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SUMMARY

During navigation, animals estimate their position using path integration and landmarks, engaging many
brain areas. Whether these areas follow specialized or universal cue integration principles remains incom-
pletely understood.We combine electrophysiologywith virtual reality to quantify cue integration across thou-
sands of neurons in three navigation-relevant areas: primary visual cortex (V1), retrosplenial cortex (RSC),
and medial entorhinal cortex (MEC). Compared with V1 and RSC, path integration influences position esti-
mates more in MEC, and conflicts between path integration and landmarks trigger remapping more readily.
Whereas MEC codes position prospectively, V1 codes position retrospectively, and RSC is intermediate be-
tween the two. Lowered visual contrast increases the influence of path integration on position estimates only
in MEC. These properties are most pronounced in a population of MEC neurons, overlapping with grid cells,
tuned to distance run in darkness. These results demonstrate the specialized role that path integration plays
in MEC compared with other navigation-relevant cortical areas.

INTRODUCTION

In mammals, navigation engages brain regions ranging from pri-
mary sensory to higher-order associative areas. During naviga-
tion, this range supports the integration of the multiple cues
encountered that allow animals to generate an estimate of their
position in space. As animals navigate through the world, they
must integrate two sources of information, external input from
landmark cues and internally generated path integration predic-
tions based on self-motion cues, to compute their position.
However, although recent work points to commonalities in the
representation of sensory and behavioral variables across
cortical areas (Allen et al., 2019; Clancy et al., 2019; Minderer
et al., 2019; Musall et al., 2019; Pinto et al., 2019; Stringer
et al., 2019), the degree to which cortical areas involved in nav-
igation follow common or specialized algorithms for computing
position remains incompletely understood.
To address this question, we considered how the representa-

tion of an animal’s position is computed in three interconnected
brain regions hypothesized to provide complementary computa-
tions for visually guided navigation in mice: the medial entorhinal
cortex (MEC), primary visual cortex (V1), and retrosplenial cortex
(RSC) (Miller and Vogt, 1984; Sugar et al., 2011). Common
across these regions are neural representations for an animal’s
position during navigation and modulation of neural activity by

locomotion (Alexander and Nitz, 2015; Chen et al., 2019; Clancy
et al., 2019; Diehl et al., 2017; Fischer et al., 2020; Fiser et al.,
2016; Fournier et al., 2020; Hafting et al., 2005; Hardcastle
et al., 2017; Keller et al., 2012; Kropff et al., 2015; Mao et al.,
2017; Niell and Stryker, 2010; Saleem et al., 2013, 2018). More-
over, MEC, V1, and RSC have all been proposed to implement
algorithms for reconciling sensory input with internal models of
predicted sensory feedback or spatial position (Alexander and
Nitz, 2015; Campbell et al., 2018; Keller et al., 2012). However,
MEC, V1, and RSC also show specialized functional coding
properties. MEC neurons encode an animal’s position and orien-
tation in a world-centered reference frame (Diehl et al., 2017;
Hafting et al., 2005; Høydal et al., 2019; Sargolini et al., 2006; Sol-
stad et al., 2008). V1 neurons respond to specific visual stimuli
and predicted visual feedback (Hubel and Wiesel, 1962; Keller
et al., 2012). RSC neurons conjunctively represent the animal’s
position in both allocentric and egocentric reference frames
(Alexander and Nitz, 2015, 2017). These studies imply some de-
gree of specialization across MEC, RSC, and V1, but the diver-
sity of task and training protocols makes it difficult to directly
compare them.
Here, we addressed this gap by using Neuropixels probes to

simultaneously record from tens to hundreds of MEC, V1, or
RSC neurons in exactly the same task and training conditions
as mice navigated virtual reality (VR) environments in which we
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systematically perturbed the visual cues. The data revealed that
path integration influences MEC more than V1 or RSC, and that
these calculations are supported by a unique population of MEC
neurons tuned to distance run in darkness.

RESULTS

Differential impact of visual cues on spiking activity in
MEC, V1, and RSC during navigation
We trained head-fixedmice to traverse a VR linear track for water
rewards (Figures 1A and 1B). After training (!2weeks, >1,000 tri-
als), mice developed stereotyped behavior, slowing down and
licking prior to the reward tower (Figure 1C). Mice then per-
formed this task after acute implantation of a silicon probe, which
allowed us to record from thousands of single cells (i.e., units)
fromMEC, V1, and region A29 of RSC (MEC cell: n = 14,799, ses-
sion n = 90, mouse n = 20; V1 cell: n = 1,524, session n = 24,
mouse n = 9; RSC cell: n = 1,757, session n = 18, mouse n = 9)
(Figures 1D and 1E; Figure S1A). The cell yield per contact did
not differ between brain regions (one-way ANOVA, F(2,133) =
2.5, p > 0.085), but as a result of the correspondence between
the geometry of the probe and MEC anatomy, the number of
units per recording session was highest for MEC (mean ±
SEM; MEC: 166 ± 11 cells/session, V1: 65 ± 7 cells/session,
RSC: 73 ± 13 cells/session, one-way ANOVA, F(2,133) = 18.79,
p < 6.7e"8, MEC different from V1: p < 6.9e"7, MEC different
from RSC: p < 5.8e"6, Mann-Whitney U test) (Figure 1F).
Consistent with a previous report (Hernández-Pérez et al.,
2020), population activity traveled from dorsal to ventral MEC
in theta-paced waves, whereas we did not observe such activity
in RSC or V1 (Figure S1B).
In MEC, V1, and RSC, many cells fired at consistent VR track

positions (Figure 1G). We defined such cells as ‘‘spatially stable’’
using a cross-correlation metric (Figure 1H; STAR Methods).

Averaging the firing rates of all spatially stable cells across the
VR track revealed clear population-level firing pattern differ-
ences between the three regions. In V1 and RSC, firing rates
peaked !20 cm before each visual landmark (Figures 1I and
1J), with the receptive field location influencing spatial firing
rate maps in V1 (Figure S1C). In MEC, the average firing rate
was relatively constant over the VR track (Figures 1I and 1J).
Even so, the position of the mouse on the VR track could be de-
coded with high accuracy from the neural activity of any of the
three regions (Figure 1K). However, we observed more error in
decoded position estimates from V1 neural activity. This de-
coded error emerged from misclassified tower locations,
possibly as a result of similar population-level firing patterns in
V1 near visual landmarks, leading to the increased prevalence
of 80- and 160-cm errors (Figure 1K, inset; Figure S1D). Consis-
tent with this, state space trajectories appeared more convo-
luted for populations of V1 neurons (Figure 1L). Together, these
analyses reveal that neurons in MEC, V1, and RSC all carry infor-
mation regarding an animal’s spatial position, but that visual
landmark cues influence these neural representations in V1
and RSC more than MEC. Nevertheless, visual landmarks were
necessary, but not sufficient, to drive spatial firing patterns in
MEC (Figures S1E–S1H). Specifically, passive viewing signifi-
cantly reduced activity and spatial stability in MEC, but spatial
patterns were also lost when the monitors were turned off,
consistent with dark recordings in open field environments
(Chen et al., 2016; Pérez-Escobar et al., 2016).

Conflicts between landmarks and path integration
change neural activity patterns in MEC more than in V1
or RSC
We next examined the degree to which visual landmarks versus
path integration determined neural activity patterns in MEC, V1,
and RSC. We created visuomotor cue conflicts by reducing the

Figure 1. Differential impact of visual landmarks on spiking activity in MEC, V1, and RSC
(A) VR setup.

(B) Top: schematic of VR track. Bottom: view from behind a mouse.

(C) Average running speed (top) and lick rate (bottom) for all 32mice (dashed lines = tower locations). Mice slowed down and started licking when approaching the

reward tower, indicating they had learned the task.

(D) Example histology images showing probe tracks in MEC, V1, and RSC.

(E) Schematic of dorsal brain surface with location of probe insertion on the cortical surface for all 137 recording sessions in 32 mice. Color of dot indicates the

targeted brain region. Dashed lines indicate borders of V1, as well as the borders of A29 and A30 of RSC. Note that we focused on A29 of RSC in all subsequent

figures and analyses.

(F) Number of well-isolated units in each recording session. Only units within the target brain area were included.

(G) Spatial firing rate maps across blocks of 16 baseline trials for six example units each in MEC, V1, and RSC (dashed lines = tower locations). Numbers above

each rate map: peak firing rate and stability score for the given block of trials.

(H) Histogram of stability scores across blocks of 16 baseline trials. Stability (Stab) scores were higher in V1 and RSC than in MEC (one-way ANOVA, F(2,96) =

5.15, p < 0.0075, StabMEC < StabV1: p < 0.016, StabMEC < StabRSC: p < 0.002, one-sided Mann-Whitney U test). In (H)–(J), values were averaged within session

first, then across sessions, and shaded area indicates SEM over sessions, not cells.

(I) Average firing rate of all spatial cells in MEC (green), V1 (red), and RSC (blue) with respect to track location (dashed lines = tower locations). RSC firing rates

(FRs) were significantly higher overall (one-way ANOVA, F(2,94) = 12.17, FRRSC > FRV1: p < 1.4 3 10"4, FRRSC > FRMEC: p < 0.005, one-sided Mann-Whitney

U test).

(J) Average spatial autocorrelation for all spatial cells. V1 and RSC, and to a lesser extent MEC, show peaks at lags corresponding to distance between adjacent

towers.

(K) Position decoding error as a function of the number of included spatial neurons. Inset shows the distribution of errors for a decoder trained on 20 neurons.

Black bar at bottom indicates p < 0.05 for ErrorV1 > ErrorMEC and ErrorV1 > ErrorRSC, Mann-Whitney U test. Shading indicates SEM across folds.

(L) Population-level firing rate dynamics during baseline projected onto two dimensions using Uniform Manifold Approximation and Projection (UMAP) for three

example sessions (MEC: left, V1: center, RSC: right). Consistent with more frequent misclassification of towers (K) (Figure S1C) and more structured spatial

autocorrelation (J), trajectories of population of V1 neurons appeared more convoluted (center), compared with ring-like structures in populations of MEC and

RSC neurons.
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gain between the rotation of the running wheel and the mouse’s
progression along the VR by a factor of 0.8 for blocks of four trials
(number of blocks per session = 1–4, median 2) (Figure 2A)
(Campbell et al., 2018). This gain manipulation had minimal ef-
fects on the animals’ behavior (Figure 2B) and no effect on
average firing rates (Figure S2A). If the location of spikes is deter-
mined solely by the visually determined position of the mouse in
the virtual environment, neural activity patterns should not shift
positions between baseline and gain trials. Conversely, if posi-
tion estimates are influenced by actual distance run on the tread-
mill due to self-motion, then neural activity patterns will undergo
negative (leftward) shifts when plotted in VR coordinates,
because the VR now advances less for a given number of steps
taken. Alternatively, gain changes could trigger global remap-
ping, which was previously shown to occur in MEC grid cells
for large enough conflicts between path integration and land-
marks (Campbell et al., 2018).
For these analyses, we considered only spatially stable cells

(average peak trial-trial firing rate correlation R 0.5 in the six
baseline trials preceding the gain change). In MEC, cells re-
sponded to the change in gain either by coherently shifting the
spatial firing patterns or remapping, consistent with previous
work (Campbell et al., 2018). When cells remapped in response
to the gain change, they either returned to the original baseline
map following the gain change or they did not (Figure 2C). In
contrast, firing patterns in V1 and RSC remained remarkably sta-
ble both during and after the gain change (Figure 2C), consistent
with the idea that visual cues strongly influenced firing patterns in
these brain regions (Figure 1I).
To quantify the effect of the gain change on neural firing pat-

terns, we computed similarity matrices by correlating firing pat-
terns on pairs of trials (Figure 2D). We averaged the similarity
matrix over cells for a gain change block and considered each
block of trials separately, because remapping patterns and the
number of spatially stable cells varied across blocks (MEC: trial

block n = 123, session n = 51, mouse n = 18, 51 ± 3 [SEM] cells
per block; V1: trial block n = 29, session n = 15, mouse n = 6, 20 ±
2 [SEM] cells per block; RSC: trial block n = 25, session n = 13,
mouse n = 7, 55 ± 8 [SEM] cells per block) (Figure 2E; Figures
S2B and S2C). In MEC, we observed variability in the similarity
matrices (Figure 2E, left), whereas in V1 and RSC these matrices
almost always indicated that neural representations remained
stable between baseline, gain change, and post-gain change tri-
als (Figure 2E, right; Figures S2D–S2G). This was the case even
for cells with lower baseline stability (Figure S2D). Overall, the
gain change altered spatial representations in MEC more than
in V1 or RSC, even after accounting for the lower baseline stabil-
ity in MEC (Figure 2D, bottom).
To identify distinct types of population-level gain change re-

sponses, we employed principal-component analysis (PCA)
(Figure 2F) and classified population responses as either ‘‘Sta-
ble’’ (cluster 1) or ‘‘Remapping’’ (cluster 2, Figures 2F and 2G).
In MEC, many trial blocks were assigned to cluster 2, indicating
cue conflict often led to remapping of spatial firing patterns
(blocks in cluster/total blocks: MEC, cluster 1 = 24/123, cluster
2 = 99/123). This gain-change-induced remapping was remark-
ably coordinated across co-recorded neurons in MEC (Figures
2H–2J), with remapping patterns more similar within block
than between blocks (Figure 2J). We also commonly observed
spontaneous remapping in MEC in the absence of any gain
change (blocks in cluster/total baseline blocks: cluster 1 = 42/
96, cluster 2 = 54/96) (Figure 2G; Figures S2H–S2J) (Low
et al., 2020). However, the frequency of remapping was signif-
icantly higher during gain change blocks than baseline blocks
(Fisher test, p = 0.00018). In contrast with the variability in
MEC responses, in V1 and RSC, nearly all trial blocks were as-
signed to cluster 1 (blocks in cluster/total blocks: V1, cluster 1 =
26/29, cluster 2 = 3/29; RSC, cluster 1 = 24/25, cluster 2 = 1/
25). This suggests that in V1 and RSC, visual landmarks drive
spatial firing patterns, even when visual landmark and path

Figure 2. Conflicts between landmarks and path integration change neural activity patterns in MEC more than in V1 or RSC
(A) Trial structure for gain change experiments. Baseline trials (black) were interleaved with blocks of four gain change trials (cyan).

(B) Average running speed along VR track during baseline (black) and gain change trials (cyan). Dotted lines indicate the position of landmarks. Average running

speed did not differ between the two conditions (average speed ± SEM: baseline = 47.0 ± 9.7 cm/s, gain change = 47.4 ± 9.2 cm/s, p = 0.167, 216 gain change

blocks, Wilcoxon test).

(C) Spatial firing rate maps for 16 trials surrounding gain change blocks, for example, MEC, V1, and RSC neurons (black bars: baseline trials, cyan bars: gain

change trials). V1 and RSC firing patterns were mostly unchanged during gain manipulations (right), while MEC neurons often remapped (left).

(D) Top: trial-trial similarity matrices for each brain region, averaged over gain change blocks. Bottom: average of the first six rows of the similarity matrices above,

excluding the diagonal (error bars indicate SEM over trial blocks).

(E) As in (D) but each matrix represents an individual gain change block. The average similarity matrices in (D) obscured substantial variability in the degree and

pattern of MEC remapping (left), whereas spatial firing patterns of V1 and RSC neurons were more stable and rarely remapped (right).

(F) Projection onto the first principal component for each gain change block. A threshold of PC1 score = 0.4, defined as the location of the minimum between the

two peaks of the score distribution (left), divided gain change blocks into two groups: ‘‘Stable’’ (cluster 1) and ‘‘Remap’’ (cluster 2).

(G) Top: average similarity matrices for the Stable and Remap clusters identified in (F). Bottom: number of gain change blocks assigned to each cluster by brain

region. For comparison, we ran the same analysis on MEC baseline data in which no gain change occurred. Remapping could occur spontaneously in MEC (see

also Figure S2J). However, remapping was more frequent in response to a gain change (Fisher test, p = 1.8e–4).

(H) Similarity matrix of an example cluster 2 (Remap) MEC gain change block. Neurons remap in gain change trial 4 (arrow), leading to low pairwise similarity

between trials before and after remapping.

(I) Spatial firing rate maps of four example MEC neurons during the gain change block shown in (H). During the first three gain change trials, the spatial maps are

shifted relative to the preceding baseline map. The neurons remap in gain change trial 4 (arrows). Spatial maps in postbaseline trials (trials 11–16) are different

from the spatial maps in baseline trials.

(J) For each MEC trial block in cluster 2 (99 trial blocks total), we assessed coordination of remapping by comparing the correlation of spatial similarity maps for

simultaneously recorded spatial cells (‘‘within block’’) to all other similarity maps (‘‘across block’’). Similarity maps were more similar within than across blocks,

consistent with population-wide remapping (p = 8.2e"16, Wilcoxon signed rank test).

GC, gain change.
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integration cues are in conflict (Fournier et al., 2020; Saleem
et al., 2013, 2018).

Even in the absence of remapping, path integration
influences position estimates in MECmore than in V1 or
RSC
Although we observed variability in how the MEC neural popula-
tion responded to the gain change, we focused on ‘‘stable’’ trial
blocks (cluster 1) in order to compare cue integration mecha-
nisms across brain regions (MEC: 24 cluster 1 blocks, [mean ±
SEM] 65 ± 8 spatial cells per block; V1: 26 cluster 1 blocks, 21
± 3 cells per block; RSC: 24 cluster 1 blocks, 55 ± 9 cells per
block; Figure 3A). In all three brain regions, we observed that
even in stable blocks, firing rate maps shifted coherently in the
direction predicted by path integration on gain change trials (Fig-
ure 3B). We used spatial cross-correlation to quantify the shift
between pairs of trials (Figure 3C). Map shifts on gain change tri-
als were significantly different from zero in all three brain regions
(mean map shift ± SEM: MEC ="4.1 ± 0.5 cm, p = 2.1e"5; V1 =
"1.8 ± 0.5 cm, p = 0.00022; RSC = "1.4 ± 0.4 cm, p = 0.0047,
Wilcoxon tests), but these shifts were largest in MEC (one-way
ANOVA, F(2,71) = 8.53, p = 0.00048; shifts in MEC larger than
V1, p = 0.00057, and RSC, p = 0.00093, Mann-Whitney U test;
Figure 3D; Figure S3A), indicating a stronger influence of path
integration on position estimates in MEC compared with V1 or
RSC. Moreover, we found that in MEC, but not V1 and RSC,
the map shifts of individual cells systematically deviated from
the population average (Figures S3C and S3D). This indicated

that inMEC, cells consistently fell on a spectrum frommore land-
mark driven tomore path integration driven, whereas in RSC and
V1, the relative influence of path integration versus landmarks
was constant across cells.

Position is encoded retrospectively in V1 and RSC but
prospectively in MEC
Although the gain-change-induced map shifts we observed
could reflect the influence of path integration, map shifts could
also be caused by temporal delays between the encoded posi-
tion and the time of spikes (Figure 4A). We therefore considered
the extent to which V1, RSC, andMEC encode exact current po-
sition versus past or future position (retrospective/prospective
coding) by examining the effect of running speed on spike posi-
tion in baseline trials (Figure 4B).
We considered blocks of baseline trials and sorted these tri-

als by the running speed of the mouse around the location of
peak firing rate for each cell separately. In V1 and RSC, the
VR location at which spikes occurred often shifted positively
with running speed (Figure 4C), consistent with retrospective
coding. In contrast, spikes of MEC cells often shifted in the
opposite direction, consistent with prospective coding (Fig-
ure 4C). We computed a temporal delay factor for each neuron
by maximizing the average trial-trial similarity (Figure 4D). In V1,
and to a lesser extent RSC, the average delay factor per session
was significantly greater than zero (retrospective coding; mean
delay ± SEM: V1 = 0.12 ± 0.02 s, p < 4.2e"4, RSC = 0.06 ±
0.02 s, p = 0.016; Figure 4E). In contrast, the average delay

BA

C D

Figure 3. The influence of path integration on position estimates is greater in MEC than in V1 or RSC
(A) Number of spatial cells per gain change block identified as ‘‘stable’’ (cluster 1) in Figure 2G. Bars indicate mean.

(B) Example spatial firing rate maps for cells from cluster 1 blocks in MEC (n = 4), V1 (n = 2), and RSC (n = 2). Note the larger map shifts during gain change trials in

MEC compared with V1 and RSC.

(C) Average trial-trial shift matrices for MEC, V1, and RSC (black: baseline, cyan: gain change). Shifts were computed as the location of the peak spatial cross-

correlation for each cell, then averaged over cells within gain change blocks. Red rectangles indicate samples used for estimating average map shift.

(D) Average map shifts between gain change trials and baseline trials (outlined in red in C) in MEC, V1, and RSC. Each point represents a gain change block. Map

shifts were larger in MEC than in V1 or RSC. Bars indicate mean. ***p < 0.001 for map shift significantly different from zero, Wilcoxon signed rank tests.
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factor was negative in MEC, indicating prospective coding
(mean delay ± SEM, MEC = "0.01 ± 0.006 s, p = 0.0068; Fig-
ure 4E) (Battaglia et al., 2004; De Almeida et al., 2012; Kropff
et al., 2015). A decoding analysis gave qualitatively similar re-
sults (Figure S3F).

Consistent with presence of retrospective coding in V1/RSC
and prospective coding in MEC, correcting the spike times of in-
dividual cells by their delay factor significantly reduced map
shifts in V1 and RSC but increased map shifts in MEC (Figures
4F and 4G). This supports the idea that, during gain change,

A B

C

D F GE

Figure 4. V1 and RSC code position retrospectively, whereas MEC codes position prospectively
(A) Cartoon illustrating retrospective coding (spikes encode past position, left) versus prospective coding (spikes encode future position, right). Prospective

coding makes use of path integration calculations to predict future position. Retrospective coding can reflect delays in sensory processing. Dt, time delay

between the mouse being located at the encoded position and the occurrence of spikes (sign convention: Dt > 0 for retrospective coding and vice versa); v,

running speed; Dx, spatial offset between encoded position and the position at which spikes occur.

(B) Schematic showing the predicted influence of running speed on spike position for no delay (left), retrospective (middle), and prospective (right) neural codes.

Faster running speeds lead to larger shifts between spike position and encoded position, but in opposite directions for retrospective versus prospective coding.

(C) Example spike raster plots for two MEC, V1, and RSC units for 16 baseline trials, around the location of the peak average firing rate, indicated by the red line.

Trials are ordered by running speed during the 10 cm preceding the peak. Running speed for each trial is shown on the right of each raster plot.

(D) Temporal delay correction for an example V1 neuron. Top: raster plot with trials ordered by running speed. We searched for the factor that maximized the trial-

by-trial correlation of firing rate maps (+110 ms for this unit) and accounted for this delay by changing the time of each spike (equation in middle).

(E) Average estimated temporal delay for each recording, split by brain region. Each dot represents the average temporal delay in a recording session (MEC: 56

sessions, V1: 18 sessions, RSC: 14 sessions). Estimated temporal delay differed from zero in all regions (MEC, p % 0.0068, V1: p % 4.2e"4, RSC: p % 0.016,

Wilcoxon signed rank test). The estimated delay factors were significantly larger in V1 compared with RSC orMEC (one-way ANOVA, F(2,82) = 13.25, p < 1.3e"5,

DelayV1 > DelayMEC, p % 1.3e"7, DelayV1 > DelayRSC, p % 3.1e"3, Mann-Whitney U test). Bars indicate mean.

(F) Change in map shift after spike times was corrected by the optimal temporal delay factor for each cell. Map shifts increased in MEC (p % 0.0027, Wilcoxon

signed rank test) and decreased in V1 and RSC (V1: p % 1.7 3 10"5, RSC: p % 0.0015, Wilcoxon signed rank test).

(G) Residual map shifts after correcting for temporal delay, isolating the influence of path integration on position estimates. Residual map shifts in V1 and RSC

were non-zero (V1: p % 0.036; RSC: p % 0.032, Wilcoxon signed rank tests).
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temporal delays do not drive themap shifts observed inMEC but
do contribute to map shifts in V1 and, to a lesser extent, RSC.
Moreover, the prospective coding, combined with large map
shifts observed on gain change trials in MEC, raises the possibil-
ity that MEC uses path integration to predict current position
before the arrival of delayed sensory input.

In MEC, but not V1 or RSC, gain-change-induced map
shifts increase at low visual contrast
To examine how the quality of visual information influences cue
integration, we reduced the contrast of the visual cues on the VR
(Figure 5A; Figure S4). This manipulation should reduce the
strength (or certainty) of landmark input. If cells combine

A B

C

D E F

Figure 5. Map shifts are influenced by visual contrast in MEC, but not V1 or RSC
(A) Experimental design to test the influence of visual contrast on gain change responses.

(B) Percent of cells with stable gain change responses in high contrast (black), low contrast (gray), or both (green), included in the following analyses (MEC, 400/

3,490, 11%; V1, 65/362, 18%; RSC, 137/937, 15%).

(C) Exampleneuronfiring rates inMEC (left), V1 (middle), andRSC (right) duringgainchanges inhigh (c=100, top row) and low (c=10, bottom row)contrast. Leftpanels:

black/gray: average ratemapduringbaseline trials; cyan: firing ratemapduringa singleexamplegainchange trial.Right panels: cross-correlationbetweengainchange

and baseline maps. The location of the cross-correlation peak, indicated by a red circle, defined the map shift. For each cell, shifts were averaged across trials.

(D) Change in gain-change-inducedmap shifts between high and low contrast for all cells identified in (B). Negative values indicate increased leftward shifts in low

contrast. Only MEC showed increased shifts in low contrast (change in map shift: mean ± SEM: MEC = "1.5 ± 0.5 cm, p = 2.7e"5; V1 = 0.0 ± 0.3 cm, p = 0.52;

RSC ="0.5 ± 0.5 cm, p = 0.39; Wilcoxon signed rank tests). As a population, shift changes were larger for MEC than for V1 and RSC (MEC versus V1, p = 0.010;

MEC versus RSC, p = 0.037; V1 versus RSC, p = 0.35; Mann-Whitney U tests). p values were not corrected for multiple comparisons.

(E) Same data as (D), but with each dot representing the median shift change within each session that had at least five spatially stable cells in both high and low

contrast. MEC, but not V1 or RSC, showed significantly larger (more negative) map shifts in low contrast (mean shift change ± SEM over sessions, MEC ="2.0 ±

0.7, n = 14 sessions, p = 0.025; V1 = 0.4 ± 0.4 cm, n = 4 sessions, p = 0.25; RSC ="0.8 ± 1.4 cm, n = 6 sessions, p = 0.31;Wilcoxon signed rank tests). Filled circles

indicate sessions with significant within-session shift changes (p < 0.05, Wilcoxon signed rank tests). In MEC, 5/14 sessions showed significant within-session

shift changes (larger leftward shift). In V1, 0/4 sessions had significant changes. In RSC, two sessions showed significantly larger leftward shifts (negative values),

whereas another showed significantly smaller leftward shifts (positive values), and three showed no change.

(F) Average normalized firing rate during gain change trials, aligned to the location of peak firing rate in the baseline map. Black (gray) indicate contrast = 100 (10).

Shaded area indicates SEM over cells. As in (D) and (E), there were larger leftward map shifts in low contrast in MEC, but not V1 or RSC. ***p < 0.001, **p < 0.01,

*p < 0.05.
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landmarks and path integration according to their relative cer-
tainty (Ernst and Banks, 2002), the decrease in landmark input
should increase map shifts. We chose contrast = 10% because
it reduced but did not eliminate MEC map stability (Figure S4).
We identified cells with stable maps in both high- and low-
contrast baseline trials (mean baseline peak correlation R 0.5)
and selected gain change trials that were similar to baseline
(peak correlation to baseline R 0.5; Figure 5B). Lowering the
contrast increased map shifts in MEC. In contrast, map shifts
in V1 and RSC did not change (Figures 5C–5F). Lowering the
contrast to 20% did not influence MEC map shifts (Figure S4H),
indicating that the sensitivity of spatial maps to visual contrast is
sharp, possibly due to the visual system’s ability to adapt to low-
contrast conditions (Histed et al., 2012). These results suggest
that MEC combines path integration and landmarks according
to their relative certainties, whereas V1 and RSC are dominated
by visual input during the g = 0.8 condition.

Apopulation of putativeMECgrid cells tuned to distance
run in the dark drives many of MEC’s unique cue
integration properties
Given the strong influence of path integration on spatial maps in
MEC relative to V1 and RSC, we next aimed to examine if MEC

contained pure path integration signals by allowing mice to run
on the treadmill in near-total darkness for !30 min (Figure 6A).
Many MEC cells showed striking periodicity of their firing rate
as a function of distance run in the dark (Figure 6B), and we
used an autocorrelation-based metric to find distance-tuned
neurons (Figures 6C and 6D). Using these criteria, 11% of all
MEC cells were distance tuned (1,603/14,172), but percentages
for individual sessions ranged from 0% to 52% (maximum of 111
co-recorded distance cells; Figures 6E and 6F). In contrast, we
did not observe similar distance tuning in V1 or RSC (Figure S5A).
Plotting firing rate correlations for all distance cells in individual
sessions revealed structured distance tuning that was strikingly
reminiscent of grid cells, as preferred distances increased from
dorsal to ventral MEC in discrete jumps by a factor of approxi-
mately 1.55 (Figures 6E and 6G–6I; Figure S5B) (Fiete et al.,
2008; Krupic et al., 2015; Stemmler et al., 2015; Stensola et al.,
2012; Towse et al., 2013). In addition, we analyzed previously
published data and found a substantial overlap between identi-
fied grid cells and distance-tuned cells (Campbell et al., 2018)
(Figure S6; grid cells: 8/24 distance tuned; non-grid cells: 5/
134 distance tuned; Fisher test, p = 7.1e–5).
Because previous work demonstrated that grid cells respond

more to VR gain changes than border cells (Campbell et al.,

Figure 6. A population of putative MEC grid cells tuned to distance run in the dark drives many of MEC’s unique cue integration properties
(A) In dark experiments, mice ran freely in near-complete darkness with no rewards for ~30 min.

(B) Example firing rate of six MEC cells versus distance run in darkness. A subset of MEC cells showed periodic activation as a function of distance run (blue),

whereas others did not (black).

(C) Spatial autocorrelation of the entire firing rate trace for the six neurons shown in (B). To identify distance cells, we compared autocorrelation peaks with within-

cell shuffled distributions.

(D) Peak prominence versus peak Z score (normalized to shuffled distribution) for all 14,172 MEC neurons recorded in dark sessions. Distance cells (blue) were

defined as those with peak prominence > 0.1 and shuffle p < 0.01.

(E) Heatmaps of the firing rate autocorrelation for all distance cells in four example sessions, with cells sorted from dorsal (top) to ventral (bottom).

(F) Number and percentage of neurons identified as distance tuned in all 57 sessions, colored by mouse (number of distance cells, mean ± SEM = 28 ± 3, range =

0–111; percentage, mean ± SEM over sessions = 13% ± 2%, range = 0%–52%).

(G) Distance to MEC border versus preferred spatial period for distance cells (left) and fraction of distance cells relative to MEC border (right). Most distance cells

were found in the dorsal 1,000 mm of MEC. A substantial fraction of distance cells was found up to 400 mm above the border of MEC, but the fraction dropped

sharply after that, indicating a possible ventral bias in the identification of the MEC boundary.

(H) Histogram of distance cell periods.

(I) Same as (H), separated by mouse.

(J) Average map shift for distance versus non-distance cells during gain = 0.8 cluster 1 (stable) blocks, as in Figure 3. To be included in this analysis, cells had to

pass the same spatial stability criteria used in the rest of the manuscript (stability score R 0.5 in 6 baseline trials). Map shifts were significantly larger (more

negative) for distance compared with non-distance cells (mean map shift ± SEM, distance cells = "9.2 ± 0.5 cm, n = 163 cells from 8 sessions in 5 mice; non-

distance cells = "5.2 ± 0.2 cm, n = 599 cells from 12 sessions in 8 mice; p = 3.8e"16, Mann-Whitney U test).

(K) Difference in averagemap shift between distance and non-distance cells for each gain change block that had at least five of each (Dmap shift ="2.7 ± 0.6 cm,

n = 8 gain change blocks from 6 sessions in 4 mice, p = 0.016, Wilcoxon signed rank test). Colors indicate mice.

(L) Trial-to-trial correlation matrices for distance and non-distance cells in remapping blocks, averaged across cells (Figures 2F and 2G).

(M) Single trial peak correlation to the average baseline firing rate map across the gain change block, separated by distance and non-distance cells. Remapping

wasmore pronounced in distance comparedwith non-distance cells (dots indicates p < 0.001, no dots indicates not significant, Mann-Whitney U test on distance

cells versus non-distance cells for each trial). Only remapping blocks were included in this analysis. Error bars indicate SEM over trial blocks.

(N) Optimal delay factors, computed as in Figure 4D, for distance and non-distance cells separately. Distance cells’ delay factors were significantly more negative

(prospective) than for non-distance cells (delay factor, mean ± SEM, distance cells ="49.3 ± 3.8 ms, n = 549; non-distance cells ="13.2 ± 2.0 ms, n = 2,740; p =

6.2e"14, Mann-Whitney U test).

(O) Same as N, averaged by session (D temporal delay, distance cells" non-distance cells, mean ± SEM over sessions ="36.5 ± 6.2 ms, n = 23 sessions from 7

mice, p = 3.5e"5, Wilcoxon signed rank test). Colors indicate mice.

(P) Change in map shift in low (10% and 20%) compared with high (100%) contrast. Changes in map shift were larger (more negative) for distance compared with

non-distance cells (mean ± SEM, distance cells, c = 10:"1.8 ± 1.8 cm, n = 52; c = 20:"2.3 ± 0.9 cm, n = 97; non-distance cells, c = 10:"0.5 ± 0.8, n = 138; c = 20:

"0.2 ± 0.5 cm, n = 317; p = 0.034 for difference between distance and non-distance cells, p = 0.90 for difference between c = 10 and c = 20, n-way ANOVA).

Boxes indicate the 25th, 50th, and 75th percentiles; whiskers indicate the range of data points not determined to be outliers; and circles indicate outlier data points.

(Q) Cumulative percent variance explained by principal components of activity of distance and non-distance cells. Error bars indicate SEM over sessions. Small

dots above the plot indicate significance of Wilcoxon signed rank tests between distance and non-distance cells (three dots, p < 0.001; two, p < 0.01; one, p <

0.05; no correction for multiple comparisons). A higher variance for distance cells was explained by fewer principal components, indicating a lower-dimensional

representation (Yoon et al., 2013).
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Figure 7. Large gain changes reveal an influence of non-visual cues in RSC
(A) Trial structure. Blocks of four trials with VR gain = 0.5 were surrounded by blocks of six trials with gain = 1 (same as g = 0.8 experiment; Figure 2A). 1–4 blocks

per session, median: 2.

(B) Average running speed versus track position (solid lines) ± SEM (shaded area) over blocks (n = 208 blocks from 30 mice) during baseline (black) and g = 0.5

(magenta) trials. Average running speed did not differ between the conditions (p = 0.33, Wilcoxon signed rank test). Dashed lines indicate tower locations.

(legend continued on next page)
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2018; Chen et al., 2019), we asked whether VR gain changes
impacted distance cells (putative grid cells) differently than other
MEC neurons. In cluster 1 blocks (no remapping, Figure 2), dis-
tance cells’ spatial maps shifted bymore than non-distance cells
(Figures 6J and 6K), consistent with a larger influence of path
integration. These results demonstrate that a distribution of
path integration responsiveness exists in MEC, with putative
grid cells occupying the tail of this distribution. The fact that
certain neurons within MEC were more influenced by path inte-
gration explains why MEC neurons’ map shifts were correlated
across multiple gain change repetitions (Figures S3C and S3D).

We next asked whether distance cells responded differently
than other MEC cells during gain-change-induced remapping
(cluster 2, Figure 2). Indeed, although distance cells had higher
baseline stability than non-distance cells, the peak correlation
to baseline trials following gain change onset dropped by more
in distance cells than non-distance cells (Figures 6L and 6M).
This indicates that putative grid cells remapped more in
response to gain changes than other MEC neurons, consistent
with previous work (Campbell et al., 2018).

We hypothesized that MEC uses path integration calcula-
tions to predict future position, prior to the arrival of sensory
input (Figure 4E). If distance cells drive path integration calcu-
lations in MEC, then they should show an even more pro-
nounced prospective bias relative to other MEC cells. Indeed,
the optimal temporal delay factor was "49.3 ± 3.8 ms for dis-
tance cells versus "13.2 ± 2.0 ms for non-distance cells (p =
6.2e–14, Mann-Whitney U test; Figures 6N and 6O). Addition-
ally, changes in map shift in low contrast were larger for dis-
tance cells (Figure 6P). This is consistent with the idea that
grid cell attractor dynamics implement Bayesian cue integra-
tion, where in conditions of high sensory noise (low contrast),
path integration is weighed more strongly, leading to larger
shifts (see Discussion).

Finally, attractor dynamics in MEC have been suggested to
force grid cell activity to occupy a low-dimensional manifold
(Yoon et al., 2013). Consistent with this, we found that in distance
cells, a greater percentage of variance was explained by low
dimensional PC spaces for distance cells compared with non-
distance cells (Figure 6Q), even when cells were matched for
mean firing rate or depth within the MEC (Figure S5C). These re-
sults support the hypothesis that the activity of putative grid cells
occupies a low-dimensional manifold. The ability to record many
such cells simultaneously (maximum111 here) will open avenues

for investigation into the geometry of this low-dimensional activ-
ity space (Gardner et al., 2021).

Large gain changes reveal stronger influence of non-
visual signals in RSC compared with V1
We next considered how large conflicts between landmarks and
path integration cues in the current VR track influence MEC, V1,
and RSC (Figures 7A and 7B), previously shown to reliably trigger
remapping inMEC (Campbell et al., 2018). The gainmanipulation
did not affect firing rates (Figure S7A). As expected, the gain =
0.5 condition reliably caused remapping in MEC (Figure 7C,
left), whereas V1 neurons remained locked to visual cues (Fig-
ure 7C, middle). However, unlike for gain = 0.8, in the gain =
0.5 condition, the spatial firing fields of RSC neurons also
showed signatures of remapping and often shifted, appeared,
disappeared, or changed in firing rate (Figure 7C, right).
These cell-level observations were confirmed by population-

level analyses (Figure 7D–7F). These trial-trial similarity matrices
revealed large changes in spatial maps in MEC, intermediate
changes in RSC, and almost no change in V1 (Figure 7D; Figures
S7B–S7D).Examiningaverage trial-trial similaritymatrices for indi-
vidual trial blocks revealed that MEC populations almost exclu-
sively remapped in response to g = 0.5, whereas V1 populations
remained locked to landmarks, andRSC showed varying degrees
of remapping (Figures 7E and 7F). A complementary decoding
analysis gave similar results (Figure7G). Thus, creating larger con-
flicts between path integration and landmark cues revealed an in-
fluence of non-visual inputs on RSC maps that was not apparent
during smaller cue conflicts (Figure 2). However, remapping in
RSC was qualitatively different than remapping in MEC. Specif-
ically, RSC maps always returned to their pre-gain change state
in the baseline trials following the gain change, whereas this was
not the case in MEC (Figures 7D and 7E; Figures S7B and S7D).
Finally, we sought to determine the temporal dynamics of re-

mapping in MEC. Remapping occurred after gain change onset
(Figure S7E; median: 3.9 s; 25th percentile: 2.5 s; 75th percentile:
6.0 s). Prior to remapping, the decoding error tended to steadily
increase (FigureS7F). In a previously described coupledoscillator
attractor model of gain-change-induced remapping (Campbell
et al., 2018; Ocko et al., 2018), the phase shift between the land-
mark input and path integration attractor steadily increases after
the onset of gain changeuntil a decoherence threshold is reached
(Figure S7G). Thus, the temporal dynamics of MEC remapping
were qualitatively consistent with this coupled oscillator model.

(C) Spatial firing rate maps of example neurons in MEC (left), V1 (middle), and RSC (right) during g = 0.5 blocks (black bars: baseline trials, magenta bars: g = 0.5

trials). Most MEC neurons remapped, with some exceptions (e.g., MEC cell on the bottom right). Almost no V1 neurons remapped. Unlike for the g = 0.8 condition

(Figure 2C), RSC neurons often remapped in response to g = 0.5.

(D) Top: average similarity matrix by brain region for all g = 0.5 blocks (MEC: 96 blocks, 56 sessions, 18mice, median 2 [max 4] gain change blocks per session, 41

± 4 [SEM] spatial cells per block; V1: 31 blocks, 18 sessions, 6 mice, median 2 [max 2] gain change blocks per session, 22 ± 2 [SEM] spatial cells per block; RSC:

23 blocks, 12 sessions, 7 mice, median 2 [max 2] gain change blocks per session, 50 ± 7 [SEM] spatial cells per block). Similarity decreased at the onset of gain

change for MEC, and to a lesser extent RSC, but remained high in V1. Bottom: average of the first six rows of the similarity matrices above, excluding the diagonal

(error bars indicate SEM over trial blocks). GC, gain change.

(E) Average similarity matrices as in (D), but for individual g = 0.5 blocks.

(F) Projection onto the principal component defined in Figure 2F. V1 blocks were highly separable fromMEC blocks, and RSC blocks were intermediate between

the two.

(G) Average absolute decoder error in baseline versus g = 0.5 trials in MEC, V1, and RSC. The decoder was trained on baseline trials, resulting in higher errors in

g = 0.5 trials. Points near the y axis indicate remapping (low decoder error in baseline, high decoder error during g = 0.5) and can be seenmost prominently inMEC

but also in RSC. Baseline errors were larger in V1 as a result of tower misclassifications (Figure 1K; Figure S1D).
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DISCUSSION

Here, we examined the degree to which neurons in V1, RSC,
and MEC followed unique versus shared coding principles dur-
ing navigation. Although recent work has revealed distributed
and heterogeneous coding across cortical regions involved in
navigation (Allen et al., 2019; Clancy et al., 2019; Hardcastle
et al., 2017; Minderer et al., 2019; Musall et al., 2019; Pinto
et al., 2019; Stringer et al., 2019), we report that MEC imple-
ments distinct cue integration algorithms compared with V1
and RSC via a sub-population of distance-tuned cells. These
MEC distance-tuned cells resulted in a larger influence of
path integration on position estimates in MEC compared with
V1 and RSC, which could allow MEC to predict an animal’s cur-
rent or future position before the arrival of delayed visual input.
Consistent with this idea, MEC cells coded position with a small
prospective bias (tens of milliseconds in distance-tuned cells).
In contrast, V1 and RSC were similarly strongly influenced by vi-
sual landmark features, with delays in sensory processing
modulating spike positions in both areas (retrospective coding).
However, large conflicts between path integration and land-
marks revealed an influence of path integration in RSC (gain-
change-induced remapping) that was not present in V1.
Together, this work suggests that during navigation, cortical re-
gions can implement distinct algorithms for combining path
integration with landmarks, which may allow specialization in
how cortical brain regions optimally support different naviga-
tional strategies.
Other works have emphasized the influence of non-visual sig-

nals, including path integration and visuomotor predictions, on
activity in mouse V1 (Fiser et al., 2016; Fournier et al., 2020;
Guitchounts et al., 2020; Keller et al., 2012; Pakan et al., 2018;
Saleem et al., 2018). Consistent with this work, our data reveal
an influence of path integration in V1, in that maps shifted during
gain changes by an amount that could not be fully explained by
delays in sensory processing. However, the influence of path
integration was much stronger in MEC than in V1, and we could
not induce remapping in V1 even for large gain changes that
induced remapping in RSC. Thus, although path integration
can exert a small influence on V1 spatial representations, V1
maps remain locked to visual cues in our task even when RSC
and MEC remap. It is possible that the influence of path integra-
tion on V1 activity could increase in the total absence of visual
landmarks (Pakan et al., 2018), but our results show that the in-
fluence of path integration in V1 is small compared with MEC.
In RSC, like V1, we found that visual landmarks strongly influ-

enced neural firing patterns, consistent with work demonstrating
that many RSC cells encode visual landmarks (Fischer et al.,
2020). In contrast, path integration had less influence on RSC
compared with MEC in the current VR task. This seemingly con-
trasts with work demonstrating that RSC shows degraded neural
responses when animals are passively shown the visual stimuli
associated with a VR environment or when vision and locomo-
tion are decoupled (Fischer et al., 2020; Mao et al., 2020). How-
ever, task engagement and locomotion-driven changes in brain
state can alter RSC neural representations (Fischer et al., 2020)
and correlations with other brain regions (Clancy et al., 2019).
Indeed, in the current work, large visuomotor conflicts revealed

an influence of non-visual inputs on RSC spatial maps. One pos-
sibility is that contextual changes such as our large gain change
could alter RSC’s functional connectivity, upweighting inputs
from the hippocampal formation and triggering remapping. In
contrast, during small gain changes, when path integration and
landmarks do not disagree by much, input from visual cortex
could dominate over feedback from the hippocampal formation.
This flexibility could allow the mouse to make use of different
types of spatial representations in different contexts. Thus,
although the current VR task offers a window into comparing
the default cue integration algorithms across MEC, RSC, and
V1, future work should examine the rigidity versus flexibility of
these cue integration algorithms under changing task demands
or behavioral states.
A growing body of work has used virtual and augmented reality

systems to examine the contributions of path integration and
landmarks to place cell activity in the hippocampus (Chen
et al., 2013, 2019; Jayakumar et al., 2019). In general, these
works found a larger influence of visual input in CA1 compared
with MEC. Given this discrepancy, it is likely that CA1 receives
information regarding visual features from an additional source,
for example, the lateral entorhinal cortex (Knierim et al., 2013).
Despite the advantages afforded by head fixation and VR, it re-

mains challenging to study MEC coding in head-fixed mice,
because 1D grid cell firing patterns are difficult to distinguish
from those of non-grid MEC cells (Campbell et al., 2018; Domni-
soru et al., 2013; Kinkhabwala et al., 2020). However, we
observed a population of MEC neurons tuned to distance run
in the dark (!11% of MEC cells; range, 0%–52%) in which
MEC’s unique cue integration properties were most pro-
nounced. These neurons were not observed in V1 or RSC in
our dataset, although sequences of neurons spanning fixed dis-
tances have been observed in the hippocampus (Villette et al.,
2015). The striking modularity of distance tuning in this cell pop-
ulation supports the idea that these neurons correspond to MEC
grid cells. Consistent with this, previous reports showed that grid
cells retained some distance tuning but lost spatial firing patterns
in dark real-world arenas (Chen et al., 2016; Pérez-Escobar et al.,
2016; however, see Hafting et al., 2005). Other properties of the
distance-tuned cells were also consistent with grid cells:
compared with other MEC neurons they were more influenced
by path integration (Campbell et al., 2018), showed increased
prospective temporal delay (De Almeida et al., 2012; Kropff
et al., 2015), and their population activity showed a lower-dimen-
sional structure (Yoon et al., 2013). Indeed, distance neurons
significantly overlapped with grid cells in a previously published
dataset that included open field recordings (Figure S6). The pos-
sibility that grid cells can be identified in 1D head-fixed VR envi-
ronments by allowing mice to freely run in the dark would
improve the field’s ability to bring head-fixed techniques to
bear to dissect MEC neural circuits.
Our gain change experiments in low-contrast conditions re-

vealed that MEC map shifts were larger when landmark inputs
were less certain, although the contrast sensitivity appeared to
be sharp. This finding is consistent with the general Bayesian
principle that inputs should be weighted according to their cer-
tainty (Ernst and Banks, 2002). This result raises two questions:
what specific algorithm does MEC use to dynamically weigh
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inputs according to their certainty, and what is the neural circuit
implementation of this algorithm? One possibility for the algo-
rithm is a Kalman filter, which optimally combines the predictions
of an internal model (i.e., path integration estimates) with external
inputs (i.e., landmark cues) when dynamics are linear and noise
is Gaussian (Denève et al., 2007; Kalman, 1960; Wilson and Fin-
kel, 2009). In terms of neural circuit implementation, our previous
work proposed a coupled oscillator attractor model to explain
MEC grid cell responses to gain manipulations, specifically the
sharp transition between coherent shifts and remapping (Camp-
bell et al., 2018; Ocko et al., 2018) (Figures S8A and S8B). Intrigu-
ingly, for small cue conflicts (non-remapping regimen), the
attractor model’s position estimates match the output of a Kal-
man filter (Figure S8C; STAR Methods). However, there are
some inconsistencies between these models. First, the coupled
oscillator attractor model as it stands has no representation of
uncertainty, which is an essential ingredient of a Kalman filter.
It is possible that uncertainty could be represented by the ampli-
tude of the attractor bump or jitter in its position over time. Sec-
ond, although the Kalman model can be modified to represent
predicted future position by adding an additional path integra-
tion-based calculation, the attractor model represents exact cur-
rent position, which is inconsistent with the prospective bias we
observed in putative MEC grid cells. Of note, however, a Kalman
filter fails to capture the transition between coherent shifts and
remapping we observed in our experimental data. Thus, neither
model fully captures our data, and future work should bring them
closer together by exploring how attractor models can be altered
to incorporate representations of uncertainty (Kutschireiter et al.,
2021) and make short timescale predictions of future position.

Further work is also needed to understand the relationship (if
any) between the short timescale prospective coding observed
here (tens of milliseconds) and the longer timescale predictions
that could create successor-like representations in the hippo-
campus and MEC to support reinforcement learning (Stachen-
feld et al., 2017). Although these two types of predictions operate
on different timescales, it is possible that mechanisms for mak-
ing short timescale predictions based on path integration could
be co-opted to make longer timescale predictions about the oc-
cupancy of non-local states.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Lisa Gio-
como (giocomo@stanford.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Processed electrophysiological and behavioral data have been deposited at Figshare and are publicly available as of the date of pub-
lication. DOIs are listed in the Key resources table.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

DiI Thermo-Fisher CAT#: V22889

DiO Thermo-Fisher CAT#: V22889

DiD Thermo-Fisher CAT#: V22889

Deposited data

Raw data (Neuropixels) This paper FigsharePlus: https://www.doi.org/10.

25452/figshare.plus.15041316

Raw data (tetrode) Campbell et al., 2018 FigsharePlus: https://www.doi.org/10.

25452/figshare.plus.15026043

Processed data (V1 receptive field

locations)

This paper FigsharePlus: https://www.doi.org/10.

25452/figshare.plus.15050289

Experimental models: Organisms/strains

Mouse: C57BL/6 The Jackson Laboratories 000664

Software and algorithms

Custom analysis code This paper Zenodo: https://www.doi.org/10.5281/

zenodo.5138030

Allen Common Coordinate Framework Allen Institute https://atlas.brain-map.org/

Allen CCF MATLAB interface Allen Institute https://github.com/cortex-lab/allenCCF

SciPy ecosystem of open-source Python

libraries (numpy, matplotlib, scipy, etc.)

(Virtanen et al., 2020) https://www.scipy.org/

UMAP 0.5.1 McInnes et al., 2018 https://github.com/lmcinnes/umap

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

Kilosort Pachitariu et al., 2016 https://github.com/MouseLand/Kilosort

Kilosort2 Stringer et al., 2019, Science https://github.com/MouseLand/Kilosort

Phy https://github.com/cortex-lab/phy

Spikes Phy postprocessing tool https://github.com/cortex-lab/spikes

Other

Sensapex uMp micromanipulator Sensapex https://www.sensapex.com

Phase 3A Option 4 Neuropixels silicon

probes and data acquisition system

Jun et al., 2017 https://www.neuropixels.org/probe

Phase 3B Neuropixels 1.0 silicon probes

and data acquisition system

Jun et al., 2017 https://www.neuropixels.org/probe

H3 Cambridge Neurotech Probes and data

acquisition system

Cambridge Neurotech https://www.cambridgeneurotech.com/
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All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the Key
resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All techniques were approved by the Institutional Animal Care and Use Committee at Stanford University School of Medicine. Re-
cordings were made from 32 female C57BL/6 mice aged 12 weeks to 6 months at the time of surgery (18 - 26 g, Table S1). Mice
were housed singly or with littermates in transparent cages on a 12-hour light-dark cycle and experiments were performed during
the light phase.

METHOD DETAILS

Surgery
Anesthesia was inducedwith isoflurane (4%;maintained at 1.75%) followed by injection of buprenorphine (0.1mg/kg). Fiducial marks
were made on the skull ± 3.3 mm lateral from the midline and approximately 4 mm posterior from Bregma, and ± 2.5 mm lateral from
the midline and approximately 3 mm posterior from Bregma for targeting V1 and RSC. A ground screw was affixed to the skull
approximately 2.5 mm anterior and 1.5 mm lateral from Bregma on the left side. A stainless steel headbar was attached to the skull
using Metabond and the rest of the exposed skull was covered with Metabond. Transparent Metabond was used to allow visualiza-
tion of the fiducial marks, which would later guide craniotomies and probe placement. After training, which typically lasted 2-3weeks,
mice were again anesthetized with isoflurane and the Metabond and skull were shaved down with a dental drill, posterior to the fidu-
cial mark on both sides. For MEC recordings, bilateral craniotomies, roughly 500 mm in diameter, were made posterior to the fiducial
mark, exposing the transverse sinus. Plastic rings cut from pipette tips (!4 mm diameter) were affixed to the skull around each crani-
otomy using Metabond. These rings served as wells to hold saline and a layer of silicone oil during recording, which prevented the
craniotomy from drying out. Craniotomies were covered with KwikCast and the mouse recovered overnight before the first recording
session. A maximum of three recording sessions were performed per hemisphere, each on a different day, for a maximum of six
recording sessions on six days total for all mice but one (in which seven recordings sessions were performed across seven days).
Durotomies were performed before recording from a craniotomy for the first time, either the same day as the craniotomy (side 1, typi-
cally the right side) or three days later (side 2, typically the left side). For recordings targeting V1 and RSC, we followed a similar strat-
egy, except that only one craniotomy, combined with a durotomy, was performed at a time. We then performed 2 recordings per
craniotomy before targeting a new location with another brain region. As for MEC recordings, a maximum of 6 recordings per mouse
was performed.

Virtual reality setup
The VR setupwas the same as in (Campbell et al., 2018), except that the VR scenewas displayed on three 24-inchmonitors surround-
ing themouse instead of a 14-inch hemispherical projection screen, and the mouse ran on a 6-inch diameter foam cylinder instead of
a 20-cm diameter Styrofoam ball. Briefly, rotation of the treadmill was recorded using a rotary encoder (Yumo, 1024 P/R), and data
were processed and transmitted to the virtual reality software via a microcontroller (Arduino UNO) using custom software. The virtual
reality environment was created and displayed using custom software in Unity 3D (Unity Technologies). The training environment
consisted of a floor with checkerboard texture and evenly spaced, identical visual landmarks on both sides. The test environment
had the same floor as the training environment, and in addition to the reward tower (which remained the same), contained 4 additional
visual landmarks (towers). These five visual landmarks (towers) were identical on the left and right sides and were evenly spaced at
80 cm intervals, covering a total of 400 cm. Upon reaching the tower at 400 cm,micewere ‘teleported’ to the beginning of the track for
the next trial without any visual discontinuity, giving the impression of running along an infinite hallway. Water rewards were delivered
via Tygon tubing attached to a metal lick spout mounted in front of the mouse. Delivery was triggered via a solenoid valve, which
produced an audible clicking sound upon reward delivery. Licking was detected with a custom-built infrared light barrier. The silicon
probes were mounted either on a manual manipulator on a custom rotatable mount (World Precision Instruments) or a motorized
micromanipulator (UMPMicromanipulator, Sensapex). Probe holders were placed behind themouse tominimize visual interference.

Behavioral training
After headbar implantation, mice recovered for three days and were given Baytril (10 mg/kg) and Rimadyl (5 mg/kg) daily. After three
days, they were taken off Baytril and Rimadyl and put on water deprivation. They received 0.8mL of water each day and their weights
were monitored to ensure that they remained above 85% of baseline. Training progressed in three stages. In stage one, they were
head-fixed on the VR rig and trained to receive water from the lickspout. Water delivery was associated with an audible click of the
solenoid. Mice quickly learned this association and began licking upon hearing the click. After stage one, which typically lasted 2 to
4 days, mice progressed to stage two, in which they ran on a training track to receive water rewards (see Virtual Reality Setup for
description of training track). To encourage mice to run, water rewards (!2 mL) were automatically delivered whenever they passed
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a tower. The tower spacing started at 40 cm and was increased daily to encourage running, up to a maximum of 200 cm. The reward
tower on the habituation track was visually identical to the reward tower on the track used for recording. Once mice ran consistently
on the habituation track (average running speed > 10 cm/s), they progressed to stage three, in which they ran on the same track that
would eventually be used for recording. They ran 50 – 200 trials per day for 4 – 20 days (median 14 days) for a total of 800 – 2500 trials
(median 2000 trials) before the first recording session. During this final phase of training, mice developed stereotyped running and
licking patterns in which they slowed down and licked prior to the reward tower. Some training sessions were performed on a training
rig, butmice were always trained on the recording rig for several days prior to the first recording day to familiarize themwith the setup.
Mice were deemed fully trained and ready to record when they completed 200 trials within 1 hour for two consecutive days.

Dark sessions in V1 and RSC
For this separate set of experiments, we followed the same procedure as above for head bar implantation, water deprivation, and
initial stages of training. Mice were trained on the habituation track, which was progressively elongated as described above.
Once mice ran 200 trials within 1 hr on the 400cm long training track, mice were switched to a visual flow only track, where random
checkerboard patterns provided visual flow input. Mice did not receive reward on this track, but nevertheless continued to run. Re-
cordings started after two days of exposure to the visual flow only track. Prior to the start of dark recordings, mice typically ran for 1
hour on the visual flow only track.

Electrophysiological recording
Extracellular recordings were made by acutely inserting silicon probes into a craniotomy above the target brain region while the an-
imal was head-fixed in the VR setup. One insertion was performed per day per mouse, after which the craniotomy was covered with
Kwik Cast and returned to on subsequent days for additional recordings. Typically, we performed 3 insertions on each side for MEC
recordings, and 2 insertions per craniotomy for recordings targeting V1 and RSC (all in similar sites within the same craniotomy) for a
total of 6 recordings per mouse over 6 days.
Most recordings were made using single Neuropixels probes (Jun et al., 2017; Lopez et al., 2016). For MEC recordings, 17 record-

ings from 7 mice were made with Phase 3A Option 4 probes (276 recording channels), and 62 recordings from 11 mice were made
with Neuropixels 1.0 probes (384 recording channels, https://www.neuropixels.org/). For recordings targeting V1 (24 sessions, 9
mice) and RSC (18 sessions, 9 mice), all recordings were made with Neuropixels 1.0 probes. Raw voltage traces were filtered, ampli-
fied, multiplexed, and digitized on-probe and recorded using SpikeGLX (https://billkarsh.github.io/SpikeGLX). Voltage traces were
filtered between 300 Hz and 10 kHz and sampled at 30 kHz with gain = 500 (AP band) or filtered between 0.5 Hz and 1 kHz and
sampled at 2.5 kHz with gain = 250 (LFP band). All recordings were made using the contiguous set of recording channels closest
to the tip of the probe (Bank 0). The probe’s ground and reference pads were shorted together and soldered to a gold pin, which
was then connected to a gold pin that had been soldered to a skull screw on the animal. For Phase 3A Option 4 probes, recordings
were made in external reference mode, using the skull screw as external reference. For Neuropixels 1.0 probes, recordings were
made in internal reference mode, with the probe tip set as reference, but the ground and reference pads were still connected to
the skull screw in order to ground the animal and prevent electrostatic damage to the probe.
In some recordings (11 recordings from 3 mice, 597 units total), we used 64-channel silicon probes from Cambridge Neurotech

(model H3, https://www.cambridgeneurotech.com/). Data were recorded using a Neuralynx Digital Lynx SX data acquisition system.
Prior to insertion, probes were first dipped in one of three different colors of dye (DiI, DiD, and DiO). Different colors were used to

allow up to three different penetrations in the same craniotomy to be distinguished in histology. Themouse was head-fixed on the VR
rig and the KwikCast was removed from above the craniotomy. For MEC recordings the probe was mounted on the rig at a slight
angle to maximize alignment between the probe and MEC (approx. 10 degrees). The probe was then lowered down to the level of
the skull, aligned mediolaterally with the fiducial mark, and inserted as close to the transverse sinus as possible. The well was filled
with saline (0.9% NaCl) and covered with a layer of silicone oil to prevent drying. The probe was inserted slowly (!10 um/sec) until
there was no longer any activity at the tip or until the probe started to bend. The probe was retracted 100-200 mm from its deepest
penetration point and left to settle for 30 minutes before starting the recording. For recordings targeting V1 and RSC, we followed a
similar strategy.
Recordings lasted between 40 and 150minutes, duringwhich themouse ran one ormore VR sessions under various gain, contrast,

and cue removal conditions. Based on previous work, we chose to focus on gain values < 1, as these tended to show more strongly
the influence of path integration on spatial firing in MEC (Campbell et al., 2018; Chen et al., 2019). The VR emitted a TTL pulse every
frame from an Arduino UNO, and these pulses were recorded in SpikeGLX using an auxiliary National Instruments data acquisition
card (NI PXIe-6341 with NI BNC-2110) to synchronize VR traces with neurophysiological data.
After each recording session, the probe was rinsedwith deionized water, soaked in deionized water for at least 15minutes, soaked

in an enzymatic detergent (2% Tergazyme in deionized water) for at least 60minutes, and rinsed and soaked again in deionized water
for at least 15 minutes.

Dark and passive playback recordings
There were two separate experiments in which mouse ran in the dark. In the first experiment, mice ran in the dark with rewards deliv-
ered every 400 cm (baseline trials with monitors turned off; Figures S1G and S1H). These dark sessions occurred in between two VR
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sessions with the monitors on. In the second experiment, mice ran freely in the dark for !30 minutes and no rewards were delivered
(Figure 6). These dark sessions occurred after mice ran VR sessions with gain or contrast manipulations (!200 trials).

In a separate set of experiments, mice passively sat on the running wheel while visual stimuli from a previous VR session were
played back (Figures S1E and S1F). The running wheel was braked during passive playback. Mice used in these experiments
were habituated to the braked condition during training. Passive playback sessions occurred in between two 50-trial VR sessions.
The first 50-trial VR session was used to generate the playback stimuli.

Histology
After the last recording session, the mouse was euthanized with an injection of pentobarbital (0.2 mL i.p. of 100mg/ml beuthanasia)
and perfused transcardially with 1X phosphate-buffered saline (PBS) followed by 4%paraformaldehyde (PFA). Brains were extracted
and stored in 4% PFA for at least 24 hours after which they were transferred to 30% sucrose and stored for at least 48 hours. Finally,
brains were frozen and cut into 65 mm sections (sagittal sections for MEC recordings, coronal sections for V1 and RSC recordings)
with a cryostat, stained with DAPI, and imaged with a widefield fluorescence microscope (Axio Imager 2, Zeiss). To localize MEC
recordings we identified the sections where the probe entered MEC and where the tip of the probe was localized. From these two
points, we determined the section of the probe within MEC and only used units recorded within this span for further analysis. To
reconstruct the probe tracts for V1 and RSC recordings, we used software written in MATLAB (https://www.biorxiv.org/content/
10.1101/447995v1) (Shamash et al., 2018). This allowed us to first register the coronal sections to a standard atlas and then recon-
struct the probe tract within the standard atlas framework. This information was used to assign each cluster to a brain region. Note
that for RSC, we only used units from A29 (denoted as RSPd and RSPv in the Allen Mouse Brain Atlas).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed in MATLAB or Python using custom scripts.

Spike sorting and synchronization
Spike sorting was performed offline using Kilosort2 (https://github.com/MouseLand/Kilosort) (Pachitariu et al., 2016). Data from
the Phase 3A Option 4 Neuropixels probes and the Cambridge Neurotech H3 probes, which were gathered prior to the release of
Kilosort2, were sorted with Kilosort1 (https://github.com/cortex-lab/KiloSort). Clusters were manually inspected and curated in
Phy (https://github.com/cortex-lab/phy). Clusters were identified as ‘good’ if they met the criteria for contamination, signal to
noise ratio and firing rate. To estimate contamination, we calculated the autocorrelation of spike times with 1 ms bins and calcu-
lated the ratio between the 0-1ms bin and the peak of the autocorrelation. This ratio had to be smaller than 0.2 for a cluster to be
considered. To estimate noise, we extracted voltage traces around 1000 randomly selected single spikes for each cluster using
built in functions in Phy. For each spike, we then extracted 1 ms of data (30 samples) prior to the detected onset of the spike
waveform and calculated the standard deviation across all concatenated samples to estimate the noise. The spike amplitude
was divided by this value to estimate signal to noise ratio. This ratio had to be larger than 3 for a cluster to be considered. Finally
clusters containing less than 1000 spikes were discarded. For data sorted with Kilosort2, these criteria were applied units clas-
sified as ‘good’ by Kilosort2. Spike times and cluster identities were extracted from the output of KiloSort and Phy using code
from the Spikes repository (https://github.com/cortex-lab/spikes). VR data (VR position, lick times, and contrast and gain values
for each trial) were synchronized to spiking data by substituting the time of each VR frame with the time of the corresponding
detected TTL pulse. Synchronization was checked by comparing the difference between subsequent VR frame times with the
difference between subsequent TTL pulse times and confirming that these were highly correlated ðr > 0:95Þ. For data acquired
with Neuropixel 1.0 probes, we additionally corrected any drift between the IMEC PXIe acquisition module and the auxiliary
acquisition module (NI PXIe-6341) by aligning the sync waveforms generated by the IMEC PXIe. This was necessary as the
two modules tended to drift apart by about 5ms/hr. Because the frame rate of the VR was not constant but instead fluctuated
slightly around 60 Hz, we used linear interpolation to resample VR data to a constant 50 Hz for ease of subsequent analysis.
Finally, spike times, cluster identities, and synchronized VR data were saved together in a single file for analysis in MATLAB
(one file per VR session).

Spatial firing rate maps
To compute spatial firing rate maps, we binned the position into 2cm bins, computed spike counts for each position bin, divided the
counts by the occupancy of each spatial bin and smoothed the resulting spatial firing rate (Gaussian kernel, standard deviation =
4 cm). To calculate average firing rate as a function of position (Figure 1J), we first averaged the spatial firing rate maps across trials
for a neuron and across spatially stable neurons for a recording session. We then finally averaged these per-session firing rates,
excluding blocks with fewer than 5 stable neurons (see below), for each brain region.

Running speed and lick rate
To calculate the running speed of the mouse, we calculated the difference in VR position between consecutive VR frames. The
resulting running speed trace was smoothed with a Gaussian kernel (sigma = 0.2 s). To calculate running speed as a function
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of position, we averaged the smoothed running speed for each position bin. We measured licking behavior with an infrared light
barrier. Thus, licking resulted in drops of photodiode voltage output. Photodiode voltage was monitored by an Arduino UNO.
The VR computer queried the voltage on each frame and individual licks were defined as the voltage dropping below a predefined
threshold.

Spatial stability and similarity matrix
To compute the spatial stability measure and the spatial similarity matrix for a neuron, we first computed trial-by-trial spatial firing rate
maps as described above, subtracted themean firing rate from each trial, and then computed the normalized cross correlation with a
maximal lag of 30 cm for each pair of trials. The similarity for a pair of trials was defined as themaximum value of this cross correlation.
To compute a spatial stability score for a given set of trials for each cell, we averaged all pairwise cross correlations. We defined a
neuron as stable if the resulting average was R 0.5. To calculate a similarity matrix for a block of trials in a recording session, we
averaged individual similarity matrices of each neuron that fulfilled the stability criteria for a set of trials (usually the 6 trials preceding
a gain change). Note that in this way, neurons did not have to fulfill the stability criteria across the whole session. Blocks with fewer
than 5 cells that fulfilled the stability criteria were excluded.
To quantify trial-by-trial similarity as a function of inter-trial distance (Figure S2H), we calculated pairwise stability as described

above for all pairs of co-recorded units for a block of 16 baseline trials. To be included units were required to have average spatial
stability R 0.5 across all pairs of neighboring trials (15 pairs for 16-trial baseline block).
To calculate spatial similarity of baseline maps (Figure S2I), we first calculated the spatial firing rate maps for each block by aver-

aging across 6 trials before the onset of the gain change. For each unit, we then calculated the spatial similarity as described above
between these two blocks and averaged across all co-recorded units of a block.We only included units that were stable in both base-
line blocks, i.e., the average spatial similarity was R 0.5 in both blocks of baseline trials.
To calculate spatial similarity for blocks of 200 cm (Figure S7B), we first calculated the baseline firing rate maps for each block by

averaging across 6 trials before onset of the gain change. For each unit, we then calculated the spatial similarity for each section of
200 cm by calculating the cross correlation between the mean subtracted spatial firing rate of the current section, and the corre-
sponding baseline section. Note that, for gain change trials and baseline-post trials, the baseline map was calculated by averaging
across all 6 baseline-pre trials. For the similarity to baseline for baseline-pre trials, the baseline spatial firing ratemapwas obtained by
averaging across the remaining 5 baseline-pre trials.

Map shift
To calculate the shift between spatial firing rate maps, we computed spatial similarity matrix as described above. We estimated the
map shift between pairs of trials as the location of the maximum cross correlation. As for the similarity matrices, we averaged these
shift matrices across all stable neurons of a block to estimate the population trial-by-trial map shifts. To estimate the average shift
between baseline trials and gain change trials, we averaged the population shift across all pairs of baseline trials and gain change
trials (indicated by red rectangle in Figure 3C).

Position decoding
To decode position from the firing rates of simultaneously recorded neurons (Figures 1K and 7G; Figures S3F and S7E) we first chose
a set of encoding (training) trials. Cells were included for analysis if they had a stability score R 0.5 in encoding trials (see above for
definition of stability score). For these neurons, we calculated the z-scored firing rate over time (time bin: 0.02 s, Gaussian smoothing
sigma: 0.2 s) and used the z-scored firing rate to compute spatial tuning curves for encoding trials by averaging the population activity
within each position bin (2 cm bins). This defined an average N-dimensional trial trajectory during encoding trials, where N is the num-
ber of neurons. For each time point during decoding (test) trials, we determined the closest point on the average encoding trajectory
by minimizing the Euclidean distance. The decoded position then corresponded to the VR position for this point on the average tra-
jectory. In both encoding (training) and decoding (test) data, we only considered times when the mouse was running (cutoff: 2 cm/s).
We used this approach to study the time course of MEC remapping in response to gain = 0.5 (Figures S7D–S7F). We inferred the

location and time of remapping by finding the first instancewhen the absolute decoding error became larger than 50 cm, preceded by
a period of at least 3 s with absolute error smaller than 50 cm.
We also used this approach to estimate the dependence of decoded position on running speed (Figure S3F). For blocks of 10 base-

line trials with at least 5 stable cells (stability score R 0.5), we decoded position in each trial by treating the other 9 trials as the en-
coding trials.We computed decoding error as the difference between decoded position and actual position, respecting the circularity
of the track. For example, if decoded position were 399 cm and true position were 1 cm, the error would be "2 cm, not 398 cm. We
removed times when this difference exceeded 50 cm. We concatenated decoder error, true position, and running speed traces
across trials, and used multiple linear regression to estimate the influence of running speed and position bin (bin size = 20 cm) on
decoder error. For each session, we averaged coefficients over all 10 trial blocks with at least 5 stable cells (Figure S3F). The sign
of the coefficient was flipped in Figure S3F to match the signs of retrospective/prospective coding conventions in Figure 4.
To determine the decoding error as a function of number of included neurons in baseline trials (Figure 1K), we followed a similar

decoding procedure. First, we calculated spatial firing rate maps for trials 5-20 for each neuron in each recording session. Note that
thesewere always baseline trials.We excluded the first 4 trials becausewe noted that spatial firing rates tended to bemore variable at
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the beginning of a recording. For further analysis, we only included neuronswith a stability scoreR 0.5 across all 16 trials. To estimate
decoding accuracy for N included neurons, we drew a random sample of spatial maps of N neurons. We then averaged the spatial
firing rates across 15 training trials for each neuron (leaving out one trial for test). This gave us the training firing rate trajectory in N
dimensions. To decode the position from the test trial, we found the closest point on the training trajectory for each position bin by
minimizing the Euclidean distance, as above. In this way, we found the decoded position for each position bin of the test trial. We
repeated this procedure for all 16 trials. This gave us an estimated position for each position bin in each of the 16 trials. We computed
the decoding error by taking the average of the absolute difference between actual position and decoded position, across 16 trials,
respecting the circularity of the track as above. To estimate the distribution of the absolute error, we also calculated the histogram of
the absolute error. We repeated this approach for each set of N neurons by drawing random sets of N neurons 100 times.

Classification of gain change responses as ‘‘stable’’ or ‘‘remapping’’
To classify gain change responses, we first vectorized the upper half of each trial-trial similarity matrix and stacked the vectorized trial
blocks into a matrix, resulting in a N x Mmatrix, where N is the total number of trial blocks across all three brain regions, and M is the
number of trial pairs. We then calculated the principal components of this matrix and used the first principal component to divide the
blocks into 2 clusters by applying a threshold of 0.4, which corresponded to the location of the minimum between the two peaks of
the score distribution (Figure 2F). To estimate the remapping behavior in baseline trials in MEC, we calculated spatial similarity
matrices of blocks of 16 baseline trials, including only neurons that had a spatial stability score R 0.5 across the first 6 trials. We
then vectorized the upper half of each similarity matrix as described above and subtracted from each vector its mean to center
the data, and projected onto the first principal component of the gain change block similarity matrix to get a projection score for
each baseline-only block. We assigned each baseline-only block as either stable or remapping by thresholding this score (> 0.4 =
stable, < 0.4 = remapping).

Estimating coordination of remapping
To calculate within-block correlation between the spatial similarity map of individual units and the remainder of the co-recorded pop-
ulation (Figure 2J), we calculated the correlation between the spatial similarity map of each unit and the population similarity map. The
population similarity map was obtained by averaging across the remaining group of simultaneously recorded spatial units. This was
repeated for each unit and then averaged across all co-recorded spatial units for a block to obtain an averagewithin-block correlation
of the individual spatial similarity maps to the population similarity map. To calculate across-block correlation, we correlated the
spatial similarity map of each unit for a block, with the population maps of all other ‘remap’ blocks, and averaged across all co-re-
corded spatial units to obtain the average across-block correlation.

Estimating temporal delay factors
To visualize the effect of running speed on spike location (Figure 4C), we calculated the average spatial firing rate maps for each
neuron as described above for blocks of 16 baseline trials. Gain change trials were not included in this average. We identified the
VR position with maximum average firing rate for each cell (indicated by a red line in Figure 4C). Finally, we created raster plots
for each neuron in a region surrounding the maximum firing rate location ("50 cm to + 40 cm) sorting trials by the average running
speed (average over 10 cm preceding location of maximum firing rate).

To estimate the temporal delay for a neuron, we employed a grid search over a range of values d ("300 ms to 300 ms, in 10 ms
increments). We calculated time-shifted spatial firing rate maps for each trial as described above, but for 1cm spatial bins and a
smoothing kernel with sigma = 3.5 cm, and shifting the time of each spike by d. To estimate the trial-by-trial alignment of firing
rate maps, we computed trial-by-trial correlations of the time-shifted spatial firing rate maps for each pair of trials. To minimize
boundary effects, we only used positions between 10 cm and 390 cm. We estimated the temporal delay d for a neuron for a block
of trials as the value d that resulted in the highest average correlation across trials (e.g., Figure 4D). As for map shifts, we ignored d for
a block of trials if the maximum occurred at either limit. To reduce overfitting and minimize the effects of remapping and drifts in
spatial firing, we repeated this procedure for blocks of continuous baseline trials (blocks were non-overlapping). For each neuron,
the final estimate of temporal delay was the average across multiple blocks (8 – 18 blocks, median: 11, depending on trial structure
of the recording session). Blocks of trials were ignored if the spatial stability of the neuron was smaller than 0.5. Values were used for
further calculations if at least 3 blocks fulfilled the range criterium (d in ("300, 300)) and stability criterium (MEC: 26% of neurons, V1:
38% of neurons, RSC: 45% of neurons). The same approach was used to estimate temporal delay at different contrast levels
(Figure S4G).

Map shift after temporal delay correction
For each block of the ‘stable’ cluster, we shifted the spike times of each neuron by its estimated temporal delay, and calculated sim-
ilarity matrices, shift matrices, and map shifts as described above. We then calculated the difference in map shift between uncorrec-
ted and corrected pairs of blocks (Figure 4F).
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Spatial firing rates in low contrast
In a subset of mice, we reduced the contrast of the visual landmarks to test the influence of visibility of the landmarks on neural ac-
tivity. We started with a block of 24 trials of high contrast. Two sets of 10 trials with baseline gain were interleaved with gain = 0.8. This
was followed by a block of 24 trials with low contrast, with same gain structure as for the high contrast block. This allowed us to test
the influence of visual contrast on neural firing both during baseline gain as well as gain = 0.8. We calculated the shift of spatial maps
during gain = 0.8 as described above, including only trials with spatial similarityR 0.5 to the baseline map, and only considering neu-
rons with spatial stability R 0.5 in the 6 trials preceding the gain change both during high contrast and low contrast (Figure 5). To
visualize the effect of contrast on the location of peak firing rate, we calculated the average spatial firing rate maps for each neuron
as described above for blocks of 6 trials preceding gain change in high contrast. We then determined the location of peak firing and
averaged spatial firing rates during gain change trials around the location of peak firing rate (+/" 30 cm), normalizing to the maximum
firing rate within each trial. We repeated this for gain change during low contrast. We then averaged the peak firing rate curves for high
and low contrast for all neurons with spatial stabilityR 0.5 in the 6 trials preceding the gain change both during high contrast and low
contrast.

Spatial autocorrelation and distance tuning
To compute the spatial autocorrelation of firing rate traces during dark sessions (Figure 6), we first computed the firing rate as a
function of distance, similar to the spatial firing rate but replacing position by distance run since start. We then computed the auto-
correlation of this firing rate trace, including lags up to 800 cm. To identify the preferred distance of a neuron, we used MATLAB’s
findpeaks function to detect the maximum peak in the spatial autocorrelation. In addition, we computed a shuffled spatial autocor-
relation by shifting spike times relative to elapsed distance by random offsets (n = 300 shuffles, offset drawn from a uniform random
distribution with the interval (20 s, max_t), where max_t was the duration of the recording). For each shuffle, we computed the
maximum autocorrelation peak up to a maximum lag of 800 cm. We determined that a neuron was distance-tuned if the promi-
nence of the peak was greater than 0.1, and the height of the autocorrelation at this preferred distance was greater than the
99th percentile of the shuffled distribution of autocorrelation peaks. This threshold was used to compare gain change responses,
temporal delay factors, and dimensionality between distance and non-distance neurons (Figures 6J–6Q). In the histogram of
preferred distances (Figure 6H), we used 2 cm bins and smoothed the resulting histogram with a Gaussian kernel with standard
deviation 1 bin.

Estimating dimensionality of distance and non-distance cell activity using principal components analysis
Weused dimensionality reductionwith PCA to compare dimensionality of distance and non-distance cell activity during running in the
dark (Figure 6Q). We first chose dark sessions with at least 30 of each cell type and randomly selected 30 distance and non-distance
cells for each of these sessions. We computed smoothed firing rate traces for each neuron (time bin = 20 ms, standard deviation of
Gaussian filter = 200ms), z-scored each neuron’s firing rate trace separately, and performed PCA on the resulting firingmatrix (sepa-
rately for distance and non-distance cells). We compared cumulative variance explained by the top N principal components between
distance and non-distance cells. To control for differences in mean firing rate and anatomical location between distance and non-
distance cells, we performed the same analysis but chose, for each distance neuron, the non-distance neuron with the closest
mean firing rate or anatomical location (requiring a minimum distance of 25 um between cells to avoid cross-contaminated clusters)
(Figure S5C).

Receptive field mapping in V1
For recordings targeting V1, we mapped receptive fields of V1 neurons by playing movies based on the cosine of Gaussian noise for
15-20minutes, presented to the eye contralateral to the recording hemisphere, using the same screen arrangement as during the VR
task. To map spatio-temporal receptive fields, we calculated the spike triggered average for each neuron by first identifying for each
spike the stimulus frames preceding the spike by 120ms to 190ms (frames 8 to 13), and then averaging across all spikes. This resulted
in spike-triggered average stimulusmaps for each of the 5 frames proceeding a spike.We then averaged themaps and smoothed the
resulting average with a Gaussian smoothing kernel with sigma = 0.5. The average map was then Z-scored and all pixels with a |
z-score| < 2.5 set to 0. If any non-zero pixels remained, we then fit a 2D Gaussian distribution to the remaining non-zero pixels, sepa-
rately for pixels with positive and negative z-score. For neurons with a single positive or negative receptive field, its center was used
as the estimate for the receptive field center. For neurons with multiple fields, we averaged the center of all subfields to generate an
estimate for the receptive field center.

Dimensionality reduction of spatial firing rates using UMAP
We used UMAP 0.5.1 (McInnes et al., 2018) with Python 3.8 to visualize population state space trajectories (Figures 1L, S2K, and
S7D). First, we calculated spatial firing rates as described above for all co-recorded neurons in a session, for 16 baseline trials (Fig-
ure 1L) or blocks consisting of 6 baseline-pre trials, 4 trials of gain = 0.5 or 0.8 and 6 baseline-post trials (Figures S2K and S7D). These
spatial firing rates were concatenated, resulting in a 3200 x Nmatrix, where N was the number of co-recorded neurons and 3200 was
the number of spatial bins in 16 trials. We then used UMAP with cosine similarity as distance metric, and otherwise default param-
eters, to embed the neural activity into 2 dimensions.
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Kalman filter model
The Kalman filter is a method for tracking variables of interest by balancing external inputs with updates from an internal model
describing how they evolve over time. The Kalman filter assumes that the variables are normally distributed and the processes up-
dating the internal estimate are linear. The assumption that variables are Gaussian is convenient because it means we only have to
track their means and variances to fully describe them, and the assumption that the internal process is linear makes it easy to model.
Importantly, when these assumptions are met, the Kalman filter is the optimal Bayesian solution to this problem.

We consider the evolution of a position estimate, xA, which is updated by both internal path integration and external input from
landmarks located at xL according to a continuous Kalman filter. In the Kalman filter formulation, the internal estimate xA and external
inputs xL both have associated uncertainties, which we call sA and sL. Going forward, it is mathematically convenient to work with the
difference between xA and xL, which we call Dx = xA " xL. We now consider how Dx evolves in time according to a Kalman filter.

In the Kalman interpretation, the relative strengths of landmark and self-motion inputs are determined by the different levels of un-
certainty attached to them. In the real world, these uncertainties correspond to themagnitudes of random errors in landmark percep-
tion and path integration. Here, for simplicity, we ignore these random errors and only consider the levels of uncertainty. When
random noise is incorporated into the model, the distribution of position self-estimates will be a Gaussian distribution centered
around the results derived here.

To build up to a continuous Kalman model, we first consider a series of closely spaced, weak landmark input events, separated by
time Dt. At each landmark event, the landmark input tells the system it is at Dx = 0 with some uncertainty sL. Because the landmark
events are frequent and weak, we have sL[sA. The position estimate Dx becomes a weighted average of the original position es-
timate ðDxÞ and the position estimate given by new landmark information ðDx = 0Þ where the relative weighting is given by the un-
certainties associated with each signal:
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In both cases, the last simplification was made using the fact that sL[sA.
In between the landmark events, the animal performs linear path integration:

Dx/Dx +Dt$ðvA " vLÞ

where vL is the velocity of the landmarks and vA is the animal’s internal velocity estimate. For simplicity, we are not modeling noise in
the velocity estimate. When there is no gain change, vA " vL = 0. During a gain change vA differs from vL and so this term is non-zero
(Figure S8C).

We model the position uncertainty to grow linearly with time according to a diffusivity constant a:
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Dt/0

1
Dt$s2

L

, which has units of 1= ðcm2 $timeÞ.

The remainder of the derivation assumes that this limit is finite and non-zero. In this limit, the difference equations become:
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This steady state solution is exactly analogous to the linearization of the sub-critical regime of a previously published coupled oscil-
lator attractor model (Campbell et al., 2018) around D = 0, where u=

ffiffiffiffiffiffiffi
aw

p
(Figure S8).

While a Kalman filter captures the equilibrium behavior of the attractor model’s sub-critical regime, it differs from the attractor
model in two key ways. First, the attractor model as it stands has no representation of attractor uncertainty. One implication of
this difference is that the two models make different predictions about the impact of landmarks on the future behavior of the system
after the landmarks have been encountered. To see this, note that the Kalman model only reduces to the attractor model when we
assume s2A has reached an equilibrium, and to reach equilibrium, the Kalman model requires uniform values of s2L. In reality, different
landmarks can have different strengths. In this situation, the Kalman model and the attractor model make different predictions. If a
Bayesian agent observes very strong landmarks, its certainty about its position self-estimate will go up, and it should weight subse-
quent landmarks less. Thus, if the animal encounters a particular strong/weak landmark during a gain change, s2A will decrease/in-
crease, causing future landmarks to have less/more of an effect on the position estimate. The attractor model does not have any
representation of uncertainty, so it does not predict this memory-like effect.
Second, because a Kalman filter is linear, it does not yield a super-critical regime. Instead of de-cohering after a sharp threshold,

the position estimate will continue to shift indefinitely. Note that the equilibrium value of the position uncertainty ðs2A ÞEQ =
ffiffiffi
a
w

p
only

depends on the diffusivity a and the Kalman landmark strengthw. Thus, for the Kalmanmodel, all values of gain will lead to pure shifts
of the firing patterns, without any remapping, rescaling, or warping of any kind. Therefore, the Kalmanmodel only applies to the ‘‘sta-
ble’’ (Cluster 1) responses (Figure 2G) and cannot capture the remapping phenomena we observed in the data (Figures 2H–2J and 7).
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