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1. INTRODUCTION

In the past decades, time-delay systems attracted numer-
ous interests from researchers. It is well known that the op-
timal control can ensure the stability and performance of
the closed-loop system under some mild conditions. There-
fore, the optimal control problem for time-delay systems is
fundamentally important, yet challenging, in control fields
for a long time. The author in Krasovskii (1962) first stud-
ied the linear quadratic (LQ) optimal control problem for
continuous-time linear systems with state delay. Following
this original work, in Ross and Flügge-Lotz (1969), the
sufficient condition for the optimal control was derived as
a set of partial differential equations (PDEs). These PDEs
can be considered as the extension of the ARE for delay-
free systems to time-delay systems. However, the precise
system model is needed for solving the ARE. In reality,
such an accurate system model is hard to obtain. Hence, it
is significant to propose a learning-based controller design
approach for time-delay systems. Adaptive dynamic pro-
gramming (ADP) is a potential method for this problem.

By integrating the reinforcement learning (RL) technique
with the classical control theory, ADP was developed
to learn a stabilizing and optimal control policy using
finite samples of input-state data (Jiang et al. (2020);
Lewis and Liu (2013)). Recently, based on the ADP
technique, substantial progress has been made on the
learning-based control for various important classes of
linear/nonlinear/periodic dynamical systems for optimal
state stabilization and output regulation (Jiang and Jiang
(2012); Gao and Jiang (2016); Pang and Jiang (2021);
Cui and Jiang (2022)). ADP has been successfully ap-
plied in various engineering fields, for example, wheel-
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legged robots (Cui et al. (2021)), autonomous driving
(Chakraborty et al. (2022)), and human motor control
(Pang et al. (2022)). Unlike finite-dimensional systems, the
optimal controller for time-delay systems is a functional of
the state, which poses a major challenge for the learning-
based adaptive optimal control of time-delay systems. In
the most of the relevant literature, e.g. Asad Rizvi et al.
(2019); Liu et al. (2016); Huang et al. (2022); Rueda-
Escobedo et al. (2022), the learning-based control problem
for discrete-time time-delay systems is solved. Since the
discrete-time time-delay systems are finite dimensional,
these methods cannot be directly applied to continuous-
time systems with time delays.

In this paper, a novel VI-based ADP algorithm is proposed
to find a near-optimal controller for linear time-delay sys-
tems without the precise knowledge of system dynamics.
It is first shown that the solution of the finite-horizon
LQ optimal control problem (as a differential Riccati
equation (DRE)) asymptotically converges to the solution
of the infinite-horizon LQ optimal control problem. By
combining the convergence property of DRE with the RL
technique, a learning-based VI approach is proposed to
find a near-optimal controller using the input-state data
collected along the trajectories of the system.

The rest content of this paper is organized as follows.
Section II introduces the preliminaries for the LQ optimal
control of time-delay systems. Section III proposes a
model-based VI approach to find a near-optimal controller.
Section IV develops a learning-based VI approach based
on ADP technique. Section V demonstrates the efficacy
of the proposed learning-based VI approach by numerical
simulations. The paper is concluded in Section VI.

Notations: In this paper, R denotes the set of real numbers.
| · | denotes the Euclidean norm of a vector or Frobe-
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1903781 and ECCS-2210320.

legged robots (Cui et al. (2021)), autonomous driving
(Chakraborty et al. (2022)), and human motor control
(Pang et al. (2022)). Unlike finite-dimensional systems, the
optimal controller for time-delay systems is a functional of
the state, which poses a major challenge for the learning-
based adaptive optimal control of time-delay systems. In
the most of the relevant literature, e.g. Asad Rizvi et al.
(2019); Liu et al. (2016); Huang et al. (2022); Rueda-
Escobedo et al. (2022), the learning-based control problem
for discrete-time time-delay systems is solved. Since the
discrete-time time-delay systems are finite dimensional,
these methods cannot be directly applied to continuous-
time systems with time delays.

In this paper, a novel VI-based ADP algorithm is proposed
to find a near-optimal controller for linear time-delay sys-
tems without the precise knowledge of system dynamics.
It is first shown that the solution of the finite-horizon
LQ optimal control problem (as a differential Riccati
equation (DRE)) asymptotically converges to the solution
of the infinite-horizon LQ optimal control problem. By
combining the convergence property of DRE with the RL
technique, a learning-based VI approach is proposed to
find a near-optimal controller using the input-state data
collected along the trajectories of the system.

The rest content of this paper is organized as follows.
Section II introduces the preliminaries for the LQ optimal
control of time-delay systems. Section III proposes a
model-based VI approach to find a near-optimal controller.
Section IV develops a learning-based VI approach based
on ADP technique. Section V demonstrates the efficacy
of the proposed learning-based VI approach by numerical
simulations. The paper is concluded in Section VI.

Notations: In this paper, R denotes the set of real numbers.
| · | denotes the Euclidean norm of a vector or Frobe-

nius norm of a matrix, and ∥·∥∞ denotes the supreme

norm of a function. df
dθ (·) denotes the function which is

the derivative of the function f . ⊕ denotes the direct
sum. Li([−τ, 0],Rn) denotes the space of measurable func-
tions for which the ith power of the Euclidean norm is
Lebesgue integrable, and M2 = R

n ⊕ L2([−τ, 0],Rn).
L(X) denotes the class of continuous bounded linear op-
erators from X to X. ⟨·, ·⟩ denotes the inner product

in M2, i.e. ⟨z1, z2⟩ = r⊤1 r2 +
 0

−τ
f⊤
1 (θ)f2(θ)dθ, where

zi = [ri, fi(·)]⊤ for i = 1, 2. vec(A) =

a⊤1 , a

⊤
2 , ..., a

⊤
n

⊤
,

where ai is the ith column of A. vec−1(·) is the inverse
operator of vec(·). For a symmetric matrix P ∈ R

n×n,
vecs(P ) = [p11, 2p12, ..., 2p1n, p22, 2p23, ..., 2p(n−1)n, pnn]

⊤,

vecu(P ) = [2p12, ..., 2p1n, 2p23, ..., 2p(n−1)n]
⊤, diag(P ) =

[p11, p22, ..., pnn]
⊤. For the vectors ν, µ ∈ R

n, vecd(ν, µ) =
[ν1µ1, .., νnµn]

⊤, vecv(ν) = [ν21 , ..., ν1νn, ..., νn−1νn, ν
2
n]

⊤,
and vecp(ν, µ) = [ν1µ2, ..., ν1µn, ν2µ3, ..., νn−1µn]

⊤. [a]i,j
denotes the sub-vector of the vector a comprised of the
entries between the ith and jth entries. A† denotes the
Moore-Penrose inverse of A.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem Formulation

This paper considers the following continuous-time linear
time-delay system:

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t), (1)

where τ ≥ 0 is the delay of the system, which is constant
and known, x(t) ∈ R

n, and u(t) ∈ R
m. A,Ad ∈ R

n×n and
B ∈ R

n×m are unknown constant matrices. A segment
of the trajectory for x(t) within the interval [t − τ, t]
is denoted as xt(θ) = x(t + θ), ∀θ ∈ [−τ, 0]. Since
system (1) is infinite dimensional, the system’s state is
z(t) = [x⊤(t), x⊤

t (·)]⊤ ∈ M2. The quadratic performance
index adopted for system (1) is

min
u

J(x0, u) =

 ∞

0

x(t)⊤Qx(t) + u(t)⊤Ru(t)dt

=

 ∞

0

⟨z(t),Qz(t)⟩+ u(t)⊤Ru(t)dt,

(2)

where R⊤ = R > 0, Q⊤ = Q ≥ 0, and Q =


Q

0


∈

L(M2) is symmetric (Eidelman et al., 2004, Chapter 6),
and non-negative (Eidelman et al., 2004, Definition 6.3.1).

It is assumed that system (1) with the output y(t) =

Q
1
2x(t) is exponentially stabilizable and detectable (Cur-

tain, 1995, Definition 5.2.1). The problem to be studied in
this paper is formulated as follows.

Problem (VI-based ADP) Without the knowledge of the
system dynamics in (1), design a VI-based ADP algorithm
to find the approximation of the optimal controller using
only the input-state data measured along the trajectories
of the system.

2.2 Optimality and Stability

For system (1), the following lemma gives the expression
of the optimal controller for (2).

Lemma 1. (Uchida et al. (1988)). Consider system (1), the
optimal controller for (2) is

u∗(xt) = −R−1B⊤P ∗
0  

K∗
0

x(t)−
 0

−τ

R−1B⊤P ∗
1 (θ)  

K∗
1
(θ)

xt(θ)dθ, (3)

and the corresponding minimal performance index is

V ∗(x0) = x⊤
0 (0)P

∗
0 x0(0) + 2x⊤

0 (0)

 0

−τ

P ∗
1 (θ)x0(θ)dθ

+

 0

−τ

 0

−τ

x⊤
0 (ξ)P

∗
2 (ξ, θ)x0(θ)dξdθ,

(4)

where P ∗
0 = P ∗⊤

0 ≥ 0, P ∗
1 (θ), and P ∗⊤

2 (θ, ξ) = P ∗
2 (ξ, θ)

for θ, ξ ∈ [−τ, 0] are the unique stabilizing solution to the
following PDEs

A⊤P ∗
0 + P ∗

0A− P ∗
0BR−1B⊤P ∗

0

+ P ∗
1 (0) + P ∗⊤

1 (0) +Q = 0,

dP ∗
1 (θ)

dθ
= (A⊤ − P ∗

0BR−1B⊤)P ∗
1 (θ) + P ∗

2 (0, θ),

∂ξP
∗
2 (ξ, θ) + ∂θP

∗
2 (ξ, θ) = −P ∗⊤

1 (ξ)BR−1B⊤P ∗
1 (θ), (5)

P ∗
1 (−τ) = P ∗

0Ad, P ∗
2 (−τ, θ) = A⊤

d P
∗
1 (θ).

We can consider (5) as the ARE for time-delay systems.
By (Curtain, 1995, Theorem 6.2.7), the closed-loop system
with u∗ in (3) is exponentially stable at the origin.

3. CONTINUOUS-TIME VALUE ITERATION

VI-based ADP is derived from the DRE, which is related
to the finite-horizon optimal control problem:

min
u

J (t0, T, xt0 , u) =

 T

t0

⟨ z(t),Qz(t)⟩+ u⊤(t)Ru(t)dt

subject to (1), (6)

where xt0 is the initial segment of x(t), t0 is the initial
time, and T is the terminal time. The following lemma
gives the solution to (6).

Lemma 2. For problem (6), the minimal performance in-
dex V (xt0 , t0) = minu J (t0, T, xt0 , u) can be expressed as

V (xt0 , t0) = ⟨ z0,P(t0)z0⟩, (7)

where z0 = [x⊤(t0), x
⊤
t0(·)]

⊤ is the initial state, and P(s)z0
is expressed as

P(s)z0 =




P0(s)x(t0) +

 0

−τ

P1(s, θ)xt0(θ)dθ
 0

−τ

P2(s, ·, θ)xt0(θ)dθ + P⊤
1 (s, ·)x(t0)


 . (8)

Here, P0(s) = P⊤
0 (s), P1(s, θ) and P2(s, ξ, θ) = P⊤

2 (s, θ, ξ)
can be obtained by solving the following PDEs backwards

d

ds
P0(s) = −A⊤P0(s)− P0(s)A−Q− P1(s, 0)

− P⊤
1 (s, 0) + P0(s)BR−1B⊤P0(s), (9a)

∂sP1(s, θ) = ∂θP1(s, θ)− P2(s, 0, θ)

− (A⊤ − P0(s)BR−1B⊤)P1(s, θ), (9b)

∂sP2(s, ξ, θ) = ∂ξP2(s, ξ, θ) + ∂θP2(s, ξ, θ)

+ P⊤
1 (s, ξ)BR−1B⊤P1(s, θ), (9c)

P1(s,−τ) = P0(s)Ad, P2(s,−τ, θ) = A⊤
d P1(s, θ), (9d)

P0(T ) = 0, P1(T, θ) = 0, P2(T, ξ, θ) = 0. (9e)
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Theorem 3. The solution of (9) satisfies

lim
s→−∞

|P0(s)− P ∗
0 |= 0, (10a)

lim
s→−∞

∥P1(s, θ)− P ∗
1 (θ)∥∞= 0, (10b)

lim
s→−∞

∥P2(s, ξ, θ)− P ∗
2 (ξ, θ)∥∞= 0. (10c)

Theorem 3 implies that the PDEs (5) can be solved by
solving (9) backwards from the terminal time T to −∞.
However, in (9), the system matrices A, Ad, and B are
required and it is non-trivial to solve such complicated
PDEs. In the next section, in the absence of the accurate
model of the system, a VI-based ADP algorithm will be
proposed to solve (9) using the input-state data measured
along the system’s trajectories.

4. DATA-DRIVEN VALUE ITERATION

In this section, we suppose only that the continuous-
time trajectories of x(t) and u(t) within the time interval
[t1, tL+1] are available for the optimal controller design.

Recall that P0(s), P1(s, θ), and P2(s, ξ, θ) are the solutions
to (9) and P(s)z is defined in (8). According to (7) and
(8), V (xt, s) can be expressed as

V (xt, s) = x⊤(t)P0(s)x(t) + 2x⊤(t)

∫ 0

−τ

P1(s, θ)xt(θ)dθ

+

∫ 0

−τ

∫ 0

−τ

x⊤
t (ξ)P2(s, ξ, θ)xt(θ)dξdθ. (11)

Along the trajectories of system (1) driven by the con-
trol input u, considering the partial integration and the
formula ∂tx(t+ θ) = ∂θx(t+ θ), we have

d

dt
V (xt, s) = x⊤(t)[A⊤P0(s) + P0(s)A

+ P⊤
1 (s, 0) + P1(s, 0)]x(t)

+ 2x⊤(t− τ)[A⊤
d P0(s)− P⊤

1 (s,−τ)]x(t) (12)

+ 2x⊤(t)

∫ 0

−τ

[A⊤P1(s, θ)− ∂θP1 + P2(s, 0, θ)]xt(θ)dθ

+ 2x⊤(t− τ)

∫ 0

−τ

[A⊤
d P1(s, θ)− P2(s,−τ, θ)]xt(θ)dθ

−
∫ 0

−τ

∫ 0

−τ

x⊤
t (ξ)[∂ξP2(s, ξ, θ) + ∂θP2(s, ξ, θ)]xt(θ)dξdθ

+ 2u⊤(t)B⊤P0(s)x(t) + 2u⊤(t)B⊤
∫ 0

−τ

P1(s, θ)xt(θ)dθ.

Define the following matrix-valued functions

H0(s) = A⊤P0(s) + P0(s)A+ P⊤
1 (s, 0) + P1(s, 0),

H1(s, θ) = A⊤P1(s, θ) + P2(s, 0, θ)− ∂θP1(s, θ),

H2(s, ξ, θ) = ∂ξP2(s, ξ, θ) + ∂θP2(s, ξ, θ),

K0(s) = R−1B⊤P0(s),

K1(s, θ) = R−1B⊤P1(s, θ).

(13)

Then, from Theorem 3, it is seen that as s → −∞,
H0(s), H1(s, θ), H2(s, θ, ξ), K0(s), and K1(s, θ) can well
approximate H∗

0 , H
∗
1 (θ), H

∗
2 (ξ, θ), K

∗
0 , and K∗

1 (θ), where
the superscript ∗ denotes that in (13) Pj is replaced by P ∗

j
for j = 0, 1, 2. Since for each fixed algorithmic time s ∈
(−∞, T ], H1(s, θ) and K1(s, θ) (H2(s, ξ, θ)) are continuous

functions defined on the interval [−τ, 0] ([−τ, 0]2), we use
the linear combinations of the basis functions to approx-
imate these continuous functions. Let Φ(θ), Λ(ξ, θ), and
Ψ(ξ, θ) denote the N -dimensional linearly independent ba-
sis functions. Without losing the generality, it is supposed
that the dimensions of Φ, Λ, and Ψ are same. Then, by the
uniform approximation theory (Powell (1981)), for each
fixed algorithmic time s ∈ (−∞, T ], we have

vecs(H0) = W0(s),

vec(H1) = WN
1 (s)Φ(θ) + eNHΦ(s, θ),

diag(H2) = WN
2 (s)Ψ(ξ, θ) + eNHΨ(s, ξ, θ),

vecu(H2) = WN
3 (s)Λ(ξ, θ) + eNHΛ(s, ξ, θ),

vec(K0) = U0(s),

vec(K1) = UN
1 (s)Φ(θ) + eNKΦ(s, θ),

(14)

where W0(s) ∈ R
n1 , n1 = n(n+1)

2 , WN
1 (s) ∈ R

n2×N ,

WN
2 (s) ∈ R

n×N , WN
3 (s) ∈ R

n2×N , n2 = n(n−1)
2 , U0(s) ∈

R
nm, and UN

1 (s) ∈ R
nm×N are weighting matrices.

eNHΦ(s, θ) and eNKΦ(s, θ) (e
N
HΨ(s, ξ, θ) and eNHΛ(s, ξ, θ)) are

truncation errors, and they converge to zero uniformly in
θ ∈ [−τ, 0] (ξ, θ ∈ [−τ, 0]), and pointwisely in s ∈ (−∞, T ],
as the number of basis functions N tends to infinity.

By plugging (9d) and (13) into (12), integrating (12) from
tk to tk+1, and vectorizing the equation, we have

V (xtk+1
, s)− V (xtk , s)

=

∫ tk+1

tk

vecv⊤(x(t))dtvecs(H0(s))

+ 2

∫ tk+1

tk

∫ 0

−τ

x⊤
t (θ)⊗ x⊤(t)vec(H1(s, θ))dθdt

−
∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecd⊤(xt(ξ), xt(θ))

diag(H2(s, ξ, θ))dξdθdt

−
∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecp⊤(xt(ξ), xt(θ))

vecu(H2(s, ξ, θ))dξdθdt

+ 2

∫ tk+1

tk

x⊤(t)⊗ (u⊤(t)R)dtvec(K0(s))

+ 2

∫ tk+1

tk

∫ 0

−τ

x⊤
t (θ)⊗ (u⊤(t)R)vec(K1(s, θ))dθdt,

(15)

where t1 < t2 < · · · < tk < · · · < tL+1 is the boundary of
each integral window. The following variables are defined
to simplify the notations

ΓΦxx(t) =

∫ 0

−τ

Φ⊤(θ)⊗ x⊤
t (θ)⊗ x⊤(t)dθ (16)

ΓΨxx(t) =

∫ 0

−τ

∫ 0

−τ

Ψ⊤(ξ, θ)⊗ vecd⊤(xt(ξ), xt(θ))dξdθ

ΓΛxx(t) =

∫ 0

−τ

∫ 0

−τ

Λ⊤(ξ, θ)⊗ vecp⊤(xt(ξ)xt(θ))dξdθ

ΓΦΦxx(t) =

∫ 0

−τ

∫ 0

−τ

Φ⊤(θ)⊗ Φ⊤(ξ)⊗ x⊤
t (θ)⊗ x⊤

t (ξ)dξdθ

In addition, define the following variables as the integra-
tion of the sampled state and input trajectory
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Theorem 3. The solution of (9) satisfies

lim
s→−∞

|P0(s)− P ∗
0 |= 0, (10a)

lim
s→−∞

∥P1(s, θ)− P ∗
1 (θ)∥∞= 0, (10b)

lim
s→−∞

∥P2(s, ξ, θ)− P ∗
2 (ξ, θ)∥∞= 0. (10c)

Theorem 3 implies that the PDEs (5) can be solved by
solving (9) backwards from the terminal time T to −∞.
However, in (9), the system matrices A, Ad, and B are
required and it is non-trivial to solve such complicated
PDEs. In the next section, in the absence of the accurate
model of the system, a VI-based ADP algorithm will be
proposed to solve (9) using the input-state data measured
along the system’s trajectories.

4. DATA-DRIVEN VALUE ITERATION

In this section, we suppose only that the continuous-
time trajectories of x(t) and u(t) within the time interval
[t1, tL+1] are available for the optimal controller design.

Recall that P0(s), P1(s, θ), and P2(s, ξ, θ) are the solutions
to (9) and P(s)z is defined in (8). According to (7) and
(8), V (xt, s) can be expressed as

V (xt, s) = x⊤(t)P0(s)x(t) + 2x⊤(t)

∫ 0

−τ

P1(s, θ)xt(θ)dθ

+

∫ 0

−τ

∫ 0

−τ

x⊤
t (ξ)P2(s, ξ, θ)xt(θ)dξdθ. (11)

Along the trajectories of system (1) driven by the con-
trol input u, considering the partial integration and the
formula ∂tx(t+ θ) = ∂θx(t+ θ), we have

d

dt
V (xt, s) = x⊤(t)[A⊤P0(s) + P0(s)A

+ P⊤
1 (s, 0) + P1(s, 0)]x(t)

+ 2x⊤(t− τ)[A⊤
d P0(s)− P⊤

1 (s,−τ)]x(t) (12)

+ 2x⊤(t)

∫ 0

−τ

[A⊤P1(s, θ)− ∂θP1 + P2(s, 0, θ)]xt(θ)dθ

+ 2x⊤(t− τ)

∫ 0

−τ

[A⊤
d P1(s, θ)− P2(s,−τ, θ)]xt(θ)dθ

−
∫ 0

−τ

∫ 0

−τ

x⊤
t (ξ)[∂ξP2(s, ξ, θ) + ∂θP2(s, ξ, θ)]xt(θ)dξdθ

+ 2u⊤(t)B⊤P0(s)x(t) + 2u⊤(t)B⊤
∫ 0

−τ

P1(s, θ)xt(θ)dθ.

Define the following matrix-valued functions

H0(s) = A⊤P0(s) + P0(s)A+ P⊤
1 (s, 0) + P1(s, 0),

H1(s, θ) = A⊤P1(s, θ) + P2(s, 0, θ)− ∂θP1(s, θ),

H2(s, ξ, θ) = ∂ξP2(s, ξ, θ) + ∂θP2(s, ξ, θ),

K0(s) = R−1B⊤P0(s),

K1(s, θ) = R−1B⊤P1(s, θ).

(13)

Then, from Theorem 3, it is seen that as s → −∞,
H0(s), H1(s, θ), H2(s, θ, ξ), K0(s), and K1(s, θ) can well
approximate H∗

0 , H
∗
1 (θ), H

∗
2 (ξ, θ), K

∗
0 , and K∗

1 (θ), where
the superscript ∗ denotes that in (13) Pj is replaced by P ∗

j
for j = 0, 1, 2. Since for each fixed algorithmic time s ∈
(−∞, T ], H1(s, θ) and K1(s, θ) (H2(s, ξ, θ)) are continuous

functions defined on the interval [−τ, 0] ([−τ, 0]2), we use
the linear combinations of the basis functions to approx-
imate these continuous functions. Let Φ(θ), Λ(ξ, θ), and
Ψ(ξ, θ) denote the N -dimensional linearly independent ba-
sis functions. Without losing the generality, it is supposed
that the dimensions of Φ, Λ, and Ψ are same. Then, by the
uniform approximation theory (Powell (1981)), for each
fixed algorithmic time s ∈ (−∞, T ], we have

vecs(H0) = W0(s),

vec(H1) = WN
1 (s)Φ(θ) + eNHΦ(s, θ),

diag(H2) = WN
2 (s)Ψ(ξ, θ) + eNHΨ(s, ξ, θ),

vecu(H2) = WN
3 (s)Λ(ξ, θ) + eNHΛ(s, ξ, θ),

vec(K0) = U0(s),

vec(K1) = UN
1 (s)Φ(θ) + eNKΦ(s, θ),

(14)

where W0(s) ∈ R
n1 , n1 = n(n+1)

2 , WN
1 (s) ∈ R

n2×N ,

WN
2 (s) ∈ R

n×N , WN
3 (s) ∈ R

n2×N , n2 = n(n−1)
2 , U0(s) ∈

R
nm, and UN

1 (s) ∈ R
nm×N are weighting matrices.

eNHΦ(s, θ) and eNKΦ(s, θ) (e
N
HΨ(s, ξ, θ) and eNHΛ(s, ξ, θ)) are

truncation errors, and they converge to zero uniformly in
θ ∈ [−τ, 0] (ξ, θ ∈ [−τ, 0]), and pointwisely in s ∈ (−∞, T ],
as the number of basis functions N tends to infinity.

By plugging (9d) and (13) into (12), integrating (12) from
tk to tk+1, and vectorizing the equation, we have

V (xtk+1
, s)− V (xtk , s)

=

∫ tk+1

tk

vecv⊤(x(t))dtvecs(H0(s))

+ 2

∫ tk+1

tk

∫ 0

−τ

x⊤
t (θ)⊗ x⊤(t)vec(H1(s, θ))dθdt

−
∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecd⊤(xt(ξ), xt(θ))

diag(H2(s, ξ, θ))dξdθdt

−
∫ tk+1

tk

∫ 0

−τ

∫ 0

−τ

vecp⊤(xt(ξ), xt(θ))

vecu(H2(s, ξ, θ))dξdθdt

+ 2

∫ tk+1

tk

x⊤(t)⊗ (u⊤(t)R)dtvec(K0(s))

+ 2

∫ tk+1

tk

∫ 0

−τ

x⊤
t (θ)⊗ (u⊤(t)R)vec(K1(s, θ))dθdt,

(15)

where t1 < t2 < · · · < tk < · · · < tL+1 is the boundary of
each integral window. The following variables are defined
to simplify the notations

ΓΦxx(t) =

∫ 0

−τ

Φ⊤(θ)⊗ x⊤
t (θ)⊗ x⊤(t)dθ (16)

ΓΨxx(t) =

∫ 0

−τ

∫ 0

−τ

Ψ⊤(ξ, θ)⊗ vecd⊤(xt(ξ), xt(θ))dξdθ

ΓΛxx(t) =

∫ 0

−τ

∫ 0

−τ

Λ⊤(ξ, θ)⊗ vecp⊤(xt(ξ)xt(θ))dξdθ

ΓΦΦxx(t) =

∫ 0

−τ

∫ 0

−τ

Φ⊤(θ)⊗ Φ⊤(ξ)⊗ x⊤
t (θ)⊗ x⊤

t (ξ)dξdθ

In addition, define the following variables as the integra-
tion of the sampled state and input trajectory

Ixx,k =

∫ tk+1

tk

vecv⊤(x(t))dt,

Ixu,k =

∫ tk+1

tk

x⊤(t)⊗ (u⊤(t)R)dt,

IΦxx,k =

∫ tk+1

tk

ΓΦxx(t)dt, (17)

IΦxu,k =

∫ tk+1

tk

∫ 0

−τ

Φ⊤(θ)⊗ x⊤
t (θ)⊗ (u⊤(t)R)dθdt,

IΨxx,k =

∫ tk+1

tk

ΓΨxx(t)dt, IΛxx,k =

∫ tk+1

tk

ΓΛxx(t)dt.

Plugging (14) and (17) into (15) yields

V (xtk+1
, s)− V (xtk , s) = Ixx,kW0(s) + 2IΦxx,k

vec(WN
1 (s))− IΨxx,kvec(W

N
2 (s))− IΛxx,kvec(W

N
3 (s))

+ 2Ixu,kU0(s) + 2IΦxu,kvec(U
N
1 (s)) + eNk (s), (18)

where eNk (s) is induced by the truncation errors in (14).
Combining (18) for k = 1, 2, ..., L, one can obtain the
following linear equation with respect to the weighting
matrices encoded in ΩN

ΘNΩN (s) + EN
L (s) = Ξ(s), (19)

where

ΩN (s) = [W⊤
0 (s), vec⊤(WN

1 (s)), vec⊤(WN
2 (s)),

vec⊤(WN
3 (s)), U⊤

0 (s), vec⊤(U1(s))]
⊤,

ΘN =
[
σ⊤
1 , ..., σ

⊤
k , ..., σ

⊤
L

]⊤
,

EN
L (s) =

[
eN1 (s), ..., eNk (s), ..., eNL (s)

]⊤
, (20)

Ξ(s) =
[
V (xt, s)|t2t=t1 , ..., V (xt, s)|

tk+1

t=tk
, ..., V (xt, s)|tL+1

t=tL

]⊤
,

σk = [Ixx,k, 2IΦxx,k,−IΨxx,k,−IΛxx,k, 2Ixu,k, 2IΦxu,k] .

The following assumption on the matrix ΘN is made to
ensure that the collected data is rich enough such that the
least-square solution to (19) is unique.

Assumption 4. Given N > 0, there exists L∗ > 0 and
α > 0, such that for all L > L∗,

1

L
Θ⊤

NΘN ≥ αI. (21)

Remark 5. Assumptions 4 is reminiscent of the condition
of persistent excitation (Jiang et al. (2021); Åström and
Wittenmark (1997)). As shown in the past literature of
ADP (Jiang and Jiang (2017); Lewis and Liu (2013)), one
can fulfill such a condition by means of added exploration
noise, such as sinusoidal signals and random noise.

Now, at each fixed algorithmic time s ∈ (−∞, T ], by
solving (19) via least-square methods, one can get the
weighting matrices in (14). Next, by differentiating (19)
with respect to the algorithmic time s, we will solve (9)
by a data-driven method. Since V (xt, s) is involved in the
expression of Ξ(s), the first thing is to differentiate V (xt, s)
with respect to s. Recalling the expression of V (xt, s) in
(11), we have

d

ds
V (xt, s) = x⊤(t)

dP0(s)

ds
x(t)

+ 2x⊤(t)

∫ 0

−τ

∂sP1(s, θ)xt(θ)dθ

+

∫ 0

−τ

∫ 0

−τ

x⊤
t (ξ)∂sP2(s, ξ, θ)xt(θ)dξdθ.

(22)

Plugging (9) into (22), and vectorizing the equation, we
have

d

ds
V (xt, s)

= vecv⊤(x(t))[−W0(s)− vecs(Q) + vecs(K⊤
0 RK0)]

+ 2

∫ 0

−τ

x⊤
t (θ)⊗ x⊤(t)[−vec(H1) + vec(K⊤

0 RK1)]dθ

+

∫ 0

−τ

∫ 0

−τ

vecd⊤(xt(ξ), xt(θ))diag(H2) (23)

+ vecp⊤(xt(ξ), xt(θ))vecu(H2)

+ x⊤
t (θ)⊗ x⊤

t (ξ)vec(K
⊤
1 RK1)dξdθ,

By the approximations of K0(s) and K1(s, θ) in (14),
vecs(K⊤

0 RK0), vec(K⊤
0 RK1), and vec(K⊤

1 RK1) can be
approximated by Kv,0, KN

v,1, and KN
v,2, which are

Kv,0 = vecs[vec−⊤(U0(s))Rvec−1(U0(s))],

KN
v,1 = vec[vec−⊤(U0(s))Rvec−1(UN

1 (s)Φ(θ))]

KN
v,2 = vec[vec−⊤(UN

1 (s)Φ(ξ))Rvec−1(UN
1 (s)Φ(θ))] (24)

Plugging (14) and (24) into (23) gives us the following
equation

d

ds
V (xt, s) = vecv⊤(x(t))[−W0(s)− vecs(Q) +Kv,0(s)]

− 2ΓΦxx(t)vec(W
N
1 (s)) + 2

∫ 0

−τ

x⊤
t (θ)⊗ x⊤(t)KN

v,1(s, θ)dθ

+ ΓΨxx(t)vec(W
N
2 (s)) + ΓΛxx(t)vec(W

N
3 (s)) (25)

+

∫ 0

−τ

∫ 0

−τ

x⊤
t (θ)⊗ x⊤

t (ξ)KN
v,2(s, ξ, θ)dξdθ + εN (t, s),

where εN (t, s) is induced by the truncation errors in (14).
By Lemma 8 and the expressions of KN

v,1 and KN
v,2 in (24),

the integrals in (25) involving KN
v,1 and KN

v,2 can be further

simplified, and d
dsV (xt, s) is finally derived as

d

ds
V (xt, s) = vecv⊤(x(t))[−W0(s)− vecs(Q) +Kv,0(s)]

+ 2ΓΦxx(t)[−vec(WN
1 (s)) + U1(U0(s), U

N
1 (s), R)]

+ ΓΨxx(t)vec(W
N
2 (s)) + ΓΛxx(t)vec(W

N
3 (s)) (26a)

+ ΓΦΦxx(t)U2(U
N
1 (s), R) + εN (t, s)

= W⊤
N (xt)V(ΩN (s)) + εN (t, s), (26b)

where WN and V are defined as

WN (xt) = [vecv⊤(x(t)), 2ΓΦxx(t),ΓΨxx(t), (27a)

ΓΛxx(t),ΓΦΦxx(t)]
⊤,

V(ΩN (s)) =
[
[−W0(s)− vecs(Q) +Kv,0(s)]

⊤,

[−vec(WN
1 (s)) + U1(U0(s), U

N
1 (s), R)]⊤, (27b)

vec⊤(WN
2 (s)), vec⊤(WN

3 (s)),U⊤
2 (UN

1 (s), R)
]⊤

.

Under Assumption 4, following (26) and differentiating the
both sides of (19) with respect to the algorithmic time s,
we have

d

ds
ΩN (s) = HN (ΩN (s)) + GN (s),

ΩN (T ) = 0,
(28)

where ΩN (T ) = 0 is obtained by (9e). The expressions of
HN (ΩN (s)) and GN (ΩN (s), s) are
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Algorithm 1 Data-driven Value Iteration

1: Choose T , and the vector of the basis functions Φ(θ),
Ψ(ξ, θ), and Λ(ξ, θ).

2: Choose the boundaries of the sampling windows t1 ≤
tk ≤ tL+1.

3: Choose the driving input u to explore system (1) and
collect the input-state data u(t), x(t), t ∈ [t1, tL+1].

4: Construct data matrices ΘN and ΞN
d .

5: Solve (30) backwards from s = T to s = 0.

6: Get K̂0(0) and K̂1(0, θ) by (31).

HDV 1HDV 2CAV 3

1v2v3v

3h 2h

Fig. 1. A string of HDVs and an AV.

HN (ΩN (s)) = Θ†
NΞN

d V(ΩN (s)), (29a)

GN (s) = Θ†
N (− d

ds
EN

L (s) + ΞN
e (s)), (29b)

ΞN
d = [WN (xt)|t2t1 , · · · ,WN (xt)|tL+1

tL ]⊤, (29c)

ΞN
e (s) = [εN (t, s)|t2t1 , · · · , εN (t, s)|tL+1

tL ]⊤. (29d)

It is seen that by utilizing the collected data, (9) is
transferred to (28) where the system matrices (A,Ad, B)
are not involved. In (28), GN is induced by the truncation
errors. Hence, if the truncation errors are small enough to
be ignored, the solution to (28) can be approximated by
the solution to the following differential equation

d

ds
Ω̂N (s) = HN (Ω̂N (s)), Ω̂N (T ) = 0. (30)

With the obtained Ω̂N (s), by (20), Û0(s) and ÛN
1 (s) can

be obtained from the corresponding elements encoded
in Ω̂N (s). Following (14), the estimation of K0(s) and
K1(s, θ) can be obtained by

K̂0(s) = vec−1([Ω̂N (s)]n3,n4),

ÛN
1 (s) = vec−1([Ω̂N (s)]n4+1,n5

),

K̂1(s, θ) = vec−1(ÛN
1 (s)Φ(θ)).

(31)

where n3 = n1 + n2 + n + n2 + 1, n4 = n3 + mn, and
n5 = n4 +mnN .

Algorithm 1 shows the detail of the data-driven VI algo-
rithm. The following theorem shows the main result of the
learning-based VI algorithm, i.e. the optimal control gains
K∗

0 and K∗
1 (θ) can be well approximated by solving (30)

backwards.

Theorem 6. For any ϵ > 0, there exist T ∗(ϵ) > 0 and
N∗

3 (ϵ, T ) > 0, such that if T > T ∗(ϵ) and N > N∗
3 (ϵ, T ),

the following inequalities hold.

|Û0(0)− vec(K∗
0 )|≤ ϵ (32a)∥∥∥ÛN

1 (0)Φ(θ)− vec(K∗
1 (θ))

∥∥∥
∞

≤ ϵ (32b)
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Fig. 2. Convergence of K̂0(s) and K̂1(s, θ) to the optimal
values K∗

0 and K∗
1 (θ) by VI algorithm.

5. NUMERICAL SIMULATION

In this section, we demonstrate the effectiveness of the
proposed learning-based VI algorithm by the practical ex-
ample with regards to connected and autonomous vehicles
(CAVs) in mixed traffic consisting of both autonomous
vehicles (AVs) and human-driven vehicles (HDVs).

Consider a string of two HDVs and one AV as shown in
Fig. 1, where hi denotes the bumper-to-bumper distance
between the ith vehicle and (i−1)th vehicle, and vi denotes
the velocity of the ith vehicle. Define ∆hi = hi − h∗

and ∆vi = vi − v∗, where (h∗, v∗) is the equilibrium of
the vehicles. h∗ depends on the human parameters and
v∗ = v1. Assuming the velocity of the leading vehicle is
constant, and considering the time-delay effect caused by
human drivers’ reaction time, the system can be described
as (1) with x = [∆h2,∆v2,∆h3,∆v3]

⊤, and (A,Ad, B)
defined in (Cui et al., 2022, Section V.B). In the simu-
lation, the weighting matrices of the performance index
are Q = diag([1, 1, 10, 10]), and R = 1. The basis func-
tions are Φ(θ) = [1, θ, θ2, θ3]⊤, Ψ(ξ, θ) = [1, ξ + θ, ξ2 +
θ2, ξθ, ξ3+θ3, ξ2θ+ξθ2, ξ3θ+ξθ3, ξ2θ2, ξ3θ2+ξ2θ3, ξ3θ3]⊤,
and Λ(ξ, θ) = [1, θ, θ2, θ3]⊤ ⊗ [1, ξ, ξ2, ξ3]⊤. The analytical
expression of optimal values K∗

0 and K∗
1 are derived by the

method in Ge and Orosz (2017), where the precise model
of the system is required.

In Algorithm 1, Ω̂N is iterated backwards from T = 10
to 0. It is noticed that T = 10 is the length of the
algorithmic time instead of the physical time. In Fig. 2,
it is seen that K̂0(s) and K̂1(s) converge to the optimal
values eventually, and the relative approximation errors

are
|K̂0(0)−K∗

0 |
|K∗

0 |
= 0.0017 and

||K̂1(0,θ)−K∗
1 (θ)||∞

||K∗
1 (θ)||∞

= 0.0406.

Therefore, the proposed VI algorithm is able to well
approximate the optimal controller. Compared with Ge
and Orosz (2017), our approach is learning-based and
precise model knowledge is not required.

6. CONCLUSIONS

This paper has proposed for the first time a learning-
based VI algorithm for a class of linear time-delay systems
described by DDEs. The first major contribution is the
development of a model-based VI approach for continuous-
time linear time-delay systems. Second, by integrating RL
techniques, a learning-based VI algorithm is proposed for
learning adaptive optimal controllers from data in the ab-
sence of the precise system model knowledge. The efficacy
of the proposed learning-based adaptive optimal control
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It is seen that by utilizing the collected data, (9) is
transferred to (28) where the system matrices (A,Ad, B)
are not involved. In (28), GN is induced by the truncation
errors. Hence, if the truncation errors are small enough to
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Algorithm 1 shows the detail of the data-driven VI algo-
rithm. The following theorem shows the main result of the
learning-based VI algorithm, i.e. the optimal control gains
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0 and K∗
1 (θ) can be well approximated by solving (30)

backwards.
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|Û0(0)− vec(K∗
0 )|≤ ϵ (32a)∥∥∥ÛN
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In this section, we demonstrate the effectiveness of the
proposed learning-based VI algorithm by the practical ex-
ample with regards to connected and autonomous vehicles
(CAVs) in mixed traffic consisting of both autonomous
vehicles (AVs) and human-driven vehicles (HDVs).

Consider a string of two HDVs and one AV as shown in
Fig. 1, where hi denotes the bumper-to-bumper distance
between the ith vehicle and (i−1)th vehicle, and vi denotes
the velocity of the ith vehicle. Define ∆hi = hi − h∗

and ∆vi = vi − v∗, where (h∗, v∗) is the equilibrium of
the vehicles. h∗ depends on the human parameters and
v∗ = v1. Assuming the velocity of the leading vehicle is
constant, and considering the time-delay effect caused by
human drivers’ reaction time, the system can be described
as (1) with x = [∆h2,∆v2,∆h3,∆v3]

⊤, and (A,Ad, B)
defined in (Cui et al., 2022, Section V.B). In the simu-
lation, the weighting matrices of the performance index
are Q = diag([1, 1, 10, 10]), and R = 1. The basis func-
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and Λ(ξ, θ) = [1, θ, θ2, θ3]⊤ ⊗ [1, ξ, ξ2, ξ3]⊤. The analytical
expression of optimal values K∗

0 and K∗
1 are derived by the

method in Ge and Orosz (2017), where the precise model
of the system is required.

In Algorithm 1, Ω̂N is iterated backwards from T = 10
to 0. It is noticed that T = 10 is the length of the
algorithmic time instead of the physical time. In Fig. 2,
it is seen that K̂0(s) and K̂1(s) converge to the optimal
values eventually, and the relative approximation errors
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|K∗
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= 0.0017 and
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= 0.0406.

Therefore, the proposed VI algorithm is able to well
approximate the optimal controller. Compared with Ge
and Orosz (2017), our approach is learning-based and
precise model knowledge is not required.

6. CONCLUSIONS

This paper has proposed for the first time a learning-
based VI algorithm for a class of linear time-delay systems
described by DDEs. The first major contribution is the
development of a model-based VI approach for continuous-
time linear time-delay systems. Second, by integrating RL
techniques, a learning-based VI algorithm is proposed for
learning adaptive optimal controllers from data in the ab-
sence of the precise system model knowledge. The efficacy
of the proposed learning-based adaptive optimal control

design method has been validated by the application aris-
ing from connected vehicles.

Appendix A. AUXILIARY RESULTS

Lemma 7. Given V ∈ R
m×n and v = vec(V ). For the

integer 0 ≤ i ≤ (mn− 1), let j and k be the quotient and
reminder of i/m, respectively. Di ∈ R

m×n is defined such
that the entry of Di at the (k + 1)th row and (j + 1)th
column is 1, and all the other entries are 0. Then,

V = vec−1(v) =

mn−1
i=0

Divi+1, (A.1)

where vi is the ith element of v.

Proof. By the definition of the operator vec(·), vi+1 is the
entry of V at the (k+1)th row and (j+1)th column. Hence,
V is reconstructed in (A.1) by iterative placing vi+1 to the
position of the (k + 1)th row and (j + 1)th column.

Lemma 8. For any χ ∈ R
n2

, U0 ∈ R
mn, U1 ∈ R

mn×N ,
R ∈ R

m×m, and Φ1,Φ2 ∈ R
N ,

χ⊤vec[vec−⊤(U0)Rvec−1(U1Φ1)] = Φ⊤
1 ⊗ χ⊤U1(U0, U1, R)

χ⊤vec[vec−⊤(U1Φ1)Rvec−1(U1Φ2)]

= Φ⊤
2 ⊗ Φ⊤

1 ⊗ χ⊤U2(U1, R)

where U1 and U2 are defined as

U1(U0, U1, R) = vec


mn
i=1

vec
�
vec−⊤(U0)RDi


[U1]i


,

U2(U1, R) = vec




mn
i,j=1

vec
�
D⊤

i RDj


vec⊤([U1]

⊤
i [U1]j)


 .

Proof. The lemma is a consequence of Lemma 7.

REFERENCES

Asad Rizvi, S.A., Wei, Y., and Lin, Z. (2019). Model-
free optimal stabilization of unknown time delay systems
using adaptive dynamic programming. In Proc. IEEE
Conf. Decis. Control., 6536–6541.

Chakraborty, S., Cui, L., Ozbay, K., and Jiang, Z.P.
(2022). Automated lane changing control in mixed
traffic: An adaptive dynamic programming approach.
In 25th IEEE International Conference on Intelligent
Transportation Systems (ITSC), 1823–1828.

Cui, L. and Jiang, Z.P. (2022). A reinforcement learning
look at risk-sensitive linear quadratic gaussian control.
arXiv preprint arXiv:2212.02072.

Cui, L., Pang, B., and Jiang, Z.P. (2022). Learning-
based adaptive optimal control of linear time-delay
systems: A policy iteration approach. arXiv preprint
arXiv:2210.00204.

Cui, L., Wang, S., Zhang, J., Zhang, D., Lai, J., Zheng,
Y., Zhang, Z., and Jiang, Z.P. (2021). Learning-based
balance control of wheel-legged robots. IEEE Robotics
and Automation Letters, 6(4), 7667–7674.

Curtain, R.F. (1995). An Introduction to Infinite-
Dimensional Linear Systems Theory. Springer, New
York, NY.

Eidelman, Y., Milman, V., and Tsolomitis, A. (2004).
Functional Analysis, An Introduction. American Math-
ematical Society, Rhode Island, USA.

Gao, W. and Jiang, Z. (2016). Adaptive dynamic program-
ming and adaptive optimal output regulation of linear
systems. IEEE Trans. Autom. Control, 61(12), 4164–
4169.

Ge, J.I. and Orosz, G. (2017). Optimal control of con-
nected vehicle systems with communication delay and
driver reaction time. IEEE Trans. Intell. Transp. Syst.,
18(8), 2056–2070.

Huang, M., Jiang, Z.P., and Ozbay, K. (2022). Learning-
based adaptive optimal control for connected vehicles in
mixed traffic: robustness to driver reaction time. IEEE
Trans. Cybern., 52(6), 5267–5277.

Jiang, Y. and Jiang, Z.P. (2017). Robust Adaptive Dy-
namic Programming. Wiley-IEEE Press, NJ, USA.

Jiang, Y. and Jiang, Z.P. (2012). Computational adaptive
optimal control for continuous-time linear systems with
completely unknown dynamics. Automatica, 48(10),
2699–2704.

Jiang, Z.P., Prieur, C., and Astolfi (Editors), A. (2021).
Trends in Nonlinear and Adaptive Control: A Tribute to
Laurent Praly for His 65th Birthday,. Springer Nature,
NY, USA.

Jiang, Z.P., Bian, T., and Gao, W. (2020). Learning-based
control: A tutorial and some recent results. Found.
Trends Syst. Control, 8(3), 176–284.

Krasovskii, N. (1962). On the analytic construction of an
optimal control in a system with time lags. Journal of
Applied Mathematics and Mechanics, 26(1), 50–67.

Lewis, F.L. and Liu, D. (2013). Reinforcement Learning
and Approximate Dynamic Programming for Feedback
Control. Wiley-IEEE Press, NJ, USA.

Liu, Y., Zhang, H., Luo, Y., and Han, J. (2016). ADP
based optimal tracking control for a class of linear
discrete-time system with multiple delays. Journal of
the Franklin Institute, 353(9), 2117–2136.

Pang, B. and Jiang, Z.P. (2021). Adaptive optimal control
of linear periodic systems: an off-policy value iteration
approach. IEEE Trans. Autom. Control, 66(2), 888–894.

Pang, B., Cui, L., and Jiang, Z.P. (2022). Human motor
learning is robust to control-dependent noise. Biological
Cybernetics, 116(3), 307–325.

Powell, M.J.D. (1981). Approximation Theory and Meth-
ods. Cambridge University Press, New York, NY.
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