requires control loop measurement using
the Middlebrook’s analog injection technique, which is only
capable of estimating the impedance around the peak fre-
quency. Vector fitting is also commonly used as a technique
to fit the frequency-domain measurements to a linear para-
metric impedance model [29]. The aforementioned impedance
derivation methods are all based on measuring the small-signal
impedance of the power converter at each operating point of
the system, which requires continually perturbing the system.
Imposing frequent perturbations to the system is considered
invasive and computationally intensive in addition to not being
ideal for online stability monitoring purposes where run-time
efficiency is of great importance. Recent studies have tackled
the operating-point dependency of small-signal impedance
models for inverter-based resources using ANNs [30], [31].
However, the main drawback of ANNSs for this purpose is the
requirement for large amount of data since these methods use
the frequency as one of the inputs of the ANN impedance
predictor.

To bridge the gap in the studies reviewed above, here
an identification framework based on the sparse regression
technique [32] is proposed for DC-DC converters. A half-
bridge DC-DC converter operating under droop control in a
microgrid is considered as the converter under test (CUT). In
the proposed framework, the nonlinear dynamics of the CUT
are directly discovered from a library of candidate functions
by solely relying on measurement data that are available as
the feedback signals of the CUT’s control system. It is shown
in Table I that the proposed method is not only independent
of linear models, but also results in closed-form dynamics
with minimum prior knowledge of the CUT. Furthermore,
the sparse regression technique is applied to estimate the
parametric output impedance model of the CUT, resulting
in the sparse parameter-varying (SPV) impedance model.
The SPV impedance model obviates the need to conduct a
frequent perturbation of the system for the purpose of real-time
impedance measurement, improving the run-time efficiency
of impedance identification and reducing the computational
burden of online stability monitoring tools. Table II demon-
strates the advantages of the SPV impedance model over the
state-of-the-art methods in the sense that it is operating-point
inde¥endent and does not require frequency data points as an
input to the model in the training stage.

The major contributions of the paper include:

- The nonlinear averaged dynamics of the CUT are
identified by a sparse identification framework from
dynamically-rich data collected during the online op-
eration of the CUT in a microgrid. The performance
of the data-driven controllers corrosponding to the
identified dynamics are then assessed.

- A data-driven parametric impedance model called the
SPV impedance is proposed to estimate the closed-loop

output impedance of the CUT. The SPV impedance
model obviates the need to perform a continuous
perturbation of the system for the purpose of online
impedance measurement and is shown to achieve an
estimation time 10 times faster than the estimation time
of the full nonlinear dynamics.

The rest of the paper is organized as follows. Section II
introduces the theory of sparse identification. In Section III, the
identification of nonlinear dynamics of the CUT is discussed.
In Section IV, the concept of data-driven SPV impedance
using the proposed framework is presented. Various real-
time case studies are provided in Section V to assess the
performance of the proposed identification frameworks in time
and frequency domains. Section VI concludes the paper.

II. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS
OF NON-HOMOGENEOUS SYSTEMS

The underlying principle of the sparse identification method
is that non-homogeneous dynamical systems of the form x" =
f (x, w), given in (1), typically have only a few terms on the
right-hand side of their state-space model [32].
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where x(t) € R~ is the state vector, u(t) € R4 is the input
or control vector, and f(x(?), u(t)) : R» Xx Ra — R,

The function_f only consists of few active terms from the

space of possible right-hand side functions. The possible right-
hand side terms can be represented by a library of candidate

functions, @ € R™P, required for approximation of the
dynamics of f. This library comprises a total of p candidate
terms, typically including linear and nonlinear monomials of x
and u and usually a constant term as well. In order to evaluate
O, m time-series snapshots of the state x and the input u are
collected either through simulations or experiments. Then, they
are arranged into matrices of the forms

o T
*x(t) x(t) ... x(tm)
o

T
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Uu=" u(t1) u(t2) u(tm) '
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Therefore, for a system with n states, g inputs, and m time-
series snapshots of data, X and U can be written as

X = @
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TABLE I: State-of-the-art research on nonlinear model identification of power converters.

Reference Method Linear-model ~ Closed-form  Prior-knowledge
independent identification independent

[T2]114] Polytopic X X V4
[15], [16] Hammerstein X X v
[11, [17] Neural Network v X v
[19], [20] NARMAX v X X
[21] NARX v X X
[22] Wiener-Hammerstein X X X
[7] Iterative Least-squares v v X
[23] Physics-informed Neural Network v X X
Proposed Sparse Identification v v v

TABLE II: State-of-the-art impedance identification methods for power converters.

Reference Method Operating-point  Frequency-independent
independent training
29] Vector Fitting X N/A
[30] Neural Network v X
[31] Physics-informed Neural Network v X
Proposed SPV Impedance v v

The collected state and input measurements are then com-
piled into the library ® as given in (6), where higher order
polynomials are denoted by functions P2, P3, etc. For
example, P2(X, U) denotes the quadratic nonlinearities of
states and inputs as given in (7). ) )

As can be seen 1n (60), the library of candidate functions
can include constant, polynomial and trigonometric terms. A
general guideline is to first include simple functions such
as polynomials, and then add more complex terms such as
trigonometric functions to the library. However, considering
the grey-box nature of the identification method, partial knowl-
edge of the dynamical system can also be leveraged to decide
what functions to include in the library [33].

.1) 2 (X 9 U) = . (7)
xa(t)w(t) xa(t)u(t) Xn(t) ug(ty)

. a(t)w(t) xi(t2) Ua(t2) Xn(t2) Ug(t2)
(b)) 6 6m) a(E) X ) el )

The obtained data matrices can then be used to represent the
dynamical system of (1) as

X =X, U)= (3

where & is the matrix of coefficients for the candidate func-

tions in @. The derivative matrix X can also be written in its
general form as

x T(tl). . Xt  xo(t) x'n(tl).

. . . "ot . .
X:.xT@ _ xlgtz) x f) xn_(tz) e

X T(t) Xi(tn) X altn) X r(tm)

A. Estimating the time derivative matrix X

Computation of the time derivative of the state matrix, X " is
required to complete the data collection for the identification
process. Considering a smooth function in the neighborhood
of a point, the derivatives can be accurately approximated

using Taylor series expansion at specified mesh points. The
derivative matrix can be approximated by the central difference
method as

8X(ti+1) — 8X(ti-y) + X(ti-n) — X(tiro)
12h
where X(t) is the time-series sample i and h is the mesh

spacing, which is considered the same as the simulation
sample time used for collecting the data.

X =~ (10)

B. Identification by Sparse Regression

In the final step of the identification process, a sparse
regression problem is formulated to solve for the sparse vectors
of coefficients in &, which determine what terms are active
in the X dynamics. The goal of sparse identification is to
arrive at the fewest terms in E that result in a good fit for the
collected data from the dynamical system. This is achieved by
solving an optimization of the form

Eh_argm{n||Xh_G(Vo’IL)§h||2+A}!|§h||o (11)
&n
where &n is the h-th column of E represented by & =
& &, .. §]7 X jepresents the h-th column of X . The
objective function in (11) comprises two norm functions.
The €. norm denoted by ||.|]> solves for the least-squares
prabiems Fhe fo norm, ||.[o, decides the number of nonzero
&n, promoting sparsity in the coefficients matrix.
The sparsity-promoting hyperparameter is represented by An.
The minimization problem of (11) is approximately solved
by the sequential thresholded least squares (STLS) proposed
in [32]. The STLS is an iterative algorithm that according to
[34] is defined by

Sk=jelpl: & =1, k=0 (12)
£,°=0(Vo, I)'Xn (13)
&Ehr1 = argmin IXn — O(Vo, I)E 1ll, k=0
EAhERP:supp(fh)QSk
(14)



where Kk is the iteration number. For an integer
p € N [pl = {1,2,...,p} OX,U)t is the

seudo-inverse of O(X,U), defined as OX,U)t =
OX, U)TOX, U)]"'O(X, U)T. The support set of &

is also defined by
supp(&n) :={j € [p] : &= 0} (15)

The pseudocode for the STLS algorithm used to identify the
CUT dynamics is given in Algorithm 1.

Algorithm 1: STLS Algorithm for dynamics identifi-
cation of the CUT
Rggﬁitth, 0, An, p, n (number of state equations)

—

for h=1:ndo

£ =0 Xn;
fork=1:p do

Tsman — |En| <Ar;

gﬁ(Ismall) e 0;
for all variables do

Ivig —~ Ismau(:, ii);

EnIvig, i) = OC:, Inig)tXn(:, i)
end

end
end

The algorithm first preforms the least-squares regression
(An=0) to arrive at a nonsparse & p. The nonsparse & p will
include some very small terms, which are then zeroed out. This
procedure is repeated p times, which guarantees the algorithm
convergence [34]. While increasing A results in sparser &n as
the algorithm tries to minimize the objective function in (11),
it can lead to an underfit model with a large error. On the
other hand, small values of An increase the complexity of
the model by increasing the number of nonzero coefficients,
resulting in a dynamic model that is not true to ground truth
dynamics. Therefore, Axn is tuned such that a good balance
between sparsity and the least-squares error is achieved.

III. SPARSE IDENTIFICATION OF THE CUT DYNAMICS
In this section, the proposed framework for dynamics iden-

tification of the CUT is discussed in detail. The identification
framework is given in Fig. 1 and explained in the following.

A. State-Space Average Model of the CUT

A bidirectional half-bridge converter is studied as the CUT
for dynamics identification. Based on the conduction state of
switches S; and S; in Fig. 1(a), the converter operates either in
the boost or buck mode. However, in order to design feedback
control for the CUT, a time-continuous model that includes the

duty cycle is required. Therefore, by neglecting the switching
frequencies, the averaged state-space model of the CUT is
derived as [35]

di() 1 _ _
e CECRE L CRUR CREICER ORNID
dvdt_1z @ —-doi - i) (17)
a C r °

where iz and v , are the state variables, and d , i, and v in are
the inputs. The bar sign indicates an averaged value over a
switching period of the converter.

From equations (16) and (17), it is obvious that the dynamic
equations of the CUT are independent of the load dynamics,
which is referred to as an unterminated model [10]. Therefore,
the rest of the network can be assumed anything from a
simple resistive load to a complex network such as a microgrid
without the loss of generality.

B. Feedback Control Design

Fig. 1(a) shows the voltage mode control structure of the
CUT with a cascaded structure. Assuming d as the duty cycle
of S, the output of the current controller is decided by

d =[(v; — vo)Gu(s) — ] G(S) (18)
GU(S) =kpu + kiv/S (19)
Gi(s) =kpi+ kii/s (20)

where kpv and kiv are the proportional and integral gains for
the outer voltage controller, and kpi and kii are the same gains
for the inner current controller. In order to design the voltage
and current PI gains, the nonlinear averaged equations of the
CUT in (16) and (17) are linearized and the transfer functions
of the closed-loop current (Tict) and voltage (7Twcr) controls
are then derived as

T (s)= Gi(s)Gia(s) .
el 1 + G(s)Gia(S) @
GuUS)Gi{(s)Gud(s)
Tya(S) = (22)
1 + Gu(S)Gi(S)Gua(s) + GiS)Gid(s)
where
(g o—CVer (1 = D)
a(S) = o2 4 rCs+(1 — Dy 23)
—LILs — rlL + Vin
Gua(s) = 24)

LCs?2 +rCs+ (1 — D)?
where Vo, I1, and D represent the steady-state values of the
output voltage, inductor current, and duty cycle, respectively.
Furthermore, Gi{s) Gu(s) are designed with phase margin of
60 degrees at no load conditions a bandwidth of 2 kHz and
200 Hz, respectively, to avoid interaction with the inner current
loop. The reference voltage, vz, is decided by the droop control
as

Uy = Uref — Zulo (25)

o |
oX,U)='1 X U
o |

P2(X) P2(X,U) P2(U)

o | | B
sin(X) sin(U) sin(P2(X, U))

(6)
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Fig. 1: Sparse identification framework for the identification of the CUT. (a) closed-loop dynamic model of the CUT. (b)
data collection by the injection of a swept-sine signal. (c) building the library of candidate functions and applying the sparse
regression. (d) discovery of the CUT dynamics by tuning the sparsity-promoting coefficient An.

where vrer is the nominal output voltage and Z, is the droop
gain. The droop gain is typically decided by the permissible
voltage variations and the converter rating [36].

C. Data Collection

1) System excitation: The next step in the identification
process is to collect measurement data. To this end, the system
should be excited by an identification signal. In this study,
an external current source is used to perturb the CUT at its
various operating points with a swept-sine signal, imj, as
shown in Fig. 1(a). The swept-sine signal is a sequence of
sinusoidal signals with different frequencies that are applied
successively [37]. The amplitude of the swept-sine should be
selected such that the system is not significantly perturbed as
it is being tested online. At the same time, it has to be large
enough to generate rich data for identification purposes. The
advantage of the proposed excitation approach is that it can
be performed without perturbing the converter control signals
or interrupting the system. The parameters of the swept-sine
signal are given Table III. The excitation frequencies are
logarithmically spaced between the minimum and maximum
frequencies of the swept-sine signal. The frequency range of
perturbations is selected so that a sweep up to half of the
switching frequency is realized and very low frequencies are
also excluded to reduce the measurement time.

TABLE III: Parameters of the swept-sine signal.

Parameter Value
Number of frequencies 30
Minimum frequency 100 Hz
Maximum frequency 10 kHz
Sample time 10 us
Amplitude (peak-to-peak)  0.05X ||

2) Averaged values measurement: It is obvious from (16)
and (17) that the state and input measurements of the CUT
have to be the averaged values of switching waveforms of
the CUT for inclusion in the library of candidate terms. The
moving average operator of (26) can be directly applied to the
measurements of vin, ir, Uo for this purpose.

1T
x(t) =

T) drt
T t_TX()

(26)
where x(t) is the variable to be averaged, and T is the
switching period of the CUT. The averaged duty cycle d
is also derived by averaging the gate pulse function of the
lower switch in Fig. 1(a). However, i, should not be directly
computed by applying (26) since it might affect the pertur-
bation signal frequency content. Instead, i o is calculated by
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3) Sparse representation of dynamics: Next step is to
decide the library of candidate terms @. The choice of the
library of candidate terms mainly has minimum dependence
on the expert’s knowledge of the system, which will be
further discussed in section V-A. As depicted in Fig. 1(c),
the candidate terms can be various monomial combinations of
U in, i, U o,and d . Before applying the sparse identification
technique, the collected data should be grouped into training
and testing datasets. The STLS algorithm is then executed for
different values of As, starting from zero up to the value that
results in a sparse dynamic model with the minimum cross-
validated error according to Fig. 1(d). The resultant identified

dynacrlni_cal equations are
i

MU Ni4Pu +Qdv #RixSd  (27)
+Tdio+Udva+Vd i
‘Zto =F i + & i+ Hi+Id +Jva+ Koo (28)

+Ld va+BdvoetEd b
where M, N, P, Q, R, S, T, U, V, F, G, H, L J, K
L, B, and E are the estimated scalar coefficients. In order
to assess the identified model in the frequency domain, the
estimated open-loop transfer functions of the CUT, which are
denoted by a hat sign, can also be obtained by substituting
the coefficients M , N, P, Q, F, G, H from (27) and (28) in
(16) and (17) and linearizing the equations, which results in

4 —o —H(s = N)
ZOUI(S) - Né iv~in,d~=j A (29)
G g Vos + GIL(P + QD)
Gia(s) = deIJ_ - QVos AL 0
Gua(s) = 51 - QVy(F + GD)A+ GIi(s — N)
Uin, ip=
- (1)
A (9=—4 - =HP+OD 32)
I vimd =0 A
A=s2— Ns— (P+ QD)(F + GD) 33)

where the tilde sign represents small-signal values.

IV. SPARSE IDENTIFICATION OF CLOSED-LOOP
IMPEDANCE

The estimated closed-loop output impedance of the CUT
can be obtained as in (34) using the open-loop transfer
functions obtained from the estimated averaged dynamics of
the CUT. However, it is still required to have the transfer
functions of the controllers, i.e., Gu(s) and G{(s), as well as
the droop gain Z,, in order to obtain the parametric impedance
model Zocz(s) in (34). Moreover, estimating the full nonlinear
dynamics of the system may not be required in applications
such as online stability monitoring as the closed-loop output
impedance of the converters provides enough information
about the stability of the system. Readers can refer to [25], [38]
for more information about impedance-based stability analysis
methods in power electronic systems.

TABLE IV: Parameters of the PRBS excitation signal

Parameter Value
Signal order 18
Sampling time 10 us
No. of periods 1
Amplitude (peak-to-peak)  0.05 X |7,|

In this section, an impedance estimation framework based
on the sparse regression technique is proposed to obtain the
SPV impedance model. Using the data-driven SPV impedance
model, the parameteric closed-loop output impedance of the
CUT is learned from the frequency-domain impedance data
measured at different operating points of the CUT. The ob-
tained SPV impedance will then be able to predict the small-
signal impedance of the CUT at each operating point without
the need to measure the impedance at each operating point by
continuously perturbing the CUT.

A. Impedance Data Collection

Frequency scanning is utilized to collect impedance data at
multiple operating points of the CUT. To this end, the system
is first initialized at a specific operating point. Then the CUT
is excited by PRBS-driven external current source (i) at its
output terminals as shown in Fig. 2. The parameters of the
PRBS signal are designed such that a sweep up to half of
the switching frequency of the CUT is ensured. The designed
parameters are given in Table IV.

Next, the impedance frequency-response data is obtained by

performing fast Fourier transform (FFT) as

Flvo(H)]
Fl— ()]
In order to obtain the parametric model of the measured

impedance in the frequency domain, a transfer function with

four poles and three zeros is fitted. to the impedance frequencg
respo%se data using the vector fitting meﬁlocfi embed%e({] 1%

Zfra(s) = (35)

the MATLAB® function tfest, resulting in Zmeas(s) for a
specific operating point of the CUT.

Zmeas(S) = b333 + b.s2 + bis+ by (36)

3 2 1 o
The impedance data is collected at m different operating points
of the CUT for the training of the sparse regression algorithm
discussed next.

B. SPV Impedance Model

It can be observed from (29)-(33) that the analytical
impedance model of the CUT in (34) is a function of the
operating point specified by I, Vo, and D. Since D can
be represented as a function of Vo and I, the (I, Vo) pair
suffices to represent the operating point of the CUT. Therefore,
the SPV impedance model, Zspv(s), of the CUT can be



represented by the same structure as the measured impedance
in (36).

Zspv(S) =
S3(IL, Vo)ss + fo(IL, Vo)s2 + fi(IL, Vo)s + fo(IL, Vo)
st + gs(IL, Vo)s3 + go(IL, Vo)s? + gi(IL, Vo)s + go(IL, Vo)
(37)

Each of the coefficient functions, f{.) and g(.) in (37) can be

approximated by a linear combination of monomials of Vo and
I.. These monomials are identified from a library of candidate
flecnons, &, resulting in sparse fti.) and g(.)r¥unct10ns. As
explained before, it is recommended to construct the library
with low-degree monomials first and introduce more complex
functions into the library until a good performance is achieved
for the estimation problem. To this end, first the collected
impedance data are arranged into X and ® matrices, where

X =0(Vo, IL)E (38)
X and @O are given in (39) and (40) with n=8 and p=14.

A
bobl bz b3 a, a, a2a3.

Finally, the problem of approximating the coefficient matrix
E is formulated as a similar £, regularization problem as (11).

X=" (39)

mxn

V. CASE STUDIES

The microgrid of Fig. 3 is implemented in Simulink® using
the Simscape™ library on a host computer with Intel® Core™
19-11900K Processor @ 5.30 GHz and 64 GB RAM. The
microgrid of Fig. 3 is built in RT-LAB and executed in real-
time on the OP4510 real-time simulator via a TCP/IP link. The

experimental setup is shown in Fig. 4. This setup is utilized to
collect measurement data during the online operation of the
microgrid and conduct time-domain verification of averaged
and switching models of the CUT against identified models.

A. Verification of Identified Nonlinear Dynamics

A battery converter is considered as the CUT for dynamics
identification with the parameters given in Table V. The
swept-sine perturbation signal represnted by i, is injected
at various steady-state operating points of the CUT while
connected to the study microgrid as illustrated in Fig. 3. The
STLS algorithm is then run to solve for the sparse coefficient
matrix that yields the identified model in (27) and (28). The
performance of the proposed framework is evaluated with two
different libraries of candidate functions as follows

VodvodiL

O, =" v iniL io" “41)
| | | | |
[ I I O
O.="van § Vo dvo di © d dvin dio
| [ | | | | |
42)

The identified models using @; and ®. are referred to as
Model I and Model II. Table VI compares the coefficients of
the nonlinear terms in (27) and (28) for the analytical model
with Model I, Model II-A, and Model II-B. Model I and Model
II-A are obtained by the perturbation of 16 operating points of
the CUT as the the training data, while Model 1I-B is trained
using data collected from the perturbation of 30 operating
points of the CUT. The cross validation is performed on the
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Fig. 2: Data-driven impedance identification framework to obtain the SPV impedance model
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Fig. 4: Real-time simulation setup used for verification.

testing set containing unseen data and the cross validation error
(CVE) is computed by

_IX test — Orest X, U)&nll2
”X test||2

where X test and Xest are the derivative and state matrices
for the testing set, respectively. The CVE is calculated to
obtain identification error for both i (CVE;) and vo (CVEy,)
dynamics. As shown in Table VI, Model I achieves very small
estimation errors for both ir and v, dynamics, whereas Model
II-A yields a relatively larger identification error. This larger
error is caused by the choice of a larger library of candidate
functions. However, it can be seen that Model II-B, which is
trained by a larger training dataset, improves the estimation
error of Model II-A significantly.
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Fig. 5: Sparse model derivation by tuning An.

TABLE V: Simulation parameters of the CUT.

Parameter Value
Sample time 10 us
Vin 250V
Uref 380V
L 2.7 mH
C 18.953 uF
r 0.1Q
Zy 3.45Q
kpv, ki 0.0339, 25.4
Kpi, Kii 0.0723, 527
Switching frequerncy 20 kHz

The procedure for regularization factor (An) tuning is illus-
trated in Fig. 5 for Model I, where An is gradually increased
from zero (the least-squares solution) until the sparsity is
realized for the dynamical equations of iz and vo. It can be
seen that at the sparse point, the dynamical equations have
fewer active library functions @, than they have when An=0.
A further increase in Ax results in an increase in CVE;, and
results in zero coefficients for all candidate functions from ®,
in the case of identification of vo dynamics. Therefore, An=36
and An=200 result in sparse models close to the ground truth
dynamics for iL and vo, respectively.

1) Performance under small-signal disturbance: The iden-
tified nonlinear dynamic model of the CUT using Model I is
compared with the analytical model in Fig. 6. At ¢t =0.015 s,
a white noise perturbation is applied to the input voltage to
emulate the volatility of the input source. It can be seen that the
inductor current exhibits higher frequency variations compared
to the capacitor voltage. However, the identified model is able
to closely follow the analytical values of the state variables
for both the capacitor voltage and inductor current.



TABLE VI: Identified dynamic models of the CUT compared with the
analytical model under droop control.

Parameter  Analytical Model I Model II-A Model II-B
Model
M 370.3704 368.3827 354.2964 373.4869
N -37.037 -37.6831 0 -42.5468
P -370.3704 -368.2940 -362.2083 -372.3595
Q 370.3704 368.1235 377.3022 370.1900
R 0 0 0 0
S 0 0 0 0
T 0 0 0 0
U 0 0 0 0
\%4 0 0 0 0
F 52762 52988 53339 53117
G -52762 -53086 -54363 -53451
H -52762 -52938 -52871 -52962
I 0 0 0 0
J 0 0 0 0
K 0 0 0 0
L 0 0 0 0
B 0 0 0 0
E 0 0 0 0
CVE;, N/A 9.6x1075 0.0081 6.78x 1075
CVEy, N/A 9.8x107 0.0026 621x10™
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Fig. 6: Analytical dynamic response of the CUT compared
with the estimated model under disturbances.

2) Performance under large-signal disturbance: Another
case study is conducted to evaluate the performance of Model
I under large-signal perturbations such as a fault, as depicted in
Fig. 7. A large step increase in the output current of the CUT
is applied at £ =0.03 s to emulate a single line-to-ground fault
on the DC bus. The fault clearance is emulated by applying a
step decrease in the output current after 3 milliseconds. The
identified model can be seen to closely follow the oscillations
observed during the fault.

3) Frequency-domain verification: The closed-loop output
impedance of the CUT derived in (34) is compared for the
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Fig. 7: Analytical dynamic response of the CUT compared
with the estimated model under fault conditions.
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Fig. 8: Closed-loop output impedance of the CUT.

analytical model and Model I in Fig. 8.(a) and Fig. 8.(b). It
can be seen that the closed-loop impedance estimated from the
identified model closely tracks its analytical counterpart in the
entire frequency range without any major inconsistency.

4) Performance of learning-based controllers: The esti-
mated dynamics using Model I are utilized to update the
voltage and current controller gains of the CUT. The learning-
based voltage controller, G v (s), and current controller, Gi(s),
are designed based on the same criteria mentioned in Sec-
tion III-B, but using the estimated dynamics. For this purpose,
Gia(s) and Gud(s) in (21) and (22) are substituted with
their estimated counterparts derived in (30) and (31). The
obtained gains for the learning-based controllers are calculated
as in Table VII. Comparing these gains to the original ones
given in Table V, it can be seen that the learned controller
gains closely match the original ones. Fig. 9 shows the
simulation results when a 500 W step increase in P, is applied
at t =1.2 s. It can be seen that the learning-based controllers
exhibit close performance to the original controllers, proving
the capability of the identification framework to adaptively



TABLE VII: Learning-based controllers gains.

Parameter Value
kpv, ki 0.0337,25.2
kpi, Kii 0.0735, 537.2
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Fig. 9: Performance of learning-based controllers against the
original controllers.

tune the controllers based on the identified dynamics of the
CUT.

5) Performance against the switching model: A step change
of 4 A is applied to the CUT’s local load in order to analyze
the transient performance of Model I against the switching
model of the CUT. The capacitor voltage and inductor current
waveforms obtained from the identified model and detailed
switching model are compared in Fig. 10 and Fig. 11. The
identified model (red curves) can be seen to closely follow
the moving-averaged dynamics of the switching signals (blue
curves). The underdamped oscillations are also clearly re-
flected by the identified averaged signals.

6) Identification under constant voltage control: In order
to verify the generalizability of the proposed identification
framework under different control techniques, the identifica-
tion process is conducted on the CUT, but under constant
voltage control by setting the droop gain, Zy, to zero. The
swept-sine perturbation signal, in;, is injected at various
steady-state operating points of the CUT. Similar to the droop-
controlled case in Section V-A, the identified models using @,
and @, are referred to as Model I and Model II. Table VIII
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Fig. 10: Identified dynamic model of the output voltage
compared with the switching model.
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Fig. 11: Identified dynamic model of the inductor current
compared with the switching model.

TABLE VIII: Identified dynamic models of the CUT compared with the
analytical model under constant voltage control.

Parameter  Analytical Model I Model II-A  Model 1I-B
Model
M 370.3704 373.8207 353.4154 373.7065
N -37.037 -42.5127 0 -42.1288
P -370.3704 -372.7137 -361.71161 -372.6794
Q 370.3704 370.5844 377.6432 370.7027
R 0 0 0 0
S 0 0 0 0
T 0 0 0 0
U 0 0 0 0
|4 0 0 0 0
F 52762 53224 53224 53059
G -52762 -53900 -53900 -53160
H -52762 -52913 -52913 -53012
I 0 0 0 0
J 0 0 0 0
K 0 0 0 0
L 0 0 0 0
B 0 0 0 0
E 0 0 0 0
CVE,, N/A 4.32x1075 0.001 49%x1075
CVE,., N/A 4.34x10™  434x10% 3.57x10™

compares the coefficients of the nonlinear terms in (27) and
(28) for the analytical model with Model I, Model II-A, and
Model II-B. Model I and Model II-A are obtained by swept-
sine perturbation at 16 different Vrer values for the CUT as
the the training data, while Model II-B is trained using data
collected from the perturbation at 30 different Vier values.

Table VIII shows that Model I achieves very small CVE;,
and CVE,,, whereas Model II-A yields a larger CVE;;, as it is
not able to identify the coefficient NV, which is much smaller
than other coefficients present in the dynamical equation of
iz. However, Model II-B, trained by a larger training dataset,
improves the estimation error of Model II-A significantly. This
is verified in Fig. 12 by comparing the estimated dynamics
using Model II-B against the ground truth dynamics when
the CUT is supplying a constant current load under constant
voltage control mode.
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B. SPV Impedance Model Validation

Following the data-driven framework in Fig. 2, the
impedance data of 90 different operating points (m = 90)
are measured through perturbing the CUT with the PRBS
signal. The collected data is then split such that 65 randomly
selected data points are assigned to the training set and the
remaining 25 data points are used for testing. The results of
identification is shown in Table IX. It can be observed that the
number of active terms for each estimated coefficient function
is smaller than the number of candidate terms in (40), verifying
the realization of sparsity. The total estimation time for the
SPV impedance model is calculated to be 0.0103 seconds,
excluding its training time. This is almost 10 times faster than
the time for identifying the full dynamic model of the CUT and
is thus a more suitable approach for online stability analysis
purposes.

The SPV impedance constructed using the estimated coef-
ficient functions in Table IX is compared with the analytical
impedance model in Fig. 13 at three distant operating points
of the CUT selected from the testing set to illustrate its
operating-point independence feature. Fig. 13 shows that the
SPV impedance model closely fits its analytical counterpart
over the entire frequency range. The maximum identification
error occurs mostly at higher frequencies and around the
resonant frequencies as shown in Fig. 14.

VI. CONCLUSION

A sparse identification framework is proposed to identify
the averaged nonlinear dynamics and small-signal output
impedance of droop-controlled DC-DC converters operating
in a microgrid. It is shown that by exciting the CUT by
swept-sine and PRBS signals, dynamically-rich data can be
collected to identify the nonlinear dynamics and small-signal
impedance of the CUT, respectively. The identified dynamic
model and small-signal impedance are verified in both time
and frequency domains and shown to exhibit a close fit to
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their analytical counterparts. Furthermore, the data-driven con-
trollers developed using the identified model also show close
performance to their physics-based counterparts. The identified
small-signal impedance referred to as the SPV impedance
model will enable fast estimation of the impedance at each
operating point, which will assist with real-time impedance-
based stability monitoring of DC-DC converters in microgrids
by avoiding continuous perturbations conventionally used to
measure the small-signal impedance.
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