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Extreme Mass Ratio Inspirals (EMRIs) are one of the key sources for future space-
based gravitational wave interferometers. Measurements of EMRI gravitational
waves are expected to determine the characteristics of their sources with sub-
percent precision. However, their waveform generation is challenging due to the
long duration of the signal and the high harmonic content. Here, we present the
first ready-to-use Schwarzschild eccentric EMRI waveform implementation in the
frequency domain for use with either graphics processing units (GPUs) or central
processing units (CPUs). We present the overall waveform implementation and
test the accuracy and performance of the frequency domain waveforms against
the time domain implementation. On GPUs, the frequency domain waveform
takes in median 0.044 s to generate and is twice as fast to compute as its time
domain counterpart when considering massive black hole masses > 2 x 109 Mo
and initial eccentricities eg > 0.2. On CPUs, the median waveform evaluation
time is 5's, and it is five times faster in the frequency domain than in the time
domain. Using a sparser frequency array can further speed up the waveform
generation, reaching up to 0.3 s. This enables us to perform, for the first time,
EMRI parameter inference with fully relativistic waveforms on CPUs. Future EMRI
models, which encompass wider source characteristics (particularly black hole
spin and generic orbit geometries), will require significantly more harmonics.
Frequency domain models will be essential analysis tools for these astrophysically
realistic and important signals.
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1 Introduction

The future space-based Laser Interferometer Space Antenna (LISA) will observe
gravitational waves in the millihertz regime [1, 2]. This region of the gravitational wave
spectrum is rich in sources, including Galactic double white dwarf (WD) binaries [3],
massive black hole (MBH) binaries [4], and stellar origin black hole (SOBH) binaries early in
their evolution [4, 5]. Another key source class is extreme mass-ratio inspirals (EMRIs) [6].
These are compact binaries with a mass ratio /M ~ 10™% — 107, where x ~ 1 — 100M,
is the mass of the orbiting secondary and M ~ 10° — 10’ M, is the mass of the MBH. EMRIs
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are expected to form in dense stellar clusters of galactic nuclei [7, 8],
where their detection rate ranges from ~ 1 to 10* per year with
observable signal-to-noise ratios (SNR) expected to be ~ 20 — 1000
over the duration of the signal [9-11]. The details depend on the
precise formation mechanism [12-15], but it is anticipated that the
majority of EMRIs are expected to have eccentricities at plunge in
the range 0 < e, < 0.2, with a long tail extending to larger e,
[9]. This is why high-eccentricity EMRIs have some of the richest
and most complicated gravitational waveforms of any compact
binary system. The small mass ratio of EMRIs also means that they
evolve slowly, typically completing ~ 10*-10° orbits over years
while in the LISA band. The long-lasting, complex waveforms of
EMRIs present a substantial challenge for both the modeling of
these binaries and the LISA data analysis task [14-21].

Modeling and extracting EMRI signals from the LISA data
stream will provide binary system measurements with sub-
percent level precision [9]. This precision will enable precise
tests of general relativity [22-26]. Additionally, studying EMRIs
will enhance our understanding of the mass function of MBHs
[27], the dense stellar environments in galactic cores [10],
and the gas disks surrounding MBHs [28-34]. Furthermore,
gravitational wave signals from EMRIs could be used to constrain
cosmological parameters [35, 36] or measure phase calibration
errors [37].

Extracting this wealth of information from EMRIs in the LISA
data stream poses two significant challenges: accuracy and speed.
The former is limited by the waveform modeling accuracy, whereas
the latter is limited by the combined computational cost of the
waveform generation, the discrete Fourier transform (DFT), and
the inner product necessary to compute the likelihood function or
any detection statistic. The first attempt to address these problems
was presented in the release of the FASTEMRIWAVEFORMS
(FEW) computational framework [38, 39], which can compute
fully relativistic waveforms rapidly. This package combines a
set of standalone modules to create EMRI waveforms on both
graphics processing unit (GPU) and central processing unit (CPU)
hardware. It was shown that the GPU version is & 2500 times faster
than its CPU counterpart for Schwarzschild spacetimes. GPUs are
designed with a large number of cores and specialized hardware
that allows them to perform multiple tasks simultaneously,
making them highly efficient in handling parallel processing tasks.
Compared with CPUs, which typically have fewer cores, GPUs can
process a much larger number of tasks concurrently, resulting in
significantly improved performance for certain applications. GPUs
are particularly well suited to efficient EMRI waveform generation
because these signals consist of a large number of harmonic modes
that are summed in parallel.

The waveform generation in FEW is currently performed in the
time domain (TD), with typical speeds using GPUs and CPUs on
the order of tens of milliseconds and tens of seconds, respectively.
For GPUs, the computational costs of the likelihood are
negligible (less than a millisecond), therefore making the waveform
generation the bottleneck of the computations. However, for CPUs,
all of the aforementioned operations contribute significantly to
the overall data analysis cost. We expect that a frequency domain
implementation of EMRI waveforms would reduce the likelihood
evaluation cost. However, it is not immediately clear how the

Frontiersin Applied Mathematics and Statistics

10.3389/fams.2023.1266739

frequency domain implementation of the EMRI waveforms would
comparatively perform on GPUs and CPUs.

In this study, we expand upon the FEW package by
implementing a frequency domain (FD) EMRI waveform based
on Hughes et al. [40]. We provide a module that can compute
EMRI waveforms for eccentric inspirals into a non-rotating
black hole at adiabatic order [40, 41]. The implementation
supports use with both CPUs and GPUs, and its accuracy
and performance are explored. This study is fully reproducible
using the software provided at https://github.com/lorenzsp/EMRI
FrequencyDomainWaveforms.

The study is organized as follows. We review the general
construction of EMRI waveforms in Section 2.1, and we discuss the
frequency domain implementation in Section 2.2. In Section 2.3,
we present the data analysis tools that are used to test the accuracy
of the waveform generation. Finally, in Section 3, we present the
results for the performance and accuracy tests of the frequency
domain implementation.

2 Methods

2.1 Extreme mass ratio inspiral waveforms

The gravitational waves emitted by an EMRI are among
the most complicated compact binary signals due to their long
duration and rich harmonic content. This complexity stems from
the dynamics of the secondary object inspiralling into the central
MBH. Such orbits are characterized by three degrees of freedom
associated with the dimensionless fundamental frequencies of Kerr
geodesic orbits Q2,9 4 [42, 43]. These quantities are determined by
the dimensionless spin magnitude of the MBH a and the quasi-
Keplerian orbital parameters of p (semi-latus rectum or separation
in units of M), e (eccentricity), and x; = cosI (cosine of the angle
I which describes the inclination of the orbit from the equatorial
plane). At adiabatic order, for a given system with primary mass M,
secondary mass i, initial orbital parameters (po, €9, x10), and initial
phases @0, Pgg, D0, the orbital evolution can be determined by
solving the following system of ordinary differential equations:

d H

EP = pr(a,p, e, X[)
d

o= flap.ex)
d H
EXI = fol(a,p, e,X1)

d
- (D(pﬂ,r = Q(p,@,f(“; p.e x])/M .

dt

The orbital-element fluxes f, .y, account for the gravitational
wave emission and are interpolated from pre-computed grids. In
the FEW package, the system of ordinary differential equations is
solved using an explicit embedded Runge-Kutta Prince-Dormand
(8,9) method with adaptive step size [see gsl_odeiv2_step_rk8pd in
Galassi [44]], resulting in sparse orbital trajectories of ~ 100 data
points in length.

Once  the  trajectory is  fully  specified by
{p(t), e(t), x1 (1), Dy (1), Py (t), D,(¢)}, we compute the complex
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gravitational-wave  amplitudes  Ap, (p(2), e(t), x1(t)).  Each
amplitude mode is associated with the multipole / of the radiation
and the harmonic {m, n, k} of the fundamental orbital frequencies,
where m, k, and n label the azimuthal, polar, and radial modes,
respectively. In the FEW package, the amplitudes and phases are
interpolated using a “not-a-knot” cubic spline to handle the large
number of modes using a sparse number of points. Cubic splines
are the simplest polynomial basis spline suitable for our purposes
because they provide an approximation of the second derivative
of frequency with respect to time. Higher order spline functions
are more expensive and might overfit data as sparsely evaluated
as our trajectory information. Additionally, the root-finding
procedure that will be used in constructing the time-frequency
correspondence in Eq. 6 is significantly more expensive for higher
order polynomials due to the need to perform this task numerically.
In the interest of computational efficiency, we control the number
of harmonic modes with a further mode-selection step. The
mode-selection step is defined by the threshold € of the total power
emitted by all modes. Within each time step of the sparse array, we
take |Api (£)]? and sort the individual modes in descending order
and compute a cumulative summation. From this sorted array, we
check whether the additional power contributed to an individual
mode falls below the threshold € related to the total power emitted.
This gives a set of contributing modes within each time step. The
selected modes are given by the union of all contributing modes
across all time steps. This ensures to maintain continuity across
time. Only the modes that pass this threshold are included in the
waveform computation [see Katz et al. [39] for further details].

The gravitational wave signal at a large distance from the
source can be represented in terms of the complex time-domain
dimensionless strain [40]:

h= h+ —ihy = 57 Z Almien () St (E, G)Eim¢

Imkn

exp {—i[mquO(t) + k®o(t) + n<1>,(t)]} , (1)
where t is the time of arrival of the gravitational wave at the Solar
System barycenter, 6 is the source-frame polar viewing angle, ¢ is
the source-frame azimuthal viewing angle, and dy is the luminosity
distance of the source. The functions S, (t,0) are spin-weighted
spheroidal harmonics. For inspiral into a Schwarzschild black hole
(the focus of this analysis), these functions are identical to the spin-
weighted spherical harmonics. For the general Kerr case, they differ
from the spherical harmonics (though they can be very usefully
expanded into spherical harmonics [45]), and in particular, they
depend on the orbital frequencies. Because the orbital frequencies
evolve with time, the spheroidal harmonics evolve as well [40],
complicating the description of the waveform. Future studies
will describe how we handle this complication. In any case,
the usual transverse-traceless gravitational wave polarizations can
be obtained from the real and imaginary parts of the complex
conjugate of h.

A key element to be noted in Eq. 1 is that the EMRI waveform
can be viewed as a sum of simple “voices”, where each voice
corresponds to a mode (I, m, k, n). The time-domain waveform can
thus be rewritten in terms of a sum over voices V:

h=> Hy()e 0, ©)
\4
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where each voice is characterized by a complex amplitude
Hy(t) and a phase ®y(t). The voice-by-voice decomposition was
suggested to one of the present authors by L. S. Finn and first
presented in Hughes [46].' In this study, we provide the first
ready-to-use implementation of this decomposition for frequency-
domain EMRI waveforms.

2.2 The frequency domain

EMRI waveforms can be represented in the frequency domain
by using the stationary phase approximation. Because amplitude,
phase, and frequency in an EMRI evolve slowly (as long as
the two-timescale approximation is valid [48]), we expect the
stationary phase approximation (SPA) to provide a high-quality
approximation to the Fourier transform of the signal [49]. Here,
we review the computation of the Fourier transform of an EMRI
waveform in the frequency domain presented in the study by
Hughes et al. [40]. We begin by taking the Fourier transform of
each voice of Eq. 2 as follows:

oo i o0 .
h(f) = / h(t)e¥™ I dt = / H(1)eZfi=®Ol gp - (3)
—00 —00

where we have not written the subscript for ease of notation. To
compute the stationary phase approximation to the signal, it is
necessary to expand the phase evolution, written as

. I ..
D(f) = D(ts) + 27 F(t —ts) + wF(t —t5)> + gF(t— )’ +... (4)
where
po L do _dF 1 d*o B 1 &0
Co2modt | Codt 2w | T2 dP |
(5)

We have introduced the instantaneous frequency of the signal
and the instantaneous first and second derivatives of the frequency
at the stationary time t = fg for which F = f. We expanded up
to third order in the phase evolution because for some voices, the
frequency evolution is not monotonic. If the frequency derivative
vanishes (F = 0), the standard SPA Fourier transform is singular
and cannot be used [50]. This is highly relevant to EMRI signals
because the frequency associated with many voices rises to a
maximum and then decreases. In particular, this occurs for EMRI
voices which involve harmonics of the radial frequency. This is
because €2, becomes very small (approaching [24]) in the weak-
field limit and goes to zero as systems approach the last stable orbit;
a maximum of 2, exists between these two “small” limits.

We now use Eq. 4 to obtain the time-frequency correspondence
for each voice, i.e., we find the time ¢ such that F(t) = f. The
frequency evolution of each voice F(t) = (mQy,(t) + kQo(t) +
n2,(t))/(2r M) is directly obtained from the trajectory evolution
of each of the fundamental frequencies. During the waveform
production process, the fundamental frequency evolution is

1 Notably, a frequency domain waveform implementation was also
presented in the study by Piovano et al. [47] with the limitation to circular

Kerr orbits.

frontiersin.org


https://doi.org/10.3389/fams.2023.1266739
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Speri et al.

interpolated with a cubic spline, allowing for a good approximation
using a third-order polynomial. Doing so, the condition f = F(t)
between two knots can be rewritten as:

f=A+B({t—t)+C(t—t)>+D(t—1t), (6)

where A, B, C, and D are real numbers given by the sum of the spline
coefficients of three frequencies multiplied by their mode number,
and ¢; is the time at the beginning of the spline segment.

The fundamental frequency, fundamental phase, and amplitude
spline coeflicients are determined along the sparse trajectory prior
to the final waveform summation phase [see Katz et al. [39] for
more information]. Additionally, using all values of f and each set
of frequencies found along the sparse trajectory for each voice, the
spline segment, in which each value of f falls, is predetermined
before the summation. Once in the summation, the goal is to
determine #(f) as efficiently as possible. This is difficult in cases
where the voice is not monotonic because #(f) is not a bijective
mapping for this case: two values of t can be represented by the
same value of f. To address this issue, we solve for the cubic roots of
Eq. 6 within each segment, where f is found (one or two segments
per voice depending on f). We take the real-valued roots and
determine which one or two actually exist between the bounds of
the segment, and we are currently examining (it can be two only
for the segment in which the turnover occurs). Since the frequency
evolution is slowly varying within each segment, the condition
F = 0 cannot occur more than one time per segment. These time
values occurring within our segment are then used to determine all
necessary quantities for waveform building because all informative
splines are fit as a function of t.

We define #(f) to be the jth time (first or second) at which
F(t) = f, and write F] = F[tj(f)], Fj = F[tj(f)]. These higher order
derivatives are also computed using the fundamental frequency
spline information. With that, for each value of f for each voice,
the Fourier transform can be represented as:

N
h(f) = 3" HIg(N)PIN- GO / WP EWP 3] gy
j=1 -

7)

where N € {1, 2} is the number of time values associated with each
value of f. To perform this integral, we set « = y + 27 iF, with y
real and positive, define 8 = 27 F, and use

© ; 2 o 3pp2
e—at2/2—zﬂt3/6 dt = —— — o /3B K 3(0(3/3/32) , (8)
/,oo 73161 !

where K, (z) is the modified Bessel function of the second type.
Taking the limit y — 0, we find

- N o () (P i —2miE 3
h(f) = 2= 3L, HIg())e 2= 260 I%\e i 136
K, /3(—2711'Fj3 /311}2) . 9)
This result defines our frequency domain waveform. Expanding
about “small” F], it can be shown that this yields the standard SPA

when FJ — 0and N = 1 [see Hughes et al. [40]]. For computational
efficiency, we approximate the term iy/xe ' XK; ,3(—iX) with two
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polynomial expansions in X = 27riF]-3/3F-2, valid for |X| < 7 and
|X| > 7. The largest relative error occurs around the transition
region |X| &~ 7 and is & 1073. We did not explore the potential
of applying this method for calculating other oscillatory integrals
[51].

As previously mentioned, this waveform is built into the
framework of FEW. All parts of the waveform generation prior to
the “waveform summation module” are identical to the original
time-domain implementation [39]. The waveform summation
described above is implemented for both CPUs and GPUs. For
the purposes of GPU parallelization, the summation is grouped
by harmonic voice and segment of the splines defined in time.
This creates a rectangular computation grid because all spline
information occurs on the same sparse time evolution returned
from the trajectory integrator yielding a constant number of
segments across all spline constituents. On the GPU, we place
each segment within each voice on a separate GPU block (larger
parallelization unit). Within each block, we use the parallel threads
(smaller parallelization unit) to evaluate all values of interest in
frequency for that specific voice and segment. The waveform
is then constructed by “atomically” adding from each of these
blocks and threads to an overall waveform vector stored in GPU
global memory.

2.3 Data analysis setup

An EMRI waveform for non-rotating black holes is uniquely
determined in the reference frame of the Solar System barycenter
by setting the following parameters:

{M, i1, po, eo, dr, 05, Ps, Ox> drc> Do, Pro} (10)
where 05 and ¢ are the polar and azimuthal sky location angles
given in the Solar System barycenter reference frame, and 6x and
¢k are the azimuthal and polar angles describing the orientation
of the orbital angular momentum. The relation to the source frame
angles 0, ¢ can be found in the study by Katz et al. [39]. We do not
include the effect of the detector response function, but we leave
this to future studies [52].

We check the performance and accuracy of the FD waveform
over the EMRI parameter space confined to log(M/Mg) €
[log 10°, log 107), log(n/M) € [log 1076, log 107%), e €
[0.001,0.7), and Py, P9 € [0,27) by uniformly drawing 5,000
parameter realizations. The initial semi-latus rectum is fixed to
obtain an inspiral with a time duration of 0.99T, where T is
the duration of the observation. We consider h4 and hy in the
Solar System barycenter as our two channels, and we fix {d], =
1Gpc,0s = 7/3,¢s = w/3,0k = 7w/3,¢x = m/3} throughout
this study. To check our implementation, we quantify how similar
two waveforms are using the mismatch?

(alb)o

63))
(ala)a (b]b)a

M@b)=1-%"

2 Inthe literature this is also denoted unfaithfulness.
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where we have introduced the inner product -- of each channel «,

atoibiny =are [~ DU gy T L)

0 Sn (f) Sn(ft) T

where f; = i/T, with i from 1 up to the total number of frequency
bins Ny = N/2 with N number of time points. Notably, we will
also consider frequency arrays with spacing different from the one
previously mentioned. The tilde indicates the Fourier transform,
and S, (f) is the one-sided noise spectral density for the LISA data
streams, which we take from the study by Babak et al. [53]. We
use the mismatch M (hgp, hrp) to compare the frequency domain
implementation with the DFT of the time-domain implementation
sampled with a time interval At = T/N. The conversion from
continuous to discrete samples changes the underlying Fourier
transform into the discrete Fourier transform. This leads to a
type of distortion called aliasing. The choice of an appropriate
time sampling At is the key to minimizing such distortion. The
Nyquist rate is the maximum resolvable frequency for the DFT
of a discrete-time signal, and its value equals 1/(2At). When the
signal is digitized, we need to make sure that the Nyquist frequency
is larger than the largest harmonic frequency Fy(t) of the signal,
ie. maxyF(t) < 1/(2At), where V = (I,m, n, k). By ensuring this
condition, the resulting discrete-time sequence is free of aliasing.
Similarly, the conversion from a very long (or infinite) sequence to
a manageable size entails a type of distortion called leakage, which
is manifested as a loss of resolution in the DFT. We mitigate this
effect by applying the Hann window to the time domain waveform
[54]. To account for the effect of windowing in the FD waveform,
we perform a convolution of the FD signal with the DFT of the
window function. We do not maximize over the phase since the
initial conditions of the frequency and phase evolution of the TD
and FD waveforms are the same by construction. Global relative
time and phase shifts are not observable parameters, so by not
optimizing over them, we are being conservative with the model
and folding data processing into the model comparison.

We show the impact of windowing and spectral leakage in
Figure 1 for a system with 4 = 10Mg, M = 106M@, ep = 0.6,pp =
9.56 for an observation of T = 1 year, a mode content threshold
€ = 1072, and a sampling interval of At = 10 s. We show the
amplitude squared, |hy ()12, of the frequency domain waveform
(dashed orange line) and DFT of the time domain waveform (solid
blue line) for the plus polarization in the upper panel of Figure 1.
For reference, we also show the LISA sensitivity curve used to
calculate the inner products. In the upper panel of Figure 1, we
do not apply any windowing, and therefore, the FD waveform is
zero only where there is no mode content. Conversely, the DFT
of the TD waveform is affected by spectral leakage, especially for
frequencies larger than 1072 Hz. If we apply the Hann window
consistently to both the FD and TD signals as previously described,
we obtain the spectrum shown in the lower panel of Figure 1.
The effect of windowing reduces the total power but improves
the agreement between the waveforms such that the mismatch
decreases from 8 x 1074 to 4 x 107°.

It is often quoted that the average mismatch for a waveform
needs to be 1—0.9/3 ~ 1—0.965 to recover 90% of the signals in an
experiment [55, 56]. However, the requirements on the mismatch
for parameter estimation (PE) studies are not as straightforward
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FIGURE 1

Spectrum of the frequency domain (FD) waveform compared with
the spectrum of the discrete Fourier transform (DFT) of the time
domain (TD) waveform. In the upper plot, we show the amplitude
squared |h, (f)|> when we do not include any windowing when
computing the spectrum of the waveforms. In the lower panel, we
apply the Hann window to both the TD and FD waveforms. Note
how the windowing helps to resolve the harmonics in the
low-frequency region f < 10~* Hz and reduce the power of the
leakage at frequencies f > 1072 Hz. We consider an EMRI system
composed of a secondary object with mass u = 10Mg, orbiting
around a non-rotating black hole of mass M = 10°M, with initial
eccentricity ep = 0.6 and semi-latus rectum pp = 9.56 fixed such
that the inspiral plunges after 1 year of observation.

to characterize, primarily as there is no one-to-one relationship
between the level of mismatch and the level of bias that is incurred
during inference. A sensible requirement for a PE study is to
ask that the systematic (or mismodeling) error coming from an
approximate waveform is lower than the statistical error coming
from the noise in the data. While the former is independent of
the signal-to-noise ratio (SNR = /(h4hy) + (hyhy)), the latter
depends on the SNR, and therefore the mismatch requirement
on a waveform for a PE study is SNR-dependent. The mismatch
times the SNR? is approximately half the model waveform error:
M(I’l],hz) X SNR2 ~ (hl — hzhl — hz)/z [57]. Therefore, we
perform PE on the system that yields the largest value of M x SNRZ,
In particular, we check that the posterior distribution obtained
with an FD waveform is equivalent to the one obtained with a TD
waveform. To do this, we use the likelihood given by [58]:

D (s—hls— h)a} , (13)

a=-+,X

1
p(s|h) o |:—2
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where we ignored the normalization factor that needs to be
included when fitting for the shape of the noise spectral density
Su. We do not inject any noise in the datastream since we want to
check whether any waveform systematic arises due to the difference
between the FD and TD implementations. Notably, if we apply a
window to our data, we should take into account its effects in the
likelihood. In fact, the expectation value of the inner product of the
noise n(t) = s(t) — h(t) is different if a window is applied
E[{w(t) n(t)[w(t) n()] # E[(n())|n()] = N (14)
We do not take into account the effect of windowing in
the likelihood because this would lead to a non-diagonal noise
covariance matrix and an increase in the computational cost of the
inner product. This is not a problem for the purpose of our study
because we are consistently neglecting the effect of windowing in
the likelihood when analyzing the data with different waveform
models (FD or TD) [59]. We remind the reader that we apply the
windowing solely because the two waveforms (FD and TD) are in
two different domains and we perform the parameter estimation
only to check the presence of waveform systematics. However, we
remark that the effect of windowing (and gaps) in LISA data is an
important issue that remains to be addressed, but it is beyond the
scope of this study. To deal with the data gaps expected in LISA, it
would be worth investigating the usage of non-uniform DFT.

3 Results

The frequency and time domain waveforms are built using
the same trajectory and amplitude modules. However, the final
signal output is obtained using different mode summations
and prescriptions. Therefore, any waveform difference might be
attributed to the stationary phase approximation and/or spectral
leakage. However, any difference in the speed of the waveform
generation is due to the mode summation algorithm of the
two domains. In the following, we investigate the waveform
mismatch and speed by comparing the time and frequency domain
implementations over the parameter space for different observation
time-spans T, sampling intervals At, and mode content thresholds
€. We consider as our fiducial values an observation time-span of
T = 4 years (yrs), a sampling interval of At = 5, and a threshold
€ = 107>, and we vary each of these one at a time.

3.1 Accuracy analysis

We calculate the mismatch between the frequency and time
domain waveforms as described in Section 2.3. The mismatches
obtained over the parameter space are shown in the upper part of
Figure 2. The median of the mismatch distributions are between 4 x
107% and 107>, whereas the largest 95% quantile of the mismatch is
9.7 x 107°.

The distributions obtained with a different mode content
1072 (dashed
green histogram) are almost identical. This is expected since

€ = 107> (solid blue histogram) and € =

these systems are affected in the same way by spectral leakage.
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FIGURE 2
Upper panel: Mismatch between the frequency domain (FD) and
time domain (TD) waveforms over the parameter space of EMRI
systems and for different observation time-spans, T, sampling
intervals, At, and mode content thresholds, €. The different
parameter realizations are drawn uniformly from the following
ranges: log(M/My) € [log 10°, log 107), log(u/M) € [log 1078,
log 10—4), eg € [0.001,0.7), and Dy, Pro € [0, 277). Lower panel:
Dependence of the mismatch on the central black hole mass M. The
points that abruptly rise to larger mismatches for the orange dots
are caused by the fact that, for some low-mass systems, the
sampling interval At = 10 s is not small enough to resolve the
largest frequency.

When comparing the mismatches obtained with different sampling
10 s
(dotted orange histogram), we obtain lower mismatches for larger

intervals At = 5 s (solid blue histogram) and At =

sampling intervals. We attribute this difference to the fact that
the total number of points T/At contributing to the mismatch is
different. For the systems with lower T//At, the spectral leakage
is weaker since the total power is lower. To confirm this, we take
the ratio of the mismatches M as—10s/Mat=5s, and we find it
to be approximately constant as a function of the mass. For the
same reason, the mismatches obtained for T = 2 years (dashed-
dotted red histogram) are slightly lower than the ones obtain for
the fiducial value T = 4 years (solid blue histogram). However,
the mismatches obtained for (T, At) = (2yrs,5s) (dashed-dotted
red histogram) are slightly larger than the ones obtained for
(T, At) = (4yrs, 10 s)(dotted orange histogram). This is probably
due to the fact that we fix py for a given inspiral duration,
and the maximum py allowed by the current implementation
is po ~ 16.
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TABLE 1 EMRI parameters of the source with largest M x SNR?, where
M is the mismatch between the frequency and time domain waveforms.

M[Mp] w[Mg]  po[M] €o Tlyrs] SNR
3.67004174 | 292.058317 13.7091019 0.579413083 4 78
x 100

The posterior distributions obtained with different waveform implementations are shown in
Figure 3 for a mode content of € = 107°.

In the lower panel of Figure 2, we show the behavior of the
mismatch as a function of the central black hole mass M. The
correlation coeflicients between the mass M and the mismatch
M are approximately ~ 0.6. This is caused by the shape of the
LISA sensitivity curve and the fact that for larger M systems,
the spectrum shifts to lower frequencies, and the spectral leakage
present at the high frequencies becomes more dominant. For
large M, the fiducial distribution of mismatches (blue crosses)
10 s, but both
distributions reach approximately the same mismatches of ~ 107>

is wider than the one obtained with At =

for M ~ 107. This is no longer the case when M becomes
10°, the mismatches of At =
generally smaller than the ones obtained from At = 5 s.* This

smaller. For M~ 10 s are
confirms that for larger masses, the spectral leakage dominates,
whereas for smaller masses, the mismatch is more affected by
the total power in the signal. This behavior is also confirmed
for systems with T = 2 years (red crosses). In fact, if we
compare the systems with (T, At) = (4yrs,10s) and (T, At) =
(2yrs,5s) that have the same power, the distribution for the
latter system reaches larger values than the distribution for the
former system at all masses because the maximum resolvable
frequency, 1/(2At), is higher. We note that for lower masses, the
distribution for (T, At) = (2yrs,5s) has lower mismatches than
the distribution for (T, At) = (4yrs,5s) because the total power
T/At is smaller.

We use Bayesian parameter estimation to assess whether the
FD waveforms are affected by systematic errors. We use the
Eryn package [60] to perform a Markov chain Monte Carlo
analysis to estimate the posterior distribution of the EMRI intrinsic
parameters. Since this analysis is computationally expensive and
cannot be performed over the 5000 realizations considered in the
mismatch analysis, we decided to focus on the EMRI parameters
that yield the largest M x SNR2. For the values of T = 4
5sor At = 10s, ¢ = 107" (blue solid and
dotted orange histograms), we find that the largest value of M x

yrs, At =

SNR? is reached by the system with parameters shown in Table 1.
The posterior distribution of this system is shown in Figure 3
for the three scenarios in which the FD and TD are used as
injections or templates. The Kullback-Leibler divergences [61]
between each pair of posteriors are of order 10~* for all the
considered parameters. Therefore, we conclude that we do not find
any significant loss of accuracy or precision for the worst point in
parameter space.

3 The points that abruptly rise to larger mismatches for the orange
distribution are caused by the fact that, for some low mass systems, the
sampling interval At = 10 s is not small enough to resolve the largest

frequency.
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3.2 Computational cost of the waveform
generation

The computational cost of the time and frequency domain
implementations differ only in the final waveform summation and
output domain. Here, we compare the waveform speeds without
including the DFT cost. We make this choice to highlight the
difference in the waveform generation cost, and we provide the
speed of the DFT for a reference system. The speed of the waveform
is evaluated using the NVIDIA A100 GPU and the computer cluster
Hypatia.* for GPU and CPU timings reported below. We warn
the reader that the computational cost of the waveform can vary
depending on the computing resources used.

By drawing 5,000 realizations from the parameter space as
discussed in the previous section, we show the speed-up factor
given by the ratio of the TD and FD waveform evaluation speeds
per realization. The results for the GPU speed-up factor are shown
in Figure 4. The upper panel shows the speed-up as a function of
sampling interval, observation time, and mode content, while the
lower panel shows the dependence on eccentricity and central mass
for the fiducial system. Notably the median speeds of all considered
configurations are 0.044 and 0.055 s for the FD and TD waveforms,
respectively. The distributions shown in the upper panel of Figure 4
depend on the priors chosen for the parameter space.

Since the mode threshold € controls the mode content, we
can deduce that the FD waveform generation is faster than the
TD one when the harmonic content is larger, i.e., € is smaller
(see solid blue and dashed green histograms). This is a key result
because future expansion of the FEW package will implement
EMRI systems with a central rotating black hole, where the
number of harmonics is expected to increase by an order of
magnitude.

As shown by the solid blue and red dashed-dotted histograms
in the upper panel of Figure 4, the FD waveform creation is faster
than the TD one for longer signals. This is expected since the TD
generation increases with the number of time points. Instead, the
FD generation slows down with an increasing frequency resolution.
This is confirmed by comparing the orange and blue histograms,
which differ only by the time sampling interval At. The FD
generation for our fiducial case is two times faster for systems with
M > 2 x 10° and ey > 0.2. The performance of the FD waveform
compared with the TD one improves with increasing eccentricity
and central mass M. However, the speed-up trend shown in the
lower panel of Figure 4 moves to higher eccentricities and higher
masses when T = 2 years, resulting in a smaller speed-up region.
In the limit of short signal durations, we expect the TD generation
to be faster than the FD one, and contrary in the long duration
regime.

The CPU waveform generation can take up to hundreds of
seconds depending on (T, €, At). Due to the significantly higher
computational cost, we do not present the full scan of the parameter
space, but from 10 parameter realizations, we conclude that for
(T,e,At) = (4yrs, 1072,10s), the FD waveform generation is

4 Hypatia consists of 262 GIGABYTE compute nodes (dual-socket, sixteen-
core, SMT-enabled AMD EPYC (Naples) 7351 (2.40 GHz), of which 14 provide
8 GB RAM per core (4 GB per core otherwise).
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Posterior distributions obtained with different waveform implementations for an EMRI system with parameters given in Table 1. In red, we show the
posterior distribution obtained using a frequency domain (FD) template to recover an injected waveform generated in the time domain (TD). The red
distribution matches the posteriors obtained when the injected and template waveforms are in the same domain (blue and green posteriors). The
observation time, the sampling interval, and mode content are (T, At,€) =

marginal posteriors are of order 10~ for all the considered parameters.

(4yrs, 105, 107°). The Kullback-Leibler divergences between each pair of

on average five times faster than the TD one on CPUs and takes
5 s in median. For reference, we also report that in Table 2, the
main findings after timing the FD and TD speeds for the system
of Table 1 with (T, €, At) = (4yrs,107°,10s). The FD waveform
is seven times faster than the TD waveform on CPUs but only 1.3

times faster on GPUs. The DFT operation is particularly expensive
on CPUs taking 7 s compared with the 0.4 milliseconds on a
GPU.
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3.3 Frequency downsampling

One of the main advantages of the FD generation is that we
can evaluate the waveform on a sparser frequency array than
the one imposed by the frequency resolution 1/T. We use an
evenly-spaced frequency array that spans only the region where
the injected waveform is non-zero f € [0, fmax]. We change the
frequency spacing to downsample the array, and we define the
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Upper panel: Speed-up factor of the GPU waveform generation in
the time domain (TD) vs. frequency domain (FD) over the parameter
space of EMRI systems and for different observation time-spans T,
sampling interval At, and mode content €. The speed-up factor is
given by the ratio of the TD generation speed divided by the FD
generation speed per parameter realization. The different parameter
realizations are drawn uniformly from the following ranges:
log(M/Mg) € [log 10°, log 107), log(u/M) € [log 107°,log 104),

e € [0.001,0.7), ®y0, Pro € [0, 271). Lower panel: Speed-up factor as
a function of central black hole mass M and initial eccentricities eg
for T = 4 years, At = 55, and mode content e = 107°.

total number of frequency bins to be Ny = fiax/Af. We show
that in Table 2, the computational cost of the waveform generation
in frequency and time domain on GPU and CPU obtained for
an EMRI system with the parameters specified in Table I and
(T,e, At) = (4yrs, 1072,10s). As shown in Table 2, the frequency
downsampling strongly affects the CPU speed-up factors, reducing
the cost by a factor of 34. For GPUs, instead, the frequency
downsampling mildly affects the speed-up factor between FD and
TD generation since the GPU timing is already of the order of tens
of milliseconds.

One of the downsides of reducing the frequency resolution
is the loss of accuracy in the inner product calculation, with a
possible impact on parameter inference. Here, we study the loss
of accuracy as a function of the number of frequency bins. As
a proof of concept, we consider the source with the parameters
reported in Table 1 and obtain the posterior distributions using the
FD waveform with different input frequencies and with (T, €, At) =
(4yrs, 1072,105s). In this analysis, we did not include windowing
since the injected and template waveforms are in the same domain.
The absence of windowing also affects the total SNR, so we rescaled
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the distance to keep the SNR reported in Table 1 for the finest
frequency resolution. The input array is given by evenly spaced
frequencies between zero and a maximum frequency fmax. The
spacing is set by selecting the total number of frequency bins Ny.
In Figure 5, we show the posteriors obtained with different
levels of downsampling and report the CPU and GPU likelihood
speeds. The solid blue posterior is obtained using a frequency
array defined by the DFT resolution fmax = 1/(2At) and Ny =
6311631, whereas the maximum frequency of the dashed orange
and dash-dotted green posteriors is set by the maximum harmonic
frequency present in the signal finax = 2.8 mHz. The only difference
between the three cases is due to the approximation of the innner
product in calculating the likelihood. Even using only 0.05% of
3554
(dashed orange histograms) provides a posterior indistinguishable

the frequencies, the downsampled analysis with Ny =

from the one of the full frequency array (solid blue). When
further decreasing Ny to 35, the downsampling starts to affect
the obtained posteriors. The frequency downsampling leads to a
faster likelihood evaluation which drops from 4.26 s for the full
array to 0.34 for CPUs. Further reducing the number of frequency
bins does not significantly improve the speed, highlighting that the
bottleneck of the likelihood computation might be due to other
waveform computation steps, such as mode selection [39]. The
GPU likelihood timing is reduced by a factor of two when using
downsampling.

The reason for the deviation in the posteriors can be explained
by looking at the absolute square of the characteristic strain [fi:l(f )2,
as shown in Figure 6. The FD waveform spectrum obtained with
Ny = 3554 (dashed orange line) well represents the spectrum
obtained with the full array Ny = 6311631 (solid blue line) in
the frequency range, where the signal is above the LISA sensitivity.
Instead, the spectrum obtained with Ny = 35 (dotted green line)
has a very sparse frequency array that cannot describe all the
features present in the EMRI signal. We conclude that the usage of
frequency downsampling can be an important tool for exploratory
studies of EMRI parameter inference on CPUs. This motivates
the FD implementation as an alternative to the TD one for CPU
facilities. However, we stress that it is essential to check the validity
of the downsampling before using it.

4 Discussion and conclusion

In this study, we presented a ready-to-use implementation
of an EMRI frequency domain waveform, and we compared its
accuracy and performance against its time domain counterpart.
We found the largest mismatch to be at 3 x 1073, and
95% of the generated waveforms over the EMRI parameter
space have a mismatch below 107%. We further investigated
the accuracy with a Bayesian analysis of the worst point
in the parameter space and found no visible bias in the
recovered parameters.

The computational cost of the frequency domain on GPUs
is lower than the time domain cost for central MBH masses of
> 10° and for initial eccentricities > 0.2 and high numbers
of harmonic modes. This suggests that the frequency domain
model might be more suitable when including a large number
of harmonics and we expect the FD implementation to be an
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TABLE 2 Computational cost of the waveform generation in frequency and time domain on GPU and CPU obtained from an EMRI system with
parameters given in Table 1 and (T, ¢, At) = (4yrs, 10~5,10s).

Operation = FD waveform (Downsampled) TD waveform DFT ‘
Speed CPU [s] = 13.7 (0.4) 90.6 7.1

Speed GPU [s] = 0.048 (0.035) 0.064 0.0004

Number of frequency bins Ny = 6311631 (7864) 6311631 6311631

The speed of the DFT and the downsampled frequency domain generation is also reported. The last row indicates the size of the frequency array.

( finax [mHz], N¢, likelihood speed{CPU, GPU} [s]) =
—— (50,6311631, {4.26,0.061})

--------- (2.8, 3554, {0.34,0.029})

— (2.8, 35, {0.32,0.029})
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FIGURE 5

Posterior distributions for an EMRI system with parameters given in Table 1. The posteriors are obtained using the frequency domain waveform with a
specified frequency array f € [0, frmax] With Nr number of frequency bins. The solid blue posterior considers a maximum frequency set by

fmax = 1/(2At), whereas the maximum frequency of the dashed orange and dash-dotted green posteriors is set by the maximum frequency present
in the signal. The computational cost of the likelihood evaluation is reported in seconds for GPU and CPU. The mode content is fixed to ¢ = 1072,
and the injected waveforms are shown in Figure 6.
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FIGURE 6

Characteristic strain spectrum |fA(f)|2 obtained with the frequency
domain waveform evaluated on different frequency arrays with N¢
frequencies. The solid blue spectrum considers a maximum
frequency set by fmax = 1/(2At) = 50 mHz, whereas the maximum
frequency of the dashed orange and dash-dotted green spectrum is
set by the maximum frequency present in the signal fnax = 2.8 mHz.
The parameters of the EMRI system are shown in Table 1, and the
posteriors for these different levels of frequency downsampling are
shown in Figure 5.

important alternative to the TD one when extending the waveform
model to Kerr spacetimes, where the number of modes is expected
to increase by an order of magnitude. Due to the modularity of the
FD implementation, the current model can be extended to Kerr
spacetimes once amplitude and trajectories are available. These
results also have implications for the data analysis applications of
the FD waveform model. If we expect the search phase of EMRIs
to be conducted using the fastest model, for instance, with a lower
mode content, the TD generation may be preferable. However,
including all the modes might be important when performing tests
of general relativity, and therefore, the FD waveform could be used
in this scenario.

o

The speed-up factor of the waveform model on CPUs is
7 times faster than the time domain version for the considered
system and, in median, 5 times faster for different configurations.
However, the waveform evaluation still takes order of 10 s, making
the FD waveform not fast enough to perform EMRI parameter
inference on CPUs. The frequency domain formulation allows
us to choose the input frequency array giving the possibility
of downsampling. This was explored for an EMRI system in
which we found that the CPU likelihood evaluation can be
reduced to 0.3 s when reducing the number of frequency bins
to be evaluated. This allows users without GPU resources to
run EMRI parameter inference with a fully relativistic waveform
for the first time. Frequency downsampling can be used for
exploratory studies aimed at assessing the uncertainties that might
be realized in parameter estimation. However, this must be done
carefully, especially when injecting noise. The noise must be
scaled appropriately to avoid obtaining misleading results, and
the possible downsampling will depend on the EMRI parameters.
Downsampling will in general not be possible when analyzing
real data, but it can be used as a tool for understanding EMRI
parameter estimation.
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In the current setup, the CPU evaluation time converges to
values determined by the mode selection. In future studies, we
plan to improve this module, therefore enhancing the performance
of the CPU FD implementation. Other approaches that use
the sparsity of the frequency array to speed up have already
been presented in the study by Cornish [62] and Zackay et al.
[63]. However, the non-monotonic modes and the large number
of harmonics pose challenges in applying such techniques to
EMRI waveforms. It is not clear yet whether relative binning or
heterodyning will significantly speed up the parameter estimation
of EMRI sources.

In this study, we did not include the effect of the LISA response
function. This is crucial in using the FD waveforms for realistic
data analysis studies. A frequency domain response was already
presented in Marsat and Baker [52]. However, it still needs to be
assessed whether the approximations used in the study by Marsat
and Baker [52] apply to EMRIs. This should be investigated in
future studies.

Looking to future, we note that post-adiabatic corrections to the
waveform phase are important for precision science with EMRIs.
These corrections are known for quasi-circular inspirals [64], and
the path to eccentric orbit calculations was laid out in the study
by [65]. Although the necessary offline second-order self-force
calculations are computationally demanding, the online generation
of the inspiral is structurally the same and as fast as the adiabatic
model [48]. With the modular FD implementation presented in this
study, the FD post-adiabatic waveform will be available as soon as
the post-adiabatic corrections to the inspiral phases are known.

Finally, a full realistic data analysis pipeline has not been
developed for EMRIs yet [see, however, Babak et al. [14] and
Cornish [15]]. We stress the importance of developing waveform
models in the time, frequency, and time-frequency domains in
order to explore the advantages and disadvantages of each domain
[66].
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