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Abstract

Traditional traffic signal control focuses more on the op-

timization aspects whereas the stability and robustness of

the closed-loop system are less studied. This paper aims

to establish the stability properties of traffic signal control

systems through the analysis of a practical model predic-

tive control (MPC) scheme, which models the traffic net-

work with the conservation of vehicles based on a store-and-

forward model and attempts to balance the traffic densities.

More precisely, this scheme guarantees the exponential sta-

bility of the closed-loop system under state and input con-

straints when the inflow is feasible and traffic demand can

be fully accessed. Practical exponential stability is achieved

in case of small uncertain traffic demand by a modification

of the previous scheme. Simulation results of a small-scale

traffic network validate the theoretical analysis.

1 Introduction

As an important part of transportation systems, traf-
fic signals control the flow of vehicles in the road traf-
fic network at signalized intersections with the goal of
minimizing delays. There are four main traffic signal
control categories that are currently implemented in
the field, i.e. fixed-time control, actuated control, re-
sponsive control, and adaptive control. Fixed-time con-
trol uses a pre-timed signal plan which does not change
according to real-time traffic conditions. Note that a
fixed-time control can have different timings through a
day and in different days to meet the variation of traf-
fic demand. Considering the randomness of the vehi-
cle arrivals within a traffic control cycle given a certain
traffic demand, actuated control employs loop detectors
or virtual detection zones to detect incoming vehicles
and trigger the extension or switching of signal phases.
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The dynamic adjustment relies on the structure of the
phases. The ring-and-barrier structure is defined by
National Electrical Manufacturers Association (NEMA)
and employed in North America [18]. Traffic respon-
sive control is an embedded feature in many traffic con-
trollers. It uses real-time volume and occupancy infor-
mation from advanced detectors to identify the current
traffic pattern and implement an associated timing from
a timing bank. Adaptive signal control achieves addi-
tional flexibility as the cycle length, offsets, and splits
can be changed in real-time based on prevailing traffic
conditions.

The optimization of signal splits has attracted ris-
ing attention in recent years. Based on the store-and-
forward model [6], a network-wide traffic dynamic model
called TUC model was developed based on the conser-
vation law of vehicles, and a linear quadratic regulator
was used to obtain the optimal splits with extra steps
of finding the nearest feasible solution [5], with exten-
sions of adaptively identifying the traffic flow dynamics
[14, 20]. This two-step procedure was integrated into
one step by considering a constrained optimal control
problem [12]. Another way of processing constraints is
to truncate the prediction horizon and solve a rolling
horizon optimization problem [1]. The TUC model and
the related optimal control assume that the vehicles in
a road link can be served by any phase associated with
that road link. However, at most arterial intersections,
the vehicles waiting to turn left cannot leave the inter-
section with the through movement phase. A Virtual
Phase-Link (VPL) concept was proposed to solve this
issue as vehicles with different VPLs can be served by
the associated NEMA phases [18]. The optimal control
was achieved via MPC and the results, i.e., the signal
splits, can be directly implemented in NEMA phase con-
trollers safely.

Max pressure control as an adaptation of the Back-
Pressure scheme in data networks was proposed to de-
termine the duration of each phase in an acyclic way,
and stability in the sense of bounded mean queue
lengths, similar to the Lagrange stability [10] in con-
trol systems, is guaranteed assuming infinite storage
capacity [17]. An extension with cyclic phases was pre-
sented with similar stability guarantees [11]. However,
the storage is finite in practice and max pressure control
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Figure 1: A virtual phase-link

can cause spillback without considering the finite stor-
age and a capacity-aware heuristic rule was employed
to improve the traffic performance [7]. There is still a
lack of practical stability associated with max pressure
control under finite storage capacity. Considering the fi-
nite storage constraints and phase constraints in NEMA
standards, the rolling horizon optimization problem in
[1] was included in an MPC scheme [18], which achieved
considerable improvement over the existing actuated
controller in field experiments [19]. However, the recur-
sive feasibility of the MPC scheme [15], and the stability
of the closed-loop system with the MPC scheme are still
unknown. This paper fills the gaps and establishes the
exponential stability in the nominal case and the practi-
cal exponential stability considering a small disturbance
for the closed-loop traffic signal control system.

The rest of the paper is organized as follows. The
store and forward model with constraints is presented
in Section 2. The MPC scheme is introduced in Section
3. Then, recursive feasibility of the MPC scheme
and stability properties of the closed-loop system are
analyzed in Section 4. Simulation results are presented
in Section 5. Finally, some concluding remarks are
drawn in Section 6.

2 Traffic Flow Model

This section presents the traffic network model and the
related state and control constraints.

The store and forward model as a macroscopic
traffic flow model was proposed in [6] to describe the
flow dynamics under oversaturated traffic conditions.
The traffic network can be described as a directed graph
where all the incoming VPLs are directed edges and
traffic is transported via the connected edges in the
graph (see the definition of VPLs in [18]). As shown
in Fig. 1, z is an incoming VPL to intersection M2 and
vehicles can run through link z to the downstream links.

There can be multiple intersections in the network.
Assuming there exist n incoming VPLs in the network,
the associated routing matrix T ∈ Rn×n is defined as
follows: for any z, w ∈ {1, ..., n}, T[z,w] = tw,z where
T[z,w] denotes the element in the z-th row and w-th
column of T ; tw,z ∈ [0, 1] is the turning rate from link
w to link z and tw,z = 0 if there is no direct connection
between link w and link z. Besides, Let ti,0 ∈ [0, 1]
denote the exit rate of link i leaving the network and
T0 = diag(ti0) ∈ Rn×n be a diagonal matrix with ti0 on
the diagonal. A fundamental property of the network is
assumed throughout the paper [4].

Assumption 2.1. The network is outflow-connected,
that is, there exists a directed path for every link to leave
the network, or equivalently, to a link w with a positive
exit rate tw,0 > 0.

A consequence of Assumption 2.1 is the characterization
of the eigenvalues of T .

Lemma 2.1. [4] Under Assumption 2.1, the spectrum
radius of T is less than one.

Using this lemma, we can obtain the following result.

Proposition 2.1. Under Assumption 2.1, let R =
(I − T0)T with I denoting the identity matrix with the
compatible size. Then, the spectrum radius of R is less
than one.

Proof. The corresponding graph of matrix (I − T0)T is
outflow-connected, and the result follows from Lemma
2.1.

A result of Corollary 2.1 is that

(2.1) (I −R)
−1

= I +R+R2+ · · · ≥ 0

which means that each element of (I −R)
−1

is non-
negative since R is a non-negative matrix. Without loss
of generality, the sampling time is assumed to be the
cycle time C, and all intersections of the network use
the same cycle time. Based on the conservation law of
traffic, as shown in Fig. 1,

(2.2) xz(k+1) = xz(k)+ qz(k)− sz(k)+dz(k)− oz(k)

where xz(k) denotes the number of vehicles at link
z at moment k; From time k to time k + 1 and
for link z, qz(k) is the inflow; sz(k) = tz,0qz(k) is
the local exit flow; dz(k) is the local demand flow;
oz(k) = SzGz(k) is the outflow where Gz(k) is the link
green time [1] and Sz > 0 is the saturation rate. Let
x(k) = [x1(k), ..., xn(k)]

T , d(k) = [d1(k), ..., dn(k)]
T ,

and G(k) = [G1(k), ..., Gn(k)]
T , then

(2.3) x(k + 1) = x(k)− (I −R)SG(k) + d(k)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited65

D
ow

nl
oa

de
d 

08
/1

4/
23

 to
 4

3.
24

9.
50

.2
08

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



where S is a diagonal matrix whose i-th diagonal
element is Si. Let P ∈ Rn×m where m is the total
number of phases for the whole network, then, for
z ∈ {1, ..., n} and i ∈ {1, ...,m},

(2.4) P[z,i] =

{
1, if link z is served in phase i,

0, Otherwise.

Compatible with P , u(k) = [g1(k), ..., gm(k)]T where
gi(k) > 0 denotes the green time for phase i with
i ∈ {1, ...,m}. It is suggested that the order of xz(k)
and gi(k) be consistent with the order of intersections
so that P is a block diagonal matrix [17]. Besides,

(2.5) 0 ≤ G(k) ≤ Pu(k)

which is equivalent to 0 ≤ Gi(k) ≤ P[i,·]u(k) for i ∈
{1, ..., n} with P[i,·] denoting the i-th row of P . Phase
time u(k) is constrained by the minimum and maximum
green times as

(2.6) umin ≤ u(k) ≤ umax

where umin = [g1,min, ..., gm,min]
T and umax =

[g1,max, ..., gm,max]
T with gi,min and gi,max denoting the

minimum and maximum green times for i ∈ {1, ...,m},
respectively. Furthermore, NEMA standards impose
additional constraints [18] as

(2.7) Fu(k) = f

where F ∈ Rp×m and f ∈ Rp with p denoting the
total number of constraints for ring-barrier structures
and cycle lengths. In addition, state constraints are
considered as

(2.8) 0 ≤ x(k) ≤ xmax

where xmax = [x1,max, ..., xn,max]
T with xi,max denoting

the storage capacity of link i for i ∈ {1, ..., n}. Finally,
let x∗ ∈ Rn denote the given set point with 0 ≤ x∗ <
xmax, and state error x̃(k) = x(k)−x∗. Then, (2.3) can
be rewritten as

(2.9) x̃(k + 1) = x̃(k)−HG(k) + d(k)

with H = (I − R)S. Besides, an equivalent representa-
tion of (2.8) is

(2.10) −x∗ ≤ x̃(k) ≤ xmax − x∗.

3 Model Predictive Controller

This section presents the model predictive controller
considering the dynamics and constraints in Section 2.

In the remainder of this paper, for notational sim-
plicity, denote x̃(k), x(k), G(k), d(k) and u(k) as x̃k,

xk, Gk, dk, and uk, respectively, and Ii refers to the
identity matrix with size i. The following optimization
problem is considered:
(3.11)

min
G0,...,GN−1
u0,...,uN−1

x̃T
NQf x̃N +

N−1∑
k=0

x̃T
kQx̃k

s.t. (2.5), (2.6), (2.7), (2.9), k = 0, ..., N − 1

(2.10), k = 1, ..., N

where Q ∈ Rn×n is a diagonal matrix whose i-th
diagonal element is 1/x2

i,max > 0 with i ∈ {1, ..., n};
Qf ∈ Rn×n is positive definite; The integer N > 1 refers
to the planning horizon. The objective function is aimed
at balancing the traffic densities over different links and
the role of Qf will be clear in the next Section. When
x∗ = 0 and Qf = Q, the problem (3.11) is the same
as the optimization problem in [18], and degenerates to
the problem in [1] without considering (2.7).

Initial state x̃0 is assumed to satisfy (2.10) and
is not considered in the constraints of (3.11). The
MPC requires that at each moment k, when a new
state x̃0 is received, the optimization problem (3.11)
will be solved and any one of the optimal solutions
(G∗

0;u
∗
0; ...;G

∗
N−1;u

∗
N−1) is chosen, from which (G∗

0;u
∗
0)

is taken as the control input from time k to time k+1. In
practice, usually only green time u∗

0 can be applied and
G0 is automatically decided, and the difference G0−G∗

0

can be regarded as a disturbance to the nominal system,
and the robustness result in Section 4 is still applicable.
(3.11) turns out to be a quadratic programming problem
that can be solved efficiently.

Proposition 3.1. Problem (3.11) is a quadratic pro-
gramming problem, that is, the objective function is con-
vex and quadratic, and the constraints are linear over
the decision variables.

Proof. Let Uk = [GT
k , u

T
k ]

T , Ūk = [UT
0 , ..., UT

k ]T , X̄k =

[x̃T
1 , ..., x̃

T
k ]

T , d̄k = [dT0 , ..., d
T
k ]

T , and H̃ = [H, 0] ∈
Rn×(n+m). Then ŪN−1 is the decision variable. From
(2.9), we have

(3.12) X̄N = X̄0
N − (∆N ⊗ H̃)ŪN−1 + (∆N ⊗ In)d̄N−1

where ∆N ∈ RN×N is a lower triangular matrix with
each lower triangular element being 1; ⊗ is Kronecker
product; X̄0

N = 1N ⊗ x̃0 with 1N ∈ RN , each of whose
elements is 1. Through (3.12), each constraint in (3.11)
is a linear equality or inequality over ŪN−1. Besides,
the cost function becomes

(3.13) J(ŪN−1) = ŪT
N−1MŪN−1 + aT ŪN−1 + b
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where a ∈ RN(m+n) and b ∈ R are constant vectors that
are irrelevant to ŪN−1. In addition, M = M1+M2 with

M1 =

[
(∆N−1 ⊗ H̃)

T
(IN−1 ⊗Q)(∆N−1 ⊗ H̃) 0

0 0

]
and

M2= (1
T
N ⊗ Im+n)

T H̃TQf H̃(1
T
N ⊗ Im+n).

M is positive semi-definite since Q and Qf are positive
definite. Because the Hessian matrix∇2J(ŪN−1) = 2M
is positive semi-definite, J(ŪN−1) is a convex function
over ŪN−1, which competes the proof.

4 Stability Analysis

This section presents the stability analysis of the closed-
loop system under the given MPC scheme and gives the
robustness result when the nominal system is perturbed
with a small disturbance.

It is known that any network can only accommodate
finite demand and it is necessary to make appropriate
assumptions on the time-varying demand vector dk.
Denote Ω = {u ∈ Rm|umin ≤ u ≤ umax, Fu = f}.

Definition 4.1. The set of feasible flows with positive
parameters ε1, ε2 of a network under flow dynamics
(2.9) and constraints (2.5), (2.6), (2.7), (2.10) is

D(ε1, ε2) = {d ∈ Rn
+|ε1H−1x∗ ≤ H−1d ≤ Pu− ε21n,

for some u ∈ Ω}

Remark 4.1. The constant ε2 describes the intensities
of the inflows, e.g., with a larger ε2, the intensity
is smaller. The left-side term is proposed to keep
the steady state x∗ with appropriate inflows, and the
inequality degenerates to the trivial case H−1d ≥ 0 when
x∗ = 0, in which ε1 can be chosen arbitrarily large.
Besides, the feasible flow is fully decided by the network
structure, steady states, and signal configurations, and
is not related to the internal states. In addition, this
condition can be regarded as a counterpart of feasible
flows for continuous-time systems in [13] when x∗ = 0.

A series of results arise from Definition 4.1, and one is
the emergence of a stabilizing controller decided by the
demand vector dk and the state vector xk as follows.

Lemma 4.1. Assume the demand dk ∈ D(ε1, ε2) with
some positive parameters ε1, ε2, that is, there exists
uk ∈ Ω such that ε1H

−1x∗ ≤ H−1dk ≤ Puk − ε21n for
k = 0, 1, ..., then there exists δ > 0 such that uk together
with Gk = H−1dk + δH−1x̃k renders the system (2.9)
exponentially stable from any initial state x̃0 satisfying
(2.10), and constraints (2.5), (2.6), (2.7), (2.10) are
respected for k = 0, 1, ....

Proof. First, let us consider the satisfaction of con-
straints. For moment k + 1, constraint (2.10) requires

−x∗ ≤ x̃k −HGk + dk ≤ xmax − x∗

which can be satisfied as long as 0 < δ ≤ 1 since
−x∗ ≤ x̃k ≤ xmax − x∗. Besides, when

δ ≤ ε2
|H−1xmax|∞

where | · |∞ denotes the maximum norm of a vector,

Gk = H−1dk + δH−1x̃k

≤ H−1dk + δH−1xmax

≤ Puk − ε21n + δ
∣∣H−1xmax

∣∣
∞1n

≤ Puk.

In addition, when 0 < δ ≤ ε1,

Gk ≥ (1− δ/ε1)H
−1dk + δH−1xk ≥ 0

by the non-negativity of H−1, dk, δ and xk. Therefore,
when 0 < δ ≤ min{1, ε1, ε2/

∣∣H−1xmax

∣∣
∞}, constraints

(2.5) and (2.10) are respected. Constraints (2.6) and
(2.7) are satisfied by the existence of uk. By the mathe-
matical induction, constraint satisfaction is achieved for
k = 0, 1, .... Now let us consider the scalar Lyapunov
function Vf (x) = xTQfx with a positive definite matrix
Qf and it satisfies

(4.14) Vf (x̃k+1)− Vf (x̃k) = −εfVf (x̃k)

with εf = 1 − (1 − δ)2, from which Vf (x̃k) = (1 −
δ)2kVf (x̃0) and

|x̃k|22 ≤ λmax(Qf )

λmin(Qf )
(1− δ)2k |x̃0|22

where | · |2 denotes the 2-norm of a vector (sometimes
the subscript 2 is ignored), and λmax(Qf ) and λmin(Qf )
denote the maximum and minimum eigenvalues of Qf ,
respectively.

Therefore, x̃T
NQf x̃N in (3.11) serves as a control Lya-

punov function and it guarantees the existence of an ex-
ponentially stabilizing controller by Lemma 4.1. Next,
the stability analysis is presented using the MPC pro-
posed in Section 3.

Theorem 4.1. Assume the demand dk ∈ D(ε1, ε2)
with some positive parameters ε1, ε2 for k = 0, 1, ...,
then there exists a positive definite matrix Qf such that:
(1) The feasibility of the problem (3.11) at k = 0 implies
its feasibility for k = 1, 2, .... (2) The closed-loop system
with the MPC scheme is exponentially stable from any
initial state x̃0 satisfying (2.10).
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Proof. At moment k, assume one optimal solution of
the problem (3.11) is U∗

k , U
∗
k+1, ..., U

∗
k+N−1 and the

corresponding state sequence is x̃k, x̃
∗
k+1, ..., x̃

∗
k+N with

x̃k satisfying (2.10). At moment k + 1, let the control
sequence be U∗

k+1, ..., U
∗
k+N−1, U

′

k+N with

U
′

k+N =

[
H−1dk+N + δH−1x̃∗

k+N

uk+N

]
where 0 < δ ≤ min{1, ε1, ε2/

∣∣H−1xmax

∣∣
∞} and

H−1dk+N ≤ Puk+N −ε21n with uk+N ∈ Ω. The termi-
nal state x̃k+N+1 = (1− δ)x̃∗

k+N , thus x̃k+N+1 satisfies
(2.10). The other constraints are satisfied via the proof
of Lemma 4.1. Thus recursive feasibility is achieved. Let
the optimal cost function of problem (3.11) be the Lya-

punov function V (x̃k) = x̃T
kQx̃k +

N−1∑
i=1

(x̃∗
k+i)

T
Qx̃∗

k+i +

(x̃∗
k+N )TQf x̃

∗
k+N and

V (x̃∗
k+1) ≤

N−1∑
i=1

(x̃∗
k+i)

T
Qx̃∗

k+i + (x̃∗
k+N )TQx̃∗

k+N

+ x̃T
k+N+1Qf x̃k+N+1

since the right-side term refers to the cost of a feasible
control sequence. By (4.14),

V (x̃∗
k+1)− V (x̃k) ≤− x̃T

kQx̃k + (x̃∗
k+N )TQx̃∗

k+N

− εf (x̃
∗
k+N )TQf x̃

∗
k+N .

When Q − εfQf is a negative semi-definite matrix
(or equivalently Qf ≽ Q/εf ), V (x̃k+1) − V (x̃k) ≤
−x̃T

kQx̃k ≤ −λmin(Q) |x̃k|22 since x̃k+1 = x̃∗
k+1 without

regard to disturbances. Besides, V (x̃k) ≥ λmin(Q) |x̃k|2
and V (x̃k) ≤ x̃T

kQf x̃k by the monotonicity of optimal
value functions (see Proposition 2.18 in [15]). It follows
that

(4.15) V (x̃k+1)− V (x̃k) ≤ −γV (x̃k)

with γ = λmin(Q)/λmax(Qf ) ≤ 1 by Weyl’s inequality
[9] and

|x̃k|22 ≤ (1− γ)
k

γ
|x̃0|22

from any x̃0 satisfying (2.10).

Remark 4.2. As a feasible control has been found in
Lemma 4.1, by Theorem 4.1, problem (3.11) is feasible
for k = 0, 1, .... Besides, when εf = 1, Qf = Q is
sufficient to guarantee the exponential stability of the
closed-loop system. When εf < 1, we need to choose
larger Qf such that Q− εfQf is negative semi-definite,
which puts more weights on the terminal cost.

It is known that exponential stability of a nominal
discrete-time system does not imply the boundness of
the states even with a small disturbance [16]. For
transportation systems, information on traffic demand
cannot be obtained accurately. Therefore, it is necessary
to consider the robustness of the nominal MPC in face
of uncertainty, similar to the study of the robustness of
Lagrange stability for continuous-time systems [8, 10].
In regard to the robustness analysis, the satisfaction
of the state constraints (2.10) can be guaranteed by
tightening the state constraints (2.10) and applying the
control every N steps instead of one step [2].

Corollary 4.1. Assume (2.9) is perturbed by d̃k as

x̃k+1 = x̃k − HGk + dk + d̃k with
∣∣∣d̃k∣∣∣

∞
≤ d̃max, and

dk ∈ D(ε1, ε2) with some positive parameters ε1, ε2 for
k = 0, 1, ..., and x∗ > 0. Then there exist a positive
definite matrix Qf for (3.11), and a constant ε3 > 0
with which the state constraints (2.10) are tightened by

(4.16) −x∗ + ε31n ≤ x̃(k) ≤ xmax − x∗ − ε31n.

At time Ni with i = 0, 1, ..., problem (3.11) is solved
with additional constraints (4.16) for k = 1, 2, ..., N and
one of the optimal solutions is applied to the system for
the next N steps. Then, there exist ε > 0, 0 ≤ c < 1 and
a class K∞ function β such that for all initial conditions
satisfying (2.10), when d̃max ≤ ε, recursive feasibility
is achieved with constraint satisfaction of (2.5), (2.6),
(2.7) and (2.10) for k = 0, 1, ..., and

(4.17) V (x̃k+N ) ≤ cV (x̃k) + β(ε).

for k = Ni, i = 0, 1, ....

Proof. At moment k, let 0 < δ ≤
min{1, ε1, ε2/

∣∣H−1xmax

∣∣
∞}, H−1dk+i ≤ Puk+i − ε21n

with uk+i ∈ Ω, and Gk+i = H−1dk+i + δH−1x̃k+i,
for i = 0, ..., N − 1. When ε3 ≤ δ[x∗]min with [x∗]min

denoting the minimum component of x∗, one has
ε31n ≤ δx∗ and −x∗ + ε31n ≤ −(1 − δ)x∗. Similarly,
when ε3 ≤ δ[xmax−x∗]min, one has ε31n ≤ δ(xmax−x∗)
and (1− δ)(xmax − x∗) ≤ xmax − x∗ − ε31n. Therefore,
when Gk+i, uk+i are applied with i = 0, ..., N − 1
and x̃k satisfies (2.10), the nominal state se-
quence x̃

′

k+i satisfies (4.16) for i = 0, ..., N − 1, if
ε3 ≤ min{δ[x∗]min, δ[xmax − x∗]min}. Gk+i and uk+i

satisfy constraints (2.5), (2.6) and (2.7) via the proof
of Lemma 4.1. Thus one feasible control sequence has
been found for the modified problem.

Assume one optimal solution of the modified prob-
lem is U∗

k , U
∗
k+1, ..., U

∗
k+N−1 and the corresponding nom-

inal state sequence is x̃k, x̃
∗
k+1, ..., x̃

∗
k+N , of which each

state satisfies (2.10) strictly. For i = 1, ..., N , the per-

turbed state x̃k+i = x̃∗
k+i+

i−1∑
j=0

d̃k+j , and when d̃max ≤ ε
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with ε = ε3/N , x̃k+i satisfies (2.10). Control constraints
(2.5), (2.6) and (2.7) are satisfied via the feasibility of
the problem. Since x̃k+N satisfies (2.10), there exists
a feasible control sequence from time k + N to time
k + 2N − 1. By the mathematical induction, the recur-
sive feasibility of the modified problem is guaranteed
with constraint satisfaction of (2.5), (2.6), (2.7), and
(2.10) for k = 0, 1, ..., when d̃max ≤ ε.

Let V (x) denote the optimal cost function for the
modified problem and Qf ≽ Q/εf with εf = 1−(1−δ)2,
from which εfx

TQfx ≥ xTQx for any x ∈ Rn. Similar
to the proof of Theorem 4.1, xTQx ≤ V (x) ≤ xTQfx

for any x satisfying (2.10), from which λmin(Q) |x|22 ≤
V (x) ≤ λmax(Qf ) |x|22. Besides, for k = Ni, i = 0, 1, ...,

V (x̃k+N )− V (x̃k) ≤x̃T
k+NQf x̃k+N − (x̃∗

k+N )TQf x̃
∗
k+N

−
N−1∑
j=0

(x̃∗
k+j)

T
Qx̃∗

k+j .

Since xTQfx is a continuous function over x, by
Proposition 3.4 in [15], there exists a class K∞ func-

tion α such that
∣∣∣x̃T

k+NQf x̃k+N − (x̃∗
k+N )

T
Qf x̃

∗
k+N

∣∣∣ ≤
α(

∣∣x̃k+N − x̃∗
k+N

∣∣), from which

V (x̃k+N ) ≤ V (x̃k)− x̃T
kQx̃k + α(

∣∣∣∣∣∣
N−1∑
j=0

d̃k+j

∣∣∣∣∣∣)
≤ cV (x̃k) + β(ε)

where c = 1 − λmin(Q)/λmax(Qf ) and β(·) = Nα(·).

Remark 4.3. Constant ε3 provides an upper bound for
constraint tightening to guarantee the feasibility of the
perturbed states. Besides, (4.17) implies

|x̃k|22 ≤ λmax(Qf )

λmin(Q)
ci |x̃0|22 +

1

λmin(Q)

i−1∑
j=0

cjβ(ε)

for k = Ni, i = 0, 1, ..., which guarantees practical
exponential stability of the closed-loop system [3]. In
addition, x̃k converges exponentially to the set

{x̃k| |x̃k|22 ≤ 1

λmin(Q)(1− c)
β(ε)}

whose size increases with the noise level ε. Further-
more, ε = ε3/N provides an estimate of the maximum
disturbance quantitatively.

5 Applicability Studies

To validate the analysis in the previous sections, this
section uses two consecutive intersections in Chat-
tanooga, Tennessee, USA as a simulation case study,

where one is the intersection of E. M. L. King Blvd and
Chestnut Street, and the other is the intersection of E.
M. L. King Blvd and Broad Street as shown in Fig. 2
where the numbers around the arrow tails denote the
VPL indices and the smaller numbers around the ar-
rowheads denote the phase indices.

Each intersection has 4 phases, i.e., phase 1, 2, 3,
and 4. The phases with odd numbers are associated
with ”protected left turn” movements and the ones with
even numbers are associated with ”through” and ”right
turn” movements. The lost time for all the phases are
4 seconds. The minimum green times for all the even-
number phases are 8 seconds and 4 seconds for all the
odd-number phases. There are 15 VPLs in total, and
saturation rates and storage capacities of the VPLs are
in Table 1 and partial turning rates between different
VPLs are in Table 2 and the other exit rates are either
1 or can be derived by Table 2. The cycle length for
both intersections is 90 seconds. The demand is selected
from one peak hour in the afternoon and is uniformly
distributed for each cycle. The set point x∗ > 0 is equal
to the constant demand. The first step is to find ε1 and
ε2 in Definition 4.1. It is clear that ε1 = 1 and to find
ε2, the following optimization problem

(5.18)
min
u

−1T
nPu

s.t. Pu− ε21n ≥ H−1d, u ∈ Ω

can be solved with a given ε2. If there is no feasible
solution, ε2 should be decreased gradually until the
problem can be solved. Following these steps, we find
that ε2 = 2.85 and δ = 0.036. The initial state x0 =
[20, 60, 18, 13, 5, 20, 19, 68, 30, 29, 10, 34, 15, 40, 23]T .
And the plot of the state trajectory of x̃k with the
controller in Lemma 4.1 is shown in Fig. 3 and all
the state and control constraints are satisfied. It can
be seen that the set point is reached using more than
100 steps, and the low convergence rate arises from the
conservative estimate of δ. Therefore, the controller
in Lemma 4.1 is of theoretical importance but far
from practice. On the other hand, εf = 0.071 and we
set Qf = 14.5Q and N = 2. The plot of the state
trajectory under the MPC proposed in Section 3 is
shown in Fig. 4. It can be observed that state x̃k

converges to 0 within 10 steps, which shows superior
performance compared with the previous stabilizing
controller. Besides, ε3 = 0.108 based on δ, x∗ and
xmax − x∗, and d̃max = 0.05. And the flow dynamics is

perturbed by unknown demand d̃k with
∣∣∣d̃k∣∣∣

∞
≤ d̃max,

and d̃k is sampled from a uniform distribution. The
modified MPC solves (3.11) with additional constraints
(4.16) every 2 steps, and the solved optimal control
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Figure 2: Layout of the intersections
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Figure 3: State trajectory using the first stabilizing
controller

sequence is applied for the next 2 steps. The plot of the
state trajectory with the unknown demand is shown in
Fig. 5, and all of the constraints are satisfied during the
process. It can be seen that the state x̃k is ultimately
bounded with |x̃k|∞ ≤ 0.05. Some further experiments
show that the state still keeps bounded and satisfies
(2.10) when d̃max and ε3 increase together.

6 Conclusion

This paper has considered an MPC scheme for the traffic
signal control problem in urban road networks. Specif-
ically, the store and forward model is taken to describe
traffic flow dynamics with the VPL concepts, and fi-
nite storage constraints and the control constraints im-
posed by NEMA standards are considered to formulate
a quadratic programming problem in the MPC scheme
aimed at balancing the traffic densities. The definition
of feasible inflows is introduced and an exponentially
stabilizing controller arises from this definition, with

0 5 10 15 20

Time step (k)

-10

0

10

20

30

40

50

60

Figure 4: State trajectory using the MPC

0 5 10 15 20 25 30 35 40

Time step (k)

0

20

40

60

9 14 19 24 29 34 39

Time step (k)

-0.05

0

0.05

Figure 5: Perturbed state trajectory using the modified
MPC

Table 1: Properties of VPLs

VPL Id Saturation Rate (veh/h) Storage (veh)

1 1340 34
2 4444 70
3 1570 23
4 1580 21
5 1516 21
6 4487 66
7 1624 22
8 3369 69
9 1685 34
10 3290 41
11 1668 20
12 3209 44
13 1685 22
14 3210 47
15 1685 23
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Table 2: Turning rates

Head link Tail link Turning rate

1 14 0.24
1 15 0.02
4 14 0.04
4 15 0.5
6 14 0.76
6 15 0.06
8 2 0.33
8 3 0.02
10 2 0.84
10 3 0.08
13 2 0.92
13 3 0.08

which the recursive feasibility and exponential stabil-
ity are guaranteed for the closed-loop system with the
MPC scheme. In other words, in the ideal case, the
number of vehicles converges exponentially to the de-
sired quantity for every link. In the presence of a dis-
turbance from traffic demand, practical exponential sta-
bility guaranteeing bounded queue lengths is achieved
by a modification of the MPC scheme. Finally, the sim-
ulation results based on a real-world traffic network in
Chattanooga, Tennessee, USA validate the effectiveness
of the theoretical analysis.
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