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1. INTRODUCTION

The output regulation problem is one of the most important
topics in control theory. The output regulation problem aims at
designing a feedback control law in order to achieve asymptotic
tracking with disturbance rejection. The general mathematical
formulation of this problem is applicable to many control prob-
lems arising from various disciplines like engineering, biology,
etc; see Bonivento et al. (2001), Huang (2004), Trentelman
et al. (2002) for instance. When the system dynamics is known,
the problem of output regulation has been studied by many
authors; see Krener (1992), Saberi et al. (2003), Liu and Huang
(2020), Huang (2004), Yan and Huang (2016), Mantri et al.
(1997). The above-mentioned studies however suffer from a
common drawback of requiring the perfect knowledge of the
system model. Model-free optimal control techniques are de-
veloped in the literature using the ideas from reinforcement
learning (RL) (Sutton and Barto (2018)), and adaptive dynamic
programming (ADP) (Bertsekas (2012)). Vrabie et al. (2009)
proposed a novel policy iteration (PI) based optimal control
technique that requires only the partial knowledge of system
dynamics. Later, Jiang and Jiang (2012) proposed the first off-
policy PI algorithm for the optimal control of linear systems
with completely unknown system dynamics. More recently, this
PI algorithm have been applied to linear parameter varying
systems by Chakraborty et al. (2022), time-delay systems by
Cui et al. (2022), and risk-sensitive optimal control by Cui and
Jiang (2022).

The development of model-free techniques for output regu-
lation has gained interest in the last decade. Gao and Jiang
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(2016) addressed the first model-free linear optimal output
regulation problem (LOORP) for linear continuous-time (CT)
systems. Recently, the model-free LOORP for discrete-time
(DT) systems have gained interest. Gao et al. (2018) addressed
the problem of cooperative output regulation for a class of
DT multi-agent systems, where the dynamics of all the agents
are considered unknown. Li et al. (2021) used Q-learning and
output regulation to achieve tracking and disturbance rejection
for multiplayer systems. Jiang et al. (2019) developed an off-
policy PI to solve a special DT optimal output regulation prob-
lem. Chen et al. (2022) addressed the problem of robust output
regulation using RL, where in addition to unknown system
dynamics, partial state measurement is considered.

Policy iteration is a popular technique used by most of the
studies mentioned above to compute the optimal controller.
Persistence of excitation (PE) condition is an important crite-
rion for guaranteeing the convergence and uniqueness of the
PI algorithm. The PE condition is satisfied by incorporating
an exploration/probing noise with the input while collecting
data for learning (Jiang and Jiang (2012)). The PE condition is
translated to requiring the full-rank condition of the data matrix
used in the PI algorithm. As the probing noise affects the system
states only, in case of model-free DT output regulation, it might
be difficult to guarantee full-rank condition of the data matrix
used in the PI algorithm. As in the case of DT output regulation,
the data matrix used in the PI algorithm contains some columns
that are formed using only the states of the exosystem which are
not affected by the probing noise. Thus, in case of DT output
regulation, the full-rank condition must be carefully stated such
that the convergence and uniqueness of the PI algorithm is
guaranteed. The existing literature, however, does not comment
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on this important issue that arises in the DT output regulation
formulation. In this work, we establish a proper rank condition
such that the convergence and uniqueness of the PI algorithm
is guaranteed. Also, an implicit assumption in the formulations
given in a few works in the literature is that the state matrix
A must be invertible in order to solve the regulator equations.
In the formulation proposed in this paper, we avoid such an
assumption by a novel reformulation of the problem.

The remainder of the paper is organized as follows: Section 2
formulates the basic control objective and presents some ba-
sic results on DT linear quadratic regulator (LQR) design.
Section 3 presents a solution to the regulator equation with
known parameters as well as a model-free technique to solve
the LOORP problem. Section 4 provides the main results of
the paper that includes redefining the rank condition of the
data matrix in the PI algorithm to guarantee convergence and
uniqueness properties. Lastly, Section 5 provides a numerical
example to support the theoretical contributions of the paper.

Notations: Throughout this paper, Z+ denotes the set of non-
negative integers, ∥.∥ represents the spectral norm of matrices,
σ(W) is the complex spectrum of W, ⊗ indicates the Kro-
necker product, vec(T) =

[
tT
1 , t

T
2 , · · · , tT

m
]T with ti ∈ Rr being

the columns of T ∈ Rr×m. For a symmetric matrix P ∈ Rm×m,
vecs(P) = [p11,2p12, · · · ,2p1m, p22,2p23, · · · ,2p(m−1)m, pmm]

T

∈R(1/2)m(m+1), for a column vector v∈Rn, vecv(v) = [v2
1,v1v2,

· · · ,v1vn,v2
2,v2v3, · · · ,vn−1vn,v2

n]
T ∈ R(1/2)n(n+1).

2. PROBLEM FORMULATION AND PRELIMINARIES

2.1 Problem Formulation

Consider the following discrete-time linear system given as:
xk+1 = Axk +Buk +Dwk, (1)
wk+1 = Ewk, (2)

ek = Cxk +Fwk, (3)
where xk ∈ Rn is the state, uk ∈ Rm is the control input, and
wk ∈Rqm is the state of the exosystem (2). A∈Rn×n, B∈Rn×m,
C ∈Rr×n, D ∈Rn×qm , E ∈Rqm×qm , and F ∈Rr×qm are constant
matrices. dk = Dwk is the exogenous disturbance, yk = Cxk is
the output of the plant, ydk =−Fwk is the reference signal, and
ek ∈ Rr is the tracking error.
Assumption 2.1. (A, B) is stabilizable.

Assumption 2.2. rank

([
A−λ I B

C 0

])
= n+ r, ∀λ ∈ σ(E).

Remark 1. Assumption 2.2 is a standard assumption to guar-
antee the existence of the solution to the regulator equations (5)
and (6).

In this paper, the discrete-time linear output regulation problem
(LORP) is formulated by designing a controller of the form:

uk =−Kxk +Lwk, (4)
where K ∈ Rm×n is the feedback gain and L ∈ Rm×qm is the
feedforward gain such that:

(1) the closed-loop system with the control law (4) is globally
exponentially stable at the origin.

(2) the tracking error ek asymptotically converges to zero.

If, in addition, the designed controller is optimal with respect to
a cost function, the problem is termed as linear optimal output
regulation problem (LOORP).

Theorem 2.1. (Huang (2004)) Under Assumption 2.1, choose
K such that the closed-loop system is stable. The LORP is
solvable by the controller (4) if there exist X ∈ Rn×qm , U ∈
Rm×qm solutions of the following regulator equations:

XE = AX+BU+D, (5)
0 = CX+F, (6)

with the feedforward gain given as:

L = U+KX. (7)

For any given initial condition x0 and w0, if the controller
given in (4) solves the LORP, one can satisfy limk→∞ uk −
Uwk = 0 and limk→∞ xk − Xwk = 0. By solving the LOORP
problem in this paper, we attempt to solve the problem of
asymptotic tracking and disturbance rejection for discrete-time
linear systems. Let x̄k = xk−X∗wk, and ūk = uk−U∗wk, where
X∗ and U∗ are the optimal solutions to the regulator equations
(5) and (6) obtained by solving the following static optimization
problem:
Problem 2.1.

min
X,U

Tr
(

XT Q̄X+UT R̄U
)
, (8)

subject to (5)− (6),

where Q̄ = Q̄T > 0, and R̄ = R̄T > 0.

Using x̄k = xk −X∗wk and ūk = uk −U∗wk, the following error
system can be obtained:

x̄k+1 = Ax̄k +Būk, (9)
ek = Cx̄k. (10)

We solve the following dynamic optimization problem to find
the optimal feedback gain K∗:
Problem 2.2.

min
ū

J =
∞

∑
k=0

(x̄T
k Qx̄k + ūT

k Rūk), (11)

subject to (9),

where Q = QT ≥ 0, R = RT > 0, and (A,
√

Q) is observable.

Thus, solving Problems 2.1 and 2.2, one can find the optimal
controller u∗

k =−K∗xk +L∗wk.
Remark 2. The design of optimal feedback controller gain
K∗ does not rely on the solutions X∗ and U∗ of the regulator
equations. Thus, Problems 2.1 and 2.2 can be solved separately.

2.2 Preliminaries

By solving the discrete-time LQR problem given in Problem
2.2, one can obtain the optimal feedback gain K∗ as:

K∗ = (R+BT P∗B)−1BT P∗A, (12)

where P∗ = P∗T > 0 is the unique solution of the following
discrete-time algebraic Riccati equation:

AT PA−P+Q−AT PB(R+BT PB)−1BT PA = 0. (13)

Note that, (13) is nonlinear in P. Thus, it is usually difficult
to directly solve (13) specially for high-dimensional systems.
A model-based PI technique to solve (13) presented in Hewer
(1971) is reproduced in Algorithm 1. Note that A j = A−BK j
in Algorithm 1.
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Algorithm 1 Model-based PI
1: Select a stabilizing control policy K0 such that A−BK0 is

a Schur matrix. Initialize j ← 0. Select a sufficiently small
constant ε > 0.

2: repeat
3: Policy Evaluation:

AT
j P jA j −P j +Q+KT

j RK j = 0. (14)
4: Policy Update:

K j+1 = (R+BT P jB)−1BT P jA. (15)
5: j ← j+1.
6: until ∥P j −P j−1∥< ε .

3. OPTIMAL OUTPUT REGULATOR DESIGN

In this section, we introduce a technique to solve the regulator
equations (5) and (6). The matrices A,B, and D are assumed
to be unknown. At first, we present a model-based technique
to solve the regulator equations (5) and (6). Then, we develop
an optimal data-driven technique to compute X∗ and U∗ that
solve (5) and (6), and K∗ and P∗ to solve the discrete-time LQR
problem.

3.1 Model-Based Solution to the Regulator Equations

Define the Sylvester map S : Rn×qm → Rn×qm as:
S(X) = XE−AX. (16)

Pick a constant matrix X1 such that CX1 + F = 0. Then we
select Xi for i = 2,3, · · · ,h+1 such that all the vectors vec(Xi)
form a basis for ker(Iqm ⊗ C), where h = (n − r)qm is the
dimension of the null space of Iqm ⊗C. A general solution to
(6) can be given as:

X = X1 +
h+1

∑
i=2

αiXi, (17)

where, αi ∈ R. Then, (5) implies:

S(X) = S(X1)+
h+1

∑
i=2

αiS(Xi) = BU+D. (18)

Now, (17) and (18) can be written as:
A χχχ = b, (19)

where

A =

[
vec(S(X2)) · · · vec(S(Xh+1)) 0 −Iqm ⊗B

vec(X2) · · · vec(Xh+1) −Inqm 0

]
,

(20)

χχχ =
[
α2, · · · , αh+1, vec(X)T , vec(U)T

]T
, (21)

b =

[
vec(−S(X1)+D)

−vec(X1)

]
. (22)

Now, based on Gao and Jiang (2016), (19) can be written as:[ ¯A11 ¯A12
¯A21 ¯A22

]
χχχ =

[
b̄1
b̄2

]
, (23)

where ¯A21 ∈Rh×h is a nonsingular matrix. Then, the following
result holds.
Lemma 3.1. A pair (X,U) is a solution to the regulator equa-
tions if and only if it solves the following equation:

M

[
vec(X)
vec(U)

]
= N , (24)

where M =− ¯A11 ¯A −1
21

¯A22 + ¯A12, N =− ¯A11 ¯A −1
21 b̄2 + b̄1.

Thus, Problem 2.1 can be reformulated as:
Problem 3.1.

min
X,U

([
vec(X)
vec(U)

])T [Iqm ⊗ Q̄ 0
0 Iqm ⊗ R̄

]([
vec(X)
vec(U)

])
, (25)

subject to (24).

3.2 Model-Free Solution to the LQR Problem: Phase 1

Let us consider the following:
x̄k,i = xk −Xiwk, i = 0,1, · · · ,h+1, (26)

where X0 = 0. Then, we have:
x̄k+1,i = Axk +Buk +Dwk −XiEwk, (27)

and
S(Xi) = XiE−AXi. (28)

From (26), using (27) and (28), it follows that:

x̄k+1,i = (A−BK j)x̄k,i +B(uk +K jx̄k,i)+(D−S(Xi))wk,
(29)

= A jx̄k,i +B(uk +K jx̄k,i)+(D−S(Xi))wk. (30)

Along the trajectories of (30), one can obtain that

x̄T
k+1,iP jx̄k+1,i − x̄T

k,iP jx̄k,i

=
[
A jx̄k,i +B(uk +K jx̄k,i)+(D−S(Xi))wk

]T P j
[
A jx̄k,i+

B(uk +K jx̄k,i)+(D−S(Xi))wk
]
− x̄T

k,iP jx̄k,i. (31)
Then, using (14) we have:

x̄T
k+1,iP jx̄k+1,i − x̄T

k,iP jx̄k,i + x̄T
k,iQ jx̄k,i

= 2x̄T
k,iA

T P jBuk +2x̄T
k,iA

T P jBK jx̄k,i − x̄T
k,iK

T
j BT P jBK jx̄k,i

+uT
k BT P jBuk +2x̄T

k,iΘΘΘ1i jwk +2uT
k ΘΘΘ2i jwk +wT

k ΘΘΘ3i jwk,

(32)

where Q j = Q+KT
j RK j, ΘΘΘ1i j = AT P j(D−S(Xi)),

ΘΘΘ2i j = BT P j(D−S(Xi)), ΘΘΘ3i j = (D−S(Xi))
T P j(D−S(Xi)).

Now, by the property of Kronecker product that vec(XYZ) =
(ZT ⊗X)vec(Y), we have:

[
(x̄T

k+1,i⊗ x̄T
k+1,i)−(x̄T

k,i⊗ x̄T
k,i)

]
vec(P j)+(x̄T

k,i⊗ x̄T
k,i)vec(Q j)

=
[
2(x̄T

k,i ⊗uT
k )+2(x̄T

k,i ⊗ x̄T
k,i)(In ⊗KT

j )
]
vec(BT P jA)+[

− (K jx̄k,i)
T ⊗ (K jx̄k,i)

T +(uT
k ⊗uT

k )
]
vec(BT P jB)+

2(wT
k ⊗ x̄T

k,i)vec(ΘΘΘ1i j)+2(wT
k ⊗uT

k )vec(ΘΘΘ2i j)+

(wT
k ⊗wT

k )vec(ΘΘΘ3i j). (33)

Collecting the data for the time sequence k0 < k1 < · · ·< ks, we
get

ΨΨΨ1i jθθθ 1i j =−Ix̄i,x̄ivec(Q j), (34)

where ΨΨΨ1i j =

[
∆∆∆x̄i,x̄i ,−2Ix̄i,u −2Ix̄i,x̄i(In ⊗KT

j ), Ĩx̄i,x̄i − Iu,u,

−2Iw,x̄i ,−2Iw,u,−Iw,w

]
,

θθθ 1i j =

[
vecs(P j)

T ,vec(BT P jA)T ,vecs(BT P jB)T ,vec(ΘΘΘ1i j)
T ,

vec(ΘΘΘ2i j)
T ,vecs(ΘΘΘ3i j)

T
]T

,
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∆∆∆x̄i,x̄i =

[
vecv(x̄k0+1,i)−vecv(x̄k0,i), · · · ,

vecv(x̄ks,i)−vecv(x̄ks−1,i)

]T

∈ Rs×n(n+1)/2,

Ix̄i,x̄i =

[
(x̄k0,i ⊗ x̄k0,i), · · · ,(x̄ks,i ⊗ x̄ks,i)

]T

∈ Rs×n2
,

Ĩx̄i,x̄i =

[
vecv(K jx̄k0,i), · · · ,vecv(K jx̄ks,i)

]T

∈ Rs×m(m+1)/2,

Ix̄i,u =

[
x̄k0,i ⊗uk0 , · · · , x̄ks,i ⊗uks

]T

∈ Rs×mn,

Iu,u =

[
vecv(uk0), · · · ,vecv(uks)

]T

∈ Rs×m(m+1)/2,

Iw,x̄i =

[
wk0 ⊗ x̄k0,i, · · · ,wks ⊗ x̄ks,i

]T

∈ Rs×nqm ,

Iw,u =

[
wk0 ⊗uk0 , · · · ,wks ⊗uks

]T

∈ Rs×mqm ,

Iw,w =

[
vecv(wk0), · · · ,vecv(wks)

]T

∈ Rs×qm(qm+1)/2.

Assumption 3.1. For i = 0,1, · · · ,h+1 there exists a s∗ ∈ Z+

such that for all s > s∗:

rank([Ix̄i,x̄i ,Ix̄i,ui ,Iu,u,Iw,x̄i ,Iw,u, Īw,w]) =
n(n+1)

2
+nm+

m(m+1)
2

+nqm +mqm +
qm(qm +1)

2
−N, (35)

where N is the number of linearly dependent columns of Iw,w,
and Īw,w is constructed by reducing those linearly dependent
columns.
Remark 3. A typical choice of s∗ can be s∗ ≥ n(n+1)

2 + nm+
m(m+1)

2 + nqm +mqm + qm(qm+1)
2 . In Section 4, we discuss how

the columns of Iw,w can be linearly dependent by use of an
example exosystem.

Algorithm 2 Phase-1 Model-Free Policy Iteration
1: Compute matrices X0,X1, · · · ,Xh+1.
2: Employ uk =−K0xk +ηηηk as the input on the time interval

[k0, ks], where K0 is an initial stabilizing gain and ηηηk is the
exploration/probing noise.

3: For i = 0,1, · · · ,h+1, compute ∆∆∆x̄i,x̄i ,Ix̄i,x̄i ,Ix̄i,u,Iu,u,Iw,x̄i ,
Iw,u, Īw,w until the rank condition in (35) is satisfied. Let
i = 0, j = 0.

4: Solve for θθθ 1i j from (34) using Īw,w in ΨΨΨ1i j. Then, K j+1 =

(R+BT P jB)−1BT P jA.
5: Let j ← j + 1 and repeat Step 4 until ∥P j − P j−1∥ ≤ ε0

for j ≥ 1, where the constant ε0 > 0 is a predefined small
threshold.

3.3 Model-Free Solution to the Regulator Equations: Phase 2

Using (30), one can obtain:

x̄T
k+1,iP j∗x̄k,i

= x̄T
k,iA

T P j∗x̄k,i +uT
k BT P j∗x̄k,i + x̄T

k,iP j∗(D−S(Xi))wk, (36)

where P j∗ is the approximated solution of the Riccati equation
obtained from Algorithm 2. Now, using Kronecker product:

(x̄T
k,i ⊗ x̄T

k+1,i)vec(P j∗) = (x̄T
k,i ⊗ x̄T

k,i)vec(AT P j∗)

+(x̄T
k,i ⊗uT

k )vec(BT P j∗)+(wT
k ⊗ x̄T

k,i)vec(P j∗(D−S(Xi))).

(37)
Using the data collected from Phase 1, one can obtain:

ΨΨΨ2iθθθ 2i = ΛΛΛivec(P j∗), (38)

where, ΨΨΨ2i =

[
Īx̄i,x̄i ,Ix̄i,u,Iw,x̄i

]
, θθθ 2i =

[
(1/2)vecs(AT P j∗ +

P j∗A)T ,vec(BT P j∗)
T ,vec(P j∗(D− S(Xi)))

T
]T

, ΛΛΛi =

[
x̄k0,i ⊗

x̄k1,i, · · · , x̄ks−1,i⊗ x̄ks,i

]T

, Īx̄i,x̄i =

[
vecv(x̄k0,i), · · · ,vecv(x̄ks,i)

]T

.

Assumption 3.2. There exists a s∗ ∈Z+ such that for all s> s∗:

rank([Ix̄i,x̄i ,Ix̄i,u,Iw,x̄i ]) =
n(n+1)

2
+nm+nqm. (39)

Using the rank condition in (39), the least squares problem in
(38) can be uniquely solved for i = 0,1, · · · ,h+1 to obtain the
Sylvester maps S(Xi). When i = 0, X0 = 0 and one can obtain
matrices B and D. Once, S(Xi)’s, B and D are obtained, M and
N are completely known. Thus, one can solve Problem 3.1 to
obtain the solution of the regulator equation. Once X∗ and U∗

are obtained by solving Problem 3.1, one can obtain the feed-
forward gain as L j∗ = U∗+K j∗X∗, where K j∗ is obtained from
Algorithm 2. Note that we do not require the information of A
to solve Problem 3.1.
Remark 4. Note that Assumptions 3.1 and 3.2 are like per-
sistency of excitation in the adaptive control (Jiang and Jiang
(2017); Vamvoudakis and Lewis (2010)).
Remark 5. As mentioned before, some works in the literature
have an implicit assumption that the state matrix A must
be invertible in order to solve the regulator equation. Note
that, in the formulation given in this section, we do not need
this assumption. One just needs to solve for S(Xi)’s, B, and
D using the Phase 2 learning, then solve Problem 3.1 to
obtain the solution for the regulator equations. In other words,
the solution obtained for the regulator equations using the
learning based method is consistent with that of the model-
based method.

4. CONVERGENCE AND UNIQUENESS ANALYSIS

Since the probing noise in Algorithm 2 does not affect the
exosystem, one cannot guarantee the full rank condition of the
matrix Iw,w. Consider the following example of an exosystem
that generates sinusoidal disturbance and a constant reference:

wk+1 = Ewk =

[cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
wk =

[c −s 0
s c 0
0 0 1

]
wk.

(40)

The state transition matrix can be obtained as:

Ek =

[α −β 0
β α 0
0 0 1

]
, (41)

where α = 0.5[(c− l.s)k +(c+ l.s)k], and β = 0.5[l.(c− l.s)k −
l.(c+ l.s)k], l =

√
−1.
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∆∆∆x̄i,x̄i =

[
vecv(x̄k0+1,i)−vecv(x̄k0,i), · · · ,

vecv(x̄ks,i)−vecv(x̄ks−1,i)

]T

∈ Rs×n(n+1)/2,

Ix̄i,x̄i =

[
(x̄k0,i ⊗ x̄k0,i), · · · ,(x̄ks,i ⊗ x̄ks,i)

]T

∈ Rs×n2
,

Ĩx̄i,x̄i =

[
vecv(K jx̄k0,i), · · · ,vecv(K jx̄ks,i)

]T

∈ Rs×m(m+1)/2,

Ix̄i,u =

[
x̄k0,i ⊗uk0 , · · · , x̄ks,i ⊗uks

]T

∈ Rs×mn,

Iu,u =

[
vecv(uk0), · · · ,vecv(uks)

]T

∈ Rs×m(m+1)/2,

Iw,x̄i =

[
wk0 ⊗ x̄k0,i, · · · ,wks ⊗ x̄ks,i

]T

∈ Rs×nqm ,

Iw,u =

[
wk0 ⊗uk0 , · · · ,wks ⊗uks

]T

∈ Rs×mqm ,

Iw,w =

[
vecv(wk0), · · · ,vecv(wks)

]T

∈ Rs×qm(qm+1)/2.

Assumption 3.1. For i = 0,1, · · · ,h+1 there exists a s∗ ∈ Z+

such that for all s > s∗:

rank([Ix̄i,x̄i ,Ix̄i,ui ,Iu,u,Iw,x̄i ,Iw,u, Īw,w]) =
n(n+1)

2
+nm+

m(m+1)
2

+nqm +mqm +
qm(qm +1)

2
−N, (35)

where N is the number of linearly dependent columns of Iw,w,
and Īw,w is constructed by reducing those linearly dependent
columns.
Remark 3. A typical choice of s∗ can be s∗ ≥ n(n+1)

2 + nm+
m(m+1)

2 + nqm +mqm + qm(qm+1)
2 . In Section 4, we discuss how

the columns of Iw,w can be linearly dependent by use of an
example exosystem.

Algorithm 2 Phase-1 Model-Free Policy Iteration
1: Compute matrices X0,X1, · · · ,Xh+1.
2: Employ uk =−K0xk +ηηηk as the input on the time interval

[k0, ks], where K0 is an initial stabilizing gain and ηηηk is the
exploration/probing noise.

3: For i = 0,1, · · · ,h+1, compute ∆∆∆x̄i,x̄i ,Ix̄i,x̄i ,Ix̄i,u,Iu,u,Iw,x̄i ,
Iw,u, Īw,w until the rank condition in (35) is satisfied. Let
i = 0, j = 0.

4: Solve for θθθ 1i j from (34) using Īw,w in ΨΨΨ1i j. Then, K j+1 =

(R+BT P jB)−1BT P jA.
5: Let j ← j + 1 and repeat Step 4 until ∥P j − P j−1∥ ≤ ε0

for j ≥ 1, where the constant ε0 > 0 is a predefined small
threshold.

3.3 Model-Free Solution to the Regulator Equations: Phase 2

Using (30), one can obtain:

x̄T
k+1,iP j∗x̄k,i

= x̄T
k,iA

T P j∗x̄k,i +uT
k BT P j∗x̄k,i + x̄T

k,iP j∗(D−S(Xi))wk, (36)

where P j∗ is the approximated solution of the Riccati equation
obtained from Algorithm 2. Now, using Kronecker product:

(x̄T
k,i ⊗ x̄T

k+1,i)vec(P j∗) = (x̄T
k,i ⊗ x̄T

k,i)vec(AT P j∗)

+(x̄T
k,i ⊗uT

k )vec(BT P j∗)+(wT
k ⊗ x̄T

k,i)vec(P j∗(D−S(Xi))).

(37)
Using the data collected from Phase 1, one can obtain:

ΨΨΨ2iθθθ 2i = ΛΛΛivec(P j∗), (38)

where, ΨΨΨ2i =

[
Īx̄i,x̄i ,Ix̄i,u,Iw,x̄i

]
, θθθ 2i =

[
(1/2)vecs(AT P j∗ +

P j∗A)T ,vec(BT P j∗)
T ,vec(P j∗(D− S(Xi)))

T
]T

, ΛΛΛi =

[
x̄k0,i ⊗

x̄k1,i, · · · , x̄ks−1,i⊗ x̄ks,i

]T

, Īx̄i,x̄i =

[
vecv(x̄k0,i), · · · ,vecv(x̄ks,i)

]T

.

Assumption 3.2. There exists a s∗ ∈Z+ such that for all s> s∗:

rank([Ix̄i,x̄i ,Ix̄i,u,Iw,x̄i ]) =
n(n+1)

2
+nm+nqm. (39)

Using the rank condition in (39), the least squares problem in
(38) can be uniquely solved for i = 0,1, · · · ,h+1 to obtain the
Sylvester maps S(Xi). When i = 0, X0 = 0 and one can obtain
matrices B and D. Once, S(Xi)’s, B and D are obtained, M and
N are completely known. Thus, one can solve Problem 3.1 to
obtain the solution of the regulator equation. Once X∗ and U∗

are obtained by solving Problem 3.1, one can obtain the feed-
forward gain as L j∗ = U∗+K j∗X∗, where K j∗ is obtained from
Algorithm 2. Note that we do not require the information of A
to solve Problem 3.1.
Remark 4. Note that Assumptions 3.1 and 3.2 are like per-
sistency of excitation in the adaptive control (Jiang and Jiang
(2017); Vamvoudakis and Lewis (2010)).
Remark 5. As mentioned before, some works in the literature
have an implicit assumption that the state matrix A must
be invertible in order to solve the regulator equation. Note
that, in the formulation given in this section, we do not need
this assumption. One just needs to solve for S(Xi)’s, B, and
D using the Phase 2 learning, then solve Problem 3.1 to
obtain the solution for the regulator equations. In other words,
the solution obtained for the regulator equations using the
learning based method is consistent with that of the model-
based method.

4. CONVERGENCE AND UNIQUENESS ANALYSIS

Since the probing noise in Algorithm 2 does not affect the
exosystem, one cannot guarantee the full rank condition of the
matrix Iw,w. Consider the following example of an exosystem
that generates sinusoidal disturbance and a constant reference:

wk+1 = Ewk =

[cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
wk =

[c −s 0
s c 0
0 0 1

]
wk.

(40)

The state transition matrix can be obtained as:

Ek =

[α −β 0
β α 0
0 0 1

]
, (41)

where α = 0.5[(c− l.s)k +(c+ l.s)k], and β = 0.5[l.(c− l.s)k −
l.(c+ l.s)k], l =

√
−1.

Thus, the states of the exosystem have the following solutions:
w1,k = αw1,0 −βw2,0, (42)
w2,k = βw1,0 +αw2,0, (43)
w3,k = w3,0, (44)

where w1,0,w2,0, and w3,0 are the initial conditions. Now,
the kronecker product wT

k ⊗ wT
k has the unique components:

vecv(wk) = [w2
1,k, w1,kw2,k, w1,kw3,k, w2

2,k, w2,kw3,k, w2
3,k].

Consider a constant γ =
w2

3,0
w2

1,0+w2
2,0

. Now,

γw2
1,k + γw2

2,k = γ(α2 +β 2)(w2
1,0 +w2

2,0). (45)

Since cos(θ) = elθ+e−lθ

2 , sin(θ) = elθ−e−lθ

2l , one can obtain
α = 0.5[(e−lθ )k + (elθ )k], β = 0.5[l.(e−lθ )k − l.(elθ )k]. It is
easy to see that α2 +β 2 = 1. Thus, γ(w2

1,k +w2
2,k) = w2

3,k. This
shows the dependence of components of vecv(wk). Hence, the
matrix Iw,w is not full rank. Thus, one cannot guarantee that the
data matrix Iw,w constructed with the states of the exosystem
has full rank.

By the above discussion, we incorporate Īw,w in (34) by reduc-
ing the linearly dependent columns of Iw,w. Since Īw,w has less
number of columns, the size of vecs(ΘΘΘ3i j) is also reduced. Note
that vecs(ΘΘΘ3i j) is not an essential unknown to be learned. Thus,
it neither effects the solution of Ricatti equation nor the solution
of the regulator equation.
Theorem 4.1. Using Īw,w in (34) one can obtain:

Ψ̄ΨΨ1i jθ̄θθ 1i j =−Ix̄i,x̄ivec(Q j), (46)

where ΨΨΨ1i j =


∆∆∆x̄i,x̄i ,−2Ix̄i,u −2Ix̄i,x̄i(In ⊗KT

j ), Ĩx̄i,x̄i − Iu,u,

−2Iw,x̄i ,−2Iw,u,−Īw,w


, and

θ̄θθ 1i j =


vecs(P j)

T ,vec(BT P jA)T ,vecs(BT P jB)T ,vec(ΘΘΘ1i j)
T ,

vec(ΘΘΘ2i j)
T ,vec(Θ̄ΘΘ3i j)

T
T

. Then, under the Assumption 3.1:

(a) (46) has a unique solution.
(b) the sequence {P j}∞

j=0 and {K j}∞
j=0 obtained using Al-

gorithm 2 converges to the optimal values P∗ and K∗,
respectively.

Proof. (a) Note that θ̄θθ 1i j can be obtained from (46) using
least squares. Under Assumption 3.1, Ψ̄ΨΨ1i j has full rank.
Thus θ̄θθ 1i j is unique.

(b) Given a stabilizing control gain K j, if P j = PT
j is the

unique solution of (14), K j+1 is uniquely determined by
K j+1 = (R+BT P jB)−1BT P jA. Let ΓΓΓ1 j = BT P jA, and
ΓΓΓ2 j = BT P jB. By (32) we know that P j, ΓΓΓ1 j, ΓΓΓ2 j, ΘΘΘ1i j,
ΘΘΘ2i j, and Θ̄ΘΘ3i j satisfy (46). Let, P, ΓΓΓ1, ΓΓΓ2, ΘΘΘ1i, ΘΘΘ2i, and
Θ̄ΘΘ3i of appropriate dimensions solve (46). Then, we have
P j = P, ΓΓΓ1 j = ΓΓΓ1, ΓΓΓ2 j = ΓΓΓ2, ΘΘΘ1i j = ΘΘΘ1i, ΘΘΘ2i j = ΘΘΘ2i, and
Θ̄ΘΘ3i j = Θ̄ΘΘ3i. Then from part (a), we know that P, ΓΓΓ1, ΓΓΓ2,
ΘΘΘ1i, ΘΘΘ2i, and Θ̄ΘΘ3i are unique. Thus, the PI in Algorithm 2
is same as Algorithm 1. Thus, the theorem is proved by
the equivalence of the two algorithms.

5. RESULTS AND DISCUSSION

We show the efficacy of the proposed algorithm by a numerical
example. Consider the following discrete-time system:

xk+1 =

0.3417 −0.6217 0.0364
0.0622 0.9630 −0.0982
0.0004 0.0098 0.9896


xk +

0.6218
0.0365
0.0001


uk +dk,

(47)

wk+1 =




cos(0.01) −sin(0.01) 0 0
sin(0.01) cos(0.01) 0 0

0 0 cos(0.1) −sin(0.1)
0 0 sin(0.1) cos(0.1)


wk,

(48)

ek = [0 0 1]xk +[5
√

3 5 0 0]wk. (49)
The upper 2 × 2 subsystem in (48) is used to generate the
reference signal and the lower 2× 2 subsystem in (48) is used
to generate the disturbance. The initial conditions are given as
x0 = [1, 2, 3], and w0 = [1, 0, 1, 0]. The system matrices A, B,
and D are considered unknown. The weight matrices Q, and R
are chosen as identity matrices. The initial stabilizing controller
gain is K0 = [−0.8727, −0.9849, −0.1354]. The exploration
noise in Algorithm 2 is chosen as the summation of sinusoidal
waves with different frequencies.

Figure 1. Output and reference trajectories.

Figure 2. Convergence of P j to P∗, and K j to K∗.

Using the learning data, Algorithm 2 converges with a tolerance
of ε0 = 0.05 to a neighborhood of the optimal values P∗ and K∗

in 4 iterations as shown in Fig. 2. The optimal controller gain
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K⋆ and the controller gain obtained from Algorithm 2 are given
as:

K⋆ = [0.1972 0.1488 −0.1688] , (50)
K4 = [0.1973 0.1489 −0.1684] . (51)

The optimal feedforward gain L⋆ and the feedforward gain
obtained from Phase 2 (Section 3.3) are given as:

L⋆ = [−24.2085 0.7679 0 0] , (52)
L4 = [−24.2131 0.7659 0 0] . (53)

6. CONCLUSION

This paper addresses the problem of discrete-time output regu-
lation when the system parameters are unknown. It was shown
that the rank condition of the data matrix used in the PI al-
gorithm must be carefully chosen in order to guarantee the
convergence and uniqueness properties of the PI algorithm.
This is crucial as certain columns of the data matrix are con-
structed using only the states of the exosystem which are not
affected by the probing noise during data collection. Also, the
existing methodologies in the literature implicitly assumes the
invertibility of the state matrix in order to solve the regulator
equation. Thus, in case where the state matrix is not full rank,
the model-based and model-free techniques for solving the reg-
ulator equation will yield different results. This issue is also
addressed in this work by a novel reformulation of the problem
that avoids the invertibility assumption on the state matrix.
Finally, numerical simulation is provided to demonstrate the
validity of the proposed methodology. Future work will focus
on extending the results to nonlinear systems.
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