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Abstract

We characterize ballistic behavior for general i.i.d. random walks in random envi-
ronments on Z with bounded jumps. The two characterizations we provide do not use
uniform ellipticity conditions. They are natural in the sense that they both relate to
formulas for the limiting speed in the nearest-neighbor case.
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1 Introduction

In this paper, we provide two characterizations of ballisticity for random walks in random
environments (RWRE) on Z with bounded jumps. Most previous characterizations of bal-
listicity for such RWRE (or for RWRE on a strip, a generalization of the one-dimensional
bounded-jump model) are in terms of limits of norms of products of random matrices that
are difficult or impossible to check in practice, and involve strong ellipticity assumptions
that preclude certain types of environments. (See, for example, [1], [2], [5], [8], [3], [4]). Our
characterizations are given in terms of the behaviour of the walk itself and are intuitively
easy to understand, if not to check in general. Moreover, they are unique in that they do
not rely on strong ellipticity assumptions and thus apply to a much broader class of RWRE
than most known results. The primary motivation for our characterizations is that although
we do not have a way to check them in general, we are able to check them in the case of
Dirichlet environments, a special, weakly elliptic model of RWRE. In this model, certain ex-
act computations are often possible for walks on finite graphs, which can then be compared
to the desired model. The author does this in [9]. Here, we are focused only on the general
case.

*University of Virginia, Department of Mathematics, 141 Cabell Dr, Charlottesville, VA 22903,
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1.1 Model

An environment on 7 is a nonnegative function w : Z x Z — [0, 1] such that for all x € Z,
> yezw(@,y) = 1. For a fixed z and w, we will let w® be the measure on Z defined by
w*(y) = w(z,z+y). Then we can identify the function w with the tuple (w*),cz. Let M1(Z)
be the set of probability measures on Z, (endowed with the topology of weak convergence);
then Q := erz 1(Z) is the set of all environments on Z.

For a given environment w and x € Z, we can define the quenched measure P® on ZN
(where we assume 0 € N) to be the law of a Markov chain X = (X,,),>0 on Z, started
at x, with transition probabilities given by w. That is, P*(Xy = z) = 1, and for n > 1,
P3(Xng1 =y Xo, ..., Xn) = w(Xy, ).

Let F be the Borel sigma field with respect to the product topology on 2, and let P
be a probability measure on (2, F). For a given z € Z, we define the annealed measure
P* = P x P% on Q x ZN by

P*(A x B) / P*(B)P(dw)

for measurable A C Q, B C ZN. In particular, for all measurable events B C Z~, we have
P*(Q2 x B) = E[P%(B)]. We often abuse notation by writing P*(B) instead of P*(Q2 x B).

As another notational convenience, we will use interval notation to denote sets of consec-
utive integers in the state space Z, rather than subsets of R. Thus, for example, we will use
[1,00) or (0,00) to denote the set of integers strictly to the right of 0. However, we make
one exception, using [0, 1] to denote the set of all real numbers from 0 to 1.

For a subset S C Z, let w® = (w"),cs. In the case where S is a half-infinite interval, we
simplify our notation by using w=* to denote w(~°>% and similarly with w<*, w>*, and w>*

We consider the following conditions for a probability measure P on {2:

(C1) The {w”},ez are i.i.d. under P.
(C2) For P-a.e. environment w, the Markov chain induced by PV is irreducible.
(C3) There exist L and R such that for P-a.e. environment w, w(a,b) = 0 whenever b is

outside [a — L,a + R].

1.2 Results

We first establish notation for hitting times, as well as notation that counts the number of
oo

visits to a given site. For a given walk X = (X,,)22,,, we define H,(X) to be the first time
the walk hits x € Z. That is,

H,(X) =inf{n e N: X, = z}.

We usually write it as H, when we can do so without ambiguity. For a subset S C Z, let
Hg = mingeg H,. First positive hitting times are denoted as H, or Hg. That is,

H,(X) =inf{n € N": X,, = 2},
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where N* denotes N\ {0}, and Hg = min,cg H,. If the set is the half-infinite interval [z, c0),
we use >, to denote its hitting time, and similarly with H.,, H<,, and H,. For a walk
X = (Xp)5,on Z with z € Z, N.(X) = #{n € N: X,, = z} is the number of times the
walk is at site x. We usually write it as N, if we are able to do so without ambiguity. For a
subset S C Z, let Ng =" o N,.

It was shown in [7] that under assumptions (C1), (C2), and (C3), a 0-1 law holds for
directional transience. That is, the walk is either almost surely transient to the right, almost
surely transient to the left, or almost surely recurrent. We can also show that under these
assumptions, a limiting velocity necessarily exists.

Proposition 1.1. Let P be a probability measure on S satisfying (C1), (C2), and (C3).

Then there is a deterministic P'—almost sure limiting velocity v = lim,,_, % Moreover,
HZQ: _ 1

limg o +, where % is understood to be oo if v = 0.

It was seen in [2] that this limiting velocity exists under a uniform ellipticity assumption,
but it can be proven in the more general case with standard techniques, which we outline
in Section 2.1. We then provide a characterization of ballisticity, making the following
additional assumption for convenience.

(C4) For P-a.e. environment w, lim, ., X,, = 0o, P’-a.s.

By symmetry, our characterization also handles the case where the walk is transient to the
left, and thus by the 0-1 law for directional transience, completely characterizes the regime
v # 0 for all measures P satisfying (C1), (C2), and (C3).

Theorem 1.2. Let P be a probability measure on §2 satisfying (C1), (C2), (C3), and (C4).
Then the following are equivalent:

(a) The walk is ballistic: v > 0.
(b) ]EO[Hzﬂ < 0.
(¢) E°[No] = E[EG[Ny]] < .

Remark 1.1. The equivalence of (a) and (b) was proven under a strong ellipticity assumption
by Brémont (see [1, Theorem 3.7], [2, Proposition 9.1]). We prove the equivalence of (a),
(b), and (c) without such an assumption.

Remark 1.2. These characterizations are quite natural, given that in the nearest-neighbor
case we in fact have the identity

1 1 (1)
v = = .
EO[No]  E0[Hx4]
In general, the above turns into
1 1
v > > ) 2
— EO[No] T E°[Hx] 2

as we shall see from Lemmas 2.1, 2.5, and 2.6, but it still holds that either all three terms
are positive or all three are 0.

Remark 1.3. In the case of Dirichlet environments, (c¢) can be directly checked, and condition
(C4) can be directly checked as well. Thus, Theorem 1.2 gives a comprehensive way to
determine whether random walks in Dirichlet environments on 7Z are ballistic.
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2 Proofs

We discuss the proof of Proposition 1.1, and then provide a full proof of Theorem 1.2.

2.1 Existence of limiting velocity

Because the proof of Proposition 1.1 is only a slight modification of work that has already
been done, we simply outline some details of the argument rather than giving a full proof.
The proof for the recurrent case (where, necessarily, v = 0) can be done by a slight mod-
ification of arguments in [12], which we leave to the reader. The proof for the directionally
transient case follows [6] in defining regeneration times (73,)52,. Let 7o := 0, and for k£ > 1,
define
T r=min{n > 7,1 : X,, > X for all j <n, X,, <X for all j > n}. (3)

As shown in [6], these times are all almost-surely finite under an assumption of transience
to the right. We can then show
X E°(X,, — X,,]
= i T2 -~ N 4
Y 711_)120 n E[TQ — 7'1] ’ ( )
where the numerator is always finite and the fraction is understood to be 0 if the denominator
is infinite. It is standard (e.g., [6], [10]) to prove a LLN like (4) by the following steps:

Xry
k

(a) Show that approaches E[ X, — X |.

(b) Show that 7t approaches E[ry — 71].

(c¢) Show that E[X,, — X ] < oc.

(d) Conclude that the limit (4) holds for the subsequence (%) :
k
(e) Use straightforward bounds that come from the definitions of the 7 to get the limit for
the entire sequence (%)n

sz xT

Hs,

The identity lim, .., with a subsequence of

Xn

= %} then comes from a comparison of

! The definition of the regeneration times is precisely set up so that both the sequences
(T — Th—1)k>2 and (X, — X, )k>2 are 1.i.d. sequences under the annealed measure, so
proving the limits (a) and (b) is a matter of tracing how the i.i.d. feature follows from the
definitions and applying the strong law of large numbers. In fact, arguing as in [6, Lemma
1], one can show that the triples

—r X, —1
gn = (Tn — Tp—1 , (XTn—1+i - XTnfl)Z—ilTn ' ’ (wx)m:‘rgﬂ'nfl>

are i.i.d. under P* = P x P? for n > 2.
The finiteness in (c) can be shown using arguments along the lines of those in [11,
Lemma 3.2.5]. Because we have assumed almost-sure transience to the right, the measure Q
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introduced there is unnecessary. Another difference is that in our model, transience to the
right does not imply that every vertex to the right of the origin is hit. There is a point in
the argument from [11] where the author argues that the Q-probability, for a given z, that a
regeneration occurs at site z approaches PY(H_y = c0). Instead, we focus on the probability
that the regeneration occurs on a given interval of length R. For z > 0, let B, be the event
that for some k, X, € [2R, (2 +1)R). Then

P(B.) = E [P(B.)]

R-1
i=0
R-1
- B [PE(XH[zR,uH)R) = 2zR+ i)PjR+Z(H<zR+¢ = OO)]
i=0
R-1

0
=P (Hp = ), (5)
where the second to last equality comes from the fact that w<*# is independent of w=*%+?,
and the last comes from translation invariance and the fact that H g .+1)r) < 00 P-a.s.

The rest of the argument from [11] goes through to prove (c), and (d) and (e) easily follow.

2.2 Ballisticity

For the rest of this paper, assume P satisfies (C1), (C2), (C3), and (C4). Our goal is to prove
Theorem 1.2. We begin with the following lemma, from which (b) = (c) follows immediately.

Lemma 2.1. E°[Ny] < E°[H>,].

Proof. The visits to 0 may be sorted based on the farthest point to the right that the walk
has hit in the past at the time of each visit. For a given y < x € Z, define Né‘“”“”) to be the
amount of time the walk spends at y before H>,.. Thus, for a walk started at 0 we get

oo

Ny = Z (Né—oo,x-i-l) _ Né—oow)) ‘ (6)

=0

Taking expectations on both sides, we get

BN = 3 B [ [N - ]| )
=0

Now N and NSV can only differ on the event that the walk hits [z, 00) at .
Conditioned on this event, the distribution under P of (X, a., )52, is the distribution of
X under P3. Thus,

EO Né_oo7x+1) _ Né—oo,x) — PB(XHZJF = ,I)EZ:J |:N0(_OO,CC+1):| . (8)

w

5



2.2 Ballisticity 2 PROOFS

Combining (7) and (8), we get

BN = Y B [P, = 0y [N )]

By stationarity,

BN, < 3B NG
=0

00 Ng;oo,l)]

= E°[H>,].

= E°

This completes the proof. O

Our next goal is to prove (¢) = (a). The proof of the following lemma will use the
regeneration times defined in (3).

Lemma 2.2. For any c € Z,
1 o 1
lim — N, = —, P°—a.s.
zl—golol’; Y v’ @5

If v =0, then the limit is infinity.

Proof. Fix c¢. As in the proof of Lemma 2.1, we use le_oo’z) to denote the amount of time
the walk spends at y before H~,. Then for any = > ¢, write

c— z—1
HZQC 1 (—o0,) 1 (—o0,z)
2 - - >N + - yz_; N{oom),

y=—00

The first sum is bounded above by 22;1700 N,, which is almost surely finite by assumption
(C4). Dividing by x therefore sends the first term to 0 as * — oo; hence, by Proposition 1.1,

z—1
1 1
1 — (—OO,:E) e C_
xll)rgox E N, U,IP’ a.s. 9)
y=c

We note that N, and Né_oo@) differ only if the walk backtracks and visits y after reaching
[z,00). The sum, over all y < z, of these differences, is the total amount of time the walk
spends to the left of x after H>,, and it is bounded above by the time from H>, to the

6
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next regeneration time (defined as in (3)), which is in turn bounded above by 7j(z) — Ty(z)-1,
where J(x) is the (random) j such that 7;_y < H», < 7;. Hence

z—1 z—1 z—1
1 1 1 1
il E (-o02) = E - E (-o0w) 4 — —
X Yy=c Ny S X Yy=c Ny S X Yy=c Ny + X [TJ(r) TJ(fE)_l] (1())

Assume v = 0. Then by (9), the left side of (10) approaches oo as = approaches oo, and
therefore so does the middle. On the other hand, suppose v > 0. By (4), E[rn — 7] < o0.
Then by the strong law of large numbers, ™ — E[r; — 71] < oo, which implies that ===

. . .. . Tr(e)—TJ(z)— .
approaches 0. In particular, since J(z) is increasing, % approaches 0 as x increases.

Since J(z) < x + 1, the term 1[7;,) — Ty@)-1] approaches zero almost surely; hence the
squeeze theorem yields the desired result. O]

Next, we will define a “walk from —oo to co.” Call the set of vertices ((k — 1)R, kR)|
the kth level of Z, and for x € Z, let [[x]]r denote the level containing . Let w be a given
environment. From each point a € Z, run a walk according to the transition probabilities
given by w until it reaches the next level (i.e., [[a + R]]g). This will happen P’-a.s. for
P-a.e. w, by assumption (C4) and because it is not possible to jump over a set of length R.
Do this independently at every point for every level. This gives what we will call a cascade:
a set of (almost surely finite) walks indexed by Z, where the walk indexed by a € Z starts at
a and ends upon reaching level [[a + R]|r. Equip the set of cascades with the natural sigma
field, let P, be the probability measure we have just described on the space of cascades, and
let P=P x P,.

For P-almost every cascade (i.e., those where the walk started from each vertex hits the
level to its right), we can concatenate an appropriate chain of these finite walks to generate
a walk started at any point a € Z. To the walk started from a = ag, append the walk started
from the point a; € [[a + R]|r where that walk lands. And to that, append the walk started
from the point ay € [[a + 2R]]r where the finite walk from a; lands, and so on. This gives,
for each point a, a right-infinite walk X = (X2)> . It is crucial to note that by the strong
Markov property, the law of X® under P, is the same as the law of X under P¢, which also
implies that the law of X* under IP is the same as the law of X under P*.

For each = € 7Z, let the “coalescence event” C, be the event that all the walks from level
[[z — R]|g first hit level [[z]|g at . On the event C,, we say a coalescence occurs at .

Lemma 2.3. Let & be the event that all the X are transient to the right, that all steps to
the left and right are bounded by L and R, respectively, and that infinitely many coalescences
occur to the left and to the right of 0. Then P(&;) = 1.

Proof. Boundedness of steps has probability 1 by assumption (C3), and by assumption (C4)
all the walks X® are transient to the right with probability 1. Now for £ > 2 and x € Z, let
Cy be the event that all the walks from level [[x — R]|g first hit level [[z]|r at z without
ever having reached level [[x — kR]|g or any level to its left. Choose k large enough that
P(Cox) > 0; then under the law P, the events {Cyrrk}nez are all independent and have
equal, positive probability. Thus, infinitely many of them will occur in both directions,
P-a.s. By definition, C,, C C;, and so infinitely many of the events C, occur in both
directions, P-a.s. O
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Assume the environment and cascade are in the event £ defined in the above lemma.
Let (zx)rez be the locations of coalescence events (with zy the smallest non-negative x such
that C, occurs). By definition of the zy, for every k and for every a to the left of [[z4]]g,
Hip (X)) = H,, (X?) < 0o. Now for j < k, it necessarily holds that x; is to the left of
[[x]]r, since there can be only one zj per level. Define v(j, k) :== H,, (X%). By definition
of the walks X%, we have for j < k, n >0,

k

X"

ntv(ik) = Xn'- (11)

From this one can easily check that the v(j, k) are additive; that is, for j < k < ¢, we have
v(7,0) = v(j, k) + v(k,{). Because all the X" agree with each other in the sense of (11),
we may define a single, bi-infinite walk X = (X,,),cz that agrees with all of the X®. We
choose to let Xy, = xo. For n > 0, let X, = XY, For n < 0, choose 5 < 0 such that
v(7,0) > |n|, and let X,, = X:(jj’()Hn'. This definition is independent of the choice of j,
because if j < k < 0 with v(k,0) > |n|, then by (11) and the additivity of the v(j, k), we
have

— X7

=X v(k,0)—|n|"

X v(3.k) 40 (k. 0) ]

v(4,0)—=|n|
We may then define N, :=#{n €7Z:X, =z} to be the amount of time the walk X spends
at . Thus, N, = lim,, o N,(X%).

Lemma 2.4. Both of the sequences (X%)aecz and (N,).cz are stationary and ergodic under
the annealed measure.

Proof. For a given environment, the cascade that defines X may be generated by a (count-
able) family U = (Uy), e 4z ©f 1.d. uniform random variables on [0, 1]. For such a collec-
tion, and an a € Z, let U* be the projection (Ug),oy- Given an environment w, the finite
walk from a to level [[a + R]|r may be generated using the first several U?. (One of the U?
is used for each step. Once the walk terminates, the rest of the U are not needed, but one
does not know in advance how many will be needed.) Let &* = (w*, U%), and & = (@0")zez.
Define the left shift 6 by (&) := (@"t1),ez. Then (%)ez is an iid. sequence. We have
X0 = X&) and X® = X°(0%%). Similarly, Ny = No(@) and N, = No(67@). So it suffices
to show that X° and N, are measurable. The measurability of X° is obvious. For N, let
Ay be the event that:

(a) for some z < 0, a coalescence event C, . (as defined in the proof of Lemma 2.3) occurs
with —B < x — kR <z < 0, so that X agrees with X” to the right of x;

(b) N(E*B’B} (X*) > ¢, where NéfB’B] is the amount of time the walk spends at = before
exiting [— B, B]; and

(c) none of the walks from sites a € [—B, B] uses more than r of the random variables U?.

On this event, Ny is seen to be at least £ by looking only within [~B, B] and only at the
first 7 uniform random variables at each site. The event A, g, is measurable, because it is
a measurable function of finitely many random variables, and the event {N, > ¢} is, up to
a null set, simply the union over all r, then over all B, and then over all k£ of these events.
Thus, Ny is measurable. O
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We now give the connection between N, and the limiting velocity v.

Lemma 2.5. v = E[%o]' Consequently, the walk is ballistic if and only if E[Ny] < oc.

We note that a similar formula for the limiting speed in the ballistic case can be obtained
from [4, Theorem 6.12] for discrete-time RWRE on a strip, but under a stronger ellipticity
assumption (and with a less explicit probabilistic interpretation).

Proof. By Lemma 2.4 and Birkhoft’s Ergodic theorem, for any ¢ € Z we have

n—oo M,

1~ —
lim — E N, =E[Ny], P-as.
y=c

Fix a € Z. For large enough y, N,(X*) = N,. We therefore get

LT .
JE&EZNy(X ) = E[N,], P-as.
y=c

It follows that
Ll — 1 e
lim —~ > N,(X) = E[No], P*as.
y=c

By Lemma 2.2, we get v = E[%o}' [

_Now we can see that the walk is ballistic if and only if E[No] < co. We now compare

Lemma 2.6. E[Ny] < E°[N].

Proof. If E°[Ny] = oo, the inequality is trivial. Assume, therefore, that E[No] < oo.
Note that lim, o No(X™®) = Ny, P-a.s. Using Fatou’s lemma', we have

E[N,] = E [lim NO(X—I)]

T—r00

< lim E [Ny(X™")] (12)
= lim E~[Ny(X)].

Tr—00
But each term E~*[Ny(X)] = E[E;*[No]] is less than E[No] = E[EJ[No]], since E;*[No] =
P;%(Hy < 00)E°[Ny]. Therefore, we may conclude E[Ng] < E°[Ny]. O

We are now in a position to prove our main theorem, and in fact two of the three
implications are already done.

'We can get equality in (12) using dominated convergence, but it is a bit more cumbersome and unnec-
essary.
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Proof of Theorem 1.2.
(b) = (¢) This is an immediate consequence of Lemma 2.1.
(¢) = (a) Assume E°[Ny] < co. Then combining Lemmas 2.5 and 2.6 gives v > 0.
(a) = (b) Suppose E°[H>1] = co. We will show that v = 0. We claim

E {mm H>R+1(X'):| = 00. (13)

1<i<R

By assumptions (C1), (C2), and (C3), there is an mg > max(L, R) large enough that every
interval of length my is irreducible with positive P-probability. Let A be the event that

e For each i = 1,..., R — 1, the walk X’ hits R before leaving [R — mq + 1, R).

e The walk X% first exits [R — mq + 1, R] by hitting R — mo.

Then under P, the random variable P,(A) is independent of w=%="0_ Now, on the event

A, the minimum min;<;<z H>p.1(X?) is attained for i = R, since all the other walks take
time to get to R and then simply follow X*. Now on A, Hsg,1(X") is greater than the
amount of time it takes for the walk X* to cross back to [R — mg + 1, 00) after first hitting
R — my. The quenched expectation of this time, conditioned on A, is EF"™[Hsr ... 1] by
the strong Markov property, and this depends only on w<f#~™0  Hence

B | i, Hnes (%) 2 B [RGB (K9]

v

E

E [P,(A)ES ™ [Hs gy (X)]]
P(A )ER " H > pemg+1(X)]
P(A

JE°[H>1 (X))

This proves (13). Now for z > 1,

Hsppi1 (X°) > Hoy (X0) + Z mm H>kR+1(X(k_1)R+i)'

Dividing by xR and taking limits as © — oo, we get lim, HZ“;;}%(XO) = oo, P-a.s. by
Birkhoff’s ergodic theorem. Hence lim, ., HZ(%JSEX) = 00, P’~a.s. For ny = Hspri1(X),
Xy, < (E+1)R, and so % < Plii;—% — 0 as k — oo, P'~a.s. Since Xn—? is a subsequence
of %, it must P°-a.s. approach ;), and therefore v = 0. n
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