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Abstract- In this paper, we address the problem of model-free optimal output regulation of discrete-time
systems that aims at achieving asymptotic tracking and disturbance rejection without the knowledge
of the system parameters. Insights from reinforcement learning and adaptive dynamic programming
are used to solve this problem. An interesting discovery is that the model-free discrete-time output
regulation differs from the continuous-time counterpart in terms of the persistent excitation condition
required to ensure the uniqueness and convergence of the policy iteration. In this work, we carefully
establish the persistent excitation condition to ensure the uniqueness and convergence properties of the

policy iteration.
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1. INTRODUCTION

The output regulation problem is one of the most important
topics in control theory. The output regulation problem aims at
designing a feedback control law in order to achieve asymptotic
tracking with disturbance rejection. The general mathematical
formulation of this problem is applicable to many control prob-
lems arising from various disciplines like engineering, biology,
etc; see Bonivento et al. (2001), Huang (2004), Trentelman
et al. (2002) for instance. When the system dynamics is known,
the problem of output regulation has been studied by many
authors; see Krener (1992), Saberi et al. (2003), Liu and Huang
(2020), Huang (2004), Yan and Huang (2016), Mantri et al.
(1997). The above-mentioned studies however suffer from a
common drawback of requiring the perfect knowledge of the
system model. Model-free optimal control techniques are de-
veloped in the literature using the ideas from reinforcement
learning (RL) (Sutton and Barto (2018)), and adaptive dynamic
programming (ADP) (Bertsekas (2012)). Vrabie et al. (2009)
proposed a novel policy iteration (PI) based optimal control
technique that requires only the partial knowledge of system
dynamics. Later, Jiang and Jiang (2012) proposed the first off-
policy PI algorithm for the optimal control of linear systems
with completely unknown system dynamics. More recently, this
PI algorithm have been applied to linear parameter varying
systems by Chakraborty et al. (2022), time-delay systems by
Cui et al. (2022), and risk-sensitive optimal control by Cui and
Jiang (2022).

The development of model-free techniques for output regu-
lation has gained interest in the last decade. Gao and Jiang
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(2016) addressed the first model-free linear optimal output
regulation problem (LOORP) for linear continuous-time (CT)
systems. Recently, the model-free LOORP for discrete-time
(DT) systems have gained interest. Gao et al. (2018) addressed
the problem of cooperative output regulation for a class of
DT multi-agent systems, where the dynamics of all the agents
are considered unknown. Li et al. (2021) used Q-learning and
output regulation to achieve tracking and disturbance rejection
for multiplayer systems. Jiang et al. (2019) developed an off-
policy PI to solve a special DT optimal output regulation prob-
lem. Chen et al. (2022) addressed the problem of robust output
regulation using RL, where in addition to unknown system
dynamics, partial state measurement is considered.

Policy iteration is a popular technique used by most of the
studies mentioned above to compute the optimal controller.
Persistence of excitation (PE) condition is an important crite-
rion for guaranteeing the convergence and uniqueness of the
PI algorithm. The PE condition is satisfied by incorporating
an exploration/probing noise with the input while collecting
data for learning (Jiang and Jiang (2012)). The PE condition is
translated to requiring the full-rank condition of the data matrix
used in the PI algorithm. As the probing noise affects the system
states only, in case of model-free DT output regulation, it might
be difficult to guarantee full-rank condition of the data matrix
used in the PI algorithm. As in the case of DT output regulation,
the data matrix used in the PI algorithm contains some columns
that are formed using only the states of the exosystem which are
not affected by the probing noise. Thus, in case of DT output
regulation, the full-rank condition must be carefully stated such
that the convergence and uniqueness of the PI algorithm is
guaranteed. The existing literature, however, does not comment
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on this important issue that arises in the DT output regulation
formulation. In this work, we establish a proper rank condition
such that the convergence and uniqueness of the PI algorithm
is guaranteed. Also, an implicit assumption in the formulations
given in a few works in the literature is that the state matrix
A must be invertible in order to solve the regulator equations.
In the formulation proposed in this paper, we avoid such an
assumption by a novel reformulation of the problem.

The remainder of the paper is organized as follows: Section 2
formulates the basic control objective and presents some ba-
sic results on DT linear quadratic regulator (LQR) design.
Section 3 presents a solution to the regulator equation with
known parameters as well as a model-free technique to solve
the LOORP problem. Section 4 provides the main results of
the paper that includes redefining the rank condition of the
data matrix in the PI algorithm to guarantee convergence and
uniqueness properties. Lastly, Section 5 provides a numerical
example to support the theoretical contributions of the paper.

Notations: Throughout this paper, Z, denotes the set of non-
negative integers, ||.|| represents the spectral norm of matrices,
6(W) is the complex spectrum of W, ® indicates the Kro-
T . .
necker product, vec(T) = [¢] 1 ,--- +I']" with ; € R being
the columns of T € R"™. For a symmetric matrix P € R™*",
VCCS(P) - [P1172P12> e 72P11n7P2272P23a coe 12p(mfl)m7pmm]T
€ RU/2m0m+1) for a column vector v € R, vecv(v) = [, viva,
VIV VR Vv, Vv, v2] T € RO/

2. PROBLEM FORMULATION AND PRELIMINARIES
2.1 Problem Formulation

Consider the following discrete-time linear system given as:

Xi+1 = AX; +Buy + Dwy, (D)
Wir1 = Ewy, 2
e, = Cx; +Fwy, 3)

where x; € R” is the state, u; € R™ is the control input, and
wy € R97 is the state of the exosystem (2). A € R"*" B € R"*™,
CeR™ DeR™4m E e RIm*m and F € R"*9" are constant
matrices. d; = Dwy is the exogenous disturbance, y; = Cx; is
the output of the plant, y; = —Fw; is the reference signal, and
e, € R” is the tracking error.

Assumption 2.1. (A, B) is stabilizable.

A_C)’I :ﬂ) =n+r, VYA € o(E).

Remark 1. Assumption 2.2 is a standard assumption to guar-
antee the existence of the solution to the regulator equations (5)
and (6).
In this paper, the discrete-time linear output regulation problem
(LORP) is formulated by designing a controller of the form:

u; = —Kx; + Lwy, @
where K € R™ " ig the feedback gain and L € R"™*%n is the
feedforward gain such that:

Assumption 2.2. rank( [

(1) the closed-loop system with the control law (4) is globally
exponentially stable at the origin.
(2) the tracking error e; asymptotically converges to zero.

If, in addition, the designed controller is optimal with respect to
a cost function, the problem is termed as linear optimal output
regulation problem (LOORP).
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Theorem 2.1. (Huang (2004)) Under Assumption 2.1, choose
K such that the closed-loop system is stable. The LORP is
solvable by the controller (4) if there exist X € R4 U €
R™>4m solutions of the following regulator equations:

XE = AX+BU+D, 5)
0=CX+F, ©6)

with the feedforward gain given as:
L =U+KX. @)

For any given initial condition x¢ and wy, if the controller
given in (4) solves the LORP, one can satisfy limg_,.u; —
Uw; = 0 and lim;_,.. X — Xw; = 0. By solving the LOORP
problem in this paper, we attempt to solve the problem of
asymptotic tracking and disturbance rejection for discrete-time
linear systems. Let X; = x; — X*wy, and @iy = u; — U*wy, where
X* and U* are the optimal solutions to the regulator equations
(5) and (6) obtained by solving the following static optimization
problem:

Problem 2.1.

I)r(li[r} Tr (XTQX + UTRU> , (8)
subject to (5) — (6),

where Q = Q7 > 0,and R=R” > 0.

Using X, = x; — X*w;, and 0, = u; — U*wy, the following error
system can be obtained:

X1 = AX + Buy, )

e, = Cx;. (10)

We solve the following dynamic optimization problem to find

the optimal feedback gain K*:
Problem 2.2.

min J= ¥ (Q%+ 6] Ra,).
u k=0

Y

subject to (9),

where Q = Q7 >0, R=R” >0, and (A, /Q) is observable.

Thus, solving Problems 2.1 and 2.2, one can find the optimal
controller u; = —K*x; + L*w;.

Remark 2. The design of optimal feedback controller gain
K* does not rely on the solutions X* and U* of the regulator
equations. Thus, Problems 2.1 and 2.2 can be solved separately.

2.2 Preliminaries

By solving the discrete-time LQR problem given in Problem
2.2, one can obtain the optimal feedback gain K* as:

K* = (R+B'P'B)"'B"P*A, (12)
where P* = P*7 > 0 is the unique solution of the following
discrete-time algebraic Riccati equation:

ATPA—P+Q—-ATPB(R+B'PB) 'B’PA=0. (13)

Note that, (13) is nonlinear in P. Thus, it is usually difficult
to directly solve (13) specially for high-dimensional systems.
A model-based PI technique to solve (13) presented in Hewer
(1971) is reproduced in Algorithm 1. Note that A; = A — BK;
in Algorithm 1.
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Algorithm 1 Model-based PI

1: Select a stabilizing control policy Ky such that A — BKj is
a Schur matrix. Initialize j <— 0. Select a sufficiently small
constant € > 0.

2: repeat

3: Policy Evaluation:

ATP;A;—P;+Q+K/RK; =0. (14)
4: Policy Update:
K;i1 = (R+B'P;B)"'B"P;A. (15)

50 j+—j+1.
6: until HP]‘—PJ;]H < E.

3. OPTIMAL OUTPUT REGULATOR DESIGN

In this section, we introduce a technique to solve the regulator
equations (5) and (6). The matrices A,B, and D are assumed
to be unknown. At first, we present a model-based technique
to solve the regulator equations (5) and (6). Then, we develop
an optimal data-driven technique to compute X* and U* that
solve (5) and (6), and K* and P* to solve the discrete-time LQR
problem.

3.1 Model-Based Solution to the Regulator Equations

Define the Sylvester map S : R"*9m — R"*4m ag:

S(X) =XE — AX. (16)
Pick a constant matrix X; such that CX; +F = 0. Then we
select X; for i =2,3,--- ,h+ 1 such that all the vectors vec(X;)
form a basis for ker(I,, ® C), where h = (n —r)g,, is the
dimension of the null space of I, ® C. A general solution to
(6) can be given as:

h+1

X=X+ ) X, 17)
i=2
where, a; € R. Then, (5) implies:
ht1
S(X) =8(X1)+ Y oS(X;) =BU+D. (18)
i=2
Now, (17) and (18) can be written as:
Adx =D, (19)
where
o — |vee(8(X2)) - vee(S(Xpp1)) 0 L, ®B
| vec(Xp) vee(Xpt1)  —Ing,, 0 ’
(20)
xX= [a27 oy Opged, VGC(X)T, VeC(U)T]T7 (21)
_|vee(—=S(X1)+D)
b= [ —vec(Xy) ) (22)
Now, based on Gao and Jiang (2016), (19) can be written as:
1 o by
11 %1 = |- 23
szl %2} x [bz] ’ 23)

where 4, € R isa nonsingular matrix. Then, the following
result holds.

Lemma 3.1. A pair (X,U) is a solution to the regulator equa-
tions if and only if it solves the following equation:

o [Vec(X)] — 24)

vec(U)
where M = —ah Ay, hy + Ao, N = — 1.9y, by + by.
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Thus, Problem 2.1 can be reformulated as:
Problem 3.1.
T —
. vec(X) I,®Q 0 vec(X)
s < |:V€C(U):| ) [ 0 I, ®R|\ |vec(U)| )’ (25)
subject to (24).
3.2 Model-Free Solution to the LOR Problem: Phase 1
Let us consider the following:
ik,izxk_xiwk7i:0717"'7h+17 (26)
where Xy = 0. Then, we have:
Xiy1,i = Ax; + Bu; + Dw;, — X;Ewy, 27
and
S(X;) =X;E - AX;. (28)

From (26), using (27) and (28), it follows that:

X1, = (A — BKj))_(kJ + B(llk + Kj)_(k#') + (D — S(X,’))Wk,
(29)

= Ajik,i‘f’B(uk"FKjik,i) + (D—S(X,’))Wk. (30)

Along the trajectories of (30), one can obtain that
Rici 1, PR 1 — X PR
_ _ T _
= [ijk,i + B(uk + Kjxk,i) +(D- S(X,-))wk] P; [ijkﬁ'-l-
B(llk + Kj)_(k,,') + (D — S(XZ))Wk] - i]{,ipjik,b 31
Then, using (14) we have:
Ky 1P g1 — XLP R + X QR
= 2%, ATP;Bu; + 2% A"P;BK %, — X K/ B"P;BK %X, ;
+ UZBTPjBllk + 2)_(]7;[@11']'Wk + 2u,{®2ijwk =+ w,{@)ijk,
(32)
where Qj = Q + K?RKJ, @1,’j = ATP](D — S(XZ)),
©,; =B"P;(D - 5(X))), @3 = (D—S(X;))"P;(D —S(Xy)).

Now, by the property of Kronecker product that vec(XYZ) =
(Z" @ X)vec(Y), we have:

[(i1€+1,i ®i£+1,i) - (7_‘1{; ®’_‘1{,)] vec(P;) + (’_‘1{1 ®’_‘1{,i)VeC(Qj)
= [2(xf, @0 ) +2(x{ ;@ % ;) (I, 9K} ) [ vec(B"P;A )+
[— (Kj%e)" @ (Kjxe)" + (uf @uf)]vec(B"P;B)+
2wl ® ilzi)VeC(G)lij) +2(wl ® u[)vec(@zij)+
(wl ®w,f)vec(®3,-j). (33)
Collecting the data for the time sequence kg < k; < --- < kg, we

get
W01 = —Ix x,vec(Q)),

(34)
where Wy;; = [A,-‘,._,-m 2050 — 2, 5, (L 9K Ig 5, — Tuw,

— 2z, 2w, —IwAw] ,

61 = [Vecs(Pj)T,Vec(BTPjA)T7vecs(BTPjB)TaVCC(GW)Tv

T
VeC(@z,'j)T,VeCS(@g,’j)T] ,
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Aghgi = |:Vecv(iko+1=i) — VeCV()_(kO!,')7 s

T
vecv (X, ;) — Vecv(iksl_,,-)} € Re*n(n+1)/2,

T

- - )
x, X — |: Xko i ®Xk0 i : 7(st,i ®Xk3,i) e R 5

T

|:V€CV (Kj%k.i), ,vecv(Kjiks,,-)] € Rexmim+1)/2,
T
Iz u= [)_(ko,i®ukoa e aiks,i®ukx:| e Rxmm,

T
Liu= [vecv(uko), e ,Vecv(uks)} € Rsxm(m+1)/2,

1T

Iw,f(,‘ = wk() ®ik0,ia Ty W ®iks,i S RSX”l]m’

T
Iw,u = |:Wk0 ®uk0; e Wy, ®uk3:| € RS> Mdm

1T

Iww= vecv(wko) VeCV(Wk )| € RS*dm(gm+1)/2_

Assumption 3.1. For i=0,1,--
such that for all s > s*

- h+1 there exists a s* € 7.,

= n(n+1
rank ([Is, 5, s, u; s w g Iwou, Iwow]) = ( 2 ) +nm—+
+1 +1
m(m2 ) —|—nqm+mqm+% —N, (35

where N is the number of linearly dependent columns of 1y v,
and iw,w is constructed by reducing those linearly dependent
columns.

Remark 3. A typical choice of s* can be s* >
m(m+1)

n(n+1) +nm+

+ngm +mqm, + q"’(qé”ﬂ) In Section 4, we dlscuss how
the columns of Ly w can be linearly dependent by use of an
example exosystem.

Algorithm 2 Phase-1 Model-Free Policy Iteration

1: Compute matrices Xo, Xy, , Xpt1-

2: Employ u, = —KoXx; + 1} as the input on the time interval
[ko, ks], where Ky is an initial stabilizing gain and 7, is the
exploration/probing noise.

3: Fori= O, 1 st ,h+ 1, compute Af(isii’IXIA,XHIX[;“’IU;“’IWXH
Iw,u,imw until the rank condition in (35) is satisfied. Let
i=0,j=0.

4: Solve for 8y;; from (34) using Iy in ¥y;;. Then, K4 =
(R+B7P;B) " 'BTP;A.

s: Let j < j+1 and repeat Step 4 until |[P; —P;_]| < &
for j > 1, where the constant & > 0 is a predefined small
threshold.

3.3 Model-Free Solution to the Regulator Equations: Phase 2

Using (30), one can obtain:
XZ+1,in*ik.,i
=% ATP; % +u{BP;% + X[ Pi(D—S(X;))wi, (36)

where P, is the approximated solution of the Riccati equation
obtained from Algorithm 2. Now, using Kronecker product:
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(i£i®i{+17i)vec(Pj*) = (%!, ®i,€i)vec(ATPj*)
+ (X,{i®u,{)vec(BTPj*)

Using the data collected from Phase 1, one can obtain:

lpz,‘@z,‘ = AiVCC(PJ‘*), (38)

where, ¥,; = |:iii7ii7lii-,“’lw-,ii:|’ 0, = [(I/Z)VGCS(ATPJ-* +

T
Pj*A)T,Vec(BTPj*)Twec(Pj*(D—S(Xi)))T] , A= I:)_(ko,,'@)
T T

ikl RERE 7)_(ks,| ,i®iks,i 5 IX[,X[ = VCCV()_(](OJ‘), e 7VCCV<7_(]<S,[)

Assumption 3.2. There exists a s* € Z such that for all s > s*:

n(n+ 1
rank ([T, 5, T, s Iis,]) = %

+ nm+ nqy,. 39)
Using the rank condition in (39), the least squares problem in
(38) can be uniquely solved fori =0,1,---,h+ 1 to obtain the
Sylvester maps S(X;). When i = 0, Xy = 0 and one can obtain
matrices B and D. Once, S(X;)’s, B and D are obtained, .# and
A are completely known. Thus, one can solve Problem 3.1 to
obtain the solution of the regulator equation. Once X* and U*
are obtained by solving Problem 3.1, one can obtain the feed-
forward gain as L, = U* + K, X", where K, is obtained from
Algorithm 2. Note that we do not require the information of A
to solve Problem 3.1.

Remark 4. Note that Assumptions 3.1 and 3.2 are like per-
sistency of excitation in the adaptive control (Jiang and Jiang
(2017); Vamvoudakis and Lewis (2010)).

Remark 5. As mentioned before, some works in the literature
have an implicit assumption that the state matrix A must
be invertible in order to solve the regulator equation. Note
that, in the formulation given in this section, we do not need
this assumption. One just needs to solve for S(X;)’s, B, and
D using the Phase 2 learning, then solve Problem 3.1 to
obtain the solution for the regulator equations. In other words,
the solution obtained for the regulator equations using the
learning based method is consistent with that of the model-
based method.

4. CONVERGENCE AND UNIQUENESS ANALYSIS

Since the probing noise in Algorithm 2 does not affect the
exosystem, one cannot guarantee the full rank condition of the
matrix Iy w. Consider the following example of an exosystem
that generates sinusoidal disturbance and a constant reference:

cos(6) —sin(6) 0 c—s0
Wi = Ewg = [sin(e) cos(0) O] Wy = ls c O] w

0 0 1 001
(40)
The state transition matrix can be obtained as:
o —B0
B o 0f, 1)
0 0 1

where a = 0.5[(c — 1.s)*
L(c+1.5)k,1=+—1.

+(c+1.5)],and B = 0.5[1.(c —1.s)* —
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Thus, the states of the exosystem have the following solutions:

Wik = owig—Bwap, (42)
wak = Bwio+awap, (43)
W3 = W30, (44)

where wi,w20, and w3 are the initial conditions. Now,

the kronecker product w,{ ® w,{ has the unique components:
— 2 2 2

VeCV(Wk) = [Wl,k, WLEW2,ky W1EW3ky W) gy W2kW3 ks W3,k]-

2

. w
Consider a constant Y = ——2—. Now,
WiotWig

YW%,/( + YW%,/( =y(a® +B?) (W%,o + W%,o)- (45)

Since cos(6) = M, sin(6) = ef ’2;40, one can obtain
a = 0.5[(e 1) + ()], B = 0.5[.(e 10 —1.(!9)H]. Tt is
casy to see that @® 4+ 82 = 1. Thus, y(w} , + w3 ) = W%,k' This
shows the dependence of components of 'vecv(wk). Hence, the
matrix Iy is not full rank. Thus, one cannot guarantee that the

data matrix Iy w constructed with the states of the exosystem
has full rank.

By the above discussion, we incorporate iw7w in (34) by reduc-
ing the linearly dependent columns of Iy . Since iw7w has less
number of columns, the size of vecs(®j3; j) is also reduced. Note
that vecs(@3;;) is not an essential unknown to be learned. Thus,
it neither effects the solution of Ricatti equation nor the solution
of the regulator equation.

Theorem 4.1. Using iw,w in (34) one can obtain:

‘i’lijélij = —Ix, ,vec(Q)),

where \Plij = |:A)_(,-J_(,-7 —21,—([.,“ — 21,-(1.7;([. (In ® K;),iihii — Iu’u,

(46)

- ZIW-X[? _2IW,U7 _IW w > and

s

0= |:VCCS(PJ‘)T,VCC(BTP]'A)T,VeCS(BTPjB)T,VGC(@)U./‘)T,
. 1T
VCC(@zij)T,VeC(®3ij)T

. Then, under the Assumption 3.1:

(a) (46) has a unique solution.

(b) the sequence {P;}7_, and {K;}7_, obtained using Al-
gorithm 2 converges to the optimal values P* and K*,
respectively.

Proof. (a) Note that 91;1- can be obtained from (46) using
least squares. Under Assumption 3.1, ¥, ; has full rank.
Thus élij is unique.

(b) Given a stabilizing control gain K;, if P; = PJT- is the
unique solution of (14), K1 is uniquely determined by
K1 = (R+B’P;B)"'B’P;A. Let I';; = B'P;A, and
rzj = BTPjB. By (32) we know that Pj, Flj, rzj, @1,']',
®,;;, and @3,-j satisfy (46). Let, P, I'1, I, ®y;, ®y;, and
@3, of appropriate dimensions solve (46). Then, we have
Pj=P,I'); =T, I; =T, B;; = Oy, @y;; = @y, and
®3;; = ©3;. Then from part (a), we know that P, I'(, I,
@,;, ®,;, and @3; are unique. Thus, the PI in Algorithm 2

is same as Algorithm 1. Thus, the theorem is proved by
the equivalence of the two algorithms.

O
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5. RESULTS AND DISCUSSION

We show the efficacy of the proposed algorithm by a numerical
example. Consider the following discrete-time system:

[0.3417 —0.6217 0.0364 0.6218
Xii1 = |0.0622 0.9630 —0.0982 | x; + |0.0365 | uy +dy,
10.0004 0.0098  0.9896 0.0001
(47)
[cos(0.01) —sin(0.01) O 0
| sin(0.01) cos(0.01) 0 0
Wit = 0 0 cos(0.1) —sin(0.1) | W&
L 0 0 sin(0.1) cos(0.1)
(48)
e = [0 0 1]x¢ +[5v/3 5 0 0]wy. (49)

The upper 2 x 2 subsystem in (48) is used to generate the
reference signal and the lower 2 x 2 subsystem in (48) is used
to generate the disturbance. The initial conditions are given as
xo =1, 2, 3],and wo =1, 0, 1, 0]. The system matrices A, B,
and D are considered unknown. The weight matrices Q, and R
are chosen as identity matrices. The initial stabilizing controller
gain is Ko = [—0.8727, —0.9849, —0.1354]. The exploration
noise in Algorithm 2 is chosen as the summation of sinusoidal
waves with different frequencies.

30
——— Output
= = Reference

25

20

Magnitude
o

0 1000 2000 3000 4000 5000

Time (ms)

Figure 1. Output and reference trajectories.

700 1.4
l -= B, P -8 K, - K|
600 1.20
\ \
\ \
500 1 1h
\ \
< \ < Y
=400 =os8 |
= ' = !
Z3000 ! =06 !
= \ = \
v \
\
200 \ 0.4 .
\ a
\ \\
100 ' 0.2 .
1 'S
0 8--_-@g---@ o -0
1 2 3 4 1 2 3 4
Number of Iteration Number of Iteration

Figure 2. Convergence of P; to P*, and K to K*.

Using the learning data, Algorithm 2 converges with a tolerance
of &y = 0.05 to a neighborhood of the optimal values P* and K*
in 4 iterations as shown in Fig. 2. The optimal controller gain
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K* and the controller gain obtained from Algorithm 2 are given
as:

K* = [0.1972 0.1488 —0.1688), (50)
K, = [0.1973 0.1489 —0.1684]. (51)

The optimal feedforward gain L* and the feedforward gain
obtained from Phase 2 (Section 3.3) are given as:

L* = [~24.2085 0.7679 0 0],
Ly = [—24.2131 0.7659 0 0].

(52)
(53)

6. CONCLUSION

This paper addresses the problem of discrete-time output regu-
lation when the system parameters are unknown. It was shown
that the rank condition of the data matrix used in the PI al-
gorithm must be carefully chosen in order to guarantee the
convergence and uniqueness properties of the PI algorithm.
This is crucial as certain columns of the data matrix are con-
structed using only the states of the exosystem which are not
affected by the probing noise during data collection. Also, the
existing methodologies in the literature implicitly assumes the
invertibility of the state matrix in order to solve the regulator
equation. Thus, in case where the state matrix is not full rank,
the model-based and model-free techniques for solving the reg-
ulator equation will yield different results. This issue is also
addressed in this work by a novel reformulation of the problem
that avoids the invertibility assumption on the state matrix.
Finally, numerical simulation is provided to demonstrate the
validity of the proposed methodology. Future work will focus
on extending the results to nonlinear systems.
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