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Abstract: This paper studies the adaptive optimal control for linear time-delay systems
described by delay differential equations (DDEs). A key strategy is to exploit the value iteration
(VI) approach to solve the linear quadratic optimal control problem for time-delay systems.
However, previous learning-based control methods are all exclusively devoted to discrete-time
time-delay systems. In this article, we aim to fill in the gap by developing a learning-based VI
approach to solve the infinite-dimensional algebraic Riccati equation (ARE) for continuous-time
time-delay systems. One nice feature of the proposed VI approach is that an initial admissible
controller is not required to start the algorithm. The efficacy of the proposed methodology is
demonstrated by the example of autonomous driving.
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1. INTRODUCTION

In the past decades, time-delay systems attracted numer-
ous interests from researchers. It is well known that the op-
timal control can ensure the stability and performance of
the closed-loop system under some mild conditions. There-
fore, the optimal control problem for time-delay systems is
fundamentally important, yet challenging, in control fields
for a long time. The author in Krasovskii (1962) first stud-
ied the linear quadratic (LQ) optimal control problem for
continuous-time linear systems with state delay. Following
this original work, in Ross and Fliigge-Lotz (1969), the
sufficient condition for the optimal control was derived as
a set of partial differential equations (PDEs). These PDEs
can be considered as the extension of the ARE for delay-
free systems to time-delay systems. However, the precise
system model is needed for solving the ARE. In reality,
such an accurate system model is hard to obtain. Hence, it
is significant to propose a learning-based controller design
approach for time-delay systems. Adaptive dynamic pro-
gramming (ADP) is a potential method for this problem.

By integrating the reinforcement learning (RL) technique
with the classical control theory, ADP was developed
to learn a stabilizing and optimal control policy using
finite samples of input-state data (Jiang et al. (2020);
Lewis and Liu (2013)). Recently, based on the ADP
technique, substantial progress has been made on the
learning-based control for various important classes of
linear/nonlinear/periodic dynamical systems for optimal
state stabilization and output regulation (Jiang and Jiang
(2012); Gao and Jiang (2016); Pang and Jiang (2021);
Cui and Jiang (2022)). ADP has been successfully ap-
plied in various engineering fields, for example, wheel-
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legged robots (Cui et al. (2021)), autonomous driving
(Chakraborty et al. (2022)), and human motor control
(Pang et al. (2022)). Unlike finite-dimensional systems, the
optimal controller for time-delay systems is a functional of
the state, which poses a major challenge for the learning-
based adaptive optimal control of time-delay systems. In
the most of the relevant literature, e.g. Asad Rizvi et al.
(2019); Liu et al. (2016); Huang et al. (2022); Rueda-
Escobedo et al. (2022), the learning-based control problem
for discrete-time time-delay systems is solved. Since the
discrete-time time-delay systems are finite dimensional,
these methods cannot be directly applied to continuous-
time systems with time delays.

In this paper, a novel VI-based ADP algorithm is proposed
to find a near-optimal controller for linear time-delay sys-
tems without the precise knowledge of system dynamics.
It is first shown that the solution of the finite-horizon
LQ optimal control problem (as a differential Riccati
equation (DRE)) asymptotically converges to the solution
of the infinite-horizon LQ optimal control problem. By
combining the convergence property of DRE with the RL
technique, a learning-based VI approach is proposed to
find a near-optimal controller using the input-state data
collected along the trajectories of the system.

The rest content of this paper is organized as follows.
Section II introduces the preliminaries for the LQ optimal
control of time-delay systems. Section III proposes a
model-based VI approach to find a near-optimal controller.
Section IV develops a learning-based VI approach based
on ADP technique. Section V demonstrates the efficacy
of the proposed learning-based VI approach by numerical
simulations. The paper is concluded in Section VI.

Notations: In this paper, R denotes the set of real numbers.
| - | denotes the Euclidean norm of a vector or Frobe-
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nius norm of a matrix, and ||-|| ., denotes the supreme

norm of a function. @() denotes the function which is
the derivative of the function f. ® denotes the direct
sum. L;([—7, 0], R™) denotes the space of measurable func-
tions for which the ith power of the Euclidean norm is
Lebesgue integrable, and My = R"™ @ Ly([—7,0],R").
L(X) denotes the class of continuous bounded linear op-
erators from X to X. (-,-) denotes the inner product

in Mo, ie. (21,2) = rira + [°_f7(0)f2(6)d6, where

2 = [r, fi()]T for i = 1,2. vec(A) = [a?,a;—?...,aﬂ—r
where a; is the ith column of A. vec™1(-) is the inverse
operator of vec(-). For a symmetric matrix P € R™*",
vecs(P) = [pi1,2p12, -+, 2P1n, P22, 2P23, - 2p(n V> Prn] |
VGCU(P) = [2p127~-~72p1n32p237-~-a2p(n71)n] dlag( ) =
[P11, P22, s P | - For the vectors v, u € R, Vecd(z/7 n) =
(V11815 ooy Unin] Ty veev(v) = (V3 s van, oy U1V, V2] T,
and vecp(v, 1) = [V1t2, ooy V1 by V2l43y +es Vi—1 fhn]

)

T lalig

- 1045
denotes the sub-vector of the vector a comprised of the
entries between the ith and jth entries. AT denotes the
Moore-Penrose inverse of A.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem Formulation

This paper considers the following continuous-time linear
time-delay system:

%(t) = Ax(t) + Agx(t — 7) + Bu(t), (1)
where 7 > 0 is the delay of the system, which is constant
and known, z(t) € R", and u(t) € R™. A, Aq € R™*™ and
B € R™™ are unknown constant matrices. A segment
of the trajectory for z(t) within the interval [t — 7,1
is denoted as z4(f) = z(t +6), ¥ € [—7,0]. Since
system IT) 1s mﬁmte dimensional, the system’s state is
z(t) = ), 2l ()]T € My. The quadratlc performance
index adopted for system (1) is

muin J(xo,u) = /OOO z(t) T Qx(t) 4+ u(t) T Ru(t)dt

. (@)
- / (2(8), Q= (1)) + u(t) Ru(t)dt

where RT = R > 0, QT 0

L(My) is symmetric (Eidelman et al., 2004, Chapter 6),
and non-negative (Eidelman et al., 2004, Definition 6.3.1).

:QZO,andQ:[Q ]E

It is assumed that system (1) with the output y(t) =
Qzx(t) is exponentially stabilizable and detectable (Cur-
tain, 1995, Definition 5.2.1). The problem to be studied in
this paper is formulated as follows.

Problem (VI-based ADP) Without the knowledge of the
system dynamics in (1), design a VI-based ADP algorithm
to find the approximation of the optimal controller using
only the input-state data measured along the trajectories
of the system.

2.2 Optimality and Stability

For system (1), the following lemma gives the expression
of the optimal controller for (2).
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Lemma 1. (Uchida et al. (1988)). Consider system (1), the
optimal controller for (2) is

0
u*(zt) = —R'BTP} x(t)—/ R™BT Py (6) z:(6)do, 3)
— -7 v
Ky K} (6)

and the corresponding minimal performance index is

0
V*(0) = 2 (0) B0 0) + 220 (0) / Py (6)0(6)d0

0 0
+f ) / (P} (€. 0)an(0)dca.

where Pf = PT > 0, Pr(6), and P;T(0,€) = Pi(&,0)
for 0,¢ € [—7,0] are the unique stabilizing solution to the
following PDEs

A"P; + P;A—-P;BR'B"F;
+P{(0)+PrT(0)+Q =0,

(4)

AP0

% = (AT — P{BR™'BT)P;(0) + P;(0,0),

O¢ P (£,0) + 0o P5 (€,0) = =P T ()BR™'BTP;(6), (5)
Pi(—7)=P;Aa, Pj(-7,0)= A, P;(0).

We can consider (5) as the ARE for time-delay systems.
By (Curtain, 1995, Theorem 6.2.7), the closed-loop system
with «* in (3) is exponentially stable at the origin.

3. CONTINUOUS-TIME VALUE ITERATION

VI-based ADP is derived from the DRE, which is related
to the finite-horizon optimal control problem:

T
rrbinj(to,T,xto,u) :/t (2(t), Qz(t)) +u' (t)Ru(t)dt

subject to (1), (6)
where z;, is the initial segment of z(t), to is the initial
time, and T is the terminal time. The following lemma
gives the solution to (6).

Lemma 2. For problem (6), the minimal performance in-

dex V(z4,,t0) = min,, J(to, T, xs,,u) can be expressed as
V(4. t0) = (20, P(t0)20), (7)

where 29 =[x (to), ,, (-)]" is the initial state, and P(s)zo

is expressed as

0

Py(s)x(to) + / Py (s,0)xz,(0)d0
P(s)zg = 0 - . (8)
[ Py(s,-,0)2,(0)d0 + Py’ (s,-)x(to)

Here, Py(s) = Py (s), Pi(s,0) and Pa(s,&,0) = Py (s,0,€)
can be obtained by solving the following PDEs backwards
L Py(s) = AT Po(s) ~ Po(s)A — Q ~ Pi(s,0)
— P (5,0) + Py(s)BR™'BT Py(s), (9a)
0sPi(s,0) = 0gPi(s,0) — Pa(s,0,0)
— (AT = Py(s)BR™*BT)Pi(s,0), (9b)
05 P2(s,8,0) = 0cPa(s,£,0) + 0g Pa(s,§,0)
+ P (s,6)BR™'B" Pi(s,0), (9¢)
Py(s,—7) = Py(s)Adq, Pa(s,—7,0) = A] Pi(s,6), (9d)
Py(T)=0, P (T,0)=0, P (T, 0)=0. (9e)
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Theorem 3. The solution of (9) satisfies

lim |P0(s) —F|=0 (10a)
hm L [[P1(s,0) = Py (0)][oo= 0, (10b)
SEI_HDOHPQ( CRS 9) - 2 (57 Q)HOO: 0. (100)

Theorem 3 implies that the PDEs (5) can be solved by
solving (9) backwards from the terminal time T to —oc.
However, in (9), the system matrices A, Ay, and B are
required and it is non-trivial to solve such complicated
PDEs. In the next section, in the absence of the accurate
model of the system, a VI-based ADP algorithm will be
proposed to solve (9) using the input-state data measured
along the system’s trajectories.

4. DATA-DRIVEN VALUE ITERATION

In this section, we suppose only that the continuous-
time trajectories of x(¢) and u(¢) within the time interval
[t1,tr+1] are available for the optimal controller design.

Recall that Py(s), P1(s,0), and Py(s, &, 0) are the solutions
to (9) and P(s)z is defined in (8). According to (7) and
(8), V(x¢,s) can be expressed as

0
x ! (t)Py(s)x(t) + 227 (1) Py (s,0)x(6)d0

0 0
.
i /4 [ w (§)Pa(s. €, 0)z,(0)dEdo.

Along the trajectories of system (1) driven by the con-
trol input wu, considering the partial integration and the
formula d;z(t + 0) = Opx(t + ), we have

V(xt, s) =

(11)

%V(mt, s)=a' (t)[AT Py(s) + Po(s)A
+ P (5,0) + Py(s,0)]z(t)
+227 (t —7)[A] Po(s) — P (s, —7

207 (1) /0 (AT Py(s,6) —

)] (t)
Og Py + PQ(S, 0, 0)]56,5(9)(10

(12)

+ 2z (t—7) /0 [A] Pi(s,0) — Py(s,—,0)]z,(0)d0

0 0
[ ] T ©00cPa(s.6.0) + QaPa(s. . 0)an(0)dca

0
Py(s,0)z(6)d6.

Define the following matrix-valued functions

+2u’ (t)BT Py(s)z(t) +2u' ()BT

Ho(s) = AT Py(s) + Po(s)A+ P (s,0) + Pi(s,0),
Hi(s,0) = AT Py(s,0) + Px(s,0,0) — 0pP1(s,0),
Ha(s,€,0) = 0c Pa(s, €,0) + 0y Pa(s, €, 0), (13)
Ko(s) =R~ 1BTP0( ),

Ki(s,0) = R"'BT Pi(s,0).

Then, from Theorem 3, it is seen that as s — —oo,
Hy(s), Hi(s,0), Hy(s,0,8), Ko(s), and K;(s,0) can well
approximate Hj, H;(0), H3(&,0), K, and K7 (0), where
the superscript * denotes that in (13) P; is replaced by P
for 7 = 0,1,2. Since for each fixed algorithmic time s €
(=00, T), Hy(s,0) and K;(s,0) (Ha(s,§,0)) are continuous
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functions defined on the interval [—7, 0] ([—7,0]?), we use
the linear combinations of the basis functions to approx-
imate these continuous functions. Let ®(6), A(,0), and
U(¢,0) denote the N-dimensional linearly independent ba-
sis functions. Without losing the generality, it is supposed
that the dimensions of ®, A, and ¥ are same. Then, by the
uniform approximation theory (Powell (1981)), for each
fixed algorithmic time s € (—o0,T], we have

vecs(Hp) = Woy(s),
vee(Hy) = WY (s)®(0) + exro (s, 0),
diag( ) N( )\I’(€7 )+6H\Il( 7670)’

i (14)
vecu(Ha) = W3 (s)A(E,0) + egya (s, €, 0),
vec(Ky) = ( ),
vec(Ky) = U (s)®(0) + eRg(s,0),

n n+1)

where Wy(s) € R™, ny = , WN(s) € R?**N,
W (s) € RN, W (s) € RWN, ng = M) g (s) e
R™  and U] ( ) € RM*N are Welghtlng matrices.

eNe(s,0) and eX g (s,0) (eNg(s,€,0) and eX, (s,€,0)) are
truncation errors, and they converge to zero uniformly in

6 € [-7,0] (&,0 € [-7,0]), and pointwisely in s € (—o0, T,
as the number of basis functions N tends to infinity.

By plugging (9d) and (13) into (12), integrating (12) from
tx to tyy1, and vectorizing the equation, we have

V(xtk+1 ) 5) - V(xtk ) 5)

:/k+1 vecv | (z(t))dtvecs(Ho(s))

tr
tht1 0
+ 2/ / z) (0) @2 (t)vec(H,(s,0))dodt
tr —T

et

diag(Ha(s, &, 0))dEdode
trt1
- / / veep” (:(¢). 2:(0))
vecu(Ha(s, &, 6))dédodt

+9 / T @ (T () R)dtvee(Ko(s))

tht1
+2/ / xt
tr —T

where t] <ty < .-+ <ty <--- < tpyq is the boundary of
each integral window. The following variables are defined
to simplify the notations

z4(0))

u' (t)R)vec(K1(s,6))dddt,

T (t) = / " 8T(0) 027 () ® 2T ()0

—T

0 0
£ = /_ /_ UT(¢,0) @ veed T (24(€), 21(0))ded

(16)
F‘I’wx(
FA:c;c(

0 0
t) = L [ AT(€,60) @ veep " (z(&)x())dEdO

) = / 0 / " 07T (0) 007 (€) 9 2] (0) @] (€)dedd

In addition, define the following variables as the integra-
tion of the sampled state and input trajectory

P‘b@zx(
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tht1

x(t))dt,

VGCV

u' (t)R)dt,

/t
tht1
Tu /

tht1
I<I>a:m / F@zm
t

te4+1
Togur = /t / T (0) @ (0) @ (u' (t)R)dodt,
k -7

(17)

tret1 tot1
I\Ilww,k = / F\I/Ix(t)dty IAJ;x,k = / FAII(t)dt

t t
Plugging (14) kand (17) into (15) yields )

V(T 8) = V(ze,,8) = Loe ktWo(s) + 2lpz,k

vec(W{ () — Tyae xvec(Ws' (8)) — Inga rvec(Wa' (s))

+ 200 kU0 (8) + 2Ipzu pvec(UT (s)) + en (s), (18)
where e} (s) is induced by the truncation errors in (14).
Combining (18) for & = 1,2,...,L, one can obtain the

following linear equation with respect to the weighting
matrices encoded in

ONQN(s) + ET (s) = E(s), (19)
where
Qn(s) = Wy (s), vec" (W] (s)), vec (W3 (s)),
veeT (W3 (s)), Uy (s), vec (Ur(s))]",
Oy = [O’I, ,0,37 .7JZ]T,
EN(s) = [eN(s), oy el (), e (5)] (20)

- t t T
E(s) = [V(xt, s)|§2:t17 ey V(24 8) t’“;ti, oy V(x4 8) tiﬁ] ,
Ok = [sz,ka 2I¢zx,ka _I\I/x:v,kv _IA:cx,ka 2I1:u,k7 QI‘ID:vu,k] .
The following assumption on the matrix Oy is made to

ensure that the collected data is rich enough such that the
least-square solution to (19) is unique.

Assumption 4. Given N > 0, there exists L* > 0 and
«a > 0, such that for all L > L*,

1
EGJTVGN > al. (21)

Remark 5. Assumptions 4 is reminiscent of the condition
of persistent excitation (Jiang et al. (2021); Astrém and
Wittenmark (1997)). As shown in the past literature of
ADP (Jiang and Jiang (2017); Lewis and Liu (2013)), one
can fulfill such a condition by means of added exploration
noise, such as sinusoidal signals and random noise.

Now, at each fixed algorithmic time s € (—o0,T], by
solving (19) via least-square methods, one can get the
weighting matrices in (14). Next, by differentiating (19)
with respect to the algorithmic time s, we will solve (9)
by a data-driven method. Since V' (zy, s) is involved in the
expression of Z(s), the first thing is to differentiate V' (zy, )
with respect to s. Recalling the expression of V(x,s) in
(11), we have
dPy(s)
Eptd V)

0
0sPi(s,0)x:(0)d0

d
$V(:ct, s)=x'(t)

+ 227 (1) (22)

—T

0 0
+ / T / ] (0.5, & D) (8)dcls.
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Plugging (9) into (22), and vectorizing the equation, we
have

T(x(t))[-Wo(s) — vees(Q) + vees(Ky RKp)]

+2 /O z} (0) @ x ' (t)[—vec(H;) + vec(Ky RK;)]dd

0 0
+ / / veed ' (24(€), (0))diag(Hz) (23)
+ veep ' (z4(€), x4 ())vecu(Ha)
+z] () ® x] (&)vec(K| RK,)d¢dd,
By the approximations of Ky(s) and Ki(s,0) in (14),

vecs(Ky RKj), vec(Ky RK;), and vec(K] RK;) can be
approximated by K, 0, Ky, and IC{XQ, which are

T (Uo(s))Rvec™ (Up(s))],

T (Uo(s))Rvec™ (U7 (5)2(6))]

T(UT (5)@(&)) Rvee™ (U7 (5)(6))] (24)
Plugging (14) and (24

equation

%V(mt, s) = vech(x(t))[—WO(s) —vees(Q) + Ky 0(s)]
0

— g (t)vec(WiV (s)) + 2/ z) () @z’

-7

(t)yvec(WH (5)) + T aza (t)vec(W (5))

/ / 7 (0) @ 2] (€)X (s, €,0)dEd0 + e (1, 5),

where en (2, s) is induced by the truncation errors in (14).
By Lemma 8 and the expressions of K}, and K, in (24),

the integrals in (25) involving K, and K2, can be further

Kv,0 = vecs|vec™
ICfx 1 = vec[vec™
ICfX 5 = vec[vec™

) into (23) gives us the following

(K (s,0)d0

simplified, and gV(xt, s) is finally derived as

iV(mt, s) = VeCVT( () [=Wo(s) — vecs(Q) + Ky 0(s)]

ds

+ 2L a0 (1) [—vec(WT¥ (5)) + Us (Uo(5), U7 (s), R)]

+ D (t)vec(W3Y () + Caga (t)vec(W3 (s)) (26a)
4 Topwes (U (UY (), R) + en(t, 5)

= Wi (z)V(Qn(s)) +enl(t, 5), (26Db)

where Wy and V are defined as
Wiy () = [veev " (2(t)), 2T gpe (1), Twas (t), (27a)
Trze (), Povaa(t)] T
V(Qn(s)) = [[~Wo(s) — vees(Q) + Kuo(s)] T
M(s), R (27b)

[—vec(W{¥(s)) + Us (Uo(s), U
(s

vec (W (s)), vec T (WY T

)),Us (U (5), R)]

Under Assumption 4, following (26) and differentiating the
both sides of (19) with respect to the algorithmic time s,
we have

%QN(S) =Hn(QOn(s)) + Gn(s),
Qn(T) =0,

where Qx(T) = 0 is obtained by (9¢). The expressions of
Hn(Qn(s)) and Gy (2N (s), s) are

(28)
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Algorithm 1 Data-driven Value Iteration

1: Choose T, and the vector of the basis functions ®(9),
W(E,0), and A€, 0).

2: Choose the boundaries of the sampling windows ¢; <
by < tr41.

3: Choose the driving input u to explore system (1) and
collect the input-state data u(t),z(t),t € [t1,tL+1]-

4: Construct data matrices O and =j'.

5: Solve (30) backwards from s =T to s = 0.

6: Get Ko(0) and K(0,6) by (31).

W W @
o o @ @& "

HDV 2 %,

HDV 1

Fig. 1. A string of HDVs and an AV.

M (O (s) = OLEN V(O (5)), (202)
G (s) = O (—LBY (5) + 1 (5), (29b)
=Y = Wl Wa@lE T, (90)
=N (s) = fen(t o)l en(to)E)T (204)

It is seen that by utilizing the collected data, (9) is
transferred to (28) where the system matrices (A, A4, B)
are not involved. In (28), Gy is induced by the truncation
errors. Hence, if the truncation errors are small enough to
be ignored, the solution to (28) can be approximated by
the solution to the following differential equation

d
ds

On(s) = Hn(Qn(s), Qn(T) =0. (30)

With the obtained Qx(s), by (20), Up(s) and U} (s) can
be pbtained from the corresponding elements encoded
in Qn(s). Following (14), the estimation of Ky(s) and
Ki(s,0) can be obtained by

Ko(s) = vee™ ([0 (8)]ng.na):

U (s) = vec™ (I8 (8)]na+1n5),

Ki(s,0) = vec L (UM (5)®(6)).

(31)

where n3 = n1+n2+n+n2+1, ng = ng + mn, and
ns = nyg + mniN.

Algorithm 1 shows the detail of the data-driven VI algo-
rithm. The following theorem shows the main result of the
learning-based VI algorithm, i.e. the optimal control gains

K§ and K7 () can be well approximated by solving (30)
backwards.

Theorem 6. For any e¢ > 0, there exist T*(e) > 0 and
Ni(e,T) > 0, such that if T > T*(e) and N > Nj(e,T),
the following inequalities hold.

100(0) — veo(K3)|< €
|0 @ (0) = vee(r7 (0))]|_ <

(32a)
(32b)
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0.8

0.6

04 =

0.2

Fig. 2. Convergence of Ky(s) and K1(s,6) to the optimal
values K and K7 () by VI algorithm.

5. NUMERICAL SIMULATION

In this section, we demonstrate the effectiveness of the
proposed learning-based VI algorithm by the practical ex-
ample with regards to connected and autonomous vehicles
(CAVs) in mixed traffic consisting of both autonomous
vehicles (AVs) and human-driven vehicles (HDVs).

Consider a string of two HDVs and one AV as shown in
Fig. 1, where h; denotes the bumper-to-bumper distance
between the ith vehicle and (i—1)th vehicle, and v; denotes
the velocity of the ith vehicle. Define Ah; = h; — h*
and Av; = v; — v*, where (h*,v*) is the equilibrium of
the vehicles. h* depends on the human parameters and
v* = v1. Assuming the velocity of the leading vehicle is
constant, and considering the time-delay effect caused by
human drivers’ reaction time, the system can be described
as (1) with z = [Ahg, Avy, Ahs, Av]T, and (4, A4, B)
defined in (Cui et al., 2022, Section V.B). In the simu-
lation, the weighting matrices of the performance index
are Q = diag([1,1,10,10]), and R = 1. The basis func-
tions are ®() = [1,0,0% 6%]T, W(£,0) = [1,€ +6,£2 +
0°,£0,6°4-0°,£20+£0%, €30 +E0°, 6207, 307 - £20°, £30°] T,
and A(&,0) =[1,0,0%,0%" @ [1,£,£2,6%] 7. The analytical
expression of optimal values K} and K7 are derived by the
method in Ge and Orosz (2017), where the precise model
of the system is required.

In Algorithm 1, Qy is iterated backwards from T = 10
to 0. It is noticed that T" = 10 is the length of the
algorithmic time instead of the physical time. In Fig. 2,
it is seen that Ky(s) and Ki(s) converge to the optimal
values eventually, and the relative approximation errors

|Ko(0)—K5| _ [1K1(0,0) K5 (O)loo _
are IKilo = 0.0017 and I\Kf(é’)ﬁoo = 0.0406.

Therefore(,] the proposed VI algorithm is able to well
approximate the optimal controller. Compared with Ge
and Orosz (2017), our approach is learning-based and
precise model knowledge is not required.

6. CONCLUSIONS

This paper has proposed for the first time a learning-
based VI algorithm for a class of linear time-delay systems
described by DDEs. The first major contribution is the
development of a model-based VI approach for continuous-
time linear time-delay systems. Second, by integrating RL
techniques, a learning-based VI algorithm is proposed for
learning adaptive optimal controllers from data in the ab-
sence of the precise system model knowledge. The efficacy
of the proposed learning-based adaptive optimal control
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design method has been validated by the application aris-
ing from connected vehicles.

Appendix A. AUXILIARY RESULTS

Lemma 7. Given V. € R™*™ and v = vec(V). For the
integer 0 <4 < (mn — 1), let j and k be the quotient and
reminder of i/m, respectively. D; € R™*™ is defined such
that the entry of D; at the (k + 1)th row and (j + 1)th
column is 1, and all the other entries are 0. Then,

mn—1

V=vec ' (v) = Y D, (A1)
1=0

where v; is the ith element of v.

Proof. By the definition of the operator vec(-), v;11 is the
entry of V' at the (k+1)th row and (j+1)th column. Hence,
V is reconstructed in (A.1) by iterative placing v; 41 to the
position of the (k + 1)th row and (j + 1)th column.

Lemma 8. For any x € R"Z, Uy € R™, U; € RN,
R cR™™ and &, P, € RV,

x "vec[vec™ " (Up)Rvec Y (U1 @) = @, @ x Uy (Up, U1, R)

x " vec[vec™ T (U1 ®1) Rvec ™ (U, ®5)]
=3 ®®, ®x Us(Us, R)
where U, and Uy are defined as

Uy(Uo, Uy, R) = vec | Y vec (vec™ " (Up)RD;) U7l |
i=1

Us(Ur, R) = vec | Y vec (D, RD;) vec" ([U1]] [U7];)

ij=1
Proof. The lemma is a consequence of Lemma 7.
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