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Single index models provide an effective dimension reduction tool in
regression, especially for high dimensional data, by projecting a general mul-
tivariate predictor onto a direction vector. We propose a novel single-index
model for regression models where metric space-valued random object re-
sponses are coupled with multivariate Euclidean predictors. The responses
in this regression model include complex, non-Euclidean data, including co-
variance matrices, graph Laplacians of networks, and univariate probability
distribution functions, among other complex objects that lie in abstract metric
spaces. While Fréchet regression has proved useful for modeling the condi-
tional mean of such random objects given multivariate Euclidean vectors, it
does not provide for regression parameters such as slopes or intercepts, since
the metric space-valued responses are not amenable to linear operations. As a
consequence, distributional results for Fréchet regression have been elusive.
We show here that for the case of multivariate Euclidean predictors, the pa-
rameters that define a single index and projection vector can be used to substi-
tute for the inherent absence of parameters in Fréchet regression. Specifically,
we derive the asymptotic distribution of suitable estimates of these parame-
ters, which then can be utilized to test linear hypotheses for the parameters,
subject to an identifiability condition. Consistent estimation of the link func-
tion of the single index Fréchet regression model is obtained through local lin-
ear Fréchet regression. We demonstrate the finite sample performance of esti-
mation and inference for the proposed single index Fréchet regression model
through simulation studies, including the special cases where responses are
probability distributions and graph adjacency matrices. The method is illus-
trated for resting-state functional Magnetic Resonance Imaging (fMRI) data
from the ADNI study.

1. Introduction. Modeling the regression relationship between a real-valued response

and a multivariate Euclidean predictor vector X corresponds to specifying the form of
the conditional means (x) [E( |X x) Higher dimensionality of X can be problem-
atic when one is interested to go beyond the standard multiple linear models and aims for
a nonparametric estimation of  (x) This provides strong motivation to consider regression
models that provide dimension reduction. Single index models are one of the most popular
approaches to achieve this under the assumption that the influence of the predictors on the
response can be collapsed to a single index, i.e., a projection on a specific direction, comple-
mented by a nonparametric link function. This reduces the predictors to a univariate index
while still capturing relevant features and since the nonparametric link function acts only on
a one-dimensional index, these models are not subject to the curse of dimensionality. The
single index model generalizes linear regression, where the link function is the identity. For
areal-valued response, and a -dimensional predictor X, the semiparametric single index
regression model is given by

(1.1) E( X x) E( X' ) ()
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In model (1.1), the dependence between and X characterized by the conditional mean, is
summarized by the parameter vector  and the link function

The function  is nonparametric and thus includes location and level changes, and there-
fore the vector X cannot include a constant that would serve as an intercept. For identifiability
reasons, is often assumed to be a unit vector with a positive first coordinate. A second ap-
proach is to require one component to equal one. This presupposes that the component that
is set to equal 1 indeed has a non-zero coefficient [44, 15]. Model (1.1) is only meaningful
if the Euclidean predictor vector X is of dimension or larger. If X is one-dimensional, the
corresponding special case of the model is the one-dimensional nonparametric regression
E( | ) (), which does not feature any parametric component.

The classical single index regression model with Euclidean responses has attracted atten-
tion from the scientific community for a long time due to its flexibility and the interpretability
of the (linear) coefficients and flexibility, owing to the nonparametric link function, as well
as due to its wide applicability in many scientific fields. The coefficient  that defines the
single index x'  along with the shape of the nonparametric component  characterizes
the relationship between the response and the predictor. The parametric component  is of
primary interest for inference in this model. The problem of recovering the true direction
can be viewed as a subclass of sufficient dimension reduction (SDR) techniques, where iden-
tifying the central subspace of X that explains most of the variation in  has been a prime
target [42, 14, 40].

In addition to sufficient dimension reduction techniques, various related approaches to
estimate in (1.1) have been studied. These include projection pursuit regression (PPR)
[24, 28], average derivatives [30, 62], sliced inverse regression (SIR) [41], conditional min-
imum average variance estimation (MAVE) [69] and various other methods [68, 67]. These
approaches have focused on the nonparametric estimation of the link function to recover the
index parameter in (1.1) [29, 32, 31], partially linear versions [10, 71] and various noise mod-
els [11, 66]. Inference for the index parameters has also been well studied [20, 43, 25] for the
classical single index model.

Various extensions of single index regression have been considered more recently [75, 36],
including models with multiple indices or high-dimensional predictors [78, 76, 38], cen-
sored data [46], and longitudinal and functional data as predictors [34, 12, 21, 50]. How-
ever, none of these extensions has covered situations where responses are not in a Euclidean
vector space, even though this case is increasingly important for data analysis. Two very re-
cent exceptions are [70] and [73], who considered extending sufficient dimension reduction
approaches for the case of random objects. The overall lack of available methodology for
single-index models with random object responses motivates our approach. Non-Euclidean
complex data structures arising in areas such as biological or social sciences are becoming
increasingly common, due to technological advances that have made it possible to record and
efficiently store sensor data and images [56], shapes [61] or networks [64]. For example, one
might be interested in functional connectivity, quantified in the form of correlation matrices
obtained from neuroimaging studies, to study the effect of predictors on brain connectivity,
an application that we explore in Section 5.1.

Other examples of general metric space objects include probability distributions [18], such
as age-at-death distributions as observed in demography or network objects, such as internet
traffic networks. Such “object-oriented data” [47] or “random objects” [48] can be viewed as
random variables taking values in a separable metric space that is devoid of a vector space
structure and where only pairwise distances between the observed data are available. Almost
all existing methodology for single-index models as briefly reviewed above assumes that one
has Euclidean responses, and these methods rely in a fundamental way on the vector space
structure of the space where the responses reside. When there is no linear structure, a new
methodology is needed and this paper contributes to this development.
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A natural measure of location for random elements of a metric space is the Fréchet mean
[23], which is a direct generalization of the standard mean and is defined as the element
of the metric space for which the expected squared distance to all other elements, known
as the Fréchet function, is minimized. Depending on the space and metric, Fréchet means
may or may not exist as unique minimizers of the Fréchet function. Fréchet regression is an
extension of Fréchet means to the notion of conditional Fréchet means, and local as well as
global versions have been recently studied in several papers [55, 53, 57, 58, 4].

Global Fréchet regression is a generalization of linear regression for random object re-
sponses. In analogy to classical linear regression, it features a restrictive structural model
assumption. While the local linear version of Fréchet regression is more flexible, it suffers
from the curse of dimensionality as the dimension of the predictors increases. Further, nei-
ther version of the Fréchet regression incorporates an interpretable inference regime. In this
paper, we introduce (single) Index Fréchet Regression (IFR) to facilitate inference in the
context of Fréchet regression when the response variable is a random object lying in gen-
eral metric space and the predictor is a -dimensional Euclidean vector X with Our
goal is to develop an extension of the conventional estimation and inference paradigm for
single-index models for this challenging case. It is assumed that the conditional expectation
(Fréchet regression) of  depends on the predictor vector X only through the projection or
index X"  for a parameter vector € €R Since there is no notion of direction or sign
in a general metric space, we interpret the index parameter in the proposed index Fréchet
regression model (IFR) as the direction in the predictor space along which the variability of
the response is maximized. The semiparametric framework provided by the proposed single
index model facilitates stable estimation and interpretable inference.

It turns out to be useful to cast the direction estimation problem in the framework of
M-estimation for an appropriate objective function and to use empirical process theory to
show consistency of the proposed estimate. We derive an asymptotic normality result for
these estimators under mild assumptions on the metric space and the unknown link function
by utilizing an appropriate version of recent results of [13] concerning local linear Fréchet
regression estimators. Under suitable regularity assumptions, the asymptotic distribution of
the estimated index parameter can then be harnessed to construct a Wald-type statistic to
conduct inference. Combining this with an auxiliary result on the asymptotic convergence of
the estimated covariance matrix makes it possible to employ a bootstrap method to obtain
inference in finite sample situations.

When we finalized this work, we became aware that independently and simultaneously
another group also developed an approach for single index Fréchet regression [26]. We wish
to emphasize that this paper was not in any way influenced by this parallel development (with
preprints becoming available within days of each other).

The paper is organized as follows: The basic setup is defined in Section 2 and the theory on
the asymptotic behavior of the index parameter is provided in Section 3, with a focus on re-
sults for inference. The index vector is assumed to lie on a hyper-sphere, with a non-negative
first element to facilitate identifiability. Then it is natural to quantify the performance of the
proposed estimators by the geodesic distances between the estimated and true directions. The
results of simulation studies with various types of random objects as responses are reported
in Section 4 with additional results in the Supplement [5]. In Section 5 we apply the meth-
ods to infer and analyze the effect of age, sex, total Alzheimer’s brain score and the stage of
Alzheimer’s Disease on the brain connectivity of patients with dementia. Brain connectivity
is derived from fMRI signals of brain regions of interest [63] and quantified in the form of
correlation matrix objects. We present additional illustrations for human mortality data as
distributional objects and mood data of unemployed workers as compositional objects, with
details in the Supplement [5]. A brief discussion follows in Section 6.



2. Model and Estimation Methods. In all of the following, ( ) is a totally
bounded metric space with metric and a probability measure =~ The random objects
take values in . This is coupled with a -dimensional real-valued predictor X Throughout
we will use bold letters to denote multivariate real vectors. The conditional Fréchet mean

of given X is a generalization of E( |X x) to metric spaces, defined as the argmin of
E( ( )X x) e [55],ie,

(2.1) Ei (X x) EC ()X x)

€
Evaluated at the minimizer, the objective function in (2.1) is the corresponding generalized
measure of dispersion around the conditional Fréchet mean and can be viewed as a condi-
tional Fréchet function.

As discussed earlier, obtaining inference for Fréchet regression is an elusive goal, for both
the more restrictive global as well as the more flexible but the curse of dimensionality afflicted
local version of Fréchet regression. To move towards inference, we propose here a more
structured model, inspired by its Euclidean single index equivalent in (1.1), given by

(2.2) E+( X x) L (x! )

where  is the true direction parameter of interest. Model (1.1) emerges as a special case
of model (2.2) for a Euclidean response, as the conditional Fréchet mean coincides with the
conditional expectation E( |X) for the choice of the absolute Euclidean distance metric for
the case R In other words, the conditional Fréchet mean is assumed to be a function of

in such a way that the distribution of  only depends on X only through the index X
thatis, LE,( |X)[(X" ) Thus

Ei( X x) Ei X7 )+ )

and invoking local linear nonparametric Fréchet regression for the one-dimensional index
promises to overcome the curse of dimensionality problem. For projections X' € To, R,
which depend on , we consider predictors X with bounded norm such that 74 7,
where 7 is a compact interval on R We note that the link function, for given €

+ Tg,— () in the true model depends on the multivariate predictor X  x only
through the single-index ~ x' , as well as on the direction vector  implicitly. Thus, ex-
plicitly characterizing this dependence, we define the Index Fréchet Regression (IFR) model
for random object response  and Euclidean predictor X as

(2.3) ) E( (X" )

€
The coefficient € R is the quantity of interest for the single index Fréchet model owing
to its interpretability by quantifying the contribution of each predictor component. More
generally, the quantity in model (2.3) can be evaluated for any direction vector € by

2.4) LxT) B IXH o oxT)

In the Euclidean case, identifiability conditions for the direction parameter have been
widely discussed in the literature [10, 44, 15, 77]. We assume the parameter space  to
be constrained in order to ensure that in the representation (2.4) is uniquely defined, where

(2.5) { Ul eR }

We first choose an identifiable parametrization that transforms the boundary of a unit ball
in R to the interior of a unit ball in R( ). By eliminating the parameter space  can
be rearranged to {(( )/ )T } This re-parametrization is
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the key to analyzing the asymptotic properties of the estimates for and also facilitating

efficient computation. The true parameter is then partitioned into ( )T where
( )T We estimate the ( ) dimensional vector in the single-index model and
then use ( )/ to obtain

PROPOSITION 1 (Identifiability of model (2.3)). Suppose (x) E.( |X x), that
the support  of () is a convex bounded set with at least one interior point and that ()
is a non-constant continuous function on  If

@) (e ) 4( Tk ) forallxe
for some continuous object-valued link functions 1 and , and some €  where
is as described in (2.5). Then and | con{ Txlxe }

The above result can be proved using a similar argument as given in the proof of Theorem
of [44].

Scrutinizing the special case of a Euclidean response  in model (1.1), the variation in
is seen to result from the variation in X'  as well as from the variation in the error term in

the model, denoted by  [33]. On the contour line X' , the variability in  only results
from the variability in . Along contour lines X' for , X" s not constant
and therefore the variability in  along the contour lines X is due to both
the variation in X' and in . Since b d measures the variability in  on a
contour line X , one can characterize  as the minimizer of the objective
function ( ),where () E( ( |X' ))and oc () The constraint
T with the first element of the index , ensures the identifiability of the objective
function. Defining an equivalence class of the parameter vector o, { € x" )
(x" )ae.inxforsome }for ¢ , onehas ( ) ()

To recover the true direction of the single index from model (2.3), the conditional variance
of given X x for a real-valued response can be replaced by the conditional Fréchet

variance +(x" ) forany given unit orientation vector  Thus, for a general object
response  €( ) can alternatively be expressed as
() where () E LX)
(2.6) o .
+( ) ( Jwith () E ( )X

€

This corresponds to finding the true parameter through the optimal direction that maximizes
the total variability of the responses, an idea developed in [33] for the case of Euclidean re-
sponses. Instead of choosing the parameter minimizing the expected variance explained by
the single index X' , for object responses the new goal is to choose the parameter minimiz-
ing the expected Fréchet variance.

To recover from the representation (2.6), one needs to also estimate the conditional
Fréchet mean, as in the IFR model (2.3), for which we employ the local linear Fréchet
regression estimate [55]. The idea is as specified below. We approximate the conditional
Fréchet mean  in (2.6) by a locally weighted Fréchet mean that we refer to as intermedi-
ate weighted Fréchet mean. The weights for this intermediate Fréchet mean are derived from
a weight function ( ) that characterizes the effect on the predictors via a chosen kernel
function () and a bandwidth parameter suchthat () (/) (/) For any given
unit direction index  this intermediate localized weighted Fréchet mean is

en  +C ) () with ) E X' ) )



() EC xT )T ) c) ) )y )

and ) ( ) () forall and ;notethat ,( ) isanon-random popu-
lation quantity.
Suppose we observe a random sample of paired observations (X ) , where

X isa  dimensional Euclidean predictor and is an object response situated in a metric
space () Using the form of the intermediate target in (2.7) and replacing the auxiliary
parameters by their corresponding empirical estimates, the local Fréchet regression estimator
at a given value of the single index for a given direction parameter € is defined as

~

29 () ( H)with () — X' ) ( )

where
(2.10)

x" ) —— T L) T )]

() - x' o)) c) o) )

The following assumption pertains to the existence and uniqueness of the Fréchet means
in (2.6) and (2.9).

(AO) The conditional and weighted Fréchet means in (2.6), (2.7), and (2.9) are well defined,
i.e., they exist and are unique, the latter one almost surely. Further, for all € such that
, ( €R +XT ) +(XT )

Existence and uniqueness of Fréchet means depend on the nature of the metric space and
the underlying probability measure and will be discussed further after (A4) in section 3.
For example, in the case of Euclidean responses, Fréchet means coincide with the usual
means for random vectors with finite second moments. In the case of Riemannian manifolds,
the existence, uniqueness, and convexity of the center of mass are guaranteed under certain
conditions [1, 52]. In a space with a negative or zero curvature, or in a Hadamard space
unique Fréchet means always exist [6, 7, 51, 37]. The existence of unique Fréchet means
in assumption (AO0) is satisfied for the space ( ) of univariate probability distributions
with the 2-Wasserstein metric and also for the space ( ) of covariance matrices with the
Frobenius metric [55].

Assume that for all unit direction vectors the support 7, of X" is compact, where
all Ty are subsets of a fixed interval. For the derivation of distributional limit results, one
needs to establish sufficiently fast convergence of the estimated means. This challenge can
be overcome by partitioning the interval where the linear predictor is situated. Specifically,
we partition 7, into equal-width non-overlapping bins { } where data
falling in different bins are independent and identically distributed. We denote by X and
the representative data points in the th bin, The number of bins  depends
on the sample size , where the choice of the sequence () is discussed in (A4) in
section 3 below. The proposed estimator for the true direction  in (2.6) is then given by

@.11) b () where () — LX)
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Here (XT ) is the local linear Fréchet regression estimator, constructed
based on the sample (X ) , and evaluated at each sample point of the binned
sample (X ) as described in (2.9) and (2.10). We also require an interme-

diate quantity that corresponds to the empirical version of () in (2.6), defined as

(2.12) - , () where () — +(X )

The bandwidth () is a tuning parameter and features in the rate of convergence of

+ to 4. We note that another possible estimator for  could be obtained by applying
global Fréchet regression. This alternative estimator for the unknown link function in the IFR
model (2.3) does not depend on a tuning parameter as is needed for locally linear Fréchet
regression but is considerably less flexible.

3. Theory. The unknown quantities that constitute the Index Fréchet Regression (IFR)
model consist of the nonparametric link function and the index parameter, and thus the
asymptotic properties of the estimate of the true unit direction rely on those of the estimates of
the link function (based on local linear Fréchet regression) and the index parameter (through
an M-estimator of the criterion function  in (2.6)). The metric space ( ) is assumed to be
totally bounded with diameter , hence separable. In order to obtain the right bound on the
metric entropy of the space , the boundedness assumption is crucial. While boundedness
imposes a restriction that is not needed in the Euclidean case, it is a quite feasible assumption
in general metric spaces, since, for commonly observed non-Euclidean objects, the underly-
ing metric space satisfies the total boundedness property. Examples include the Wasserstein-2
space of one-dimensional distributions with compact support and the space of spheres with
the geodesic metric and positive semi-definite matrices with Frobenius or power metric.

We make the following assumption on the objective function () in (2.6).

(A1) There exist and such that whenever | [ for € , we have

() ) |

The above condition on the curvature of the objective function  is standard in the empirical
process theory literature and controls the behavior of near the minimum in order
to obtain rates of convergence. In addition, with regard to the quantities in (2.6), (2.9), and
(2.11) we require the following assumptions.

(A2) The link function . is Lipschitz continuous, that is, there exists a real constant
such that, for all x with a bounded norm, and for all €

B I U |

(A3) For any given direction  the univariate index variable X" is assumed to have a
density () with a compact support 7, 7 for some bounded 7 R We denote the
space of predictors for which this holds by X R

+(x

(A4) For that satisfy assumption (U3) in the Supplement [5] and any , let
(3.1 {/(1)( )/((z))( ( ))/((z))}
The number of non-overlapping bins () as defined in Section 2, is such that
( )—oo0and — as — o
‘We note that for which is the most common situation,  reduces to

) 00« ) )



Assumption (A2) is a strong form of uniform continuity for the link function. Intuitively,
it limits how fast the object | can change, introducing a concept of smoothness in the link
function for the IFR model (2.3). Lipschitz continuity is a natural choice of morphisms be-
tween metric spaces. This assumption is slightly stronger than the assumption of a strictly
monotone link function that is commonly used in classical single index literature to ensure
identifiability. Since the domain of the link function is compact, in the Euclidean response
case, our assumption would translate to having a strictly monotone continuous link function
with a bounded derivative. Essentially, assumption (A2) is weaker than a derivative condi-
tion and stronger than assuming only the strict monotonicity of the link function. Assump-
tion (A3) is basic. The predictors needed for the nonparametric Fréchet regression are re-
quired to be randomly distributed over the domain where the function is to be estimated, and
on average, to become denser as more data are collected. Sufficient for this to be satisfied
is that there is at least one continuous predictor and the predictors  are bounded. Assump-
tion (A4) is required for the rate of convergence and limit distribution results, for which we
involve the binning device, and it connects the uniform rate of convergence  for the local
linear Fréchet regression estimator as given in (3.1) with the number of bins

For most types of random objects, such as those in the Wasserstein-2 space (the space of
probability distributions equipped with the 2-Wasserstein distance) or the space of symmetric
positive semidefinite matrices endowed with the Frobenius or power metric, one has

in the definition of in assumption (A4) (see assumptions (U1)-(U3) in Section
S.2. of the Supplement [5]). If one chooses the bandwidth sequence for the local linear

Fréchet regression such that, for a given (o ) ) then s of
the order  (%1+282-3+5) [13]. For this becomes T Any sequence
() with - will then satisfy assumption (A4).

As an alternative characterization for the true direction parameter , an important prop-
erty of the objective function () in (2.6) is as follows.

PROPOSITION 2.  Under assumptions (AO) and (A2), () in model (2.6) is a continuous

function of €  and ()
0 e

Additional assumptions (U1)-(U3) and (R1)-(R2) have been used previously in [55] and
[13], though in a slightly weaker form, and can be found in Section S.2. of the Supple-
ment [5]. These are regarding They concern the existence, uniqueness, and well separateness
of the minimizers, the metric entropy condition in terms of the covering number, and the
curvature of the metric space near the minimizers and are commonly used for the asymptotic
analysis of M estimators utilizing empirical process theory [65], here specifically to estab-
lish consistency and uniform rate of convergence for the local Fréchet regression estimator
in (2.11), uniform across the single-index values and the direction parameter. Uniformity
over the single index value was already required in [13] to achieve uniform convergence of
local linear Fréchet regression. In the single index model framework, there is a new param-
eter vector , the presence of which requires an additional uniformity requirement over
Assumptions (R1)-(R2) are commonly used in the local regression literature [60, 19].

We will make use of the following lemma, which is an appropriately modified version of
a known result (Theorem of [13]), to deal with the link function when investigating the
asymptotic convergence rates of the proposed IFR estimator.

LEMMA 1. Under assumptions (Ul)-(U3), (R1)-(R2) (see Supplement [5]) and if —
such that  ( ) —owas — oo forany

(3.2) C+C ) +C ) ()

0c €Ts
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where  is as given in equation (3.1) in assumption (A4).

It is worth mentioning here that the binning approach is not required for basic consistency
results without rates (Theorem 3.1 and Corollary 1). One can indeed re-define the criteria
functions in (2.11) based on the whole sample (X ) as

~

() where () - (7))
0 e

and carry on with the same proof techniques to show consistency of  to the true unit di-
rection vector However, to prove rates of convergence and investigate the asymptotic
behavior of the estimated parameter, we need to make use of the uniform convergence rate
for local linear Fréchet regression, as given in Lemma 1. The binning step is necessary
to reduce the effective sample size from to (), the latter being intrinsically tied
by assumption (A4) to the uniform convergence rate The rate is effectively slower than
/", again by virtue of the uniform convergence rate  for the local linear Fréchet re-
gression estimator. One may alternatively consider global Fréchet regression to estimate the
unknown link function ., resulting in a near parametric rate of /. However, the global
Fréchet model may suffer from model-induced bias, since as a direct generalization of linear
regression, it may be overly restrictive for random object responses. For a consistent unam-
biguous representation, we refer to the minimizers in (2.11) and (2.12) based on the binned
samples as our quantities of interest throughout the rest of the manuscript.
For all of the following results, the basic assumptions (A0)-(A3) are assumed to be satis-
fied. We first demonstrate the consistency of the proposed estimator for the true index direc-
tion. All proofs can be found in Section S of the Supplement [5].

THEOREM 3.1. Under the basic assumptions (A0)-(A3), and the technical assumptions
(Ul)-(U3), and (RI)-(R2) listed in Section S.2. of the Supplement [5],

=

—> on

where is as defined in (2.5).

Combining the consistency result for the direction vector in Theorem 3.1 with the uni-
form convergence of the local linear Fréchet regression estimator in Lemma 1 leads to the
asymptotic consistency of the estimated single index regression (IFR) model.

COROLLARY 1. Under the conditions required for Theorem 3.1, foranyxe X R

D) w0

Since any € can be decomposed into ()T where and | | due to the
identifiability requirement, is a function of = This makes it possible to write the criteria
function and the corresponding minimizers in terms of the sub-vector only,

(3.3) () () () where
0 e 0 e e
(3.4) { er T T }
We note that and are the unconstrained minimizers for the criteria functions ()

() and () respectively, which are continuous functions of  the latter two almost
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T

surely. Similarly the link function (x ) can be rewrittenas , (x' () ( )),where

() Rk
To study limit distributions, we impose an additional requirement on the interplay between
the metric () in the metric space of responses and the true regression function ., namely
that the second order difference of the function ( 4 ( )) is bounded away from zero,

forany €7 where 7 R denotes the domain of , Specifically, for T () for

some €R and € wedenote (' () ()) +( )by +( ) We assume

(AS5) Forany €7 Rand € there exists some and such that for any
sufficiently small and eT

— 4 ) (o ) O +()

In the Euclidean case, assumption (AS5) means that | can be locally approximated by
straight lines and is satisfied for twice differentiable functions 4, a common assumption for
classical single index modeling. Beyond the Euclidean special case, assumption (A5) can be
shown to be satisfied for fairly general metric spaces. An example for this are CAT(0) spaces
(see [9]), where the regression function between two distinct points () and 4 ( )
for some small can be approximated arbitrarily closely by the geodesic path connect-
ing them. Further details on this are provided in Appendix A and B.

The geometric assumption (AS5) is crucial to show that the intermediate objective function

() has non-negative curvature near its minimizer ~ with high probability. This is neces-
sary to bound the rate of the convergence of the discrepancy between the intermediate index
parameter and the estimated version =~ We proceed to define partial derivatives of the cri-
teria functions with respect to the components of  For any x € R with bounded norm and

€( ), define the function y R  — R such that

(3.5)

x () x ) +(xT( )

The first and second ordered forward finite differences of y are given as follows
(3.6)

Define

)
{A () L@ el e gox )
AT 0 o, L CEv &)

We note that () () and () are all real-valued functions with domain in a con-
strained subset of R The appropriate limits for defining the partial derivatives can be shown
to exist under (A2) and the assumed total boundedness of the metric space ~ The estimated
versions of the finite difference derivatives are, for s

T ~
{A () aaﬂ(:)) a(;ie) 0550) _ 9 (X )
Az () 2o T = v X )

{
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(3.7)A

Vi) ) x )
v (x ) x ) x

X ( ) X ( )

with
B8 () «x( ) +(XT< )
Here () is a tuning parameter depending on  for which we assume that
(A6) ()— and ()—owa —w®

Assumptions (A4) and (A6) together imply that furthermore / — as — o

Observe that the true and estimated index directions can be framed as M-estimators of
their respective criteria functions. This suggests utilizing empirical process-based approaches
to obtain distributional convergence of  specifically to adopt a linearization approach [65].

Specifically, we show that v/ ( ) ()andv ( )—  where isa Gaus-
sian random variable. Combining these results, it follows that

THEOREM 3.2. Under assumptions (Al)-(A6), and assumptions (Ul)-(U3), and (RI)-
(R2) listed in the Supplement Section S.2.,

Vo )= C )

where  and  are as defined in assumption (A4), ( ) A% () () A% |
and () (C () with

) . -V (X ) if € { }
B -V (X ) -V (X ) if e { }

The asymptotic normality of (A ) follows from Theorem 3.2 with a simple applica-

tion of the multivariate delta method as | | implying h ( /)

COROLLARY 2. Under the conditions required for Theorem 3.2,

Vo) ()7
T/./
where g—g 0 o / I is the Jacobian matrix of size
o 6 6,

C )
Define the intuitive estimator A( ) for () given by A( ) (T () , with

[ 9 (X ) — 9 (X ) if
T - v )

L — v (X ) — v (X ) if
The following two propositions imply consistent estimation of the covariance matrix.

PROPOSITION 3. Under assumptions (Al)-(A6), v/ (A( ) ()

converges to a ( ) dimensional normal distribution with mean vector —and a finite

covariance matrix.
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Details about the limiting covariance matrix can be found in Section S  of the Sup-
plement [5]. A natural estimate for the asymptotic covariance matrix in Theorem 3.2 is

() At () () A% ()

PROPOSITION 4. Under assumptions (Al )-(A6), and assumptions (Ul)-(U3), and (RI)-
(R2) listed in the Supplement Section S.2.,

~

() ()=

With Slutsky’s theorem, combining the above propositions with Theorem 3.2,

COROLLARY 3. Under assumptions (Al)-(A6), and assumptions (Ul)-(U3), and (RI)-
(R2) listed in the Supplement Section S.2.,

Vo) o )= ( )

where  and  are as defined in assumption (A4).

Again it is straightforward to extend the above result to obtain the limit distribution for

the full parameter vector (A ) as due to the constraints the full parameter vector is a
function of the reduced one. Define the estimate for the Jacobian matrix of size ( )
. T/ T
as % 0 o / I . Then using Corollary 2 and Proposition 4
6 6
onehas v/ ( ( )y )— () and furthermore

COROLLARY 4. Under the conditions required for Corollary 3, foranyxe X R
T= = T
) 4 (x ) ()

In applications of regression models, it is often important to test the statistical significance
of added predictors. Based on the above normality results, one can obtain Wald-type statistics
to test the significance of certain variables in the linear index. Since  is on the surface of
the unit sphere, the constraint | || removes one dimension. The actual dimension of the
surface of the unit sphere is and the values of ( ) components of  determine

when without loss of generality, the value of the first component of  is assumed to
be positive. Therefore one can obtain confidence regions for by constructing confidence

regions for the last ( ) components of  only.
A common testing problem concerns the null hypothesis H : , for any
. More general tests of a linear null hypothesisH : () for a known matrix

of full row rank and () ( )T are also of interest and are implied by the following

result, which also provides (elliptical) asymptotic confidence regions for the components of

interest and whereas before () is the number of bins in the binning step.
COROLLARY 5. Under the null hypothesis 0) Sfor some ( )
matrix  with of rank , denoting the estimated asymptotic covariance

matrix for () by A( ( )) then under the conditions required for Corollary 3,

C O CCcDy )y D O )
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Specifying the last ( ) components of the true direction index as
( )T where ,a ) confidence region for ) s
{ eR (OO ) (O [
with  ( ) . Here () is the ( ) dimensional sub-matrix of

the asymptotic covariance matrix ().

Observe that for , O Then Corollary 5 yields the confidence region for
the parameter  as { eR ( TCCY ) ( ) | |} with

( ) . Then the confidence region for can be obtained immediately
through the relationship ( )T with I

For practical implementation, direct estimation of the asymptotic covariance matrix is te-
dious since it involves a tuning parameter to approximate the partial derivative for multiple
variables by finite difference quotients. Instead, we use a nonparametric bootstrap approach
to provide a consistent estimator of the asymptotic covariance matrix [17, 59]. Consistency
of the bootstrap moment estimators for a general M-estimator is a well-studied problem. [35]
established uniform integrability of the bootstrap M-estimator, thereby giving sufficient con-
ditions for the consistency of the bootstrap moment estimators. Following similar arguments
as Theorem 2.2 in [35], we obtain consistency of the proposed bootstrap covariance matrix
estimator.

Let (X ) (X ) denote a bootstrap sample, i.e., an independent sample from
the empirical distribution of the observed sample (X ) (X ). The bootstrap M-
estimator of s — +((X 7)) Here and X are the

XS
response and predictor values for observations falling in the  th bin, A boot-

strap estimator of the asymptotic covariance matrix is given by [35, 49, 8, 27]
E ) ixe ) X )

PROPOSITION 5.  Under assumptions (Al )-(A6), is consistent for the true asymptotic
covariance matrix ()

Combining the above proposition with Theorem 3.2 using the bootstrap covariance estima-

tor, an analog of Corollary 3 immediately follows, as v/ () / ( )— | )

justifying the bootstrap construction of confidence regions and ensuing inference, where we
approximate the bootstrap covariance matrix by Monte Carlo estimation. The observed
sample (X ) (X ) is resampled with replacement  times and the estimate for
the index parameter computed for each bootstrap sample. Based on the ™ bootstrap sample
the index parameter is estimated as The bootstrap estimate of the covariance

matrix is then — ( )( )T which is also consistent for ()
As an example, if one applies the statistic in Corollary 5 to test the null hypothesis

3.9 where
one can examine the power of the test for alternatives indexed by a parameter ,

(3.10)

~

Under TC ) () asymptotically. Noting that " is consistent for
( )underboth  and , the asymptotic distribution of =~ under is the non-central
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chi-square distribution )( ) with ( ) degrees of freedom and non-centrality pa-
rameter S0 (s) s where 5 ( ). The asymptotic power of the level

test under is ( ( )( )), where ( )( ), which demonstrates
that for all the asymptotic power converges to 1 with the rate

4. Implementation and simulation studies. Implementation of the single index Fréchet

regression (IFR) model in (2.6) requires the choice of two tuning parameters, the bandwidth

() used for the local linear Fréchet regression as per (2.3) and the number of bins

() (see assumption (A4)). In applications, the tuning parameters ( ) can be

chosen by leave-one-out cross-validation. The first step is to select the optimal bandwidth

parameter by minimizing the mean discrepancy between the local linear Fréchet regression
estimates and the observed object responses, i.e.,

- ( () XT )

where () X' is the local linear Fréchet regression estimate at X' obtained with
bandwidth based on the sample excluding the  th pair (X ), i.e.,

() X' 5 & X))
€
In practice, we replace leave-one-out cross-validation by  fold cross-validation when
.Once is chosen a second leave-one-out cross-validation step is applied to select
the number of non-overlapping bins where the objective function to minimize is the
empirical Fréchet variance for the binned data,

T . . . . . T . .
Here )(X ) is the local linear Fréchet regression estimate at X  obtained with

%
+(
bandwidth based on the sample excluding the observation at the thbin (X ), i.e.,

x' ) - x" x'

€

) )

Thus, for each given unit direction we first select the optimal tuning parameters
( ) which will generally vary with  and then employ them when computing the loss

function () Finally, the index parameter is estimated as the unit direction minimizing

( )over suchthat T This leads to an iterative scheme, where for a given unit
direction the tuning parameters ( ) are initially selected by cross-validation and then
iteratively updated, in turn with updating to minimize the loss function. We numerically
optimize the empirical loss () under the constraint ' via the following algorithm.

1. Take a grid of unit vectors such that ' . This is achieved by generating dimen-
sional standard Gaussian random vectors with positive first elements and standardizing
them, utilizing the spherical symmetricity of -dimensional standard Gaussian vectors.

2. For each  select optimal tuning parameters ( ) (for bandwidth and number of
non-overlapping bins, respectively) by cross-validation.

3. Using ( ) compute the loss function () — ( +(X

)
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4. Find the minimizer of ( ) such that T by searching over all directions
generated in step 1. In our implementation, we considered 500 directions.

The computational challenges to obtain Fréchet means vary by metric space. In many
cases, the key idea to compute the weighted Fréchet means reduces to solving a constrained
quasi-quadratic optimization problem and projecting back into the solution space. For ran-
dom objects such as distributions, positive semi-definite matrices, networks, and Riemannian
manifolds among others, obtaining the unique solution is computationally straightforward.
For our simulations we considered random objects corresponding to samples of univariate
distributions equipped with the Wasserstein ~ metric and samples of multivariate data with
the usual Euclidean metric.

We generated Monte Carlo runs for each setting, and for each run obtained a direction
: =() o : .
estimate The intrinsic Fréchet mean of these estimates on the unit
~ ~( : . .
sphere was then computed as  Given that both the and their target  lie on the unit
sphere in R , bias and deviance of the estimator can be obtained as

~ ~ ~ A()A

@4.1) bias( ) Coy odev() (O

To illustrate the performance of the Wald-type statistic for testing a linear hypothesis, we
again created Monte Carlo runs as described above except that components of the index were
generated to follow the null hypothesis in (3.9). To obtain the power function of the test
against the sequence of alternatives given in (3.10), we calculated the test statistic for
simulation runs and determined the fraction of tests that rejected the null hypothesis at the
nominal level

4.1. Distributional responses. 'The space of univariate distributions with the Wasserstein
metric provides an ideal setting for illustrating the efficacy of the proposed methods. For any

two distribution objects € ( ), the Wasserstein-2 distance is given by
@2) co oo o
where and are the quantile functions corresponding to  and  respectively. We

consider distributions on a bounded domain as responses () that we represent by their
respective quantile functions ( )( ) and that are paired with a  dimensional Euclidean
predictor vector X. The true single index projections x!  were obtained by first generating

( )T from a multivariate Multivariate Gaussian distribution with E( ) and
( /) . Then the components of X  ( )T were computed as
() where is the standard normal distribution function. Finally, we generated
a  dimensional unit vector  suchthat| || and , and computed the projection
X" We selected and random responses were generated conditional on X, by adding
noise to the true regression quantile function
(4.3) ( +DO E (HOX"T x!

For generating the distributional responses, two simulation settings were examined (see
Table 1). For both scenarios, three different link functions were considered for the data-

generating mechanism, namely () , () ,and () () In the first set-
ting, the true response was generated as a normal distribution with parameters depending on
X"  ForX' x|, the distribution parameters (x) ( (x" ) )and (x)

( / (x ) were independently sampled, where () % The corresponding
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distribution-valued regression functionis givenby ,(x" ) E( ( )()X" x' )
(xI ) (x" ) () where () is the standard normal distribution function.

For the second setting, the distributional parameter (x) was sampled as before, while
the standard deviation parameter was fixed at The resulting distributions were then
subjected to a random transport map  in Wasserstein space that is uniformly sampled from
the collection of transport maps () ()/| |[for € }. The observed
distributions are not Gaussian anymore due to the added random transports Nevertheless, the
Fréchet mean can be shown to equal (x| ) ().

In Table 1, is a push-forward measure such that () ( ()e }),for
any measurable function = R — R distribution € )V, and set R Here is a Gaus-
sian distribution with parameters and as described above, and }V is the metric space of
distributions on a compact support equipped with the 2-Wasserstein metric.

TABLE 1
Two different simulation settings for distributional objects.

Setting I Setting 11

Y )=p+oP ),
QX)) =n O e =r#@uron ().

~N(((xT8 ),0.25) where 5
p~NE(x 0, o p~N(C(x'8 ),0.25), 0 =0.1,
o~Erp — 20 T () =a—sin(ka)/|a] ke {£1,£2,+3}.

o

Following these specifications, for each Monte Carlo run we generated density objects
and multivariate Euclidean predictors from the true model. The bias and deviance of the
estimated direction vectors for varying sample sizes and resulting from 500 Monte Carlo
runs are displayed in Table 2. The bias due to the local linear Fréchet estimation is generally
low and the variance of the estimates is seen to diminish with increasing sample size.

TABLE 2
Two different simulation settings for distributional objects. Bias and deviance (within parenthesis) of 6
(measured in radians as per (4.1)) obtained from 500 Monte Carlo runs, where the predictor dimension is p = 4,
and the tuning parameters (b, M) were chosen by 5—fold cross-validation.

Setting [ Setting 11
link1 link2 link3 link1 link2 link3
(z—x) (z—>z) (x — exp(z)) (x —x) (x—>z ) (z — exp(z))
bias dev bias dev bias dev bias dev bias dev bias dev
n=100 | 0.041 | 0.029 | 0.053 | 0.039 | 0.045 | 0.061 | 0.029 | 0.027 | 0.022 | 0.037 | 0.028 | 0.044
n=1000 | 0.023 | 0.013 | 0.027 | 0.012 | 0.029 | 0.012 | 0.010 | 0.012 | 0.011 | 0.014 | 0.017 | 0.021

The performance of the proposed method was further evaluated by computing the mean
squared deviation (MSD) between the observed and the fitted distributions. Denoting the

+X Jand (X

simulated true and estimated distribution objects by ), respectively,

for the utility of the estimation was measured quantitatively by
T T2 =

(4.4) — ( +(X ) +(X )

where () is the Wasserstein-2 distance between two distributions.

We compared the estimation performance of the proposed single index Fréchet regres-
sion (IFR) method with global Fréchet regression (GFR), which directly handles multivariate
predictors as it is a generalization of global least squares regression [55]. Since local linear
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Fréchet regression (LFR) is subject to the curse of dimensionality and not suitable for
predictors, we fitted four separate LFR models in turn for each of the univariate component
predictors and computed the Mean Squared Deviation (MSD) for each of these four fits. No
binning is required for either GFR or LFR model fits. In Figure 1 we denote the MSDs for
the four local linear Fréchet regression fits as LFR1, LFR2, LFR3, and LFR4, respectively.
Figure 1, displaying boxplots of the MSDs over simulation runs for a sample size of

The left and right panels correspond to simulation settings I and II, respectively,
and in each panel, three cases are considered corresponding to the different link functions
used to generate the distributional data. Overall six Fréchet regression methods are com-
pared, for two simulation settings and three data generation mechanisms. We observe that
the IFR method outperforms the baseline GFR and all four of the LFR methods in all scenar-
ios. The smallest difference between the IFR and GFR occurs when an identity link function
is used in the data generation mechanism. This is as expected since in this case the true model
essentially reduces to GFR, the equivalent of a linear model. The individual LFR models have
higher MSDs, which can be attributed to the fact that we are ignoring the effect of the other
predictors when fitting the local model with one predictor at a time.

l 1.04,1.08,1.17 '| 1,1.08.1.1

0.75 * M .

1

A ;4;;; ! . %* ﬂ% “

Idehlity Sqdare Exporienl\al \deht\(y Squ‘are Expoﬁent\a\
Link Link Link Link Link Link

=)

g050
=

MSD

o
o

0.2!

o

0.00

E3 GFR E3 LFR1 E3 LFR3 E3 GFR B3 LFR1 E3 LFR3
B IFR E3 LFR2 E3 LFR4 E3 IFR E3 LFR2 B3 LFR4
(a) Simulation Setting 1. (b) Simulation Setting II.

Fig 1: Boxplot of the mean squared deviation (MSD) of the fits using the single index
Fréchet regression model (IFR), the Global Fréchet regression (GFR) model, and four Local
Fréchet Regression (LFR) models using the univariate predictor components, for sample size

Left and right panels correspond to simulation settings I and II, respectively. The
left, middle, and right columns in each of the panels correspond to the three different link
functions used in the data generation mechanism, namely, identity, square, and exponential
link functions, respectively; in all scenarios, the link functions are estimated from the data.
In the left panel, the outliers having MSD greater than are marked in red with an upward
arrow and the corresponding MSD values are overlaid.

Figure 2 demonstrates the effect of the index values on the distributional objects under
simulation setting I for the different link functions when responses are represented in the
form od densities. The three data generation mechanisms are shown in the left, middle, and
right panels of Figure 2 respectively. For each case, the IFR model was fitted at the mean and
mean  sigma levels of the index values, displayed in red, blue, and green lines respectively,
while the observed/simulated densities are overlaid in orange in each panel. In each case, for
a higher value of the index level, the fitted densities shift towards the top-right, indicating a
positive association of the single-index values on the mode of the distributions.
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Fig 2: Simulated (orange) and fitted (red, blue, and green) distributional objects represented
as densities for simulation setting I for sample size The left, middle, and right
panels correspond to three link functions (identity, square, and exponential link) used in the
data generation process. In each case, the IFR model fits are obtained at three different levels

of the estimated index values, namely, at mean (xT _) sd(x" A_) (red), mean(x | Q)

(blue) and mean(xT 7) sd(x” ) (green).

To illustrate the out-of-sample prediction performance of the proposed IFR model, the
dataset was randomly split into a training set with sample size an | / | and a test
set with the remaining ey | /| subjects. The IFR method was implemented as
follows: for any given unit direction €  we partition the domain of the projections into

equal-width non-overlapping bins and consider the representative observations X and
f\or the data points belonging to the  th bin. The “true” index parameter was estimated as

~as per (2.11). We then took the fitted index obtained from the training set and predicted
the responses in the test set using the covariates present in the test set. As a measure of the
efficacy of the fitted model, we computed the root mean squared prediction error (RMPE) as

/

Test

(4.5) RMPE  — test (et 7y

test

~

where “tand ( T ) denote, respectively, the ™ observed and predicted responses

in the test set, evaluated at the binned observation ' and denotes the Wasserstein-2
metric in (4.2). We repeated this process times and computed RMPE for each split for the
subjects separately. The mean and sd of the RMPE over the repetitions are shown in Table 3.
The IFR model is seen to fare best across the different models and scenarios.

For the case of distributional objects, the linear hypothesis test of in (3.9) against the
sequence of alternatives in (3.10) was also carried out. The power functions correspond-
ing to the two simulation settings are shown in Figure 3a and 3b, respectively. As increases,
the power is seen to increase rapidly. This shows that the proposed test has non-trivial power
(see Figure 3). When is close to  the test sizes are approximately equal to the nominal
significance level of As expected, power increases with increasing sample size,
most notably under the identity link. In the second simulation setting when the distributional
objects are obtained by transporting a normal distribution, the power function increases at a
slower rate, especially under the highly nonlinear (exponential) link function.

th

4.2. Euclidean Responses. We applied the new approach targeting general random ob-
jects as responses for the special case of Euclidean responses. It is not specifically designed
for this case, where targeted, well-studied and well-honed single index models have a long
history. The numerical results show that the proposed method yields results that are some-
what inferior but overall still comparable to those obtained with specially tailored traditional
single index approaches; see Subsection S.4.4 of the Supplement [5].
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TABLE 3
Mean and sd (in parenthesis) of the RMPE as given in (4.5) comparing the performance of various Fréchet
regression models: Index Fréchet Regression (IFR), Global Fréchet Regression (GFR), Local Fréchet Regression
(LFR). The LFR fits are obtained for four individual predictor components separately.

Setting 1 Setting II
Identity Square | Exponential | Identity Square | Exponential
link link link link link link
IFR 0.0023 0.0092 0.0302 0.0490 0.1452 0.1666
(0.0012) | (0.0276) (0.0979) (0.0330) | (0.0286) (0.0988)
GER 0.0136 0.1668 0.1599 0.0661 0.2531 0.3413
(0.0002) | (0.0085) (0.0176) (0.0189) | (0.0095) (0.0186)
LFR1 0.0478 0.1671 0.3516 0.0679 0.1317 0.2371
(0.0014) | (0.0084) (0.0299) (0.0191) | (0.0096) (0.0310)
LER? 0.0479 0.1667 0.3507 0.0563 0.1666 0.1881
(0.0015) | (0.0081) (0.0294) (0.0190) | (0.0091) (0.0302)
LFR3 0.0476 0.1684 0.3468 0.1218 0.1992 0.1812
(0.0020) | (0.0133) (0.0296) (0.0191) | (0.0142) (0.0304)
LFR4 0.0454 0.1659 0.3346 0.0880 0.2177 0.2033
(0.0062) | (0.0101) (0.0284) (0.0189) | (0.0110) (0.0293)

1.00

Power function

(a) Simulation Setting . (b) Simulation Setting II.

Fig 3: Empirical power as function of § for density object responses. The black, red, and blue
curves correspond to the identity, square, and exponential link functions used in the data-
generating mechanism, respectively, while the dashed and solid lines correspond to sample
sizes n = 100 and n = 1000 respectively. The level of the tests is & = 0.05 and is indicated
by the dashed line parallel to the x-axis.

5. Data analysis.

5.1. Resting state functional Magnetic Resonance Imaging: ADNI data.

Resting-state functional Magnetic Resonance Imaging (fMRI) methodology makes it possi-
ble to study brain activation and to identify brain regions or cortical hubs that exhibit similar
activity when subjects are in the resting state [2, 22]. In resting state fMRI, time series of
Blood Oxygen Level Dependent (BOLD) signals are observed in regions of interest (ROI),
where each ROl is represented by the signal of a seed voxel, which is the voxel in an ROI that
has the highest correlation with the signals of nearby voxels. Alzheimer’s Disease has been
found to be associated with anomalies in the functional integration of ROIs [16, 72].

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). BOLD signals for V = 11
brain seed voxels for each subject were extracted for the following ROIs: MPEC (Ante-
rior medial prefrontal cortex), PCC (Posterior cingulate cortex), dMFPC (Dorsal medial
prefrontal cortex), TPJ (Temporal parietal junction), LTC (Lateral temporal cortex), TempP
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(Temporal pole), vVMFPC (Ventral medial prefrontal cortex), pIPL (Posterior inferior parietal
lobule), Rsp (Retrosplenial cortex), PHC (Parahippocampal cortex) and HF (Hippocam-
pal formation) [3]. The pre-processing of the BOLD signals was implemented by adopting
standard procedures of slice-timing correction, head motion correction and other standard
steps. The signals for each subject were recorded over the interval | ] (in seconds), with

measurements available at two-second intervals. From this the temporal correla-
tions were computed to construct the connectivity correlation matrix, also referred to as the
Pearson correlation matrix in the neuroimaging community.

The data set in our analysis consists of subjects at four stages of the disease:
CN (cognitively normal), EMCI (early mild cognitive impairment), LMCI (late
mild cognitive impairment), and AD (Alzheimer’s) subjects. The inter-hub connectivity
Pearson correlation matrix for the subject  with elements
( )( )
G () 7
( ) ( )
is the response object for each subject, where isthe ()™ element of the signal matrix
for the ™ subject and — is the mean signal strength for the ™ voxel. For

Alzheimer’s disease studies, the ADAS-Cog-13 score (henceforth referred to as C score) is
a widely-used measure of cognitive performance. It quantifies impairments across cognitive
domains that are affected by Alzheimer’s disease [39]; higher scores indicate more serious
cognitive deficiency.

We considered predictors, namely, stage for the disease (coded as 0-3, indi-
cating Cognitive normal (CN), Early and Late Mild cognitive impairment (EMCI and LMCI),
or Alzheimer’s Disease (AD), respectively), age of the subject (in years), is the
subject is female and if male), C score for the subject at the time of the first scan,
and additionally all pairwise interaction terms between the above predictors, i.e., the products

In a first step, we test the null hypothesis of no regression effect, i.e., with ,

() notall  are
where ( )" and ( )T with | | The null model
has included with since it is known that the stage of cognitive impairment has
an effect on brain connectivity/ We obtain an estimate of the ( ) dimensional vector
as the minimizer of () as per (3.3) and | | Under the null hypothe-
sis, T(A ) ( We find that , corresponding to a  value
of providing evidence that there is indeed a regression relationship.

We also implemented sequential predictor selection, where we specified an “alpha-to-enter”

TABLE 4
Details on step-wise model selection.

Step 1 Step 2 Step 3
Coeff. | p-value | Coeff. | p-value | Coeff | p-value
Age -0.364 | 0.005 | -0.394 - -0.401 -

Gender | 0.198 0.122 0.558 0.161 0.173 0.113
C Score | 0.371 0.094 0.207 0.010 0.279 -

level and considered to be in the model and included each of and
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in the model separately along with X; then testing the null hypotheses 8; = 0, j = 2,3,4
separately. Table 4 illustrates the resulting step-wise model selection.

For example, for testing 83 = 0, we first obtained by = —0.364, 6, = /1 — (—.364)2 =
0.931) and Tn = 7.88 with a p-value of 0.005. Thus X5 (age) was added to the model in
step 1, followed by adding X, (C score) in step 2, while X3 (gender) was not significant.
With X7, X5, and X in the model, we tested for the significance of the pairwise interaction
terms. The null hypothesis for this test is Hy : 85 = 85 = -- - = 819 = 0. The p-value was
0.106, and we did not include interactions in the final model. The estimated average Fréchet
error 237 | d2(V;, 1 (X1461 + Xaifa + X4404)) was quite small (0.239).

To construct the confidence regions for the coefficients (6, 8s,6,), we implemented the
local linear Fréchet regression with the Epanechnikov kernel and used 5-fold cross-validation
to select the bandwidth b. Using the bootstrap method to obtain the estimated covariance
matrix of the limiting distribution we obtained the 95% pairwise confidence ellipses for the
coefficients (6, 62,04) of the predictors- disease stage, age, and C score, which are displayed
in Figure 4. We observe that none of the pairwise confidence ellipses includes the origin and
therefore the p-values are < 0.05, implying the significance of the predictors.

0.0 —_—
0.20 0.20H
z z
?_0_1 g 0.15 |I E 0.15
E 0.10 . 0.1
3 - 2 £
E -02 . 0.05 | : 0.05]
! X
0.00 0.0 i
-03 _/
T -0.05 — -0.051 -
0.06 098 1.00 03 02 0.1 oo 0.06 098 1.00
Coeff. of stage of disease{ 1) Coeff. of age(-3) Coeff. of stage of disease(- )

(a) Confidence ellipse for (b) Confidence ellipse for (c) Confidence ellipse for
(61,02). (62,04). (61,04).

Fig 4: The 95% confidence ellipses for pairs of coefficients for predictors stage of the disease
(X1), age (X3), and C score (X ).

To illustrate the effect of the single index on the response, we computed the estimated
index of the fitted model for each subject and then obtained the 25%, 50%, and 75% quantiles
across all subjects, with values g1 = 15.048, g2 = 16.430 and g3 = 18.250, respectively. The
values of the four covariates for the subjects with estimated index values closest to g1, g2, and
g3 are in Table 5, and their observed and fitted functional connectivity correlation matrices
are illustrated in Figure 5. The fitted correlation matrices correspond to the values of the
estimated object link function at the three index values and are contrasted with the observed
correlation matrices for the three subjects. This gives an idea of how the fitted correlation
matrix changes as the index move through the three quantile levels.

We observe that the fits match the general pattern of the observed matrices quite well. The
Frobenius distances between the observed and the estimated matrices at ¢;, g2, and g3 are
1.68, 1.10, and 0.79, respectively. The fitted model reflects the trends seen in the observed
correlation matrices and illustrates the nonlinear dependence of functional connectivity on
the index value.
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TABLE 5
Covariate values for the subjects with estimated index values closest to the first three quantiles of the estimated
index when considered across all subjects, q1(15.048), g2(16.430), and q3(18.250), respectively. Subject 726
has an estimated index value that is closest to q1, subject 695 closest to qo, and subject 556 closest to q3.

Subject Estd. Stage of the

nun:ber index value d%sease Age Gender | C score
726 15.045 2 66.10y M 20.33
695 16.430 2 78.12y M 14
556 18.252 1 7255y M 51.67
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Fig 5: Observed and fitted functional connectivity correlation matrices for different values of
the single index. The panels in the top row, from left to right, depict the observed functional
connectivity correlation matrices for those subjects for whom the estimated index values are
closest to the 25%,50%, and 75% quantile of all indices across subjects, respectively. The
bottom row shows the fitted functional connectivity correlation matrices for the same sub-
jects, (from left to right). Positive (negative) values for correlations are drawn in red (blue),
where larger circles correspond to larger absolute values.

We also studied the out-of-sample prediction performance of the proposed IFR model, for
which we used the root mean squared prediction error

1/2
Mooy ~ J
(5.2) RMPE= | = 3 &% (V= io(X/0,0)) |
Test =1

- A TS . . .
where Y;**" and g (X; @) denote, respectively, Ehe I™ observed and predicted responses in
the test set, evaluated at the binned observation X;. Here, ng,j, and nyg denote the sample
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sizes of the training and testing sets formed by randomly splitting the data. We repeated this
process times, and computed RMPE for each split for the subjects separately. The tuning
parameters ( ) were chosen by a  fold cross-validation method for each replication of
the process. The prediction performance of the IFR model was compared with other applica-
ble Fréchet regression models, namely, the global Fréchet regression (GFR) model with the
three-dimensional predictor ( ) and two separate local linear Fréchet regression
(LFR) models, one with the single predictor (age) and the other with the single predic-
tor (C score). When comparing the performance of these models (Table 6), we find that

TABLE 6
Mean and sd (in parenthesis) of the root mean prediction error (RMPE) over 200 Monte Carlo simulation runs
for various object regression methods. The methods compared are index Fréchet regression (IFR); global
Fréchet Regression (GFR) with the three predictors stage of the disease, age, and ADSA score; and two local
linear Fréchet regression (LFR) models with separate one-dimensional predictors.

LFR1 LFR2

(Predictor Age) | (Predictor C Score)
0.3066 (0.012) | 0.5083 (0.011) | 0.5076 (0.012) 0.5326 (0.013)

IFR GFR

the out-of-sample prediction error is low for the IFR model, as compared to the global and
local Fréchet regression approaches. In fact, it is not far from the in-sample prediction error
( ), calculated as the average distance between the observed training sample and the pre-
dicted objects based on the covariates in the training sets. This motivates the proposed IFR
models.

5.2. Human mortality data: Age-at-death distributions as responses. Lifetables reflect-
ing human mortality across 40 countries correspond to distributional responses, coupled with
various country-specific covariates. We implement an overall test for the regression effect for
these data. Details about this analysis are in the Supplement [5], subsection S.4.1.

5.3. Emotional well-being of unemployed workers: Compositional data as responses..
We further demonstrate the proposed IFR method for the analysis of mood compositional
data. Here the object-valued responses lie on a manifold (sphere) with positive curvature.
Thus the sufficient (but not necessary) condition for assumption (AS5) that the underlying
metric space behaves like a CAT(0) space is not satisfied, however, the numerical perfor-
mance of the IFR method remains quite good; see Supplement [5], subsection S.4.2. This
suggests a certain degree of model robustness.

6. Discussion. Binning the data to reduce the effective sample size is not necessary for
the basic consistency results without rates. As discussed at the end of Section 2, the binning
method is introduced in order to invoke the uniform consistency rate for the local Fréchet
regression and the effective sample size () is tied to this rate by virtue of as-
sumption (A4). To zlvoid confusion, we discuss the binning approach throughout. The rate

of convergence for is /. Since our rate results and proofs rely on the uniform
convergence rate of local Fréchet regression, this rate cannot be improved within the current
framework and overcoming these limits would require a fundamentally different approach.
The assumptions required to obtain the technical results are essentially the same as those
used before in the Fréchet regression literature, specifically in [13]. We require curvature
and entropy conditions to hold uniformly across all index values and direction parameters.
The curvature and entropy conditions can be verified for commonly observed objects such
as univariate probability distributions, positive definite matrices, or data on the surface of a
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sphere, as well as other random objects under suitable metrics. The Lipschitz condition (A2)
on the link function is standard in single-index models, while assumption (AS5) reflects the
interplay between the properties of the metric and the link function. Assumption (AS) is
implied by the easier-to-interpret assumption (K1)-(K3) (see Appendix B).

The classical single index model for Euclidean responses has been recently extended to a
single index coefficient model for quantile regression [74]. This is a desirable extension for
the object case of index Fréchet regression as well. One problem to resolve in this case is to
define quantiles in the metric space where the object responses lie since there is no order. The
problem of defining quantiles is already difficult and ambiguous for multivariate Euclidean
objects. This is a potentially interesting topic for future research.

Finally, inference results for object regression are scarce. For example, the Wasserstein

-tests proposed by [54] are exclusively aimed at univariate distribution quantiles within the
specific setting of global Fréchet regression. We provide here a general framework to obtain
inference for the case of vector predictors coupled with object responses, which includes
generalized versions of inference for model comparisons and for assessing the significance
of individual predictors.

APPENDIX A: GEODESICS AND CURVATURE

The length of acurve | | —  connecting two distinct points € can be mea-
sured by taking partitions { } [ ] and finding the supremum polyg-
onal length

|| cC) ¢ )

eP

where P is any collection of subsets of [ | with finite cardinality. The metric space ( )
is alength spaceif ( ) | |, where the infimum ranges over all curves | | —
connecting two distinct points and , that is, i.e., () and () .A geodesic on

connecting two distinct points and is the shortest path connecting the two points.
Geodesics in a metric space are analogous to straight lines in a Euclidean space.

Unlike Euclidean spaces, a general metric space may not be flat, and curvature is used to
measure the amount of deviation from being flat. The curvature of a given geodesic space
is classified by comparing the geodesic triangles on the metric space to those on the corre-
sponding reference spaces When , R with the standard Euclidean distance

C ) |l || forany € R A geodesic triangle with vertices in a geodesic
space , denoted by A( ), consists of three geodesic segments that connect to , to

and to , respectively. A comparison triangle A\ ( ) in the reference space R
is a geodesic triangle in R formed by the vertices and such that,

(A.D) Co oo

is said to have a non-positive curvature if there exists a comparison triangle A ( )
in the reference space R such that () || || forall € and € and their
comparison points and on A( ). A geodesic space with curvature upper bounded by

in which every geodesic triangle A\ ( ) satisfies the following () inequality is a
CAT(0) space,

A2y () | || forall € and e and their comparison points eR

Every CAT(0) space is uniquely geodesic. Examples of CAT(0) spaces include Euclidean
space, the space of symmetric positive definite matrices, Wasserstein-2 spaces, or phyloge-
netic tree spaces. For a detailed introduction to metric geometry, we refer to [9]. A compila-
tion of the most relevant facts can be found in [45].
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mo(z0)

=

mag(z0+ a)

p

mg(z0 + 2a) 7
Fig 6: Left figure: Geodesic triangle formed by the three points +(C ) 4 )s
where is the midpoint of the geodesic connecting the points () and 4 ( )
The red line depicts the true regression function 4 ( ) is closely approximated
by lying on a geodesic that connects 4 ( ) with 4 ( ) Right figure: Reference

triangle in R as an illustration of the CAT(0) inequality.

APPENDIX B: SUFFICIENT CONDITIONS FOR ASSUMPTION (A5)

We discuss here sufficient conditions under which assumption (AS5) holds. For this we
consider the following assumptions:

(K1) () isaCAT(0) space, that is every geodesic triangle satisfies the CAT(0) inequality
in (A.2).

Forany €R and € there exists some such that for small enough € ( ]
we may consider the geodesic triangle formed by +C) 4 ) for €
T for which we assume the following.
(K2) Defining the midpoint of the geodesic path connecting ( ) and ( )
such that
(B.1) C+C) ) ) ) =« ) ()
we require
(B.2) ( +( ) )
where does not depend on  and is such that, and being the

lower Lipschitz constant for ; from assumption (A2), and the diameter of the metric
space  respectively.

(K3) There exist real constants such that, for all x with norm bounded both above
and below, and for all €

D e S H |

Figure 6 illustrates the geometry of the geodesic triangles in  and its reference space R
Assumption (K2) can be verified when the link function , is smooth enough for the case
of conventional Euclidean single index models. It thus provides an extension of the usual
smoothness assumption in the case of random object responses. In section S of the Sup-
plement [5]. We discuss this further in the context of Euclidean responses and in the case
where the responses lie in the space of distributions equipped with Wasserstein-2 metric, and
derive assumption (AS5) under the sufficient conditions (K1), (K2), and (K3).
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Assumption (K3) in conjunction with assumption (A2) implies that the link function |
is bi-Lipschitz. This limits the rate at which the object ., can change, essentially it cannot
change too fast or too slowly. A bi-Lipschitz function is an injective Lipschitz function whose
inverse function is also Lipschitz. The bi-Lipschitz condition is stronger than the common
assumption of a monotone link function in classical single index modeling with Euclidean
responses. In the special case of R this reduces to requiring a monotone differentiable
function with strictly positive derivative almost everywhere and restricts the monotonicity to
a smaller subclass of strictly monotone functions. In the special case of Euclidean responses,
this simplifies to the assumption that the link function is monotone and differen-
tiable such that ’( ) is strictly monotone with continuous derivative bounded away from
zero. Such technical assumptions are commonly used for deriving distributional results in the
existing single index literature, by virtue of a Taylor expansion of the link function  in the
Euclidean case.
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SUPPLEMENTARY MATERIAL

Supplement to Single Index Fréchet Regression
Section S.1. in the Supplement [5] includes the proofs of main and auxiliary results. Various
technical assumptions are compiled and discussed in Section S.2., while Section S.3. intro-
duces alternative sufficient conditions for assumption (A5). Section S.4. includes additional
data illustrations and simulation results.
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