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Abstract

We extend known results concerning directional transience of nearest-neighbor ran-
dom walks in random environments to allow for bounded jumps. Zerner and Merkl
[12] proved a 0-1 law for directional transience for planar random walks in random
environments. We extend the result to non-planar i.i.d. random walks in random envi-
ronments on Z

2 with bounded jumps. Sabot and Tournier [8] characterized directional
transience for a given direction for nearest-neighbor random walks in Dirichlet envi-
ronments on Z

d, d ≥ 1. We extend this characterization to random walks in Dirichlet
environments with bounded jumps.

MSC 2020: 60G50 60J10 60K37
Kewords: random walk, random environment, bounded jumps, 0-1 law, Dirichlet envi-
ronments, directional transience, recurrence

1 Introduction

In 1981, Kalikow [3] asked whether, for i.i.d. random walks in random environments (RWRE)
in 2 dimensions, the x-coordinate of the walker’s position must approach infinity with prob-
ability either 0 or 1. In 2001, Zerner and Merkl [12] answered this question in the affirmative
for nearest-neighbor, i.i.d., elliptic RWRE in 2 dimensions, and not just for the horizontal
component but for the component in any direction ` ∈ S1, where S1 is the unit circle in R

2.
Such a 0-1 law is still an open conjecture for dimensions d ≥ 3. In this paper, we extend the
result of Zerner and Merkl by removing the nearest-neighbor assumption, showing that for
i.i.d. elliptic RWRE with bounded jumps on Z

2, the 0-1 law holds for all directions ` ∈ S1.
Our approach is largely based on that of [11], which is a simplification of the proof given in
[12]. However, the removal of the nearest-neighbor assumption creates a need for additional
work and a number of adjustments.

We then turn our attention to random walks in Dirichlet environments (RWDE). For a
given direction ` ∈ Sd−1 (where Sd−1 is the unit sphere in R

d), the question of transience
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1 INTRODUCTION

and recurrence in direction ` is completely understood for nearest-neighbor RWDE. Tournier
remarks in [10] that many of the results used in the characterization of transience do not rely
on the nearest-neighbor assumption, so much of what was known in the nearest-neighbor
case carries over to the bounded-jumps case. However, not everything carries over directly.
One crucial step toward characterizing directional transience is a 0-1 law. As Tournier points
out in his remark, the proof of the 0-1 law for RWDE in dimensions d ≥ 3 given in [1] does
not require the nearest-neighbor assumption, but the proof for RWRE in dimension d = 2
in [12] and [11] does require the nearest-neighbor assumption. Our extension of the 0-1
law for d = 2 to bounded jumps means that for RWDE with bounded jumps, the 0-1 law
is now proven for all dimensions. Removing the nearest-neighbor assumption creates one
other obstacle to fully characterizing directional transience in a given direction. When the
annealed drift is zero, the nearest-neighbor argument relies on a symmetry that does not
necessarily exist in the bounded-jump case. Therefore, once the two-dimensional 0-1 law is
proven, completing a characterization of directional transience amounts to showing, for all
dimensions, that zero annealed drift implies recurrence in any direction.

The rest of this section formally defines our model. Section 2 states and proves the 0-1
law. Section 3 completes the characterization of directional transience for a given direction
in the Dirichlet case.

Model

Let V be a finite or countable set. For the theorems stated in this paper, we always have
V = Z

d (with d = 2 in Section 2), but the proofs in Section 3 will require constructing
RWRE on other sets. An environment on V is a nonnegative function ω : V × V → [0, 1]
such that for all x ∈ V ,

∑

y∈V ω(x, y) = 1. We denote by ΩV the set of all environments
on V . For a given environment ω and x ∈ V , we can define the quenched measure P x

ω on
V N (where we assume 0 ∈ N) to be the law of a Markov chain X = (Xn)n≥0 on V , started
at x, with transition probabilities given by ω. That is: P x

ω (X0 = x) = 1, and for n ≥ 1,
P x
ω (Xn+1 = y|X0, . . . , Xn) = ω(Xn, y).
Let FV be the Borel sigma field with respect to the product topology on ΩV , and let P

be a probability measure on (ΩV ,FV ). For a given x ∈ V , we define the annealed measure
P x = P× P x

ω on ΩV × V N by

P x(A× B) =

∫

A

P x
ω (B)P(dω)

for measurable A ⊂ ΩV , B ⊂ V N. In particular, for measurable B ⊂ V N, P x(ΩV × B) =
E[P x

ω (B)]. We often abuse notation by writing P x(B) instead of P x(ΩV ×B). When referring
to “the law” of a RWRE, we mean the annealed law unless otherwise specified.

All measures P on ΩZd considered in this paper satisfy the following conditions.

(C1) Under P, if ωx(y) = ω(x, x+ y), the (ωx)x∈Zd are i.i.d.;

(C2) With P-probability 1, the Markov chain induced by ω has only one infinite communi-
cating class, and it is reachable from every site.

(C3) There is an R > 0 such that with P-probability 1, ω(x, y) = 0 whenever |x− y| > R;
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2 THE 0-1 LAW FOR DIMENSION 2

Condition (C2) replaces the weak ellipticity assumption [12] and [11], under whichP(ω(0, y) >
0) = 1 for all four nearest neighbors y of 0. Our condition (C2) is satisfied whenever the
Markov chain induced by ω is P–almost surely irreducible. In particular, if there is a set of
possible jumps that always have positive probability for P–almost every environment, and
it is possible to reach any site from any other site using such jumps, then (C2) is satisfied
(under the weak ellipticity assumption of [12] and [11], the set of nearest-neighbor jumps has
this property). For an example where the Markov chain is P–almost surely not irreducible,
but condition (C2) is still satisfied, see Appendix B.

For ` ∈ Sd−1, define

A` := {X ∈ (Zd)N : lim
n→∞

Xn · ` = ∞}.

2 The 0-1 Law for Dimension 2

We prove the 0-1 law for directional transience for i.i.d. RWRE on Z
2 with bounded jumps.

Theorem 2.1. Let d = 2, let assumptions (C1), (C2), and (C3) hold, and let ` ∈ S1. Then
P 0(A`) ∈ {0, 1}.

Before giving the proof, we summarize Zerner’s proof in [11] and discuss where ours will
differ. The idea of the proof from [11] is that if the probability of transience in both direction
to the left and to the right (for instance) is positive, then with non-vanishing probability, one
should be able to start two walks in the same environment on different sides of a wide strip
and have both walks cross the strip and exit on the opposite side from where they started
(call this the strip traversal event). If the starting points are chosen correctly, this should lead
to the paths of the walks crossing at least half the time. The nearest-neighbor assumption
is leveraged here, as it implies that crossing paths must intersect. This intersection entails
a low-probability event. Consider the meeting point. A walk came a long way from the
right to hit that point, so it must have a very high probability of transience to the left. But
another walk went through this same point, and then traveled a long distance to the right.
The probability of such an event can be made arbitrarily low, implying that transience to
the left or to the right must have zero probability.

We now discuss differences between the above argument and ours. The argument from
[11] breaks the strip-traversal event into the event that the two paths intersect and the
event that they do not intersect, the latter being a subset of the event that the walks land
on opposite sides of a straight line through their starting points. We must consider three
events: that the paths intersect, that the paths come within a specified distance of each
other, and that the paths land on opposite sides of the line through their starting points.
Showing that these events are the entirety of the strip-traversal event is a step not required
in Zerner’s argument. If the linear interpolations of the paths cross, then the finite range
assumption implies that the paths must come near each other. However, unlike in the planr
case, it is possible for them to land on the same side of the line through their starting points
without the linear interpolations crossing, and we must show that this event also entails the
walks coming near each other.

A more significant difficulty is in comparing the probability of the event that the walks
come near each other to the probability that they actually meet. Because we are not assuming
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2 THE 0-1 LAW FOR DIMENSION 2

uniform ellipticity, and because a part of the environment where both paths come near
each other is not necessarily a “typical” part of the environment, arguments dealing with
the quenched probability of a modified path that causes an intersection would be difficult.
Instead, we focus on annealed probabilities, which requires us to leverage independence of
the environment at different sites while still forcing the walks to meet. This requires careful
attention to the work of defining the right stopping times and events, and unlike in Zerner’s
argument, results in our defining a meeting event where one of the walks does not necessarily
complete the strip traversal, but which nonetheless has vanishing probability.

Proof of Theorem 2.1. We divide this proof into steps.
Step 1: Preliminaries

Fix ` ∈ S1. For a ∈ R and X a sequence in Z
2, consider the stopping times

T≥a = T≥a(X) := inf{n ≥ 0 : (Xn · `) ≥ a},

and likewise for T≤a, T>a, and T<a. Similarly, for a set S ⊂ Z
2, define

TS = TS(X) := inf{n ≥ 0 : Xn ∈ S}.

We often suppress the argument X when the sequence intended is clear from the context.
For y ∈ Z

2 and a path γ = (x0, x1, . . . , xn) (which is a path of length n, and is a loop
if xn = x0), define y + γ := (y + x0, y + x1, . . . , y + xn). This is simply a space shift of the
path γ. For a path γ = (x0, x1, . . . , xn), we will talk about the annealed probability of γ, or
the probability that X takes γ. This simply means

P x0(X0 = x0, X1 = x1, . . . , Xn = xn).

Call a path γ a possible path if it has positive annealed probability. Note that a loop (x0) of
zero length has annealed probability 1, since P x0(X0 = x0) = 1.

Now by assumption (C2), there is a possible path connecting any two points. This is
because if x, y ∈ Z

d, then with positive P-probability, y is in the infinite communicating
class and thus reachable from x by some finite path. Since there are countably many finite
paths from x to y, at least one must have positive annealed probability. Let M be large
enough that for any vertex y in a closed unit disc of radius 2R centered at 0, there is a path
of positive probability from 0 to y with length no more than M .

By Kalikow’s 0-1 law (Theorem A.1 in Appendix A), P 0(A` ∪ A−`) ∈ {0, 1}. Thus, it
suffices to show that P 0(A`)P

0(A−`) = 0 under the assumption that P 0(A` ∪ A−`) = 1.
Lemma A.2 tells us that P 0(A`) > 0 if and only if P 0(T<0 = ∞) > 0 and P 0(A−`) > 0 if
and only if P 0(T>0 = ∞) > 0. Thus, it suffices to show

P 0(T<0 = ∞)P 0(T>0 = ∞) = 0. (1)

For a, b ∈ R, define the event

Gb
a :=











{T≥b < T<a} if b > a;

{T≤b < T>a} if b < a
.
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2 THE 0-1 LAW FOR DIMENSION 2

Note that for fixed a,

lim
b→∞

Gb
a =

⋂

b>a

Gb
a ⊂ {T<a = ∞}; lim

b→−∞
Gb

a =
⋂

b<a

Gb
a ⊂ {T>a = ∞}. (2)

Step 2: Two walks in one environment
In this step, we define a point zL and measures on (Z2)N × (Z2)N that encapsulate the

notion of running two random walks in the same environment, one from 0 and one from
zL. We define a “strip-traversal event” in which the two walks cross a strip in opposite
directions with certain restrictions, and then define three subsets of this event and show
that their union is the whole event. Showing this last statement requires more delicate work
than showing the analogous statement in [11], due to fringe cases which do not appear in
the nearest-neighbor model.

Fix a unit vector `⊥ perpendicular to `. Choose a sequence zL ∈ Z
2 indexed by L ∈ N

such that

• zL · ` ≥ 2L,

• With positive P 0-probability, XT≥2L
= zL, and

• zL · `⊥ is a median of the distribution of XT≥2L
· `⊥ under the measure P 0(·|G2L

0 ). That
is, P 0(XT≥2L

· `⊥ > zL · `⊥|G2L
0 ) ≤ 1

2
and P 0(XT≥2L

· `⊥ < zL · `⊥|G2L
0 ) ≤ 1

2
.

Define xL := zL · `. Due to the allowance of jumps, zL may not be uniquely defined for each
L—for example, if ` = (1, 0) and a jump of two steps to the right is possible, then (2L, h)
and (2L + 1, h) would both be candidates for zL for some h—but one may, for instance,
always take the candidate with the smallest ` component. Now consider two independent
random walks X1 = (X1

n)n and X2 = (X2
n)n moving in the same environment, with the first

walk starting at 0 and the second starting at zL. For ω ∈ ΩZ2 and a, b ∈ Z
2, let P a,b

ω be the
product measure P a

ω × P b
ω on the set (Z2)N × (Z2)N with typical element (X1,X2). Let P a,b

be the corresponding annealed measure.
We consider the “strip traversal event” G2L

0 ×G0
xL
, which is roughly the event that both

walks cross the strip {0 ≤ x · ` ≤ 2L} before leaving it; the walk starting at 0 is in G2L
0 ,

while the walk starting at zL is in G0
xL
. Zerner shows1 [11, equation (10)] that

P 0(T<0 = ∞)P 0(T>0 = ∞) = lim
L→∞

P 0,zL(G2L
0 ×G0

xL
). (3)

Now consider the following three subsets of the strip traversal event:

• OL, the opposite-sides event. This is the event that X1 ∈ G2L
0 , X2 ∈ G0

xL
, and

[

(X1
T≥2L

− zL) · `⊥
] [

X2
T≤0

· `⊥
]

< 0.

• IL, the intersection event. This is the event that X1 ∈ G2L
0 , X2 ∈ G0

xL
, and for some

0 ≤ m ≤ T≥2L(X
1), 0 ≤ n ≤ T≤0(X

2), X1
m = X2

n.

1Zerner actually shows P 0(T<0 = ∞)P 0(T>0 = ∞) ≤ lim infL→∞ P 0,zL(G2L
0

×G0

xL
), and this is all that is

needed for his argument and ours. However, a very brief and straightforward addition to Zerner’s argument
would show that the liminf is actually a limit and that equality holds, so we write it that way for cosmetic
reasons.
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2 THE 0-1 LAW FOR DIMENSION 2

Figure 1: On the left, we have (X1
T≥2L

− zL) · `⊥ > 0 and X2
T≤0

· `⊥ > 0, but β2 · `⊥ < 0. On

the right, different ways to have β2 · `⊥, (β1−z′L) · `⊥ > 0 are depicted. The upper path from
zL shows the situation α2 · `⊥ > β1 · `⊥, while the lower path from zL shows α2 · `⊥ < β1 · `⊥.

• PL, the proximity event. This is the event that X1 ∈ G2L
0 , X2 ∈ G0

xL
, and for some

0 ≤ m ≤ T≥2L(X
1), 0 ≤ n ≤ T≤0(X

2), |X1
m −X2

n| ≤ 2R.

Clearly IL ⊂ PL. We claim that the three events together comprise the entirety of the strip
traversal event.

Claim 2.1.1.

G2L
0 ×G0

xL
= OL ∪ PL = OL ∪ PL ∪ IL. (4)

The events OL and PL are each specified to be contained in the event G2L
0 ×G0

xL
, so their

union is as well. Now assume X1 ∈ G2L
0 and X2 ∈ G0

xL
. We will show that either OL or PL

occurs. Let π1 be the continuous linear interpolation of the path taken by X1, and let π2 be
the continuous linear interpolation of the path taken by X2. Let α2 be the last point in R

2

where π2 crosses the line {x · ` = 2L}. Let β1 be the first point where π
1 crosses {x · ` = 2L},

and let β2 be the first point where π2 crosses {x · ` = 0}. Let z′L be the point on the line
{x · ` = 2L} with (zL − z′L) · `⊥ = 0 (thus, zL = z′L + (xL − 2L)`). Note α2, β1, β2, and z′L
need not be in Z

d.
To show that either OL or PL occurs, we will assume OL does not occur and prove that

PL must occur. If OL does not occur, then (X1
T≥2L

− zL) · `⊥ and X2
T≤0

· `⊥ are either both

positive or both negative, or else at least one is 0. If (X1
T≥2L

− zL) · `⊥ = 0, then PL occurs,

because XT≥2L
and zL have the same `⊥ component and both have ` component between 2L

and 2L+R. Similarly, if X2
T≤0

· `⊥ = 0, then PL occurs.

Now suppose (X1
T≥2L

− zL) · `⊥ and X2
T≤0

· `⊥ are both nonzero and have the same sign.

Without loss of generality, we may assume both are positive (otherwise, rename the directions
`⊥ and −`⊥). To show that PL occurs, we must show that for some 0 ≤ m ≤ T≥2L(X

1) and
for some 0 ≤ n < T 2

0 , |X1
m −X2

n| ≤ 2R.
First, suppose that β2 · `⊥ < 0; this situation is depicted in on the left in Figure 1. Then

X2
T≤0−1 ·` > 0 and X2

T≤0−1 ·`⊥ < 0, but X2
T≤0

·` < 0 and X2
T≤0

·`⊥ > 0. In one step, the walker

that started at zL crosses the line {x · ` = 0} and the line {x · `⊥ = 0}. It follows that X2
T≤0−1

must be within a radius R of 0, and the event PL occurs. Similarly, if (β1 − zL) · `⊥ < 0,
then X1

T≥2L−1 must be within a radius R of z′L. Since z′L is within distance R from zL, we

conclude that X1
T≥2L−1 is within a radius 2R of zL, and the event PL occurs.
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2 THE 0-1 LAW FOR DIMENSION 2

We may therefore assume β2 · `⊥ and (β1 − z′L) · `⊥ are both positive. This situation is
depicted on the right in Figure 1. If α2·`⊥ > β1·`⊥, then π2 must cross the line {x·`⊥ = β1·`⊥}
at some point y between β1 and β1 + (xL − 2L)`. This crossing point is a distance no more
than R

2
from X2

n for some 0 ≤ n < T≤0(X
2). Its distance from β1 is no more than R, and β1

is no more than R
2
units of distance away from some X1

m for some 0 ≤ m ≤ T≥2L(X
1). Thus,

PL occurs.
Finally, assume α2 · `⊥ < β1 · `⊥. Then the path taken by π1 from 0 to β1 must intersect

the path taken by π2 from α2 to β2, since they are paths connecting different pairs of opposite
corners of the quadrilateral (0, β2, β1, α2). The point of intersection is no more than R

2
units

of distance away from X1
m for some 0 ≤ m ≤ T≥2L(X

1) and no more than R
2
away from X2

n

for some 0 ≤ n < T≤0(X
2). Thus, PL occurs. This finishes the justification of claim 2.1.1.

Now (4), together with (3), yields

lim
L→∞

P 0,zL(OL ∪ PL) = P 0(T<0 = ∞)P 0(T>0 = ∞). (5)

Step 3: Handling OL \ IL

In this step, we consider the event OL \ IL and and show that its probability is less than
1
2
P 0(G2L

0 )P zL(G0
xL
).

Because this event does not involve the walks intersecting (and thus “sharing” part of
the environment), its probability is the same as the probabilities of an analogous event
where the two walks are run independently in different environments. And it is therefore
bounded above by the probability of a similar event where two walks are run independently
in different environments but are allowed to intersect paths. To formalize this idea, let G2L,+

0

be the subset of G2L
0 on which XT≥2L

· `⊥ > zL · `⊥. Let G0,+
xL

be the subset of G0
xL

on which

XT≤0
· `⊥ > 0. Define G2L,−

0 and G0,−
xL

analogously. And define

ΠL := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L

0 },
ΠL,+ := {(0 = X0, X1, . . . , XT≥2L

) : X ∈ G2L,+
0 },

ΠL,− := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L,−

0 }.

We will abuse notation by using π to denote both a path in one of these sets and the set of
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2 THE 0-1 LAW FOR DIMENSION 2

vertices in that path. Then

P 0,zL(OL \ IL) =
∑

π∈ΠL,+

P 0(X takes π)P zL(G0,−
xL

, T≤0 < Tπ)

+
∑

π∈ΠL,−

P 0(X takes π)P zL(G0,+
xL

, T≤0 < Tπ)

≤
∑

π∈ΠL,+

P 0(X takes π)P zL(G0,−
xL

)

+
∑

π∈ΠL,−

P 0(X takes π)P zL(G0,+
xL

)

= P 0(G2L,+
0 )P zL(G0,−

xL
) + P 0(G2L,−

0 )P zL(G0,+
xL

)

≤ 1

2
P 0(G2L

0 )P zL(G0
xL
).

=
1

2
P 0(G2L

0 )P 0(G−xL

0 ).

The last inequality comes from the median property of zL, the last equality comes from
translation invariance. Now, using (2) and the fact that IL ⊂ PL, we have

lim sup
L→∞

P 0,zL(OL \ PL) ≤ lim sup
L→∞

P 0,zL(OL \ IL) ≤
1

2
P 0(T<0 = ∞)P 0(T>0 = ∞)

Hence, due to (5),

1

2
P 0(T<0 = ∞)P 0(T>0 = ∞) ≤ lim inf

L→∞
P 0,zL(PL).

Therefore, to prove (1), it suffices to show

lim
L→∞

P 0,zL(PL \ IL) = 0, (6)

and
lim
L→∞

P 0,zL(IL) = 0. (7)

Step 4: Forcing an unlikely meeting.
In this step, we show that the above quantities can be compared to the probability of a

certain “meeting event,” which occurs with vanishing probability. To do this, we exhibit a
strategy for X2 to hit the path taken by X1 at a point appropriately far from zL.

First, assume that

P 0,zL(P ′
L \ IL) ≥

1

2
P 0,zL(PL \ IL), (8)

where P ′
L ⊂ PL is the event X1 ∈ G2L

0 , X2 ∈ G0
xL
, and |X1

m −X2
n| ≤ 2R for some 0 ≤ m ≤

T≥2L(X
1), 0 ≤ n < T≤0(X

2) with X1
m · ` ≤ L. (We will handle the remaining case with an

essentially symmetric argument.)
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2 THE 0-1 LAW FOR DIMENSION 2

Recall that M is such that for any vertex y in a closed disc of radius 2R centered at
0, there is a possible path of length no more than M . Now for a given path π, define the
stopping time

T ′
π,L = T ′

π,L(X) := inf

{

n ≥ 0 :
for some x ∈ π with x · ` ≤ L, there is a possible
path of length M or less from Xn to x

}

.

Notice that P ′
L implies that T ′

π,L(X
2) ≤ T≤0(X

2) for π = (X1
n)

T≥2L

n=0 . This is because if
|X1

m −X2
n| ≤ 2R, then there is a possible path of length no more than M from X2

n to X1
m.

Therefore,

P 0,zL(P ′
L \ IL) ≤

∑

π∈ΠL

P 0,zL(X1 takes π)P 0,zL(T ′
π,L(X

2) ≤ T≤0(X
2) < Tπ(X

2) ∧ T>xL
(X2))

=
∑

π∈ΠL

P 0(X takes π)P zL(T ′
π,L ≤ T≤0 < Tπ ∧ T>xL

)

≤
∑

π∈ΠL

P 0(X takes π)P zL(T ′
π,L < Tπ). (9)

The first inequality comes from independence of transition probabilities at different sites
(condition (C1)). Notice that this is where the splitting off of the event IL becomes impor-
tant, because it allows us to leverage independence.

Now fix a path π ∈ ΠL, and let y0 be possible candidate (under the measure P zL) for
XT ′

π,L
—that is, a vertex such that for some x ∈ π with x · ` ≤ L, there is a possible path of

length M or less from y0 to x. Also fix n < ∞. Now let a = (a0 = zL, a1, a2, . . . , an = y0)
be a possible path of n steps from zL to y0 such that if X takes a—that is, if Xi = ai for
0 ≤ i ≤ n—then T ′

π,L = n and XT ′
π,L

= Xn = y0. Let Ea ⊂ (Z2)N be the event that X

takes a. Then on Ea, there is a possible path γ = (y0, y1, y2, . . . , yk) with k < M , yk ∈ π,
and yk · ` ≤ L. This path does not include any vertices in the path (X0, X1, . . . , Xn−1),
because if such a vertex were included, there would be a shorter path from that vertex to yk,
violating the infimum part of the definition of T ′

π,L. It may include multiple vertices from
π, but taking j = inf{0 ≤ i ≤ k : yi ∈ π}, we may consider the path γ′ = (y0, y1, y2, . . . , yj)
that intersects neither (X0, X1, . . . , Xn−1) nor π, except at the terminating vertex yj (note
that we do not necessarily have yj · ` ≤ L, but we do have yj · ` ≤ L+RM). By the strong
Markov property, for every ω with P zL

ω (Ea) > 0, we have

P zL
ω ((Xn, Xn+1, . . . , Xn+j) = γ′ Ea) = P y0

ω (X takes γ′). (10)

We will take expectations under the measure E[·|Ea] on both sides of the above, and apply
the following lemma, a version of the double conditioning theorem.

Lemma 2.2. For all measurable events A,B ⊂ (Z2)N with P a(A) > 0

P a(B|A) = Ea[P a
ω(B|A)|A]

We defer the proof to Appendix A. Now taking expectations in (10) and applying the
above lemma gives us

P zL ((Xn, Xn+1, . . . , Xn+j) = γ′ Ea) = EzL [P y0
ω (X takes γ′)|Ea].

9



2 THE 0-1 LAW FOR DIMENSION 2

Now by the independence assumption (C1) and the fact that the paths a and γ′ are disjoint,
this gives us

P zL ((Xn, Xn+1, . . . , Xn+j) = γ′ Ea) = P y0(X takes γ′) (11)

≥ κ, (12)

where κ > 0 is the minimum annealed probability of any possible path of length less than
M . A minimum exists because, up to translation invariance, there are only finitely many
possible paths of a given length, and it is positive because by definition, all possible paths
have positive annealed probability. Now yj is of a distance at most R(k − j) ≤ Rk < RM
from yk, and therefore yj · ` ≤ L + RM . Thus, if a portion of the walk takes the path γ′,
which ends at yj, then Tπ = Tπ∩{x·`<L+RM} < ∞. By (12), then, we have

P zL
(

Tπ = Tπ = Tπ∩{x·`<L+RM} < ∞ Ea

)

≥ κ. (13)

Now the event {T ′
π,L = n} is, up to a set of P zL-probability 0, the disjoint union of Ea, over

all possible paths a of length n from zL such that if X takes a then T ′
π,L = n. Likewise, the

event {T ′
π,L < ∞} is the disjoint union of {T ′

π,L = n} over all finite values of n. Therefore,
from (13) we get

P zL
(

Tπ = Tπ∩{x·`<L+RM} < ∞ T ′
π,L < ∞

)

≥ κ. (14)

We next define another event for (X1,X2) that involves the walks intersecting, but is
not contained in the strip traversal event. Let the meeting event ML be the event that

X1 ∈ G2L
0 , and X2 intersects with the path (X1

n)
T≥2L

n=0 at a point y with y · ` ≤ L + RM .
Note that our event ML is less restrictive than the event IL in that it does not require that
X2 complete the event G0

xL
, nor does it require that the intersection occur at some X2

n with
n ≤ T≤0(X

2). However, unlike IL, ML imposes the restriction that the intersection must
occur on or near the half of the strip {0 ≤ x · ` ≤ 2L} that is closer to 0. Now if X1 takes π
for some π ∈ ΠL and Tπ∩{x·`<L+RM}(X

2) < ∞, then (X1,X2) ∈ ML. By independence, we
therefore have

P 0,zL(ML) ≥ P 0,zL(X1 takes π, Tπ(X
2) = Tπ∩{x·`<L+RM}(X

2) < ∞)

=
∑

π∈ΠL

P 0(X takes π)P zL(Tπ = Tπ∩{x·`<L+RM} < ∞)κ

(14)

≥
∑

π∈ΠL

P 0(X takes π)P zL(T ′
π,L < ∞)κ

(9)

≥ P 0,zL(P ′
L \ IL)κ

(8)

≥ 1

2
κP 0,zL(PL \ IL), (15)

Step 5: Finishing the argument.
We will now show that P 0,zL(ML) vanishes. In [11], Zerner shows that the event we are

calling IL has vanishing probability in the nearest-neighbor case. His argument here does not
use the nearest-neighbor assumption, and it also works for our event ML. We summarize it
here, applying it to ML. Fix ε > 0, and suppose the intersection occurs at a point y. Either

10



3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

P y
ω(A`) < ε or P y

ω(A`) ≥ ε. In the former case, a walk from 0 passes through y but still
has T≥L < T<0. Zerner shows in [11] that the probability of this event has limsup bounded
above by ε. In the latter case, a walk started from zL travels a great distance in direction −`
(here, a distance at least L − RM) and still reaches a point where the probability of A` is
at least ε. The chance of traveling such a distance in direction −` but still having X2 ∈ A`

approaches 0 as L → ∞. On the other hand, if X2 ∈ A−`, then PXn
ω (A`) must approach 0,

being a bounded martingale, and so the probability that it is still above ε after L−RM
R

units
of time (long enough to travel distance L − RM) approaches 0 as L → ∞. One may then
take ε to 0. Hence we may conclude that

lim
L→∞

P 0,zL(ML) = 0.

Since (15) is true whenever (8) is true, we may conclude that

lim
L→∞

P 0,zL(PL \ IL)1(8) holds = 0.

Now if (8) does not hold, then we can make a nearly symmetric argument. We must have

P 0,zL(P ′′
L \ IL) ≥

1

2
P 0,zL(PL \ IL),

where P ′′
L is the eventX1 ∈ G2L

0 ,X2 ∈ G0
xL
, and |X1

m−X2
n| ≤ 2R for some 0 ≤ m ≤ T≥2L(X

1),
0 ≤ n < T≤0(X

2) with X2
n · ` ≥ L− 2R. Define M′ to be the event that X2 ∈ G0

xL
and X1

intersects with the path (X2
m)

T≤0

m=0 at a point y with y · ` ≥ L − 2R − RM . As in (15), we
can argue that P 0,zL(M′

L) ≥ 1
2
κP 0,zL(PL \ IL), and we can show as before that P 0,zL(M′

L)
vanishes in L. Therefore,

lim
L→∞

P 0,zL(PL \ IL)1(8) does not hold = 0.

It follows that limL→∞ P 0,zL(PL\IL) = 0, which is (6). To get (7), note that IL ⊂ ML∪M′
L,

so its probability must likewise vanish.

3 Random Walks in Dirichlet Environments

We now turn our attention to random walks in Dirichlet environments (RWDE). Because
the proofs will require graphs other than Z

d, we define RWDE on more general graphs.
Let H = (V,E,w) be a weighted directed graph with vertex set V , edge set E ⊆ V ×V ,

and a positive-valued weight function w : E → R. To the weighted directed graph H, we
can associate the Dirichlet measure PH on (ΩV ,FV ), which we now describe.

Recall the definition of the Dirichlet distribution: for a finite set I, take parameters
α = (αi)i∈I , with αi > 0 for all i. The Dirichlet distribution with these parameters is a
probability distribution on the simplex ∆I := {(xi)i∈I :

∑

i∈I xi = 1} with density

D ((xi)i∈I) = C(α)
∏

i∈I

xαi−1
i ,

11



3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

where C(α) is a normalizing constant.
Define PH to be the measure on ΩV under which transition probabilities at the various

vertices x ∈ V are independent, and for each vertex x ∈ V , (ω(x, y))(x,y)∈E is distributed
according to a Dirichlet distribution with parameters (w(x, y))(x,y)∈E. With PH-probability
1, ω(x, y) > 0 if and only if (x, y) ∈ E for all x, y ∈ V . We will call a random environment
chosen according to PH a Dirichlet environment on H. We will use EH to denote the
associated expectation, and P x

H and Ex
H to denote the annealed measure and expectations.

Now let N ⊂ Z
d be a finite set such that Span

N
(N) :=

⋃∞
N=0

∑N

i=1 N = Z
d. Let G

be a weighted directed graph with vertex set Z
d, and let (αy)y∈N be positive weights. Let

G = (Zd, E, w) be the weighted directed graph with vertex set Zd, edge set E := {(x, y) ∈
Z
d × Z

d : y − x ∈ N}, and weight function w with w(x, y) = αy−x for all (x, y) ∈ E (the
condition on N simply ensures that G is strongly connected). Then PG is the law of a
Dirichlet environment on Z

d satisfying (C1), (C2), and (C3), and P 0
G is the corresponding

annealed measure for a walk started at 0.
It is known in nearest-neighbor RWDE that for a given direction ` ∈ Sd−1, transience

and recurrence in direction ` under P 0
G are characterized by the relationship between ` and

the annealed drift.

Theorem ([8, Theorem 1]). Let P 0
G be the measure of a nearest-neighbor RWDE on Z

d. Let
∆ = E0[X1] be the annealed drift, and let ` ∈ Sd−1. Then P 0

G(A`) = 1 if and only if ` ·∆ > 0;
otherwise, P 0

G(A`) = 0.

Our goal is to extend this theorem to RWDE with bounded jumps.

Theorem 3.1. Let P 0
G be the measure of a RWDE with bounded jumps on Z

d. Let ∆ =
E0[X1] be the annealed drift, and let ` ∈ Sd−1. Then P 0

G(A`) = 1 if and only if ` · ∆ > 0;
otherwise, P 0

G(A`) = 0.

As Tournier points out in [10], many of the arguments used in the proof of the theorem
from [8] do not rely on the nearest-neighbor assumption, and therefore already work for
RWDE with bounded jumps as well. In particular, Theorem 3.1 is known to be true provided
∆ 6= 0 and d 6= 2.

If ∆ 6= 0 and d = 2, we know from [10] that ` · ∆ > 0 implies P 0
G(A`) > 0, and from

[2, Theorem 1.8] that ` · ∆ = 0 implies P 0
G(A`) = 0 (the arguments in [2] are given for the

nearest-neighbor case, but can be easily modified to work for our bounded-jump model).
From here, our 0-1 law of Theorem 2.1 allows us to reach the conclusion of Theorem 3.1.

The only remaining case is where ∆ = 0. In the nearest-neighbor case, ∆ = 0 implies a
symmetry that forces P 0

G(A`) = P 0
G(A−`) for all directions `. The 0-1 laws of [12] for d = 2

and of [1] for d ≥ 3 then yield the conclusion P 0
G(A`) = 0 for all `. In the bounded-jumps

case, zero drift does not imply symmetry, so even the 0-1 law of Theorem 2.1 is not by itself
enough to prove the theorem. Theorem 3.1 will be proven if we can prove the following
theorem, which will rely on Theorem 2.1 for the case d = 2.

Theorem 3.2. Let P 0
G be the measure of a RWDE with bounded jumps on Z

d. Assume
∆ = 0, and let ` ∈ Sd−1. Then P 0

G(A`) = 0.

12



3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

As with many proofs of results in RWDE, our proof involves comparing the graph G
to a sequence of larger and larger finite graphs (HN,L), which look like G except possibly
near boundaries, and applying a key “time-reversal” lemma from [6]. We will state only
the part of this lemma that we need, beginning with a definition. Let H = (V,E,w) be
a weighted directed graph. For a site x ∈ V , define the divergence of x by div(x) :=
∑

(x,y)∈E w(x, y) −
∑

(y,x)∈E w(y, x). Say x has zero divergence if div(x) = 0, and say H is
divergence-free if every vertex in V has zero divergence.

Lemma 3.3 (See [6], Lemma 1, [7], Lemma 1). Let H = (V,E,w) be a divergence-free
weighted directed graph, and let x, y ∈ V such that there is an edge e from y to x in H.
Then, letting T̃x denote the first positive hitting time of x, P x

H(XT̃x−1 = y) = w(y,x)∑
v∈V w(v,x)

.

The finite graphs we construct are closely related to those constructed by Tournier in [10]
for the characterization of transience in the nonzero-drift case, and we invoke a key property
of these graphs that is proven in [10] and also applies to our graphs. However, the graphs
from [10] are slightly altered to suit our argument, which is new, though of a very similar
flavor.

A very significant difference between the argument in [10] and ours is that the former
need only be given for directions with rational slopes, and the result follows for arbitrary

directions as an immediate consequence. That is, let Sd−1
r :=

{

u
|u|

: u ∈ Z
d \ {0}

}

⊂ Sd−1

be the set of vectors in the unit sphere Sd−1 that have all rational slopes. The finite graphs
used in [10] are naturally set up to work for directions in Sd−1

r , but once the result is proven,
extending to arbitrary directions follows immediately from convexity of the set of transient
directions. For us, extending the result from rational directions to all ` ∈ Sd−1 is not so
immediate. Indeed, the following conjecture remains open for general RWRE.

Conjecture 3.4. Let P 0 be the law of an i.i.d. RWRE on Z
d, and let Sd−1 be the set of a

unit vectors in R
d. For ` ∈ Sd−1, let A0

` be the event that limn→∞ Xn · ` = ∞, and there is
no neighborhood U ∈ Sd−1 containing ` such that for all `′ ∈ U , limn→∞ Xn · `′ = ∞. Then
for all ` ∈ Sd−1, P 0(A0

`) = 0.

In the nearest-neighbor case of RWDE, Conjecture 3.4 is seen to be true from [8, Theorem
1], and in the bounded-jump case it will follow from Theorem 3.1, once it is proven (again,
it only remains to prove Theorem 3.2). However, because we cannot rely on the truth of
Conjecture 3.4, proving Theorem 3.2 for all directions ` ∈ Sd−1

r is not sufficient to prove it
for all directions ` ∈ Sd−1, even though Sd−1

r is dense in Sd−1. For ` ∈ Sd−1 \ Sd−1
r , we must

rule out the possibility that a walk could with positive probability be transient in direction
` while recurrent in all directions not parallel to `.

For the sake of readability, we will first prove Theorem 3.2 for rational slopes. However, we
do not know of a way to generalize directly to arbitrary directions. Rather, the generalization
will require going through the same argument more carefully, choosing directions v ∈ Sd−1

r

sufficiently close to ` to satisfy certain properties and constructing graphs in terms of these
v. We will describe necessary differences as they come up. This approach should be easier
to follow, as the ideas involved in constructing the graphs and leveraging the time reversal
lemma are quite separate from the ideas involved in comparing arbitrary directions with
directions in Sd−1

r .
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3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

3.1 Preliminaries

Because we are discussing multiple directions, we must replace our notation T≤a for hitting
times of half-spaces with the slightly more cumbersome

T `
≤a = T `

≤a(X) := inf{n ≥ 0 : (Xn · `) ≤ a},

and similarly for <, ≥, and >. We use this notation even for the proof that assumes ` ∈ Sd−1
r

in order to facilitate comparisons later.
Moreover, for ` ∈ Sd−1 we will also need to define the “lateral hitting times”

H`
≥a := inf{n ≥ 0 : Xn · `⊥ ≥ a for some `⊥ ∈ Sd−1 with `⊥ ⊥ `}.

For a vertex set V and v ∈ V , define

Tv = Tv(X) := inf{n ≥ 0 : Xn = v}.

Finally, for any stopping time defined as the first n ≥ 0 satisfying a certain condition,
we use the same notation but with a tilde (∼) over it to denote the corresponding positive
stopping time: that is, the first n > 0 satisfying the same condition.

We will use the following lemma, which is also an ingredient in Kalikow’s 0-1 law. It is
proven in Appendix A.

Lemma 3.5. Let P 0 be the annealed measure of a RWRE on Z
d satisfying assumptions

(C1), (C2), and (C3). Then for every ` ∈ Sd−1 and a < b ∈ R,

P 0(#{n ≥ 0 : Xn · ` ≥ a} = ∞, T `
≥b = ∞) = 0. (16)

3.2 Rational slopes

We now state and prove Theorem 3.2 for directions with rational slopes.

Theorem 3.6. Let P 0
G be the measure of a RWDE with bounded jumps on Z

d. Let ∆ = 0,
and let ` ∈ Sd−1

r . Then P 0
G(A`) = 0.

Proof of Theorem 3.6. Let ` ∈ Sd−1
r . Assume for a contradiction that P 0

G(A−`) > 0. Then, as

in [3, page 765], we have P 0
G(T

`
>0 = ∞) > 0, from which it easily follows that α := P 0

G(T̃
`
≥0 =

∞) > 0. By Lemma 3.5, P 0
G(T

`
≤−L = T̃ `

≥0 = ∞) = 0, so P 0
G(T

`
≤−L < T̃ `

≥0 = ∞) = α. For PG-
almost every environment, it is possible, with positive probability, for a walk to hit the half-
space {x · ` ≤ −L} and then return to {x · ` ≥ 0}. Therefore, we have P 0

G(T
`
≤−L < T̃ `

≥0) > α

for all L ≥ 0. And on the event {T `
≤−L < T̃ `

≥0}, there is necessarily some a such that

T `
≤−L < T̃ `

≥0 ∧H`
≥a. It therefore follows that for any L > 0, there exists K = K(L) > 0 such

that
P 0
G(T

`
≤−L < T̃ `

≥0 ∧H`
≥ 1

2
K
) > α. (17)

For L ≥ R, let K = K(L) be an increasing function satisfying (17) for all L. Let u be a
constant multiple of ` such that u ∈ Z

d. Then let (u, u2, . . . , ud) be an orthogonal basis for
R

d such that ui ∈ Z
d for all i. Let N be large enough that N |ui| ≥ K for all i.
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3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

We will define a graph HN,L in nearly the same way as the GN,L defined by Tournier in
[10]. Consider the cylinder

CN,L := {x ∈ Z
d : 0 ≤ x · ` ≤ L}/(NZu2 + · · ·+NZud).

This is the slab SN,L := {0 ≤ x · ` ≤ L} ∩ Z
d where vertices that differ by Nui for some

i ∈ {2, . . . , d} are identified. We note that [10] uses L|u| rather than L here. We use L for
reasons related to our plans for generalizing the proof to ` /∈ Sd−1

r .
Now define the graph HN,L with vertex set

VN,L := CN,L ∪ {M} ∪ {∂},

where M and ∂ are new vertices (in [10], R and ∂ are used, but in this paper, R refers to
the jump range, as defined in (C3), and edges of HN,L are of the following types:

1. edges induced by those of G inside CN,L;

2. If x ∈ CN,L corresponds to a vertex x′ ∈ SN,L, there is

(a) an edge from x to ∂ for each y ∈ N such that (x′ + y) · ` < 0,

(b) an edge from ∂ to x for each y ∈ −N such that (x′ + y) · ` < 0,

(c) an edge from x to M for each y ∈ N such that (x′ + y) · ` > L,

(d) an edge from M to x for each y ∈ −N such that (x′ + y) · ` > L,

3. A new “special” edge from M to ∂ and one from ∂ to M .

Weights of all edges but the last two are induced by the corresponding weights in G. Note
that several edges may share the same head and tail. If that is the case, identify such edges
into one edge whose weight is the sum of all of the original weights in order to create a
graph that is not a multigraph and fits our definitions (there is also a way to define RWDE
on a multigraph by keeping track of vertices visited and edges taken, and if we used such a
definition, the identification of multiple edges would not affect the distribution of the vertex
path). By construction, all vertices in CN,L have zero divergence. It remains to describe the
weights of the new edges connecting ∂ and M (the paper [10] only defines an edge from M
to ∂). It is shown in [10, p. 722] that the quantity

(

∑

weights of edges in 2(c)
)

−
(

∑

weights of edges in 2(a)
)

is a positive multiple of the dot product of v with the annealed drift. Thus, because of
our assumption the annealed drift is zero, the two sums are equal. Note that by the shift-
invariant structure of the graph G, the sum on the left is also the weight exiting ∂ by edges
in 2(b). Similarly, the sum on the right is also the weight exiting M by edges in 2(d). Hence
the total weights of edges in 2(a), 2(b), 2(c), and 2(d) are all the same. Because weights in
2(a) and 2(b) are the same, ∂ has zero divergence, and because 2(c) and 2(d) are the same,
M has zero divergence. In order to preserve the divergence-free character of the graph, we
give both of the special edges the same weight W , which we take to be the value of each
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3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

Figure 2: Graph HN,L. Here N = {(0, 1), (1,−1), (−2, 0)}, and v = (2, 1). Boundary
conditions in direction perpendicular to v are periodic; vertices labeled with the same letters
are identified. Arrows to and from the main part of the graph on the left are understood to
originate from or terminate at ∂, and similarly with M on the right side.

of the two sums above. It follows from well known properties of Dirichlet random variables
that when the walk is started at either of the endpoints, its first step is along the special
edge to the other endpoint with annealed probability 1

2
. Figure 2 shows an example of the

graph HN,L. (Because Figure 2 is also intended to be used for the argument for Theorem
3.2, it uses v rather than ` in its labeling. For the purpose of the current argument, simply
take v = `.)

Define the stopping time τ = inf{n ∈ N : Xn = ∂,Xn−1 = M}. Note that {T̃∂ = τ} =
{XT̃∂−1 = M} is the event that the first return to zero is by the special edge.

We note, by Lemma 3.3,

P ∂
HN,L

(T̃∂ = τ) =
1

2

On the other hand, we also have P ∂
HN,L

(X1 = M) = 1
2
. Now by considering the possibility

that the first step from ∂ is to M (by the special edge) and the possibility that the first step
from ∂ is not to M , we get

P ∂
HN,L

(T̃∂ = τ) ≤ P ∂
HN,L

(X1 = M, T̃∂ = τ) + P ∂
HN,L

(X1 6= M,TM < T̃∂)

= P ∂
HN,L

(X1 = M)PM
HN,L

(T∂ = τ) + P ∂
HN,L

(X1 6= M,TM < T̃∂). (18)

The equality comes from the Markovian property of the quenched measure, Lemma 2.2, and
independence of sites, arguing as we did for (11). Now (18) can be rewritten as

1

2
≤ 1

2
PM
HN,L

(T̃∂ = τ) + P ∂
HN,L

(X1 6= M,TM < T̃∂), (19)

16



3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

We claim that the term P ∂
HN,L

(X1 6= M,TM < T̃∂) approaches 0 as L and K increase.

Let B = B(L,K) be a box of radius L∧K
3

around 0, and for x ∈ CN,L, let x + B be the set
of vertices in CN,L that can be written as x + y for some y ∈ B. Note that for x ∈ CN,L,
the dot product with ` is well defined, since vertices in SN,L that are identified to form CN,L

have the same dot product with `. Then for sufficiently large L,

P ∂
HN,L

(X1 6= M,TM < T̃∂) =
∑

x∈CN,L,
0≤x·`≤R

P ∂
HN,L

(X1 = x)P x
HN,L

(TM < T∂)

≤
∑

x∈CN,L,
0≤x·`≤R

P ∂
HN,L

(X1 = x)P x
HN,L

(T(x+B)c < T∂)

≤
∑

x∈CN,L,
0≤x·`≤R

P ∂
HN,L

(X1 = x)P 0
G(TBc < T `

≤−R)

= P 0
G(TBc < T `

≤−R) (20)

The first equality comes from the strong Markov property and independence of sites. The
first inequality holds as long as L is large enough that M /∈ x + B. To get the second
inequality, note that a finite path from x that stays in x+B until the last step does not use
the periodic boundary conditions (provided L∧K

3
> R), and so it has the same probability

as a corresponding path in G. And for x ∈ CN,L with x · ` ≤ R, a walk from x on HN,L that
leaves x+B without hitting ∂ corresponds to a walk on G (which we may take to start at 0
by translation invariance) that leaves B without traveling x · ` or more units (of distance in
R

d) in direction −`. Since x · ` ≤ R for all x with P ∂
HN,L

(X1 = x) > 0, the second inequality
follows. The final equality comes from pulling the second term out of the sum, which is then
equal to 1.

To prove our claim, we must show that (20) goes to 0 as L increases (along with K). Let
ε > 0. By assumption, P 0

G(A−`) > 0. By Theorem 2.1 for d = 2, or by the 0-1 law of Bouchet
for d ≥ 3 in [1] (where, as Tournier points out in [10], the proof works for bounded jumps),
this means P 0

G(A−`) = 1. Thus, P 0
G(T

`
≤−R < ∞) = 1. Now take an increasing sequence (Qr)

of finite sets converging to Z
d. Then the event {T `

≤−R < ∞} is the limit as r increases (i.e.,
the union over all r) of the events {T `

≤−R < TQc
r
}. Let Q = Q(ε) be one such Qr large enough

that P 0
G(TQc < T `

≤−R) < ε. Note that although Q depends on ε, it does not depend on L.
Thus, for large enough L, B contains Q, so that

{TBc ≤ T `
≤−R} ⊂ {TQc ≤ T `

≤−R}. (21)

It follows that, for large enough L,

P 0
G(TBc ≤ T `

≤−R) ≤ P 0
G(TQc ≤ T `

≤−R) < ε.

Since this can be true for arbitrary ε > 0, the right side of (20) goes to 0, and therefore so
does P ∂

HN,L
(X1 6= M,TM < T̃∂).

Next, we will show that PM
HN,L

(T∂ = τ) is bounded away from 1 as M increases. We have

17



3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

PM
HN,L

(T∂ 6= τ) ≥
∑

x∈CN,L,L−R≤x·`≤L

PM
HN,L

(X1 = x)P x
HN,L

(T∂ < T `
>x·`)

≥
∑

x∈CN,L,L−R≤x·`≤L

PM
HN,L

(X1 = x)P 0
G(T

`
≤−L < T̃ `

≥0 ∧H`
≥ 1

2
K
)

>
∑

x∈CN,L,L−R≤x·`≤L

PM
HN,L

(X1 = x)α

=
1

2
α.

The first inequality comes from the strong Markov property and independence of sites. To
get the second inequality, note that the probability P x

HN,L
(T∂ < T>x·`) is greater than the

probability, starting from x, that a walk on HN,L reaches ∂ without ever traveling more than
N
3
units in any direction perpendicular to u. Since this event precludes the walk from using

the periodic boundary conditions, (and because weights to ∂ in HN,L are the same as the
weights from corresponding sites to the set {y : y · u < 0}) its probability is the same as
the probability that a walk in G travels more than x · ` units in direction −u without ever
traveling more than N

3
units in any perpendicular direction. Since x · u ≤ L, the second

inequality follows. The third inequality comes from (17), and the equality comes from the
expectation of a beta random variable.

Now taking the limsup in (19) as M → ∞ yields the contradiction

1

2
≤ 1

2

(

1− 1

2
α

)

<
1

2
.

3.3 Generalizing to directions in Sd−1 \ Sd−1
r

We now describe how to prove Theorem 3.6 for directions that do not necessarily have
rational slopes.

The graph constructed in [10] is used to analyze a direction ` with rational slopes, and
uses the rationality in a significant way. Rather than attempt to construct and analyze an
analogous graph for an irrational direction ` ∈ Sd−1, we use a sequence of rational slopes
v ∈ Sd−1

r approaching `. The following lemma is simple, but important.

Lemma 3.7. Fix ` ∈ Sd−1, h > 0, and L′ > L > 0. For v ∈ Sd−1 close enough to `, any
x ∈ R

d with x · ` ≥ L′ and x · v ≤ L must necessarily have x · `⊥ > h for some unit vector
`⊥ ⊥ `.

Proof. Choose a unit vector v close to ` and let `⊥ = `⊥(v) ∈ Sd−1 be the unit vector
perpendicular to ` such that v = a` −

√
1− a2`⊥, where a = v · ` (for v = `, let `⊥ be

an arbitrary unit vector perpendicular to `; the statement is vacuous in this case since the
hypotheses contradict each other). Then a↗1 as v → `, and `− v = (1− a)`+

√
1− a2`⊥.

By writing x · (`− v) in different ways, we get

(1− a)x · `+
√
1− a2x · `⊥ = x · `− x · v.

18



3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

From this we get

√
1− a2x · `⊥ = ax · `− x · v

≥ aL′ − L.

For v sufficiently close to `, a is close enough to 1 that this gives us

√
1− a2x · `⊥ ≥ 1

2
(L′ − L)

and

x · `⊥ ≥ 1

2
√
1− a2

(L′ − L).

Taking v close to ` makes a close to 1, which suffices to prove the lemma.

We now proceed with the proof, describing only the parts where it differs from the proof
of Theorem 3.6.

Proof of Theorem 3.2. Recall that we are assuming for a contradiction that P 0
G(A−`) > 0.

The first challenge is to get the same bound as in (17), but for a direction v with rational
slopes. We will show that for any L, there is a unit vector v = v(L) ∈ Sd−1

r close enough to
` and a K = K(L) large enough that

P 0
G(T

v
≤−L < T̃ v

≥0 ∧Hv
≥ 1

2
K
) > α. (22)

Fix L > 0, and choose any L′ > L. Let K ′ be such that

P 0
G(T

`
≤−L′ < T̃ `

≥0 ∧H`
≥ 1

2
K′) > α.

(Such a K ′ exists by (17).) Now on the event {T `
≤−L′ < T̃ `

≥0}, there is necessarily an open

neighborhood around ` such that for any v in the neighborhood, T `
≤−L′ < T̃ v

≥0. This is
because the walk only hits finitely many points before T≤−L′ , and each such point x (other
than 0) has x · ` < 0, so that for v close enough to `, x · v < 0. Hence

lim
v→`

P 0
G(T

`
≤−L′ < T̃ `

≥0 ∧ T̃ v
≥0 ∧H`

≥ 1

2
K′) = P 0

G(T
`
≤−L′ < T̃ `

≥0 ∧H`
≥ 1

2
K′).

In particular, for v close enough to `,

P 0
G(T

`
≤−L′ < T̃ `

≥0 ∧ T̃ v
≥0 ∧H`

≥ 1

2
K′) > α. (23)

Now let v ∈ Sd−1 have rational slopes, satisfy (23), and also be close enough to ` that if
x · ` ≥ L′ and x · v ≤ L, then x · `⊥ ≥ K ′ for some `⊥ ⊥ ` (this is possible by Lemma 3.7).
Choose K large enough that any y with y · v⊥ ≥ K

2
for any v⊥ ⊥ v is necessarily outside the

set

Z :=

{

−L′ −R ≤ x · ` ≤ 0, x · v ≤ 0, x · `⊥ ≤ K ′

2
for all `⊥ ⊥ `

}

.

Now on the event {T `
≤−L′ < T̃ `

≥0 ∧ T̃ v
≥0 ∧H`

≥ 1

2
K′}, it is necessarily the case that Xn ∈ Z for
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3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

Figure 3: In order for the walk to cross the line {x · ` = −L′} before leaving the set Z, it
must exit the lighter shaded box through the line {x · v = −L}.

0 ≤ n ≤ T `
≤−L′ . Furthermore, if z := XT `

≤−L′
, then since z · ` ≤ −L′ and z · `⊥ ≤ K′

2
for

all `⊥ ⊥ `, the choice of v implies that z · v ≤ −L. Thus T v
≤−L ≤ T `

≤−L′ , so Xn ∈ Z for

0 ≤ n ≤ T v
≤−L, and therefore T v

≤−L < T̃ v
≥0 ∧Hv

≥ 1

2
K
. Hence (using (23)),

P 0
G(T

v
≤−L < T̃ v

≥0 ∧Hv
≥ 1

2
K
) ≥ P 0

G(T
`
≤−L′ < T̃ `

≥0 ∧ T̃ v
≥0 ∧H`

≥ 1

2
K′) > α.

This is (22).
For L ≥ 0, let v = v(L) and K = K(L) be defined as in (22), with K increasing in L.

As before, let u be a constant multiple of v such that u ∈ Z
dand let (u, u2, . . . , ud) be an

orthogonal basis for Rd such that ui ∈ Z
d for all i, and define N as before as well.

We define the graph HN,L as described before, using the rational direction v, rather than
the direction `, to define it. Thus,

CN,L := {x ∈ Z
d : 0 ≤ x · v ≤ L}/(NZu2, . . . , NZud),

We note here our reason for using L as the length of the cylinder, rather than L|u| as in
[10]. The choice of v depends on the length of the cylinder, but |u| depends on v, and may
be unbounded as v → `.

As before, arguments based on the graph HN,L give us

1

2
≤ 1

2
PM
HN,L

(T̃∂ = τ) + P ∂
HN,L

(X1 6= M,TM < T̃∂), (24)
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3 RANDOM WALKS IN DIRICHLET ENVIRONMENTS

and we must show that the term P ∂
HN,L

(X1 6= M,TM < T̃∂) approaches 0 as L andK increase.

Defining B = B(L,K) as before, our previous arguments give us

P ∂
HN,L

(X1 6= M,TM < T̃∂) = P 0
G(TBc < T v

≤−R) (25)

Comparing with (20), the only difference is that the right hand side considers the event
{TBc < T v

≤−R}, rather than {TBc < T `
≤−R}.

We now must show that (25) goes to 0 as L increases (along with N , and with u ap-
proaching `). Let ε > 0 and choose R′ > R. Just as P 0

G(T
`
≤−R < ∞) = 1, we have

P 0
G(T

`
≤−R′ < ∞) = 1. Choose Q = Q(ε) so that P 0

G(TQc ≤ T `
≤−R′) < ε. For large enough L,

as in (21), we have
{TBc ≤ T v

≤−R} ⊂ {TQc ≤ T v
≤−R}. (26)

Now by Lemma 3.7, for v close enough to ` (i.e., for large enough L), if x · ` ≤ −R′ and
x · v ≥ −R, then x is not in Q, so that the event {T `

≤−R′ ≤ TQc ≤ T v
≤−R} is impossible, and

therefore
{TQc ≤ T v

≤−R} ⊂ {TQc ≤ T `
≤−R′}. (27)

It follows from (26), (27), and the choice of Q that for large enough L,

P 0
G(TBc ≤ T v

≤−R) ≤ P 0
G(TQc ≤ T `

≤−R′) < ε.

Since this can be true for arbitrary epsilon, P 0
G(TBc ≤ T v

≤−R) goes to 0, and therefore so does

P ∂
HN,L

(X1 6= M,TM < T̃∂).

Next, we will must show that PM
HN,L

(T∂ = τ) is bounded away from 1 as M increases.

Using (22) in place of (17), we are able to argue as before to get

PM
HN,L

(T∂ 6= τ) ≥ 1

2
α.

Now taking the limsup in (24) as M → ∞ yields the contradiction

1

2
≤ 1

2

(

1− 1

2
α

)

<
1

2
.

We now have enough to prove Theorem 3.1.

Proof of Theorem 3.1. First, suppose M 6= 0. Then if `· M> 0, the arguments in [10], which
work for bounded jumps, show that P 0(A`) > 0. For d ≥ 3, the proof of the 0-1 law in [1]
can easily be modified to work for bounded jumps, as a remark in [10] points out. If d = 1,
the 0-1 law of [4] applies, and if d = 2, Theorem 2.1 applies. Thus, we get P 0(A`) = 1.
If `· M< 0, then −`· M> 0, so we get P 0(A−`) = 1, and therefore P 0(A`) = 0. Finally, if
`· M= 0, then the results of [2] (which can easily be made to work for bounded jumps, as
noted in the aforementioned remark in [10]) imply that P 0(A`) = 0. This handles the case
M 6= 0. On the other hand, if M= 0, then the conclusion is that of Theorem 3.2.
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3.4 Further remarks

We have generalized to RWDE with bounded jumps the complete characterization of P 0
G(A`)

that was known for nearest-neighbor RWDE.
However, there is one nagging difficulty in the zero-drift case that must be dealt with

before we may claim absolute victory over the issue of directional transience for RWDE.
Because there are uncountably many directions, proving that the probability of transience
in any given direction is zero does not automatically mean that it is impossible for the walk
to be directionally transient. For example, however unlikely it seems, one could imagine
the possibility that a walk is almost surely transient in some random direction ` ∈ Sd−1

with continuous (or otherwise atom-free) distribution and recurrent in all directions `′ 6= ±`.
This pathological behavior has yet to be ruled out, even for the nearest-neighbor Dirichlet
case. To resolve this difficulty we would need to prove, at least for Dirichlet environments, a
strengthened version of Conjecture 3.4 (recall that Conjecture 3.4 states that for all ` ∈ Sd−1,
P 0(A0

`) = 0, where A0
` is the event that the walk is transient in direction `, but not in a

neighborhood of directions around `).

Conjecture 3.8. Let P 0 be the law of an i.i.d. RWRE on Z
d. Then P 0

(
⋃

`∈Sd−1 A0
`

)

= 0.
Equivalently, the set of ` ∈ Sd−1 such that A` holds is almost-surely open in the subspace
topology of Sd−1.
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A Kalikow’s 0-1 Law and Other Lemmas

In the proof of Theorem 2.1, we appealed to the following theorem.

Theorem A.1 (Kalikow’s 0-1 Law). Let P 0 be the annealed measure of a RWRE on Z
d

satisfying assumptions (C1), (C2), and (C3). Then for every ` ∈ Sd−1, P 0(A`∪A−`) ∈ {0, 1}.

We also appealed directly to the following lemma, which is an ingredient in the proof of
Theorem A.1.

Lemma A.2. P 0(A`) > 0 if and only if P 0(T<0 = ∞) > 0 and P 0(A−`) > 0 if and only if
P 0(T>0 = ∞) > 0.

A rudimentary version of Theorem A.1 for two dimensions, using a uniform ellipticity
assumption and assuming ` = (0, 1), was first given by Kalikow in [3]. Improvements were
made in [9] (allowing general d and general `) and [12] (removing the uniform ellipticity
assumption), but the overall structure of the argument changed very little. The proof in [12]
does not use the nearest-neighbor assumption, except in a version of Lemma 3.5, which we
now re-prove using the same ideas but without the nearest-neighbor assumption.

Proof of Lemma 3.5. Observe that on the event in question, it is either the case that for
some y with a ≤ y · ` < b, Xn = y infinitely often, or that Xn hits infinitely many vertices in
the slab {a ≤ x · ` < b}. It therefore suffices to show that the intersection of each of these
events with the event T `

≥b = ∞ has probability 0.
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First, fix y with a ≤ y · ` < b. By the irreducibility assumption (C2), P y
ω(T

`
≥b < T̃y) > 0

for almost every ω. For such an ω, the strong Markov property implies that the quenched
probability of hitting y at least n times before T `

≥b is no more than P y
ω(T̃y < T `

≥b)
n−1, which

approaches 0 as n → ∞. Thus, the (quenched or annealed) probability of hitting y infinitely
many times without ever reaching the half-space {x · ` ≥ b} is 0. Summing over countably
many y still gives a probability of 0.

Now consider the event that infinitely many points in {a ≤ x · ` < b} are hit. By
assumption (C2), each of these points x has a possible path (in the notation introduced in
the proof of Theorem 2.1) to {x · ` ≥ b}. By shift-invariance, there is some N > 0 and
ε > 0 such that each x in {a ≤ x · ` < b} has a possible path of length no more than
N and with annealed probability at least ε. Thus, in order to hit infinitely many points
in {a ≤ x · ` < b}, the walk must hit the vertex sets of infinitely many disjoint paths to
{x · ` ≥ b}, each of which has length no more than N and annealed probability at least ε.
Now by the i.i.d. assumption (C1), each time the walk hits an unexplored vertex set of such
a path, its probability, conditioned on its entire past, of immediately taking (the rest of)
that path is at least ε. The probability of hitting vertex sets of n unique such paths before
hitting {x · ` ≥ b} is therefore no more than (1 − ε)n−1, which approaches 0 as n → ∞.
Thus, the annealed probability of hitting the vertex sets of infinitely many disjoint paths to
{x · ` ≥ b}, each with length no more than N and annealed probability at least ε, without
ever reaching {x · ` ≥ b}, is 0. Since these paths have no more than N vertices in them,
hitting infinitely many sites in {a ≤ x · ` < b} requires hitting the disjoint vertex sets of
infinitely many such paths, and therefore the annealed probability of hitting infinitely many
sites in {a ≤ x · ` < b} without ever reaching {x · ` ≥ b} is 0. This gives us (16).

Lemma A.2 is an easy consequence of Lemma 3.5 (see [9], [11]). We repeat the proof
here because it is short.

Proof of Lemma A.2. By Lemma 3.5, the event {T<0 = ∞}\A` must have zero probability,
so P 0(T<0 = ∞) > 0 implies P 0(A`) > 0. On the other hand, suppose P 0(T<0 = ∞) = 0.
By shift-invariance, P x(T<x·` = ∞) = 0 for all x ∈ Z

2, which implies that with P-probability
1, P x

ω (T<x·` < ∞) = 1 for all x. By the strong Markov property, this implies P 0(A`) = 0.
For the second result, just take `′ = −`.

Now the proof of Theorem A.1 is simply the proof of Proposition 3 [12], replacing Lemma
4 from that paper with our Lemma 3.5.

The final missing ingredient is Lemma 2.2, which we now prove.

Proof of Lemma 2.2. For any probability measure P , random variable Y , and event A of
positive probability, we have E[Y |A] = E[Y 1A]

P (A)
. Using P a as our probability measure and
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letting Y = P a
ω(B|A), we get

Ea[P a
ω(B|A)|A] = Ea[P a

ω(B|A)1A]

P a(A)

=
1

P a(A)
Ea

[

P a
ω(B ∩ A)

P a
ω(A)

1A

]

=
1

P a(A)
Ea

[

Ea

[

P a
ω(B ∩ A)

P a
ω(A)

1A ω

]]

.

Now pulling the part that is ω-measurable out of the conditional expectation and noting
that Ea[1A|ω] is simply P a

ω(A), we have

Ea[P a
ω(B|A)|A] = 1

P a(A)
Ea

[

P a
ω(B ∩ A)

P a
ω(A)

Ea [1A ω]

]

=
1

P a(A)
Ea

[

P a
ω(B ∩ A)

P a
ω(A)

P a
ω(A)

]

=
Ea[P a

ω(B ∩ A)]

P a(A)

= P a(B|A).

B A non-elliptic model satisfying the conditions for

Theorem 2.1

In this appendix, we present an example of a two-dimensional RWRE model where the
Markov chain is almost surely not irreducible, but nevertheless conditions (C1), (C2), and
(C3) are satisfied. Recall that (C1) is the i.i.d. condition, condition (C3) requires bounded
jumps, and (C2), which replaces the ellipticity condition of [12], states that withP-probability
1, the Markov chain induced by ω has only one infinite communicating class, and it is reach-
able from every site.

For an environment ω ∈ ΩZ2 , say a site x ∈ Z
2 is blue under ω if ω(x, x + y) > 0 ⇔

y ∈ {±2e1,±e2}, where e1 and e2 are the sites directly to the right of and above the origin,
respectively. Say x is red if ω(x, x + y) > 0 ⇔ y ∈ {±e1,±2e2}. See Figure 4. Consider
an i.i.d. measure P on ΩZ2 (that is, a measure satisfying condition (C1) whose marginals
are such that each site x is blue with probability p ∈ (0, 1) and red with probability (1− p)
(note that conditioned on a site being red or blue, the values of the transition probabilities
that are specified to be positive may still be random).

Under P, the environment will almost surely not be irreducible. Indeed, if the two nearest
vertical neighbors of x are red, and the two sites above and below these are blue, and the
nearest horizontal neighbors are blue, and the two sites to the right and left of these are red,
then x will not be reachable from any other vertex. See Figure 5. Nevertheless, P satisfies
the assumptions needed for Theorem 2.1.
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Figure 4: A blue site is pictured on the left and a red site on the right, with their possible
jumps.

Figure 5: A site x that is not reachable from any other site.
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Proposition B.1. The measure P described in this appendix satisfies conditions (C1), (C2),
and (C3).

We break the proof up into a series of lemmas.

Lemma B.2. For almost every ω, there exists a site that is reachable from every site in Z
2.

Proof. Let j ≥ 0 be the lowest non-negative integer such that (j + 1)e1 is red. Such j exists
for almost every environment ω by independence. Now from every site, it is possible to
step to the right, to the left, up, or down (in this argument, “possible” means possible with
positive probability in almost every environment ω). Therefore, from every site, it is possible
to proceed to a point that is above and to the right of the origin. From there, it is possible
to step down repeatedly, either to a site that is horizontally level with the origin (i.e., ke1 for
some k ∈ N), or a site that is one unit higher than the origin (i.e., e2+ke1) for some k ∈ N).
In the latter case, if one is at a blue site, it is possible to step down to ke1. Otherwise, it is
possible to step repeatedly to the right until reaching a blue site, which happens in finitely
many steps for almost every ω, and then step down from there to k′e1. Now by stepping
repeatedly to the right or to the left, one can reach either je1 or (j+1)e1, and since (j+1)e1
is red, one may step from there to je1.

Lemma B.3. There almost surely exists an infinite communicating class C = C(ω) which is
precisely the set of points that are reachable from every site.

Proof. Take one site x that is reachable from every other site. Let C be the set containing
that site and all sites reachable from there. It is infinite by the fact that it is always possible
to take a step in any direction. If y ∈ C, then since y can be reached from x, y can be
reached from every site. On the other hand, if y can be reached from every site, then y can
be reached from x, so by definition y ∈ C.

It remains to show that there is no infinite communicating class but C.

Lemma B.4. For almost every ω, if a site x ∈ Z
2 is not in C, then each of its four nearest

neighbors is in C. Moreover, the sites x± e1 are blue, and the sites x± e2 are red.

Proof. By the proof of Lemma B.2 (or by the statement plus the ergodic theorem) there is
a j ≥ 0 such that je1 is reachable from every site. From there, it is possible to step to the
left until hitting the origin or e1. Therefore, if the origin is not in C, then e1 is reachable
from every site and thus in C. By symmetry, if the origin is not in C then every nearest
neighbor of the origin is in C. By shift-invariance, this is true of every site x. Now if a site
immediately to the right of x were red or a site immediately to the left were blue, it would
be possible to step from such a site to x, putting x in C. Therefore, the sites x± e1 are blue,
and the sites x± e2 are red.

Lemma B.5. Let D = D(ω) be the communicating class containing the origin. It is almost
surely the case that if D 6= C, then |D| < ∞.

27



B A NON-ELLIPTIC MODEL SATISFYING THE CONDITIONS FOR THEOREM ??

Figure 6: A portion of an environment ω. Squares of four elements, each with the bottom
left element in (2Z)2, are shown with a brown background if the bottom left element is in
B. The origin is highlighted, and vertices in D are marked with dots.

Proof. Suppose D 6= C. Then by Lemma B.4, any site in D that is reachable in one step
from the origin must almost surely be in the “even sublattice” (2Z)2. By induction, applying
Lemma B.4 repeatedly, this conclusion extends to every site in D that is reachable in any
number of steps from the origin. But by definition, every site in D is reachable from the
origin, so D ⊆ (2Z2). Now in order for a site x ∈ (2Z)2 to be in D, it must avoid being in
C, which by Lemma B.4 almost surely requires at least that the site to its immediate right
be blue and the site immediately above it be red. Let B be the set of sites x ∈ (2Z)2 such
that x+ e1 is blue and x+ e2 is red. Then almost surely, if D 6= C, then D is a subset of B
which is connected in the superlattice (2Z)2.

Notice, however, that the events {x ∈ B}x∈(2Z)2 are independent, and each have probabil-
ity p(1−p) ≤ 1

4
(recall that p is the probability that a given site is blue). Now 1

4
is well below

the critical percolation threshold2 for site percolation on Z
2. Indeed, a union bound puts the

threshold at least at 1
3
, since there are at most 3n loop-free paths of length n from the origin.

If the occupation probability is less than 1
3
, this means the probability that there exists an

occupied path to a point of distance n from the origin (under, say, the lattice metric) decays
exponentially in n. Therefore, every component of B that is “connected in (2Z)2” (meaning
any two two points in a component are joined by a nearest-neighbor path in (2Z)2) is finite.
In particular, D is finite, since it is a subset of such a component.

We now have enough to prove that our model satisfies (C1), (C2), and (C3).

Proof of Proposition B.1. It satisfies condition (C1) by assumption. Likewise, it satisfies
condition (C3) with R = 2. Thus, we need only show that condition (C2) is satisfied.

2Numerical estimates put this threshold around 0.59274621; see [5].
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B A NON-ELLIPTIC MODEL SATISFYING THE CONDITIONS FOR THEOREM ??

The existence of a communicating class C that is infinite and reachable from every site is the
content of Lemma B.3. To show that there is only one infinite communicating class, it suffices
by shift-invariance to show that if the origin is not in C then it is in a finite communicating
class. This is the content of Lemma B.5.
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