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ABSTRACT  11 

The interaction between subduction zones and oceanic spreading centers is a common 12 

tectonic process, and yet our understanding of how it is manifested in the geologic record is 13 

limited to a few well-constrained modern and ancient examples. In the Paleogene, at least one 14 

oceanic spreading center interacted with the northwestern margin of North America. Several 15 

lines of evidence place this triple-junction near Washington and southern British Columbia in 16 

the early-middle Eocene and we summarize a variety of new datasets that permit us to track 17 

the plate tectonic setting and geologic evolution of this region from 65 to 40 Ma. The North 18 

Cascades segment of the voluminous Coast Mountains continental magmatic arc experienced a 19 

magmatic lull between ca. 60-50 Ma interpreted to reflect low-angle subduction. During this 20 

period of time the Swauk basin began to subside inboard of the paleo-trench in Washington 21 
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and the Siletzia oceanic plateau began to develop along the Farallon-Kula or Farallon-22 

Resurrection spreading center. Farther east, peraluminous magmatism occurred in the 23 

Omineca belt and Idaho batholith. Accretion of Siletzia and ridge-trench interaction occurred 24 

between ca. 53–49 Ma, as indicated by: (i) near-trench magmatism from central Vancouver 25 

Island to NW Washington; (ii) disruption and inversion of the Swauk basin during a short-lived 26 

contractional event; (iii) voluminous magmatism in the Kamloops – Challis belt accompanied by 27 

major E-W extension east of the North Cascades in metamorphic core complexes and supra-28 

detachment basins and grabens; and (iv) southwestward migration of magmatism across NE 29 

Washington. These events suggest that flat slab subduction from ~60–52 Ma was followed by 30 

slab rollback and breakoff during accretion of Siletzia. A dramatic magmatic flare-up was 31 

associated with rollback and breakoff between ca. 49.4 Ma and 45 Ma, and included bimodal 32 

volcanism near the eastern edge of Siletzia, intrusion of granodioritic to granitic plutons in the 33 

crystalline core of the North Cascades, and extensive dike swarms in the North Cascades. 34 

Transtension during and shortly before the flare-up led to >300 km of total offset on dextral 35 

strike-slip faults, formation of the Chumstick strike-slip basin, and subhorizontal ductile 36 

stretching and rapid exhumation of 8-10 kb metamorphic rocks in the North Cascades 37 

crystalline core. By ca. 45 Ma, the Farallon – Kula (or Resurrection) – North American triple-38 

junction was likely located in Oregon, subduction of the Kula or Resurrection plate was 39 

established outboard of Siletzia, and strike-slip faulting was localized on the north-striking 40 

Straight Creek – Fraser River fault. Motion of this structure terminated by 35 Ma. These events 41 

culminated in the establishment of the modern Cascadia convergent margin. 42 

 43 
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INTRODUCTION 44 

 Plate tectonic margins vary from long-lived stable settings to those that change rapidly 45 

from one type of boundary to another over only a few million years. The modern Cascadia 46 

subduction zone, in the Pacific Northwest (U.S.A) and southwest British Columbia (Canada), has 47 

been a convergent plate margin since the mid-Eocene (≤45 Ma) (du Bray and John, 2011). 48 

Earlier, the northern Washington Cascades was part of a long-lived continental magmatic arc 49 

that is also manifested as the Coast Mountains batholith and parts of the Idaho batholith (e.g., 50 

Gehrels et al., 2009). The North Cascades segment of the Coast Mountains arc was active from 51 

about 96–60 Ma, and changed from a contractional-convergent to oblique-convergent regime 52 

during that time (e.g., Brown and Talbot, 1989; Miller et al., 2009, 2016). Between the older 53 

Coast Mountains and Cascadia magmatic arc regimes was an ~25 m.y. period, from ca. 65 – 40 54 

Ma, during which the Washington Cascades and the surrounding region experienced many 55 

dynamic changes that can be linked to two major Paleogene tectonic events: spreading ridge – 56 

trench interaction and the formation and accretion of an oceanic plateau.   57 

 Plate reconstructions suggest that the Farallon – Kula, Farallon – Resurrection, or 58 

Farallon – Orcas spreading ridge(s) interacted with North America near the Pacific Northwest 59 

during the Paleogene (e.g., Atwater, 1970; Wells et al., 1984; Engebretson et al., 1985; 60 

Haeussler et al., 2003; Madsen et al., 2006; Clennett et al., 2020; Fuston and Wu, 2021) (Fig. 1). 61 

Based on ca. 51-49 Ma near-trench magmatism from central Vancouver Island to northwestern 62 

Washington, a ridge is assumed to have intersected North America near these locations at that 63 

time (e.g., Cowan, 2003; Madsen et al., 2006), although how this triple-junction migrated along 64 

the margin prior to 52 Ma is poorly understood. The Siletzia terrane, a basaltic oceanic plateau, 65 
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formed along this oceanic spreading center and was accreted to the Pacific Northwest ca. 50 66 

Ma (e.g., McCrory and Wilson, 2013; Wells et al., 2014). Farther inland there was a change from 67 

a long-lived thrust belt (e.g., Mudge and Earhart, 1980; Price, 1981) to east-west extension and 68 

widespread magmatism at ca. 55–53 Ma (e.g., Ewing, 1980; Parrish et al., 1988). These and 69 

other changes in the upper plate of the system are the basis for our attempt at a 70 

comprehensive model of the 65 – 40 Ma tectonic evolution of the Washington Cascades and 71 

Pacific Northwest. 72 

In this paper, we synthesize data on the ages and types of sedimentary basins (Evans, 73 

1984; Johnson, 1984; Eddy et al., 2016a; Donaghy et al., 2021), age, geochemistry, and spatial 74 

patterns of magmatism (e.g., Breitsprecher et al., 2003; Madsen et al., 2006; Miller et al., 2009), 75 

and deformation styles and exhumation patterns across Vancouver Island to the Washington 76 

Cascades (e.g., Johnston and Acton, 2003; Miller et al., 2016) (Figs. 2, 3). We present this 25 77 

m.y. geologic history in a series of time slices and place the discussion in the context of the 78 

greater region from northern California to southern British Columbia and inland to the Rocky 79 

Mountains (Fig. 2). Integrated within this discussion are a series of new maps that restore slip 80 

on the major Paleocene - Eocene strike-slip faults (Figs. 4-7). Boundaries between time slices 81 

coincide with transitional periods in at least one of the major processes emphasized in the 82 

synthesis (i.e. magmatism, sedimentation, metamorphism, deformation, exhumation). A critical 83 

aspect of this work is the incorporation of new high-precision U-Pb zircon age constraints tied 84 

to detailed field observations (e.g., Eddy et al., 2016a; 2017a; b; Miller et al., 2016, 2022), which 85 

enables the construction of a detailed time line not previously possible. Moreover, the varied 86 

levels of exhumation within the region allow us to study how the changing tectonic setting was 87 
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manifested at a wide range of Eocene crustal levels. In particular, we explore the upper-plate 88 

events in the Washington Cascades and surrounding region in relation to changing plate 89 

boundaries, especially the formation and accretion of Siletzia (Wells et al., 2014), and the 90 

shifting location of ridge – trench interaction. The study area is described in terms of western, 91 

central, and eastern regions, which roughly correspond to the forearc, arc, and backarc regions 92 

of the North Cascades segment of the Coast Mountains batholith in the Late Cretaceous (Fig. 2). 93 

We utilize these geographic terms because the dynamic tectonic changes described herein 94 

make it difficult to define regions typically associated with a stable subduction zone.    95 

PLATE TECTONIC SETTING 96 

 There has long been uncertainty about the Late Cretaceous to early Cenozoic plate 97 

configuration in the northeast Pacific basin. There is general agreement that the Kula plate 98 

originated from rifting of the Pacific plate at ~83 Ma and that the northern boundary of the 99 

Farallon plate was a ridge, which intersected the continental margin at a poorly constrained 100 

location (e.g., Atwater, 1970; Wood and Davies, 1982; Engebretson et al., 1985; Stock and 101 

Molnar, 1988; Thorkelson and Taylor, 1989). Subsequent models proposed the potential 102 

existence of a now-subducted Resurrection plate (e.g., Haeussler et al., 2003; Madsen et al., 103 

2006; Fuston and Wu, 2021) (Fig. 1) or Orcas plate (Clennett et al., 2020). During the interval 104 

from ca. 85 Ma to 60 Ma, the northern Cordillera was an oblique, transpressional convergent 105 

margin (e.g., Engebretson et al., 1985; Doubrovine and Tarduno, 2008), and northward 106 

translation of the Washington Cascades may have been rapid as the southern part of the Insular 107 

superterrane (the Baja BC hypothesis; e.g., Cowan et al., 1997; Umhoefer and Blakey, 2006). 108 

Relative to North America, motion of the Farallon plate was to the NE to ENE, and motion of the 109 
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Kula  (Resurrection or Orcas?) plate was to the N to NNE, and thus more oblique than that of 110 

the Farallon plate. Both oceanic plates were moving rapidly (50 – 150 km/Myr) during this time 111 

(e.g., Engebretson et al., 1985; Doubrovine and Tarduno, 2008; Wright et al., 2015; Fuston and 112 

Wu, 2021).  113 

 Formation of the Siletzia terrane was a major factor in the Paleogene tectonic evolution 114 

of the Pacific Northwest. This terrane represents a large igneous province that developed 115 

between 56-49 Ma near an oceanic spreading center, and it is probably an early manifestation 116 

of the Yellowstone hotspot (e.g., Gao et al., 2011; McCrory and Wilson, 2013; Wells et al., 2014; 117 

Camp and Wells, 2021). We support previous work that infers the triple junction between the 118 

Farallon – North America – Kula (or Resurrection or Orcas) plates lay along central Vancouver 119 

Island by 55–53 Ma (e.g., Madsen et al., 2006) (Figs. 1, 4). From 52–49 Ma, a triple junction is 120 

interpreted to have interacted with the continental margin along central to southern Vancouver 121 

Island (Fig. 1), as this interval is marked by near-trench magmatism (Groome et al., 2003; 122 

Madsen et al., 2006), geochemically anomalous backarc magmatism (Ewing, 1980; 123 

Breitsprecher et al., 2003; Ickert et al., 2009; Dostal and Jutras, 2021), and disruption of non-124 

marine basins (Eddy et al., 2016a). The collision of Siletzia, which started by 53 Ma in SW 125 

Oregon (Wells et al., 2014) and by 51 Ma in northern Washington and southernmost Vancouver 126 

Island, led to a major change in plate geometries and profound changes in the upper plate of 127 

the system from 52–48 Ma, which we describe in more detail below. The plate boundary later 128 

shifted outboard (west) of Siletzia, resulting in the new Cascadia subduction system at ca. 45–129 

40 Ma (e.g., Wells et al., 1984, 2014; Schmandt and Humphreys, 2011; McCrory and Wilson, 130 

2013; Eddy et al., 2017a; Kant et al., 2018). 131 
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 132 

PRE-PALEOGENE GEOLOGIC SETTING 133 

Prior to 65 Ma, the Pacific Northwest was characterized by a typical convergent margin 134 

with a forearc, continental magmatic arc, back-arc basin, and fold-and-thrust belt that 135 

deformed a Paleozoic passive margin sequence (e.g., Burchfiel et al., 1992). The arc and forearc 136 

were originally farther south relative to the inboard rocks by more than 300 km (e.g., Umhoefer 137 

and Blakey, 2006; Wyld et al., 2006), and potentially a much greater distance as discussed 138 

below.  139 

In the forearc (western belt of Fig. 2) are Paleozoic and Mesozoic oceanic and island arc 140 

rocks and overlapping Jura-Cretaceous marine clastic rocks, which were deformed in the mid-141 

Cretaceous Northwest Cascades thrust system (shown as a single Cretaceous unit on Fig. 3) 142 

(Misch, 1966; Brown, 1987; Brandon et al., 1988). Structurally above these rocks are mostly 143 

Jura-Cretaceous rocks of the western mélange belt (Fig. 3), which is interpreted as an 144 

accretionary complex (Tabor, 1994) and contains rocks at least as young as 72 Ma (Dragovich et 145 

al., 2014; Sauer et al., 2017a). The Upper Cretaceous to Paleocene Nanaimo Group (e.g., 146 

Mustard, 1994), exposed mostly on southern Vancouver Island, is interpreted as a foreland 147 

basin to the Northwest Cascades thrust system (Brandon et al., 1988), and has depositional 148 

ages extending from at least ca. 84 Ma to 63 Ma (e.g., Matthews et al., 2017; Coutts et al., 149 

2020). 150 

The Cretaceous arc in northern Washington and southern British Columbia is 151 

represented by medium- to high-grade metamorphic and plutonic rocks in the crystalline core 152 

of the North Cascades and southern British Columbia (central belt of Fig. 2). The crystalline 153 
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rocks are subdivided into the Wenatchee and Chelan blocks, which are separated by the high-154 

angle Eocene Entiat fault and bounded to the west by the Straight Creek-Fraser River fault (Fig. 155 

3). Magmatism in the Wenatchee block occurred from 96–87 Ma, and most biotite Ar/Ar and 156 

K/Ar cooling ages are >60 Ma, whereas magmatism in the Chelan block ranges from 92–45 Ma 157 

and Eocene cooling ages are common (e.g., Walker and Brown, 1991; Matzel, 2004; Miller et 158 

al., 2009, 2016). The Chelan block also records Paleogene ductile deformation and partial 159 

melting in the highest-grade rocks of the Skagit Gneiss Complex (Gordon et al., 2010a). 160 

Pre-Cenozoic rocks directly east of the North Cascades in the eastern belt include: the 161 

Mesozoic Methow basin; ca. 160–105 Ma arc plutonic rocks of the Eagle Complex and 162 

Okanogan Range batholith; ca. 105 Ma arc volcanic rocks of the Spences Bridge Group; and arc 163 

volcanic and sedimentary rocks of the Quesnellia terrane (Fig. 3) (e.g., Greig, 1992; Hurlow and 164 

Nelson, 1993). Farther east are plutonic and metamorphic rocks of the Omineca belt, including 165 

multiple metamorphic core complexes, the Idaho batholith, and Cordilleran passive margin 166 

sediments involved in the Rocky Mountain-Sevier fold-and-thrust belt (Fig. 2).  167 

 168 

RESTORATION OF STRIKE-SLIP FAULTS  169 

Dextral strike-slip faulting occurred in the northern Cordillera in the Late Cretaceous to 170 

Eocene (e.g., Gabrielse, 1985; Wyld et al., 2006), and within our study region displacements of 171 

~325 km on strike-slip faults active from ca. 60 – 35 Ma are well documented (Table 1). In the 172 

west, the N-S-striking Straight Creek – Fraser River fault separates the North Cascades 173 

crystalline core of the central belt from the outboard Paleozoic and Mesozoic Northwest 174 
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Cascades system, mélange belts, and Paleogene rocks of the western belt (Fig. 3). The most 175 

recent estimate of dextral offset on this fault is ~150 km (Monger and Brown, 2016). The 176 

Leavenworth and Entiat faults (Fig. 3) involve the Cascades core and have a total displacement 177 

of ~60 km (Eddy et al., 2017b). The Entiat fault separates the Wenatchee and Chelan blocks 178 

within the core (see above) and the NE boundary of the Cascades core is the Ross Lake fault 179 

system (Ross Lake fault, Gabriel Peak tectonic belt, Hozameen fault, and Foggy Dew fault) (Fig. 180 

3), which probably has ~115 km of dextral offset (Umhoefer and Miller, 1996).  181 

These known displacements of ~325 km must be considered in tectonic restorations, 182 

particularly before 50 Ma. To summarize, after 50 Ma there is approximately 1) 150 km of 183 

offset between the western belt and Cascades core of the central belt; 2) 60 km of 184 

displacement within the core; 3) 50 km (of total 115 km) of offset between the core and the 185 

eastern belt; and 4) a cumulative offset of ~265 km between the western and eastern belts 186 

after 50 Ma (Table 1). If we assume that the strike-slip offset from 60 to 50 Ma occurred at 187 

rates comparable to those of the ~50–40 Ma interval, the implication is that another 188 

approximately 250–300 km of offset occurred across Washington from 60 to 50 Ma. About 60 189 

km of this slip has been documented on the Ross Lake fault system (Miller and Bowring, 1990) 190 

and Yalakom fault during that time (Umhoefer and Schiarizza, 1996); precise timing and offset 191 

of faults are difficult to document. From this reasoning, at 55 Ma we show Vancouver Island 192 

and the western belt about 450 km south of the eastern belt (Fig. 4). We note that this is likely 193 

a conservative estimate and does not include any distributed dextral ductile displacement or 194 

movement on minor cryptic structures. Paleomagnetic data indicate much larger cumulative 195 

dextral displacements between ~85–55 Ma of 2000 km or more between the easternmost part 196 
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of the eastern belt and the central and western belts, and ~1000 km between the western part 197 

of the eastern belt and rocks to the west (e.g., Enkin, 2006; Tikoff et al., 2023). From the 198 

paleomagnetic data, major displacements of the outboard rocks ended by 55 Ma (e.g., Cowan 199 

et al., 1997; Tikoff et al., 2023). Thus, uncertainties are much lower for the positions of units in 200 

the region in the 55 Ma and younger reconstructions (Figs. 4-7). 201 

Another potential complication is the rotation in the Oregon Coast Ranges and 202 

Cascades, which is probably related to distributed dextral strike slip and Basin and Range 203 

extension (e.g., Beck, 1984; Wells and Heller, 1988; Colgan and Henry 2009; Wells and 204 

McCaffrey, 2013; Wells et al., 2014). Rotation increases westward and decreases from the 205 

Klamath Mountains northward to the Olympic Peninsula. Statistically significant vertical axis 206 

rotation has not occurred after ca. 50 Ma in the Washington Cascades, at least as far south as 207 

the present latitude of Seattle (e.g., Beske et al., 1973; Beck et al., 1982; Fawcett et al., 2003). 208 

In our reconstructions, we utilize the present trends of structures in the north and restore the 209 

Klamath Mountains to northeastern-most California to account for Basin and Range extension 210 

(e.g., Colgan and Henry, 2009) and rotation. The resulting trend and position of Siletzia 211 

(Washington and Oregon Coast Ranges) in our reconstructions (Figs. 4–7) after accretion is 212 

more northerly than in Wells et al. (2014), which suggests that a portion of the rotation in 213 

Siletzia was taken up on more local blocks at a scale of a few tens of km or less.  214 

  215 

PALEOGENE TECTONIC HISTORY 216 
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In this section, we synthesize the Paleogene tectonic evolution across the Pacific 217 

Northwest (Fig. 3), and divide this ~25 Myr history into five intervals. The time slices are 218 

generally considered from west to east. The major events from 60–40 Ma are summarized on 219 

Fig. 8. 220 

65 – 60 Ma  221 

During this interval the plate boundary was one of oblique convergence. This 222 

interpretation is based on the arc-type tonalitic intrusions (Miller and Bowring, 1990; Miller et 223 

al., 2009), transpressional deformation in the North Cascades and southern Coast Mountain 224 

batholith arc (e.g., Brown and Talbot, 1989; Miller and Bowring, 1990), and contractional 225 

deformation (e.g., Brown et al., 1986; Simony and Carr, 2011) in the hinterland (eastern belt). 226 

 The forearc (western belt) record is sparse and the timing of deformation in this belt is 227 

poorly known (Tabor, 1994; Sauer et al., 2017a). The only known forearc rocks of this age are 228 

the uppermost clastic strata of the Nanaimo Group on Vancouver Island, which have maximum 229 

depositional ages (MDAs) as young as ca. 63 Ma (Coutts et al., 2020). The youngest dated 230 

(MDA) sandstone in the western mélange belt is ca. 72 Ma (Sauer et al., 2017a), and younger 231 

rocks may be present in this belt, as the upper limit for the mélange is only indicated by an 232 

angular unconformity with Eocene strata. 233 

The 65 – 60 Ma interval includes the final stage of a magmatic flare-up in the North 234 

Cascades core (Chelan block) that began ca. 78 Ma (Miller et al., 2009), and was directly 235 

preceded by rapid burial and metamorphism of Cretaceous (protolith age) metasedimentary 236 

rocks that comprise the deep-crustal (up to 12 kbar) Swakane Biotite Gneiss (Valley et al., 2003) 237 

and Skagit Gneiss Complex (7 – 10 kbar; Whitney, 1992; Hanson, 2022) (Fig. 3), between ca. 79 238 
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– 66 Ma and 74 – 65 Ma, respectively (Sauer et al., 2017b, 2018). Tonalitic magmatism is 239 

recorded by the 65 Ma Oval Peak pluton (Fig. 3), which crystallized at 5 – 6 kbar (Miller and 240 

Bowring, 1990), and sheets (now orthogneisses) in the Skagit Gneiss Complex (Miller et al., 241 

2016). Leucosomes of this age also are recognized in the Complex (Gordon et al., 2010a). K-Ar 242 

and Ar/Ar biotite cooling ages are sparse, but there is no evidence for major rapid cooling or 243 

exhumation of the Cascades core during this interval (Paterson et al., 2004), and no 244 

sedimentary or volcanic rocks of this age have been recognized in the arc. Dated deformation 245 

during this time interval is limited in the arc region where dextral and reverse shear in the 246 

Gabriel Peak tectonic belt of the Ross Lake fault system (Fig. 3) was inferred to be coeval with 247 

emplacement of the Oval Peak pluton (Miller and Bowring, 1990).  248 

In the eastern belt, igneous activity was sparse during this interval and volcanic rocks 249 

are absent. In NE Washington, magmatism was limited to a few ca. 64–56 Ma plutons (e.g., 250 

Stoffel et al., 1991). North of the international border, intrusion of the quartz monzonitic to 251 

granitic, peraluminous Ladybird granite suite into high-grade Shuswap Complex (Fig. 4) initiated 252 

at 62 Ma (Carr, 1992; Hinchey and Carr, 2006). In Idaho, peraluminous magmatism in the 253 

Bitterroot lobe (Fig. 4) of the Idaho batholith began at ca. 66 Ma and peaked at ca. 60 Ma 254 

(Gaschnig et al. (2010). These peraluminous rocks are part of the “Cordilleran anatectic belt” of 255 

Chapman et al. (2021a), and the magmatism is ascribed to partial melting of crustal rocks 256 

(Mueller et al., 1996; Hinchey and Carr, 2006; Gaschnig et al., 2011).  257 

Sedimentary rocks of this age are also very rare in NE Washington. Aside from a <30 km2 258 

body of Paleocene conglomerate (Pipestone Canyon Formation) directly west of the Pasayten 259 

fault (Fig. 3) (Kriens et al., 1995), no other strata have been recognized between central 260 
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Washington and the Sevier foreland basins. The scarcity of sedimentary rocks, and the evidence 261 

of crustal melting, are compatible with the existence of a high-standing orogenic plateau in the 262 

hinterland during this interval (Whitney et al., 2004; Bao et al., 2014).  Thrusting also occurred 263 

in the eastern belt in the Shuswap Complex and in the Rocky Mountain - Sevier fold and thrust 264 

belt (e.g., Price, 1981). 265 

60 – 52 Ma 266 

This interval is marked by major changes in magmatism and sedimentation throughout 267 

the region. Near-trench intrusions strongly suggest that an oceanic spreading center lay off 268 

central to southern Vancouver Island by 52 - 51 Ma (Fig. 5) (Groome et al., 2003; Madsen et al 269 

2006). Magmatism and sedimentation occurred in the western belt near the spreading ridge, 270 

but igneous activity was nearly absent in the Cascades core and eastern belt, until the onset of 271 

Challis-Kamloops magmatism at ca. 53 Ma (e.g., Ickert et al., 2009). The formation of 272 

metamorphic core complexes and associated basins in the eastern region also started at ca. 56 273 

Ma (e.g., Brown et al., 2012). 274 

Basaltic magmatism began in the Siletzia terrane by ca. 55 Ma in the south (southwest 275 

Oregon) and by 53.2 Ma outboard of the Northwest Cascades system and mélange belts in 276 

western Washington and Vancouver Island in the north, where it continued until at least 48 Ma 277 

(Crescent and Metchosin basalts) (Fig. 2) (Wells et al., 2014; Eddy et al., 2017a). Siletzia consists 278 

of thick sequences of basalt that transition from deep-water lava flows of normal mid-oceanic-279 

ridge basalt (N-MORB) to shallow water and subaerial flows of enriched mid-oceanic-ridge 280 

basalt (E-MORB) and oceanic-island basalt (OIB) (e.g., Wells et al., 2014). Siletzia is comparable 281 

in volume to other large igneous provinces (Trehu et al., 1994; Wells et al., 2014) and this, 282 
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combined with isotopic evidence, supports its formation over a ‘plume-like’ mantle source, 283 

thought to be the Yellowstone hot spot (e.g., Pyle et al., 2015; Phillips et al., 2017; Stern and 284 

Dumitru, 2019; Camp and Wells, 2021).  In southern Oregon, the submarine basalts were 285 

overlain by deep-water sediments (Umpqua Group) in this time interval (Wells et al., 2014), 286 

while in Washington sedimentation was initiated in the non-marine Chuckanut and Swauk 287 

Formations of the greater Swauk basin (Fig. 3) (Eddy et al., 2016a).  This basin developed on 288 

accreted Paleozoic and Mesozoic rocks of the Northwest Cascades thrust system and the 289 

southern end of the Cascades core. A 56.8 Ma tuff from the lower part of the Chuckanut 290 

Formation and a 59.9 Ma maximum depositional age (MDA) near the base of the Swauk 291 

Formation are compatible with sedimentation in the greater Swauk basin starting at 60 – 57 Ma 292 

(Eddy et al., 2016a). The 56.8 Ma tuff, a 53.7 Ma tuff higher in the Chuckanut section 293 

(Breedlovestrout et al., 2013), and a 53.7 Ma tuff with arc affinities (Summit Creek section; Kant 294 

et al., 2018) in the southern Washington Cascades are the only record of volcanism inboard of 295 

Siletzia in the western belt. There is also no well-documented deformation between 60 Ma and 296 

52 Ma, although a local angular unconformity in the middle to lower part of the Swauk 297 

Formation may be a link to the early collision of Siletzia (Doran, 2009). 298 

In the North Cascades core a magmatic lull began at ca. 60 Ma (Miller et al., 2009), and 299 

that lull extended into the southern Coast Mountains to the northwest (Cecil et al., 2018). The 300 

transpressional Gabriel Peak belt (Fig. 3) of the Ross Lake fault system continued to be active 301 

between at least 60 – 55(?) Ma, and was cut by the transtensional Foggy Dew fault zone of the 302 

Ross Lake system at ca. 55–53 Ma (Miller and Bowring, 1990). Ductile deformation probably 303 
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occurred in domains in the Skagit Gneiss Complex, but otherwise, deformation is not well 304 

documented.  305 

In northeastern Washington, magmatism is represented only by scattered, small-volume 306 

intrusions until ~53 Ma, while small mafic bodies began intruding the Idaho batholith region at 307 

ca. 58 Ma (Foster and Fanning, 1997; Gaschnig et al., 2010).  Peraluminous magmatism 308 

(Ladybird granite suite), metamorphism, and migmatization continued during the 60–52 Ma 309 

time interval in the Shuswap and Okanogan complexes (e.g., Crowley et al., 2001; Kruckenberg 310 

et al., 2008; Gervais et al., 2010; Brown et al., 2012), and peraluminous magmatism persisted in 311 

the Bitterroot lobe of the Idaho batholith until ca. 53 Ma (Gaschnig et al., 2010) and the 312 

Anaconda core complex of Montana until ca. 56 Ma (e.g., Howlett et al., 2021). This magmatism 313 

in Idaho was directly followed by the Challis magmatic event (ca. 53 – 43 Ma; e.g., Janecke and 314 

Snee, 1993; Ickert et al., 2009; Gaschnig et al., 2010), which extended from Oregon to South 315 

Dakota and Washington and into central British Columbia as the Kamloops belt (Figs. 5, 6) (e.g., 316 

Ewing, 1980; Breitsprecher et al., 2003). Shallow plutons, dikes, and volcanic rocks characterize 317 

this magmatic event with geochemical affinities ranging from arc to within-plate, and some 318 

rocks being almost entirely crustal melts and others only weakly contaminated melts of the 319 

lithospheric mantle (Ewing, 1980; Thorkelson and Taylor, 1989; Lewis and Kiilsgaard, 1991; 320 

Morris et al., 2000; Breitsprecher et al., 2003; Ickert et al., 2009; Dostal and Jutras, 2021). The 321 

alkalinity of magmas increases markedly south of ca. 51.5° N and the width of the belt widens 322 

south of the international border (e.g., Breitsprecher et al., 2003). 323 

In the eastern belt, ductile deformation and thrusting continued in the hinterland of the 324 

Rocky Mountain fold and thrust belt for the early part of this interval (e.g., Simony and Carr, 325 
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2011). A major transition from contraction to extension, which was time transgressive (e.g., 326 

Parrish et al., 1988; Harlan et al., 1988; Brown et al., 2012), led to the formation of 327 

metamorphic core complexes and associated extensional basins in NE Washington, British 328 

Columbia, Idaho, and Montana (Fig. 4). Core complexes (e.g., Priest River, Okanogan) and 329 

associated basins initiated earlier north of the WNW-striking Lewis and Clark fault zone than to 330 

the south (Anaconda, Bitterroot) (Foster et al., 2007). Sedimentary basin formation initiated 331 

from ca. 56 Ma next to the Okanogan core complex directly east of the North Cascades to ca. 53 332 

Ma adjacent to the Bitterroot and Anaconda core complexes (e.g., Foster et al., 2007; Howlett 333 

et al., 2021), and in NE Washington continued to 48 Ma (Pearson and Obradovich, 1977; 334 

Suydam and Gaylord, 1997). The absence of sedimentary deposits between the Swauk basin in 335 

the west and the foreland basin east of the thrust belt until extension began and basins formed 336 

suggests that the hinterland region continued to be a high orogenic plateau until ca. 55 Ma 337 

(Whitney et al., 2004; Bao et al., 2014). 338 

 We postulate that the near complete termination of arc-type magmatism in the North 339 

Cascades core and southern Coast Mountains, and paucity of magmatism east of there, records 340 

a change to low-angle subduction of the Farallon plate at ca. 60 Ma. The peraluminous 341 

magmatism in the east probably resulted mainly from concentrated crustal thickening (e.g., 342 

Gaschnig et al., 2010).  343 

In the eastern belt, the shift to shallow, widespread, and diverse magmatism at ca. 53 344 

Ma accompanied by extension points to a major change from the earlier peraluminous 345 

magmatism.  This shift marks the onset of Challis activity and is discussed in more detail in the 346 

next section. 347 
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52 – 49.5 Ma 348 

A fundamental change in plate boundary stresses occurred between 52 Ma and 49.5 349 

Ma, as Siletzia encountered the subduction zone in southern Oregon. Collision progressed 350 

northward during this time interval from Oregon to Washington and southern Vancouver Island 351 

(Wells et al., 2014). This collision was coincident with major changes in magmatism, 352 

sedimentation, and the strain field in the upper plate. The Siletzia collision also ultimately led to 353 

a westward shift in the location of the plate boundary (e.g., Schmandt and Humphreys, 2011). 354 

The Siletzia collision was accompanied from central Vancouver Island to northwest 355 

Washington by near-trench magmatism from ca. 51 – 49 Ma (Madsen et al., 2006), which is 356 

thought to record the location of a subducting spreading ridge and the Kula-Farallon-North 357 

America or Resurrection-Farallon-North America triple junction (Fig. 5) (e.g., Cowan, 2003; 358 

Groome et al., 2003; Haeussler et al., 2003; Madsen et al., 2006) that would have been the 359 

northern boundary of Siletzia (Wells et al., 2014). This inference is also consistent with the 51 360 

Ma age of the ophiolitic Metchosin Complex on southern Vancouver Island (Massey, 1986, Eddy 361 

et al., 2017a). Near-trench magmatic rocks on Vancouver Island include: 51.2 – 50.5 Ma 362 

bimodal, but dominantly dacitic rocks (Flores volcanics) (Irving and Brandon, 1990); 51.2–48.8 363 

Ma, hypabyssal tonalite, trondhjemite, and granodiorite (Clayquot intrusions) (Madsen et al., 364 

2006); and in the south peraluminous 50.9 – 50.7 Ma intrusions (Walker Creek intrusions) 365 

(Groome et al., 2003). The Leech River Schist on southern Vancouver Island also records high 366 

T/low P metamorphism at ~51 Ma (Fairchild and Cowan, 1982; Groome et al., 2003). In NW 367 

Washington, local peraluminous magmatism occurred as the ca. 49 Ma Mt. Pilchuck stock (Fig. 368 

3) and nearby Bald Mountain pluton (Yeats and Engels, 1971).  369 
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Farther inboard, but still west of the Cascades core, basaltic to rhyolitic volcanism began 370 

with the eruption of 51.4 Ma lavas and tuffs (Silver Pass member) of the upper Swauk 371 

Formation (Peterson and Tepper, 2021) and 51.3 Ma dacitic to rhyolitic lavas and pyroclastic 372 

rocks (Taneum Formation) which overlie clastic rocks correlative with the Swauk Formation (Fig. 373 

3) (Tabor et al., 1984; Eddy et al., 2016a; Wallenbrock and Tepper, 2017).  These units represent 374 

the initiation of a magmatic belt that roughly parallels the leading edge of subducted Siletzia in 375 

the subsurface (Fig. 2) (Wells et al., 2014), and is attributed to tearing of the Farallon slab (Kant 376 

et al., 2018). 377 

The approach and collision of Siletzia is also recorded in folding and changes in 378 

paleotopography in the western belt.  Sedimentation in the Swauk basin persisted until at least 379 

ca. 50.8 Ma, the youngest MDA from stratigraphically high in the basin (Eddy et al., 2016a; 380 

Senes, 2019), but a drainage reversal from SW- to NE-flowing streams occurred at ca. 51 Ma 381 

(Eddy et al., 2016a) and may record the initial stages of collision of Siletzia at the latitude of the 382 

Swauk basin. A NW-vergent fold-and-thrust belt developed in SW Oregon in response to 383 

collision and involved Siletzia basalts, overlying Umpqua Group, and Klamath basement 384 

terranes. Unconformably overlying marine strata (Tyee Formation) demonstrate that accretion 385 

was completed between 50.5 Ma and 49 Ma at that latitude (Wells et al., 2000, 2014). In the 386 

central Washington Cascades, the Swauk Formation is folded and locally faulted under a short-387 

lived (<1.5 Myr) angular unconformity with the overlying Teanaway Formation (Foster, 1958). 388 

The Teanaway Formation includes a 49.3 Ma rhyolite near its base (Eddy et al., 2016a) and is 389 

dominated by subaerial basalts, in contrast to the marine strata in SW Oregon. Contractional 390 

structures also attributed to the accretion of Siletzia are folds in the Chuckanut Formation in 391 
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the northwestern Swauk basin (Misch, 1966; Johnson, 1984), some of the upright folds in the 392 

Skagit Gneiss Complex of the North Cascades core (Miller et al., 2016), and the Cowichan fold-393 

and-thrust belt on Vancouver Island, which is approximately the same age and has a similar 394 

northwesterly trend as the Chuckanut folds (Fig. 5) (Johnston and Acton, 2003).  395 

The magmatic lull continued in the North Cascades core (Miller et al., 2009), although 396 

minor partial melting persisted in the Skagit Gneiss Complex (Gordon et al., 2010a). The deep-397 

crustal (9-12 kbar) Swakane Gneiss in the crystalline core was probably rapidly exhumed during 398 

this interval, in part during distributed ductile shear and top-to-N to –NNE motion on the 399 

Dinkelman decollement (Fig. 3) (Paterson et al., 2004). Dextral-normal slip and associated 400 

mylonitization continued in the Foggy Dew fault zone, a southern strand of the Ross Lake fault 401 

system, and dextral displacement also occurred on the NW-striking Yalakom fault and other 402 

faults west of the Straight Creek-Fraser River fault (Fig. 5) (Miller and Bowring, 1990; Umhoefer 403 

and Schriazza, 1996). 404 

East of the Cascades core, magmatism increased with the emplacement of granitoid 405 

plutons, and dominantly metaluminous tonalites and granodiorites.  Although arc-like in 406 

mineralogy, many of these plutons have trace element traits compatible with slab-breakoff 407 

magmas (e.g., Sr/Y>10, La/YbN>10; Whalen and Hildebrand, 2019) and Sr-Nd isotopic 408 

compositions indicative of significant contributions from older crust (Tepper and Eddy, 2017). 409 

The earliest U-Pb date associated with this renewed activity is 52 Ma in central Idaho, and 410 

subsequent plutonism appears to have migrated to the SW across NE Washington (Fig. 6C) 411 

(Tepper, 2016). Metamorphism and deformation continued in the metamorphic core 412 

complexes in southern British Columbia, NE Washington, Idaho, and Montana, as did Challis-413 
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Kamloops magmatism and sedimentation in extensional basins where MDAs of locally derived 414 

sediments cluster around 50 Ma in southern British Columbia and northeastern Washington 415 

(e.g., Ewing, 1980; Suydan and Gaylord, 1997; Foster et al., 2007; Brown et al., 2012; Rubino et 416 

al., 2021). In contrast to NE Washington, no pattern of magmatism migration is seen across the 417 

Challis to Absaroka area in Idaho and Wyoming (e.g., Feeley and Cosca, 2003). The thermal 418 

peak in the Shuswap metamorphism was at ca. 53–49 Ma (Crowley et al., 2001). 419 

 Deformation in the eastern belt was dominated by roughly east-west extension, 420 

although contraction may have continued at deep levels in the Shuswap metamorphic core 421 

complex until ca. 52–49 Ma (Crowley et al., 2001; Gervais et al., 2010; Gervais and Brown, 422 

2011). The peak of extension and exhumation in the Okanogan core complex occurred at 53 – 423 

50 Ma (Brown et al., 2012). Brittle slip of uncertain sense reactivated the high-angle, ≥250-km-424 

long Pasayten fault (Fig. 3) along the eastern boundary of the Methow basin, and ended in 425 

Washington before eruption of ca. 48 Ma volcanic rocks, which overlap the fault (White, 1986).  426 

 In summary, the transition from a low-angle, transpressional subduction regime to a 427 

dextral transtensional regime was largely complete by the end of this time interval. The 428 

collision of Siletzia explains the deformation in the Swauk basin and along strike to the NW, and 429 

the southwestward migration of magmatism in NE Washington is consistent with rollback of the 430 

northern Farallon slab (Figs. 5, 6C). The slab ruptured west of the Cascades core and is marked 431 

in part by a belt of magmatism that started at the end of this time period and lasted until ca. 48 432 

Ma (Kant et al., 2018) (Fig. 6). Previous explanations for this Challis – Kamloops magmatism 433 

include a decrease in the rate of plate convergence (Constenius, 1996), passage of a slab 434 

window (Thorkelson and Taylor, 1989; Breitsprecher, et al., 2003; Ickert et al., 2009), buckling 435 
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and “sideways” slab rollback (Humphreys, 1995, 2009), and rollback and breakoff of the 436 

Farallon slab (Tepper, 2016). Slab rollback and breakoff, and slab window evolution are the 437 

most widely cited scenarios (see review by Humphreys and Grunder, 2022). 438 

49.5 – 45 Ma   439 

 The short-lived deformation episode resulting from the collision of Siletzia was followed 440 

by profound changes in the tectonic evolution of the Pacific Northwest. A new subduction zone 441 

of the Kula or Resurrection plate beneath North America was established along the west side of 442 

Siletzia during this time interval (Fig. 6) (e.g., Schmandt and Humphreys, 2011). A dextral 443 

transtensional regime dominated, and a new non-marine strike-slip basin formed next to the 444 

Cascades core (Fig. 6). A magmatic flare-up occurred in the Cascades core and in the adjacent 445 

parts of the western belt, and magmatism and extension continued in the eastern belt, but 446 

were more aerially restricted after ca. 48 Ma.   447 

In the west, the effects of the collision of Siletzia were waning by this time as 448 

magmatism ended in the southern part of Siletzia at ca. 50-49 Ma (Wells et al., 2014), and in 449 

northern Siletzia at ca. 48 Ma (Eddy et al., 2017a). The collision was followed in the Olympic 450 

Mountains (northern Siletzia) by deposition of turbidites (Blue Mountain unit) that have 451 

maximum depositional ages ranging from 47.8 to 44.7 Ma (Eddy et al., 2017a).  452 

To the east of Siletzia, magmatism attributed to slab rollback, tear, and breakoff 453 

continued until ca. 45 Ma, producing compositionally diverse volcanic and plutonic rocks that in 454 

part formed parallel to the edge of Siletzia in the subsurface and are commonly near the 455 

Straight Creek fault and its splays (Fig. 6) (Trehu et al., 1994; Kant et al., 2018).  Distinctive traits 456 
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of these rocks include their bimodal nature, with OIB affinities of the mafic lavas and crustal 457 

signatures of the silicic rocks. On the west side of the Straight Creek fault are basalt and lesser 458 

rhyolite flows interbedded with nonmarine sedimentary rocks in the Naches and Barlow Pass 459 

units (Fig. 3). East of the Straight Creek fault, the prolific Teanaway dike swarm intruded the 460 

deformed rocks of the Swauk basin (Fig. 3) (Tabor et al., 1984; Miller et al., 2022), and is 461 

interpreted to be related to the dominantly basaltic, ca. 49.3 Ma Teanaway Formation. The 462 

mafic rocks are medium-K tholeiitic basalts and basaltic andesites (Clayton, 1973; Peters and 463 

Tepper, 2006; Roepke et al., 2013), which are derived from mantle that is inferred to have been 464 

metasomatized during earlier subduction (Tepper et al., 2008). The NNE (035°) average 465 

orientation of the dikes provides the most robust evidence for initiation of right-lateral strike-466 

slip on the Straight Creek fault at ~49 Ma (e.g., Miller, et al., 2022).   467 

Starting at 49.2 Ma, the Chumstick basin formed between the right-stepping 468 

Leavenworth and Entiat strike-slip faults, directly west of the Chelan block (Evans, 1994; Eddy et 469 

al., 2016a) (Fig. 3). Abundant stratigraphic, paleocurrent, and detrital geochronologic data 470 

suggest that the basin formed during strike-slip faulting (Eddy et al., 2016a; Donaghy et al., 471 

2021). The main western subbasin formed from 49.2 to ~46.5 Ma, and fault reorganization at 472 

~46.5 - 44 Ma started inversion of the western subbasin and the formation of a narrow eastern 473 

subbasin next to the Entiat fault (Fig. 3). After this reorganization, strike-slip faulting localized 474 

on the Entiat and Straight Creek faults. The youngest (<45.9 Ma) sediments of the Chumstick 475 

Formation top the Leavenworth fault and probably correlate with the arkosic Roslyn Formation, 476 

which overlies the Teanaway Formation (Evans, 1994; Eddy et al., 2016a) (Fig. 3). 477 
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 The magmatic lull in the Cascades core ended at ~49.4 Ma, close in time to the eruption 478 

of Teanaway volcanic rocks south of the Cascades core. The ensuing short-lived (until ca. 45 479 

Ma) flare-up has the highest magmatic addition rate and the shortest duration of the three 480 

flare-up events in the North Cascades since the mid-Cretaceous. It began with the ca. 49.6 Ma 481 

Lost Peak stock, followed by two large (ca. 300 km2 each) plutons, the Cooper Mountain and 482 

Golden Horn batholiths, which intruded at 49.3-47.9 Ma and 48.5–47.7 Ma (Eddy et al., 2016b; 483 

Miller et al., 2016), respectively, across the Ross Lake fault zone and into both the Cascades 484 

core and the Methow basin (Fig. 3). These plutons and coeval variably deformed 49.4–47.2 Ma 485 

intrusions (now orthogneisses) in the Skagit Gneiss Complex are commonly granodioritic in 486 

contrast to the mainly Cretaceous tonalitic intrusions of the two older flare-ups (e.g., Misch, 487 

1966; Haugerud et al., 1991; Miller et al., 2009). The ca. 49–48 Ma intrusions also range from 488 

gabbro to granite, and include alkaline granites. Between ~47.9–46.5 Ma, magmatism in the 489 

core migrated westward from the Ross Lake fault zone. The ~46.5 Ma Duncan Hill pluton and 490 

45.5 Ma Railroad Creek pluton (Fig. 3) were the last of the large intrusions in the North 491 

Cascades (Miller et al., 2021), and on the basis of their age and location, they appear to be the 492 

youngest sizable elements related to slab rollback (Fig. 6C). The youngest magmatic rocks are 493 

ca. 44.9 Ma lineated granite sheets (Misch, 1968; Haugerud et al., 1991; Wintzer, 2012; Miller 494 

et al., 2016). εNdi values for some of the 49.3–45 Ma intrusive rocks are the least radiogenic 495 

values for North Cascades intrusions, and imply a greater crustal component than in earlier 496 

flare-ups (Matzel et al., 2008).  497 

 Extensive dike intrusion into a ≥600 km2 region of the Cascades core and adjacent rocks 498 

to the east and south began at ca. 49.3 with the Teanaway dikes and at least one other dike 499 
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swarm, and continued until ca. 45 Ma (Miller et al., 2022). The largest number of dikes intruded 500 

between ca. 49.3–47 Ma. Many of these rhyolitic to basaltic dikes overlap spatially with the 49–501 

46.5 Ma granodioritic plutons of the core.  Some of the dikes have trace element signatures of 502 

arc magmas and some are adakites; they are interpreted to be the product of melting of 503 

eclogitic lower crust in response to intrusion of mantle-derived basalts (Davidson et al., 2015).  504 

 Metamorphism during this time interval is restricted to domains in the Skagit Gneiss 505 

Complex of the Cascades core where metamorphic monazite growth continued at least locally 506 

until 46 Ma (Gordon et al., 2010a). NW-striking foliation and subhorizontal lineation formed in 507 

the Complex from ca. 49.5–45 Ma (Haugerud et al., 1991; Wintzer, 2012; Miller et al., 2016), 508 

and foliation was deformed into upright gentle to open, generally SE- or NW-plunging folds of 509 

foliation between ca. 49 Ma to 47 Ma (Miller et al., 2016). Motion of the Ross Lake fault zone 510 

ended at ca. 49 Ma, but the Entiat fault was active until at least 46.9 Ma and ended by 44.4 Ma, 511 

and the N-S-trending Straight Creek fault experienced dextral slip from ca. 49 Ma and was 512 

sealed by 35 Ma (Misch, 1966; Tabor et al., 1984; Miller and Bowring, 1990). Excision and top-513 

to-the north motion continued on the Dinkelman decollement at least until ca. 49–47 Ma 514 

(Matzel, 2004; Paterson et al., 2004). The Eocene dikes also provide information on the strain 515 

field. Their average orientation is ~035°, and the resultant extension direction (305°–125°) is 516 

oblique to the strike (~320°) of the North Cascades orogen and to the stretching lineation 517 

(average trend of 330°–150°) in the Skagit Gneiss Complex (Miller et al., 2022). Overall, these 518 

structures are compatible with the regional dextral transtensional tectonic regime.  519 

 The 49.5–45 Ma interval was marked by rapid cooling and exhumation of parts of the 520 

Cascades core. The 8–12 kbar Swakane Gneiss was in part exhumed by the Dinkelman 521 
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decollement and was at the surface in the Chumstick basin by 48.5 Ma (Tabor et al., 1987; Eddy 522 

et al., 2016a). Most of the 40Ar/39Ar and K-Ar hornblende, biotite, and muscovite cooling ages in 523 

the 7–10 kbar Skagit Gneiss Complex are ca. 50–44 Ma (Engels et al., 1976; Wernicke and Getty, 524 

1997; Tabor et al., 2003; Gordon et al., 2010b), and thermochronology indicates very rapid 525 

cooling in some areas, with rates of perhaps 100°C/m.y. at ca. 47–45 Ma (Wernicke and Getty, 526 

1997).  527 

 In the eastern belt, magmatism, sedimentation, and extension all continued during the 528 

early part of this interval, and magmatism and extension were largely waning by the end. 529 

Igneous activity was still migrating southwestward across NE Washington (Fig. 6C). In British 530 

Columbia, the >200 km2, granodioritic Needle Peak pluton intruded the Methow basin at ca. 48 531 

Ma (Monger, 1989), and Challis-Kamloops magmatism to the east had largely ended by ca. 47 532 

Ma (Ickert et al., 2009; Dostal and Jutras, 2021).  533 

 Extension and sedimentation related to the metamorphic core complexes in NE 534 

Washington and British Columbia were on the wane during this interval. Termination of 535 

sedimentation at ~48 in NE Washington was roughly coeval with the end of volcanism (Suydam 536 

and Gaylord, 1997). Mylonitization in the Okanogan Complex ended at ca. 49 Ma with cooling 537 

through 47 Ma (Kruckenberg et al., 2008). The Priest River Complex was rapidly exhumed from 538 

ca. 50–48 Ma (Doughty and Price, 2000; Stevens et al., 2016), but extension and exhumation 539 

continued through this interval in Idaho and Montana in the Bitterroot and Anaconda core 540 

complexes (Foster et al., 2007, 2010; Howlet et al., 2021). The Lewis and Clark fault zone 541 

continued to act as a boundary between the older core complexes to the north and the 542 

younger complexes to the south. 543 
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45 - 40 Ma  544 

 This interval marks the end of slab foundering and the establishment of a new north-545 

south subduction zone and arc that became Cascadia. Subduction was occurring beneath much, 546 

if not all, of Oregon and Washington by the end of this period (Fig. 7). Sedimentation occurred 547 

in the western belt, but ended in the Chumstick basin, as did Challis-Kamloops magmatism in 548 

the eastern belt. 549 

Arc magmatism began at ca. 45 Ma in southwest Washington where local basaltic 550 

andesites and andesites erupted (du Bray and John, 2011) and by 40 Ma in southwest Oregon 551 

(e.g., Darin et al., 2022). In northwestern Washington, similar volcanic rocks occur in a belt that 552 

lies west of the younger part of the Cascades arc and also includes 45 – 35 Ma granodioritic 553 

intrusions, and abundant 45–40 Ma tuffs occur in the Puget Group (Fig. 3) (Vine, 1969; Tabor et 554 

al., 1993, 2000; Dragovich et al., 2009, 2011, 2013, 2016; MacDonald et al., 2013). Within this 555 

belt the oldest rocks appear to be at the northern end, but there is a lack of precise dates for 556 

units in the south. Local dacite and rhyolite domes (Wenatchee domes) intruded the Chumstick 557 

basin to the east at ca. 44.5 Ma (Gilmour, 2012; Eddy et al., 2017b) and may be the youngest 558 

intrusive rocks related to slab rollback and/or breakoff (White et al., 2021). In SW Washington 559 

and Oregon, the Tillamook magmatic episode occurred from 42 to 34 Ma (Parker et al., 2010; 560 

Chan et al., 2012; Wells et al., 2014).  This episode included volcanic rocks (Tillamook Volcanics, 561 

Yachats basalt, and Grays River Volcanics) in NW Oregon and SW Washington, which are 562 

interpreted by some workers to be related to the Yellowstone hotspot, and were synchronous 563 

with margin-parallel extension (e.g., Wells et al., 2014; Camp and Wells, 2021). 564 
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 Sedimentation in the western belt includes both deep and shallow marine deposits on 565 

the Olympic Peninsula (Einarsen, 1987; Babcock et al., 1994). Inboard, in the Puget Sound 566 

region, the deltaic to shallow marine middle(?) to late Eocene Puget Group (Fig. 3; Vine, 1969; 567 

Buckovic, 1979; Johnson and O’Connor, 1994) was deposited on Siletzia on the west and the 568 

older rocks of the western North Cascades on the east. The Puget Sound basin likely formed in 569 

the forearc to the early Cascadia arc.  570 

 Sedimentation ended in the Chumstick basin, but continued in the overlying, ca. 44–42 571 

Ma arkosic Deadhorse Canyon unit and the Roslyn Formation (Evans, 1994; Eddy et al., 2016a). 572 

(Fig. 3). The latter, which rests on the Teanaway Formation south of the Cascades core, may be 573 

the easternmost part of the regional depositional system that included the Puget Group.  574 

 Magmatism ceased in the Cascades core at ca. 44.9 Ma and ductile deformation in the 575 

Skagit Gneiss Complex had also ended at ca. 45 Ma (Miller et al., 2016). Dextral strike slip ended 576 

between 46.9 Ma and 44.5 Ma on the Entiat fault (Evans, 1994; Eddy et al., 2016a) and 577 

continued to a later time on the Straight Creek fault, which is intruded by a 34 Ma pluton (e.g., 578 

Tabor et al., 2003). 579 

 East of the Cascades core, Challis magmatism terminated at ca. 43 Ma (Gaschnig et al., 580 

2010). Extension and cooling of the Bitterroot and Anaconda core complexes continued until ca. 581 

39 Ma, as did sedimentation (Foster et al., 2010; Howlett et al., 2021). Motion on the Lewis and 582 

Clark fault zone presumably ended as well. 583 

  584 

DISCUSSION 585 
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 We emphasized in the introduction that the Pacific Northwest in the Paleogene is an 586 

excellent place to examine a variety of processes resulting from ridge-trench interaction and 587 

oceanic plateau collision. In the following, we explore the upper-plate response shortly before, 588 

during, and after the Farallon- Kula or Farallon-Resurrection ridge encountered the trench 589 

bordering North America near Vancouver Island, and the consequences of the collision of 590 

Siletzia. 591 

Relation of the 60 – 50 Ma Magmatic Lull to Slab Dynamics 592 

 It is likely that the end of long-lived arc magmatism in the Cascades core at ca. 60 Ma 593 

and the overall low volume of magmatism from ca. 60–50 Ma eastward to the Idaho batholith 594 

resulted from flat-slab subduction. Moreover, magmatism in the Idaho batholith during this 595 

interval probably resulted from crustal thickening and not subduction-related processes 596 

(Gaschnig et al., 2010). The shallowing of the slab may be attributable to the rapid subduction 597 

of young buoyant lithosphere, as also proposed by others for the greater region (e.g., 598 

Thorkelson and Taylor, 1989; Haeussler et al., 2003). Strong suction in the mantle wedge may 599 

have played a role, as proposed for the Laramide belt (Humphreys, 2009; O’Driscoll et al., 600 

2009). Note that the Laramide belt in northern Wyoming was directly east of Siletzia at 55 Ma 601 

in our reconstruction (Fig. 4).  602 

 The northern boundary of the flat slab is inferred to be northeast of central Vancouver 603 

Island (Fig. 4) where there is a transition in pluton ages within the Coast Mountains batholith. 604 

The southern Coast Mountains have a 60 – 50 Ma magmatic lull much like the Cascades core of 605 

this study, whereas to the north, a high magma addition event attributed to arc magmatism 606 
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occurred from 61–48 Ma (Cecil et al., 2018). A projection of the triple junction off central 607 

Vancouver Island through the boundary in the Coast Mountains to the NE may run to the 608 

northern edge of the Shuswap Complex at this time, which potentially explains the location of 609 

the belt of major extension along the eastern edge of the flat slab from British Columbia to 610 

southern Idaho and western Montana. Alternatively, the flat slab may have underlain the 611 

region of the magmatic lull, but just south of most of the Shuswap to Okanogan extensional 612 

belt (Fig. 4), in which case the latter would be kinematically tied to the Tintina fault – Rocky 613 

Mountain trench (Price and Carmichael, 1986) and magmatism would occur in a slab window 614 

(e.g., Breitsprecher et al., 2003). Seismic tomography and reconstructions of plate motions in 615 

the NE Pacific also suggest a major boundary inboard from Vancouver Island (Fuston and Wu, 616 

2021). Plate motion models indicate rapid northward rates of either the Kula or Resurrection 617 

plates from ca. 65–50 Ma that were highly oblique to the North American plate boundary 618 

(Engebretson et al. 1985; Matthews et al., 2016), and this may have produced a large slab 619 

window under western Canada (Fuston and Wu, 2021; cf. Madsen et al., 2006) north of the 620 

proposed flat slab.  621 

The magmatic lull and flat slab extended to the south of the crystalline core of the North 622 

Cascades, which on the basis of known strike-slip faults (Wyld et al., 2006; this study) was at the 623 

latitude of current central Oregon to the Oregon – Washington border at ca. 60–50 Ma. Post-50 624 

Ma volcanic and sedimentary strata obscure relations to the south and east of the Wenatchee 625 

block; in our reconstruction at 55 Ma (Fig. 4), and projecting faulting back to 60 Ma, the North 626 

Cascades would have lain near the NW edge of the Klamath – Blue Mountains terranes and the 627 
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flat slab beneath the Pacific Northwest would be continuous with the well-established Laramide 628 

flat slab to the south (see Tikoff et al. [2023] for an alternative hypothesis).   629 

 630 

Consequences of Collision of Siletzia  631 

 The inferred position of the intersection of the Farallon – Resurrection/Kula ridge with 632 

the trench is complicated by the eruption of Siletzia basalts and the construction of an oceanic 633 

plateau above a hot spot mantle plume (e.g., Wells et al., 2014). In the region of the 634 

Washington Cascades, major changes occurred in the upper plate of the system due to collision 635 

of this oceanic plateau.  636 

 Notable aspects of Siletzia collision are the short duration of the associated 637 

deformation, its profound inboard influence, and the subsequent change in plate boundary 638 

stresses along the newly established North America margin. The most important structural 639 

response was the brief shortening that migrated from southwest Oregon to central Washington 640 

and Vancouver Island during the 51 – 49 Ma interval (Fig. 5) (Wells et al., 2014). In the Swauk 641 

basin, folding and formation of an angular unconformity is tightly bracketed between ~50.8 Ma 642 

and 49.3 Ma (Eddy et al., 2016a). The reversal of drainage in the Swauk basin at ~51 Ma is 643 

probably one of the first signs of Siletzia collision at that latitude (Eddy et al., 2016a). Younger 644 

upright folding continued until ca. 48 Ma at deeper crustal levels in the Skagit Gneiss Complex 645 

of the Chelan block of the Cascades core ~175 km inboard of Siletzia (Miller et al., 2016). 646 

Folding only bracketed between ca. 65 Ma and 48 Ma (Kriens et al., 1995) in the Methow basin 647 

farther to the northeast may have been induced by collision. In contrast, in the eastern belt, 648 
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≥235 km inboard of Siletzia, extension in most of the core complexes continued unabated.  649 

Peak metamorphism of the voluminous Shuswap Complex and several other core complexes at 650 

~53–49 Ma was roughly coincident with the proposed flat slab and Siletzia collision. One 651 

explanation for the widespread eastern extension and timing of magmatism and 652 

metamorphism may be the rollback of the flat slab, which we propose was underway in 653 

Washington by ca. 52 Ma (Figs. 5, 6C).  654 

 In the western belt, sedimentation continued in the early stages of collision after the 655 

drainage reversal in the Swauk basin at 51 Ma, but presumably ended during folding and 656 

certainly before the Swauk-Teanaway unconformity and eruption of Teanaway volcanic rocks at 657 

49.3 Ma. Note that the youngest Swauk Formation strata are in lake and fluvial facies in the far 658 

eastern end of the Swauk basin near the Leavenworth fault (Tabor et al., 1982; Senes, 2019), 659 

and their position may be related to an eastward migration of late basin subsidence related to 660 

the collision. In the eastern belt, sedimentation continued in the supra-detachment extensional 661 

basins and grabens until ca. 48 Ma, just after this slab is inferred to have rolled back to the SW. 662 

 The collision of Siletzia with the continental margin influenced magmatism much farther 663 

eastward than it influenced deformation and sedimentation. We attribute this to the shut off of 664 

northeastward flat subduction caused by the collision-related plate reorganization (e.g., 665 

Schmandt and Humphreys, 2011). Magmatism migrated to the southwest across NE 666 

Washington and reached the Golden Horn batholith at the northeast margin of the Cascades 667 

core at ca. 48.3 Ma (Figs. 3, 6C). This migration has been interpreted to result from slab rollback 668 

(Tepper, 2016) and breakoff, as the Farallon plate detached and formed the subvertical “slab 669 
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curtain” currently imaged seismically beneath Idaho and eastern Washington (Schmandt and 670 

Humphreys, 2011).  671 

 672 

What Drove the 49.3 Ma to 45.5 Ma Magmatic Flare-up?  673 

 Plutons in the North Cascades crystalline core and dike swarms across the study area 674 

record a major magmatic flare-up at 49.3–45.5 Ma (Miller et al., 2009), shortly after Siletzia 675 

collision. This flare-up is concentrated in the Chelan block of the core, but also includes plutons 676 

that intruded the Methow basin directly east and northward of the core for ca. 70 km into 677 

Canada (e.g., Needle Peak pluton), volcanic rocks on the west and south sides of the core, and 678 

voluminous dike swarms (Figs. 3, 6) (e.g., Tabor et al., 1984; Eddy et al., 2016b; Miller et al., 679 

2016, 2022). The Eocene flare-up is marked by the highest magmatic addition rate and shortest 680 

duration of any of the magmatic events in the North Cascades.  681 

The factors that control initiation and termination of magmatic ‘flare-ups’, such as the 682 

Eocene event, are controversial (e.g., Chapman et al., 2021b). Isotopic data from intrusions 683 

emplaced during flare-ups in some arcs imply increased crustal melting and have led to the 684 

orogenic cycle hypothesis in which flare-ups are driven by melting of fertile backarc crustal 685 

material thrust into the deep levels of an arc or underlying mantle (e.g., Ducea and Barton, 686 

2007; DeCelles et al., 2009). Others have argued that voluminous melting results dominantly 687 

from processes external to the arc, including slab break-off and ridge subduction, and largely 688 

involves mantle-derived melts (e.g., Decker et al., 2017; Schwartz et al., 2017; Ardila et al., 689 

2019), which in turn can drive an increase of partial melting of the crust. 690 
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The Eocene Cascades core plutons have been considered the latest pulse of arc 691 

magmatism in the North Cascades by earlier workers (e.g., Matzel et al., 2008; Miller et al., 692 

2009), and magmatism to the east in the Challis-Kamloops belt has been interpreted to occur 693 

within a slab window (e.g., Thorkelson and Taylor, 1989; Breitsprecher et al., 2003). In our view, 694 

the flare-up is related to the Farallon slab rollback and breakoff. At ~49.5 Ma, the southwest-695 

migrating rollback magmatism had reached the northeast margin of the Cascades core (Tepper, 696 

2016) and the edge of a large slab window may have lain nearby to the north (Fig. 6). The 697 

accretion of Siletzia and termination of subduction led the slab to break off, as shown in part by 698 

the belt of bimodal volcanic rocks lacking an arc signature near the Straight Creek fault (Figs. 3, 699 

6, 9) (Kant et al., 2018). The Eocene age Cascades core plutons have a wider isotopic range than 700 

earlier plutons (Matzel et al., 2008), but their geochemistry does not permit distinguishing 701 

between an arc or slab break-off origin as the crustal component of melt during break-off 702 

would be mafic lower crust of the Late Cretaceous arc. Dextral strike-slip, slab rollback, and 703 

breakoff were concentrated in and near the Cascades core, and we infer that the slab was 704 

ripped apart leading to upwelling of asthenospheric mantle and decompression melting (Fig. 9).  705 

A speculative additional interpretation is that the breakoff-related magmatism 706 

continued to the southeast beneath the Columbia River Basalt Group in the Pasco basin to the 707 

Clarno Formation of NE Oregon (Figs. 2, 6). The Pasco basin is on strike with the Eocene 708 

Chumstick basin and seismic velocities suggest that beneath the Miocene basalt is a thick, 709 

asymmetric sedimentary basin of probable Eocene age and an associated mafic underplate 710 

(Catchings and Mooney, 1988; Gao et al., 2011). These mafic rocks may be similar to the 711 

Teanaway Basalt of the flare-up. The Clarno Formation is not well dated, but available ages 712 
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suggest that the volcanic rocks erupted starting at ca. 53–50 Ma (Bestland et al., 2002). Note 713 

that in our reconstruction for 48 Ma the Clarno area is about 100 km SE of the North Cascades 714 

flare-up and the western breakoff belt west of the Straight Creek fault would have been about 715 

40–50 km closer to the Clarno at 50 Ma. If the Siletzia terrane lay on a small microplate within 716 

the shrinking northern Farallon plate as we show (Fig. 6), then the southeast edge of the slab 717 

that rolled back and broke off may have been near the Clarno volcanics (cf. Humphreys, 2009).  718 

 719 

Upper Plate Deformation After Siletzia Collision 720 

 The ca. 49–45 Ma structural record west of the Fraser River-Straight Creek fault is 721 

largely restricted to high-angle NW-striking faults and associated local folds, whereas in the 722 

central and eastern belts a wide array of structures can be used to evaluate deformation. 723 

Eocene dikes, dextral strike-slip faults, basins, and ductile structures in the Cascades are broadly 724 

coeval with dikes, faults bounding non-marine basins, and ductile fabrics in metamorphic core 725 

complexes in NE Washington and southern British Columbia (Fig. 6) (e.g., Ewing, 1980; Parrish 726 

et al., 1988; Eddy et al., 2016a; Miller et al., 2016). Dikes in the eastern belt are not well dated, 727 

but most K-Ar dates from volcanic rocks in NE Washington range between 51–48 Ma (Pearson 728 

and Obradovich, 1977), and thus overlap temporally with the older (49.3–47.5 Ma) dikes in the 729 

Cascades and the magmatic flare-up. Dikes intruding the Kettle metamorphic core complex, 730 

~140 km east of the North Cascades, strike ~012°–022° (McCarley Holder et al., 1990; their Fig 731 

1). These dikes are subparallel to the normal faults that separate the Kettle and Okanogan core 732 

complexes from Eocene grabens (Keller, Republic, and Toroda), which strike 008–020°. Farther 733 

east, ENE-WSW (~075°-255°) brittle slip occurred on the Newport fault, which is the upper 734 
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boundary of the Priest River Complex (Harms and Price, 1992), and east and south of the Lewis 735 

and Clark fault zone, slip on the Bitterroot and Anaconda detachments is top-to-the-east-736 

southeast (~100–110°) (Kalakay et al., 2003; Foster et al., 2007).  Brittle extension directions 737 

from the dikes and faults bounding the grabens suggest that they are oblique (ca. 15°–50° 738 

counter clockwise) to those of the voluminous N–NE-striking (average of 035°), ~49.3–47.5 Ma 739 

dikes in the Cascades. 740 

 A major difference between faults in the eastern belt and those in the western and 741 

central belts is that the eastern faults are apparently purely dip slip, whereas faults (Ross Lake, 742 

Entiat, Leavenworth, Straight Creek) in the central and western belts are dextral strike slip, and 743 

most have a subordinate component of normal slip. Dextral slip does occur to the east on the 744 

Lewis and Clark fault zone (Figs. 2, 6), but this structure strikes ~E-W and transfers slip between 745 

the Anaconda, Bitterroot, and Priest River core complexes (e.g., Foster, et al., 2007). The 746 

combination of dextral strike-slip faults and dike swarms of the Cascades core region is most 747 

compatible with a N-S dextral shear and related WNW – ESE extension.  748 

 Eocene ductile stretching in mylonites in core complexes ranges from ~105–285° in the 749 

Bitterroot and Anaconda complexes in Montana (Foster et al. 2007), to 074-254° in the Priest 750 

River Complex (Harms and Price, 1992; Doughty and Price, 1999) near the Washington – Idaho 751 

border, to E-W in the Kettle Complex (Rhodes and Cheney (1981), to W-NW – E-SE (~295-115°) 752 

in the Okanogan Complex (Kruckenberg, 2008; Brown et al., 2012) ~ 40 km east of the Cascades 753 

core. Broadly coeval, subhorizontal Eocene ductile stretching in the North Cascades is ~330 - 754 

150° in the Skagit Gneiss Complex to close to N-S in the Swakane Gneiss. Thus, ductile extension 755 

directions rotate progressively clockwise by ~75° from east to west. The sense of rotation is the 756 
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same, but the magnitude of rotation is greater, then that of the upper-crustal structures.   757 

 Rotation of extension directions fits with the progressively greater influence of dextral 758 

shear closer to the plate margin in response to the plate reorganization at ~49.5 Ma after 759 

Siletzia collision. Extension and transtension led to orogenic collapse in the core complexes 760 

(e.g., Price and Carmichael, 1986; Parrish et al., 1988; Vanderhaege and Teyssier, 2001), 761 

whereas strike slip occurred to the west on the faults bounding and cutting the North Cascades 762 

core.   763 

 764 

Eocene Global Plate Reorganization  765 

 The dramatic tectonic transitions in the Pacific Northwest region at ca. 52–49 Ma 766 

coincide with a fundamental plate reorganization in the Pacific Basin and a global change in 767 

plate vectors at ~53–47 Ma (e.g., Whittaker et al., 2007; O’Connor et al., 2013; Seton et al., 768 

2015). This plate reorganization in the Pacific may have been driven by subduction of the 769 

Izanagi-Pacific ridge at ca. 60–46 Ma (Wu and Wu, 2019), with the ensuing initiation of 770 

subduction in the Tonga-Kermedec and Izu-Bonin-Mariana system occurring at ca. 53–50 Ma 771 

(Sharp and Clague, 2006; Whittaker et al., 2007a; Tarduno et al., 2009). The ~50 Ma bend in the 772 

Hawaiian –Emperor seamount chain also coincides with a change in Pacific plate motion and 773 

Australian-Antarctic plate reorganization at that time (Sharp and Clague, 2006; Whittaker et al., 774 

2007). It has been suggested that Pacific – Kula plate spreading also changed at ca. 53.3 Ma to 775 

43.8 Ma (Lonsdale, 1988), and that Kula – North America relative motion became more 776 

northerly and faster at 57 Ma (Doubrovine and Tarduno, 2008). Other major global events 777 

roughly coeval with the fundamental changes in the Pacific Northwest region include initiation 778 
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of the Aleutian arc and the dramatic slowing of Greater India at ca. 50 Ma resulting from 779 

collision with Asia (e.g., Copley et al., 2010; van Hinsbergen et al., 2011). 780 

 It appears that the significant changes in the tectonics of the Pacific Northwest at 52 – 781 

49 Ma are the consequence of both a global plate reorganization and the regional collision of 782 

the ridge-centered Siletzia oceanic plateau. The global plate changes resulted in faster and 783 

perhaps more northerly relative plate motion in the Pacific Northwest, which in turn resulted in 784 

the formation of the new N-S- striking strike-slip Straight Creek – Fraser River fault. However, 785 

most of the complex changes summarized here are the result of the profound changes due to 786 

the Siletzia collision and westward stepping of the subduction zone, and triple-junction 787 

migration during the 60 – 40 Ma interval. 788 
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Figure. 1. Simple plate reconstruction models of the NE Pacific at 60 Ma and 52 Ma showing 1438 

locations of triple junctions. A. Kula – Farallon – North America triple junction. Note the 1439 

southward sweep of the Kula – Farallon Ridge from 60 Ma to 52 Ma in this model (e.g., Bradley 1440 

et al, 2003). B. Two triple junctions result from the hypothetical Resurrection plate (e.g., 1441 

Hauessler et al., 2003). Note that in either model there is a triple junction near central to 1442 

southern Vancouver Island at ca. 52 Ma (e.g., Breitsprecher et al., 2003) and that the Kula ridge 1443 
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Thorkelson and Taylor (1989). The hypothetical Orcas plate model is on a coarser scale and is 1445 
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Sanak-Baranof is a belt of near-trench intrusions, which provide part of the evidence of a ridge 1447 

interacting with a trench (e.g., Bradley et al., 2003).  1448 
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Figure 2. Generalized tectonic map of Paleogene rock types, structures, and tectonics of the 1450 

greater Pacific Northwest region considered in this study. Note the location of Siletzia (including 1451 

subsurface), near-trench intrusions, major dextral strike-slip faults, basins, magmatic rocks, and 1452 

metamorphic core complexes and bounding normal faults. Western, Central, and Eastern belts 1453 

are subdivisions used in text. An = Anaconda core complex; Br = Bitterroot lobe of Idaho 1454 

batholith; Cb = Chelan block of North Cascades crystalline core; Csz = Coast shear zone; Ef = 1455 

Entiat fault; Ff = Fraser fault; K = Kettle core complex; LCfz = Lewis and Clark fault zone; Ok = 1456 

Okanogan core complex; P = Priest River core complex; Pf = Pasayten fault; RLf = Ross Lake 1457 

fault; SCf = Straight Creek fault; Sh = Shuswap core complex; V = Valhalla complex. VI = 1458 

Vancouver Island; Wb = Wenatchee block of North Cascades crystalline core; Yf = Yalakom fault. 1459 

Box shows location of Fig. 3. States and Provinces: BC = British Columbia; ID = Idaho; MT = 1460 

Montana; OR = Oregon; WA = Washington.  1461 

 1462 

Figure 3. Simplified geologic map of central and northern Washington State, and adjacent 1463 

southern British Columbia (modified from Eddy et al., 2016a). BP=Barlow Pass Formation; 1464 

Ccb=Chilliwack batholith; CHK=Chuckanut Formation; CM=Cooper Mountain pluton; CP=Castle 1465 

Peak stock; CRb=Columbia River Basalt Group; DD=Dinkelman decollement; DH=Duncan Hill 1466 

pluton; Ef=Entiat fault; Epc=Eagle Plutonic Complex; FDfz = Foggy Dew fault zone; FRfz=Frazer 1467 

River fault zone; GH=Golden Horn batholith; GPsz=Gabriel Peak shear zone; HZf=Hozameen 1468 

fault; Lfz=Leavenworth fault zone; LP=Lost Peak stock; MO=Mount Outram pluton; 1469 

MP=Monument Peak stock; MPS=Mount Pilchuck stock; N=Naches Formation; NP=Needle Peak 1470 

pluton; NWCts=Northwest Cascades thrust system; OP=Oval Peak pluton; Orb=Okanogan Range 1471 
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batholith; PC=Pipestone Canyon Formation; Pf=Pasayten fault; PG=Puget Group; Pv=Princeton 1472 

volcanics; R=Roslyn Formation; RC=Railroad Creek pluton; RLf=Ross Lake fault; SW=Swauk 1473 

Formation; SWG=Swakane Gneiss; T=Teanaway Formation; WEMB=Western and eastern 1474 

mélange belts; Yi=Yale intrusions. 1475 

 1476 

Figure 4. Reconstruction map at ca. 55 Ma based on features in Figures 2 and 3 (see text for 1477 

details). Note that the western belt has been offset 150 km to the south relative to the central 1478 

zone and >300 km to the south relative to the eastern belt. The ridge which Siletzia formed on 1479 

is near central to southern Vancouver Island and the Swauk basin has formed inboard of Siletzia 1480 

in the western belt. There is a lull in magmatism in the southern part of the Coast Mountains 1481 

and North Cascades arc. B. Proposed plate tectonic setting at ca. 55 Ma based on features in 1482 

Figures 2 and 3. Note the position of major faults (both active and non-active) in gray for 1483 

reference. Br = Bitterroot lobe of Idaho batholith; Cb = Chelan block of North Cascades 1484 

crystalline core; Csz = Coast shear zone; Ef = Entiat fault; K = Kettle core complex; Ok = 1485 

Okanogan core complex; P = Priest River core complex; Pf = Pasayten fault; RLf = Ross Lake 1486 

fault; Sh = Shuswap core complex; V = Valhalla complex; VI = Vancouver Island; Wb = 1487 

Wenatchee block of North Cascades crystalline core; Yf = Yalakom fault. States and Provinces: 1488 

BC = British Columbia; MT = Montana; WA = Washington.   1489 

 1490 

Figure 5. A. Reconstruction map at ca. 51 Ma based on features in Figures 2 and 3. By 51 Ma, 1491 

the ridge has reached Vancouver Island and Siletzia has collided with the continental margin. 1492 
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The Swauk basin has begun to invert and Challis-Kamloops magmatism is active, as are core 1493 

complexes and extensional basins in the eastern zone. B. Proposed plate tectonic setting. An = 1494 

Anaconda core complex; Br = Bitterroot core complex; Cb = Chelan block of North Cascades 1495 

crystalline core; Csz = Coast shear zone; Ef = Entiat fault; K = Kettle core complex; LCfz = Lewis 1496 

and Clark fault zone; Ok = Okanogan core complex; P = Priest River core complex; Pf = Pasayten 1497 

fault; RLf = Ross Lake fault; Sh = Shuswap core complex; V = Valhalla complex; VI = Vancouver 1498 

Island; Wb = Wenatchee block of North Cascades crystalline core; Yf = Yalakom fault. States and 1499 

Provinces: BC = British Columbia; CA = California; ID = Idaho; MT = Montana; NV = Nevada; UT = 1500 

Utah; WA = Washington. 1501 

 1502 

Figure 6. A. Reconstruction map at ca. 48 Ma based on features in Figures 2 and 3. The 1503 

subduction zone has shifted outboard of Siletzia. Some of the dextral strike-slip faults in the 1504 

North Cascades have accelerated or initiated, and major dike swarms intruded in the central 1505 

and northern Washington Cascades coincident with a magmatic flare-up. Challis-Kamloops 1506 

magmatism continued, but is beginning to wane, as is extension associated with core 1507 

complexes. B. Proposed plate tectonic setting. The approximate location of the idealized slab 1508 

window assumes that the Farallon plate was moving NE and the Kula-Farallon ridge intersected 1509 

the continental margin as shown. C. Eocene magmatism across NE to north-central Washington 1510 

and the pattern of inferred rollback magmatism to the southwest are shown. Filled circles are 1511 

localities of U-Pb zircon ages of plutonic rocks. Heavy dashed lines are contours of the U-Pb 1512 

zircon ages (references cited in text).  An = Anaconda core complex; Br = Bitterroot core 1513 

complex; Cb = Chelan block of North Cascades crystalline core; Chb = Chumstick basin; Csz = 1514 
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Coast shear zone; Ef = Entiat fault; Fa = Farallon plate; Ff = Fraser fault; K = Kettle core complex; 1515 

LCfz = Lewis and Clark fault zone; Ok = Okanogan core complex; P = Priest River core complex; 1516 

Pab = Pasco basin; Pf = Pasayten fault; RLf = Ross Lake fault; SCf = Straight Creek fault; Sh = 1517 

Shuswap core complex; V = Valhalla complex; VI = Vancouver Island; Wb = Wenatchee block of 1518 

North Cascades crystalline core. States and Provinces: BC = British Columbia; ID = Idaho; MT = 1519 

Montana; NV = Nevada; UT = Utah; WA = Washington. 1520 

 1521 

Figure 7. Reconstruction map and proposed plate tectonic setting at ca. 44–40 Ma based on 1522 

features in Figures 2 and 3. The ancestral Cascades arc (“Cascadia”) has initiated, scattered 1523 

basins extend from the western to eastern belts, and magmatism has ended in the North 1524 

Cascades and almost all of the Challis-Kamloops belt. The Farallon – Pacific ridge is migrating to 1525 

the northwest relative to North America. Ff = Fraser River fault; LCfz = Lewis and Clark fault 1526 

zone; PG = Puget Group; Rb = Roslyn basin; SCf = Straight Creek fault. VI = Vancouver Island; Yf 1527 

= Yalakom fault. States and Provinces: BC = British Columbia; ID = Idaho; MT = Montana; OR = 1528 

Oregon; WA = Washington. 1529 

 1530 

Figure 8. Summary of timing of major events described in the text. Within the magmatism, 1531 

sedimentation and deformation panels, features are generally arranged from west (left) to east 1532 

(right). Arrows designate where processes began before 60 Ma or ended after 40 Ma. 1533 

 1534 
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Figure 9. Tectonic model for 49.5–45 Ma magmatic flare-up in the Washington Cascades. The 1535 

star schematically shows the location of the northern Washington Cascades where the slab has 1536 

broken, south of the postulated slab window to the north. See text for explanation. 1537 
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TABLE 1. STRIKE-SLIP FAULT OFFSETS ACROSS WASHINGTON CASCADES

FAULT OFFSETS  KM
70-60 Ma 60 - 50 Ma 50 - 45 Ma 45 - 40 Ma 40 - 35 Ma TOTALS

Straight Creek fault 50 65 35 150
Leavenworth fault 30 30
Entiat fault 10 20 30
Ross Lake - Hozameen - 
Foggy Dew faults

10 60 45 10 115

TOTAL OFFSET 10 60 135 95 35 325



We appreciate the thoughtful and constructive comments (in italics below) by the reviewers. Our 
responses directly follows each of the comments. 

Response to Comments by Gene Humphreys (Reviewer 1) 

Reviewer #1 (Comments to the Author): 

This was a well written and organized paper that was easy to read. More important, it is a thoughtful 
and comprehensive synthesis of a complex area. it represents an enormous amount of previous research 
that has been brought together by people who understand the geology and the geological relations 
better than anyone, and who also have a geographically broad perspective within which to place the 
North Cascades. The area is important to the making of the PNW, and to observations bearing on ridge-
continent interaction and terrane accretion. 

Practically speaking, the compilation of observational support for a PNW history will be useful to many, 
and their synthesis of the tectonic history through the use of tectonic reconstructions provides a good 
reference model for the area. 

======================= 

Detailed comments for the authors to consider- 

53. end of line needs a word or to two to make sense. 

“Coast Mountains” added to clarify wording. 

 

58-61 & 98-100. Another possibility that has been suggested by the Muller and Sigloch groups is what 
they call the Orcas plate (Clennett et al., GGG, 2020). I don't know what to make of their models; while 
there seem to be clear errors when looking at a local level of their model, the arguments for a different 
plate tectonic setting in the NE Pacific basin (based on mantle tomography images of ocean slab) 
demand a different plate configuration and history. 

We don’t explore the implications of this recent model in detail, but now refer to the Orcas plate in the 
introduction (line 59) and Clennett et al. (2020) is cited. The potential Orcas plate is also referred to on 
lines 104, 110, and 119 of the text and in the caption to Fig. 1. 

 

95. First paragraph of Plate Tectonic Setting. What's the point? And missing is anything about the 
transport of Baja/BC, which is an important point for the North Cascades. Also, since strongly oblique 
subduction is required, the subducting plate is more oblique that the Farallon plate. The plate subducting 
beneath the North Cascades region must be the Kula, Resurrection, Orcas, or whatever plate is north of 
Farallon. (I think a lot is not known about what was happening west of North America north of the 
Farallon plate, but the important thing is that a spreading center defines the northern limit of the 
Farallon plate.). 

Reviewer 2 also commented on the transport of Baja BC in his second and third general comments. In 
response to these comments, we have made our most extensive edits in the sections on “Plate Tectonic 
Setting” (lines 97-105) and “Restoration of Strike-Slip Faults” (lines 192-201). For the plate tectonic 



setting we now state that the northern boundary of the Farallon plate was a ridge, regardless of 
whether the northern plate was the Kula, Resurrection, or Orcas plates, and added a phrase that 
emphasized the motion of the northern plate was more oblique than that of the Farallon plate relative 
to N.A. 

“…northward translation of the Washington Cascades may have been rapid as the southern part of the 
Insular superterrane (the Baja BC hypothesis; e.g., Cowan et al., 1997; Umhoefer and Blakey, 2006). 
Relative to North America, motion of the Farallon plate was to the NE to ENE, and motion of the Kula 
(Resurrection or Orcas?) plate was to the N to NNE, and thus more oblique than that of the Farallon 
plate. Both oceanic plates were moving rapidly (50 – 150 km/Myr) during this time (e.g., Engebretson et 
al., 1985; Doubrovine and Tarduno, 2008; Wright et al., 2015; Fuston and Wu, 2021).” 

The paleomagnetic data indicating major dextral translation is addressed more extensively in the section 
on strike-slip offsets (lines 192 to 201) – see response to Reviewer #2, general comment #3 for more 
detail 

 

111. To state "One explanation" is too weak, considering the abundance of different observations that 
support Well's basic interpretation. 

Replaced “one explanation for this feature is that” with “probably is.” 

 

135. Which rocks in Fig. 3 are being referred to? 

The Northwest Cascades system is labelled on Fig. 3., but to clarify we have slightly modified the text so 
that it reads “Paleozoic and Mesozoic oceanic and island arc rocks and overlapping Jura-Cretaceous 
marine clastic rocks, which were deformed in the mid-Cretaceous Northwest Cascades thrust system 
(shown as a single Cretaceous unit on Fig. 3). 

 

137. It should be "which are." 

With the comma after “which”, we think that the use of the singular for “mélange belt” is proper? 

 

147, 156, 167, 172. Which rocks in Fig. 3 are being referred to? It's hard to go from the text to Fig. 3. 

All of the features on these lines are on Fig. 3 and we are not quite certain on how to clarify this figure. 
We made the following additions to help clarify locations. We did add some words to help guide the 
reader and added an abbreviation to Fig. 3. 

Line 142, … Northwest Cascades thrust system “(shown as a single Cretaceous unit on Fig. 3)” 

For line 147, we added “of the central belt”.  

For line 167, we added “of the western belt” to help the reader find these features on Fig. 3.  



For line 172,” Hzf” was added along the southern part of the Hozameen fault in Fig. 3, which 
compliments the label already present on the northern part. 

 

200-567 'PALEOGENE TECTONIC HISTORY.' A thorough presentation of the relevant observations. I 
learned a lot. 

582-83. I don't know why the approach of Siletzia would help flatten the Farallon slab. I could believe 
that some of Siletzia that subducted north of the suture on southern Vancouver Island or east of the 
Crescent formation could provide some local buoyancy. Or that the flat Farallon beneath Wyoming 
helped hold up the adjacent Farallon. 

This material has been deleted. We have also shortened the subsequent text and added a reference to 
the Laramide. “The shallowing of the slab may be attributable to the rapid subduction of young buoyant 
lithosphere. Strong suction in the mantle wedge may have played a role, as proposed for the Laramide 
belt (Humphreys, 2009; O’Driscoll et al., 2009). Note that the Laramide belt in northern Wyoming was 
directly east of Siletzia at 55 Ma in our reconstruction (Fig. 4).” 

 

585-89. I thought Schellart's idea is that a wide slab acts like a parachute. But since about 85 Ma, the 
Farallon's northern end (beneath western U.S.) is defined by a ridge, and would not be parachute like. 
Nonetheless, I think the important thing is that the geological observations support the presence of a 
flat-slab beneath the PNW at this time. 

Our interpretation of the wide slab and shallowing has been deleted in response to Humphreys’ 
comment. 

 

649. Why does the approach of Siletzia influence magmatism? I can imagine this if Siletzia extended 
beyond the boundaries of what we know today, and that this area was being subducted. I suspect this 
was likely. It would be remarkable if the entirety of Siletzia accreted, as though subduction stopped at 
the first encounter of Siletzia with the subduction zone. 

We deleted “approach of” following the reviewer’s comment.  

 

677-699. As I understand it, the North Cascades basins trend into the Pasco basin area, which was very 
volcanically active at this time (Catchings and Mooney, 1988). This supports the idea that the flareup 
was not simply arc related, but related to the removal of the Farallon flat slab in some fashion. 

We have added the Pasco basin area to our interpretation (lines 707-712) and consulted with the 
reviewer (Gene Humphreys) to make certain we understood his comment. 

“A speculative additional interpretation is that the breakoff-related magmatism continued to the 
southeast beneath the Columbia River Basalt Group in the Pasco basin to the Clarno Formation of NE 
Oregon (Figs. 2, 6). The Pasco basin is on strike with the Eocene Chumstick basin and seismic velocities 
suggest that beneath the Miocene basalt is a thick, asymmetric sedimentary basin of probable Eocene 



age and an associated mafic underplate (Catchings and Mooney, 1988; Gao et al., 2011). These mafic 
rocks may be similar to the Teanaway Basalt of the flare-up..” 

 

Reviewer #2 (Comments to the Author): 

Review by D.J. Thorkelson, January 19, 2023 

The submission by Miller et al., on the Paleogene plate tectonic and geologic history of the Pacific 
Northwest and related areas is very good and should be published with few revisions. 

The paper stands out as being well written, with complex ideas expressed simply and effectively. It is a 
pleasure to read and provides the reader with a near-encyclopedic source of information linked to larger 
ideas and tectonic models. The paper does not purport to solve all of the interesting local and regional 
geological problems, but neither does it set it to do so. It is a comprehensive statement on the current 
state of knowledge and provides a balanced and fair depiction of geological features, history and 
processes. 

Although the paper is good, it could use a little improvement in a few areas, and I hope the authors will 
take the time to consider my remarks and to act on them. 

I have annotated the manuscript using the sticky-notes function. I expect the authors to scroll through 
the annotated file and read my remarks. 

Here, I will summarize four issues that need a little attention. 

First, there are a couple of key references missing. I know, not all references can be cited, but please try 
to include the 2013 paper by McCrory and Wilson (Tectonics) and the 1980 paper by Tom Ewing (Journal 
of Geology). The Ewing paper is remarkable and is the first paper to try to pull a story of Paleogene 
evolution together. The McCrory and Wilson paper is a modern view of the region that attempts to do 
much of what the current submission does. The reader should be alerted to both. 

We now cite the papers omitted from the introduction. Ewing (1980) is cited on line 69 of the 
introduction. This paper was cited in 5 other places in the original manuscript. The paper by McCrory 
and Wilson (2013) is now cited on line 67 of the introduction and line 117 elsewhere in the text. 

 

Second, the plate tectonic setting is reasonably covered for the Paleogene, but that information could be 
set within a broader context, more clearly than it is. Specifically, the interaction between the Kula-
Farallon ridge and North America in the Paleogene is quite an easy sell, and has been well utilized from 
Thorkelson and Taylor (1989) onwards. However, the work by Engebretson and colleagues in the mid-
1980s and Woods and Davies in 1982 (and subsequently Thorkelson and Taylor) show that the Kula-
Farallon ridge began as an oceanic rift in the late Cretaceous, circa 1983, and that the Kula-Farallon 
ridge would have intersected the western North American margin from that point on - until plate 
consumption and reorganization in the Eocene. However, one would never know that from the current 
submission. Instead, the notion of Paleogene ridge subduction is moved to the front of the discussion 
without being placed in a broader, longer tectonic history. I sincerely hope that the authors do their 
readers a favour by making the earlier history of K-F-NA interactions a little better known, even if all the 



answers regarding exact locations and consequences are imperfectly known. The Paleogene ridge system 
was connected both physically and thematically to the late Cretaceous one. A possible diachronous 
scenario was provided by Thorkelson and Taylor and, although it need not be taken as unique, it does 
provide a foundation that could and should be built upon. 

We have added material on the Late Cretaceous history in the plate tectonic setting (lines 97-
102) and in the caption to Fig. 1 (figure on tectonic models). “There is general agreement that 
the Kula plate originated from rifting of the Pacific plate at ~83 Ma and that the northern 
boundary of the Farallon plate was a ridge, which intersected the continental margin at a poorly 
constrained location (e.g., Atwater, 1970; Wood and Davies, 1982; Engebretson et al., 1985; 
Stock and Molnar, 1988; Thorkelson and Taylor, 1989).” The caption now states “Note that in 
either model there is a triple junction near central to southern Vancouver Island at ca. 52 Ma 
(e.g., Breitsprecher et al., 2003) and that a ridge in either scenario interacted with the 
continental margin back to ca. 83 Ma (e.g., Engebretson et al., 1985; Thorkelson and Taylor 
(1989).” 

 

Third, the thorny notion of dextral translation is a subject that the authors take on, and kudos to them 
for including it in the geological history and restorations. However, I think they could be a little more 
forthcoming by including a brief statement on the broader aspects of the dextral translation debate, 
specifically the much larger magnitudes of displacement indicated in paleomagnetic studies (and I 
believe in some detrital zircon studies). The authors are basing their estimates of translation on studies 
of specific fault zones, and that is a adequate approach to take. However, distributed strain along much 
small features is also worth considering, and the 1000-3000 km (or more) magnitudes are still, in some 
people's minds, not out of the question. Adding up displacement on specific faults will, most likely, 
provide only a minimum. Look at the GPS data for the region and marvel and how much displacement is 
currently taking place along distributed minor or cryptic structures. I am not asking the authors to re-do 
their estimates, but they should be more open on this subject and write a few sentences about the fact 
that the actual amounts of overall displacement, and how they vary from east to west, and temporally 
from mid-K to Eocene, are not perfectly understood, and may be much larger than fault-only based 
restorations. 

The following sentences were added to the section on lines 193-201 to satisfy this comment. “We note 
that this is likely a conservative estimate and does not include any distributed dextral ductile 
displacement or movement on minor cryptic structures. Paleomagnetic data indicate much larger 
cumulative dextral displacements between ~85–55 Ma of 2000 km or more between the easternmost 
part of the eastern belt and the central and western belts, and perhaps 1000 km between the western 
part of the eastern belt and rocks to the west (e.g., Enkin, 2006; Tikoff et al., 2023). From the 
paleomagnetic data, major displacements of the outboard rocks ended by 55 Ma (e.g., Cowan et al., 
1997; Tikoff et al., 2023). Thus, uncertainties are much lower for the positions of units in the region in 
the 55 Ma and younger reconstructions (Figs. 4-7).” An additional phrase was also added to the 
introduction to the pre-Paleogene geologic setting on lines 138-39. “The arc and forearc were originally 
farther south relative to the inboard rocks by more than 300 km (e.g., Umhoefer and Blakey, 2006; Wyld 
et al., 2006), and potentially a much greater distance as discussed below.” 



 

Fourth, the shape of the slab window as shown in their Figure 6 is adequate but is not specifically 
mentioned in the caption. In fact, the three frames, A, B and C, are not individually addressed in the 
caption, and must be. For the slab window shape, the authors, I will bet, did not do any modeling of their 
own, and instead have chosen to show a stylized one. That is OK, but tell the reader exactly that - not 
modeled, but schematic, based on ... give references. 

Each frame is now addressed, as was the caption for Fig. 5. Added to the caption – “The approximate 
location of the idealized slab window assumes that the Farallon plate was moving NE and the Kula-
Farallon ridge intersected the continental margin near the Oregon-Washington state boundary.” 

 

Response to Comments on pdf by Derek Thorkelson (Reviewer 2) 

LINES 

20. Is this a new finding or have others made the call, and you are supporting it? 

This lull has been pointed out by two of the authors (Miller et al., 2016; 2021) in two papers published in 
Geosphere. A flat slab has been proposed by others for the Pacific Northwest, but relating it to a flat 
slab is new in this manuscript. To clarify without adding details in an abstract, the text now reads 
“interpreted to reflect” rather than “we attribute”. 

 

71 and 94. Compliments – no response needed (though appreciated). 

94. – The 1980 Journal of Geology article by Tom Ewing should be cited in this introduction. It was the 
first paper to cover the Paleogene story on both sides of the international border and was the first, I 
believe, to illustrate core complex formation at that time. Ewing (1980) is now cited in the introduction 
on line 69. The paper was cited four times in the text in the original manuscript and these citations 
remain.  

94 – Surely the paper by McCrory and Wilson, Tectonics, 2013, should be cited as a previous attempt to 
make sense of the Paleogene history in the region.  

McCrory and Wilson (2013) is now cited on lines 67 and 117. 

 

108. Yes, but it would appear that the K-F triple junction first formed when the K plate broke from the 
Farallon in the 85-80 Ma range, and so the Paleogene history of ridge subduction and slab window 
formation is likely to be part of a continuum of interactions extending back to the mid-Cretaceous. An 
entirely plausible model was put forward by Thorkelson and Taylor in 1989.  It accounts for the younging 
of the adjacent oceanic slabs and the subsequent flat-slab configuration.  I bet readers would benefit 
from knowing that the Paleogene slab window history belongs to a longer history.  Just inform the reader 
that the Paleogene situation is part of a broader history that goes beyond "transpression."  



We have added the following about the Cretaceous history and the intersection of a ridge bounding the 
Farallon plate with North America. “There is general agreement that the Kula plate originated from 
rifting of the Pacific plate at ~83 Ma and that the northern boundary of the Farallon plate was a ridge, 
which intersected the continental margin at a poorly constrained location (e.g., Atwater, 1970; Wood 
and Davies, 1982; Engebretson et al., 1985; Stock and Molnar, 1988; Thorkelson and Taylor, 1989).” 

 

109. Better: "Formation of the Siletzia Terrane was a major...".  We now start the sentence with 
“Formation of the Siletzia terrane” as suggested. 

 

113. Infer?  Rather, "we support previous work that...." 

Now reads: “We support previous work that infers the triple junction” 

 

185. It would be good to tell the reader that your geologically based estimates are lower than those 
identified by paleomagnetism.  The Spences Bridge Group may have been 1000 km farther south when it 
formed, and units farther west have been shown to have greater displacements from the south.  I don't 
think you should feel obliged to make a comprehensive review of the information (which includes detrital 
mineral studies), but you should alert the reader that the estimates of translation from the south are on 
the low end, given all the information available.  Displacement estimates on specific faults and fault sets 
will likely be less than the sum of those displacements plus distributed strain from less prominent. 

 This comment amplifies the third general comment by Reviewer Thorkelson. The potential for much 
larger offsets of outboard rocks is now addressed on lines 193 to 201. See the response to the third 
general comment above. 

 

206. Again, since the Kula broke from the Farallon at about 83 Ma, it stands to reason that there would 
have been a K-F-NA triple junction and slab window somewhere along the coastline.  No, we don't know 
exactly where it was, but do we know it wasn't near, or within, the study area? 

This paragraph at the beginning of the section focuses on the geologic evidence for oblique 
convergence. We hope that the material on lines 97-102, which mentions the earlier history, including 
the uncertain location of the triple junction, and the addition to the caption for Fig. 1 are sufficient. 
“There is general agreement that the Kula plate originated from rifting of the Pacific plate at ~83 Ma and 
that the northern boundary of the Farallon plate was a ridge, which intersected the continental margin 
at a poorly constrained location (e.g., Atwater, 1970; Wood and Davies, 1982; Engebretson et al., 1985; 
Stock and Molnar, 1988; Thorkelson and Taylor, 1989).” The caption now states “Note that in either 
model there is a triple junction near central to southern Vancouver Island at ca. 52 Ma (e.g., 
Breitsprecher et al., 2003) and that a ridge in either scenario interacted with the continental margin 
back to ca. 83 Ma (e.g., Engebretson et al., 1985; Thorkelson and Taylor (1989).” 

 



241. But no slab window despite the lack of proper arc magmatism?  

We are not certain if this is a parenthetical statement. This section describes the basic geologic features 
and reports on work by others on petrogenesis without focusing on tectonic setting.   

 

325. Surely, the K-F ridge is responsible for the younging and shallowing of the F and possibly the K slabs.  
So, where was the continental triple junction?  Can you show that it wasn't involved?  Doesn't seem like a 
bad fit to me.  

We didn’t change this paragraph as we suggested that low-angle subduction accounted for the cessation 
of arc plutonism. Younging of the subducting slab is proposed for the cause of the low angle in the 
discussion and references to others whom have stated this for the greater region are cited (lines 597-
599). “The shallowing of the slab may be attributable to the rapid subduction of young buoyant 
lithosphere, as also proposed by others for the greater region (e.g., Thorkelson and Taylor, 1989; 
Haeussler et al., 2003).” 

 

418. See attachments to this review -- Thorkelson 1995 GAC abstract and figures. 

We appreciate getting the abstract and figure. We mention “passage of a slab window” as one of the 
mechanisms proposed for Challis-Kamloops magmatism. 

 

420. Humphreys now spelled correctly. 

438. Are we certain that the triple junction and slab window had nothing to do with these features?  OIB 
-- a common composition of slab window volcanism -- see review in Thorkelson, Encyclopedia of Geology 
article on slab windows. 

Lines 434-5 mentioned a slab window as one of the mechanisms proposed by others in the original text. 
We emphasize this a little more with the underlined text. “Slab rollback and breakoff, and slab window 
evolution are the most widely cited scenarios (see review by Humphreys and Grunder, 2022).” We 
deleted the phrase stating our preference in this paragraph, which just summarizes models in the 
literature. 

 

516. Changed “but” to “and” as requested. 

579. We are not clear what the “and/or” refers to 

  

582. "ridge close to the trench"... a little vague.  Knowing what we do about the K and F Cretaceous 
history, what is meant by "close to the trench"? What argument do you know of that would position the 
ridge offshore, and not in contact with the continent?  It would seem unavoidable that the ridge would 
have intersected the continental margin, so, again, what does "ridge close to the trench" even mean? 



Reviewer Humphreys also criticized this idea and the statement has been deleted and a few other lines 
have been added in response to his comment (see new lines 597-602). Also see the response to 
Humphreys’ comment above.  

 

596. Cite the papers which dealt with this and proposed a location something like this. This is not 
something new. 

The following reference is added (underlined) “in which case the latter would be kinematically tied to 
the Tintina fault – Rocky Mountain trench (Price and Carmichael, 1986) and magmatism would occur in a 
slab window (e.g., Breitsprecher et al., 2003).” We note that our interpretation is based on our strike-
slip restorations and matching up parts of the southern Coast Mountains-North Cascades Cretaceous arc 
using compilations of recent U-Pb ages, which is new. 

 

598. Made the minor wording change. 

679. I'm going to include an abstract with key figures from a 1995 GAC talk for you to consider.  

We have now stated that the magmatism to the east has been attributed to a slab window and 
reference Thorkelson and Taylor (1989) and Breitsprecher et al. (2003). We then give our preferred 
rollback and breakoff model, which takes into account new age data from NE Washington and the 
Cascades, as well as the tomographic information from Schmandt and Humphreys (2011).  

“The Eocene Cascades core plutons have been considered the latest pulse of arc magmatism in the 
North Cascades by earlier workers (e.g., Matzel et al., 2008; Miller et al., 2009), and magmatism to the 
east in the Challis-Kamloops belt has been interpreted to occur within a slab window (e.g., Thorkelson 
and Taylor, 1989; Breitsprecher et al., 2003). In our view, the flare-up is related to the Farallon slab 
rollback and breakoff.” 

 

1395. In this model -- OK -- but say where it comes from. 

Bradley et al. (2003) is now cited for model A and Haeussler et al. (2003) for model B. Madsen et al. 
(2006) is cited for location of ridge intersection on Vancouver Island. 

 

1396. from inclusion of the 

Phrase added as requested. 

 

1399. History from 83-60 not shown, and that's OK, but somewhere in the paper you need to let the 
reader know that a RTT triple junction did exist prior to 60. 

Please see the response to the second general comment. 



 

1454. You need to have separate statements about each of the frames, A, B and C. 

Each frame is now described separately. Also, please see response to general comment #4. 
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ABSTRACT  11 

The interaction between subduction zones and oceanic spreading centers is a common 12 

tectonic process, and yet our understanding of how it is manifested in the geologic record is 13 

limited to a few well-constrained modern and ancient examples. In the Paleogene, at least one 14 

oceanic spreading center interacted with the northwestern margin of North America. Several 15 

lines of evidence place this triple-junction near Washington and southern British Columbia in 16 

the early-middle Eocene and we summarize a variety of new datasets that permit us to track 17 

the plate tectonic setting and geologic evolution of this region from 65 to 40 Ma. The North 18 

Cascades segment of the voluminous Coast Mountains continental magmatic arc experienced a 19 

magmatic lull between ca. 60-50 Ma that we attributeinterpreted to reflect low-angle 20 

subduction. During this period of time the Swauk basin began to subside inboard of the paleo-21 
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trench in Washington and the Siletzia oceanic plateau began to develop along the Farallon-Kula 22 

or Farallon-Resurrection spreading center. Farther east, peraluminous magmatism occurred in 23 

the Omineca belt and Idaho batholith. Accretion of Siletzia and ridge-trench interaction 24 

occurred between ca. 53–49 Ma, as indicated by: (i) near-trench magmatism from central 25 

Vancouver Island to NW Washington; (ii) disruption and inversion of the Swauk basin during a 26 

short-lived contractional event; (iii) voluminous magmatism in the Kamloops – Challis belt 27 

accompanied by major E-W extension east of the North Cascades in metamorphic core 28 

complexes and supra-detachment basins and grabens; and (iv) southwestward migration of 29 

magmatism across NE Washington. These events suggest that flat slab subduction from ~60–52 30 

Ma was followed by slab rollback and breakoff during accretion of Siletzia. A dramatic magmatic 31 

flare-up was associated with rollback and breakoff between ca. 49.4 Ma and 45 Ma, and 32 

included bimodal volcanism near the eastern edge of Siletzia, intrusion of granodioritic to 33 

granitic plutons in the crystalline core of the North Cascades, and extensive dike swarms in the 34 

North Cascades. Transtension during and shortly before the flare-up led to >300 km of total 35 

offset on dextral strike-slip faults, formation of the Chumstick strike-slip basin, and 36 

subhorizontal ductile stretching and rapid exhumation of 8-10 kb metamorphic rocks in the 37 

North Cascades crystalline core. By ca. 45 Ma, the Farallon – Kula (or Resurrection) – North 38 

American triple-junction was likely located in Oregon, subduction of the Kula or Resurrection 39 

plate was established outboard of Siletzia, and strike-slip faulting was localized on the north-40 

striking Straight Creek – Fraser River fault. Motion of this structure terminated by 35 Ma. These 41 

events culminated in the establishment of the modern Cascadia convergent margin. 42 

 43 
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INTRODUCTION 44 

 Plate tectonic margins vary from long-lived stable settings to those that change rapidly 45 

from one type of boundary to another over only a few million years. The modern Cascadia 46 

subduction zone, in the Pacific Northwest (U.S.A) and southwest British Columbia (Canada), has 47 

been a convergent plate margin since the mid-Eocene (≤45 Ma) (du Bray and John, 2011). 48 

Earlier, the northern Washington Cascades was part of a long-lived continental magmatic arc 49 

that is also manifested as the Coast Mountains batholith and parts of the Idaho batholith (e.g., 50 

Gehrels et al., 2009). The North Cascades segment of the Coast Mountains arc was active from 51 

about 96–60 Ma, and changed from a contractional-convergent to oblique-convergent regime 52 

during that time (e.g., Brown and Talbot, 1989; Miller et al., 2009, 2016). Between the older 53 

Coast Mountains and Cascadia magmatic arc regimes was an ~25 m.y. period, from ca. 65 – 40 54 

Ma, during which the Washington Cascades and the surrounding region experienced many 55 

dynamic changes that can be linked to two major Paleogene tectonic events: spreading ridge – 56 

trench interaction and the formation and accretion of an oceanic plateau.   57 

 Plate reconstructions suggest that the Farallon – Kula,  or Farallon – Resurrection, or 58 

Farallon – Orcas spreading ridge(s) interacted with North America near the Pacific Northwest 59 

during the Paleogene (e.g., Atwater, 1970; Wells et al., 1984; Engebretson et al., 1985; 60 

Haeussler et al., 2003; Madsen et al., 2006; Clennett et al., 2020; Fuston and Wu, 2021) (Fig. 1). 61 

Based on ca. 51-49 Ma near-trench magmatism from central Vancouver Island to northwestern 62 

Washington, a ridge is assumed to have intersected North America near these locations at that 63 

time (e.g., Cowan, 2003; Madsen et al., 2006), although how this triple-junction migrated along 64 

the margin prior to 52 Ma is poorly understood. The Siletzia terrane, a basaltic oceanic plateau, 65 
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formed along this oceanic spreading center and was accreted to the Pacific Northwest ca. 50 66 

Ma (e.g., McCrory and Wilson, 2013; Wells et al., 2014). Farther inland there was a change from 67 

a long-lived thrust belt (e.g., Mudge and Earhart, 1980; Price, 1981) to east-west extension and 68 

widespread magmatism at ca. 55–53 Ma (e.g., Ewing, 1980; Parrish et al., 1988). These and 69 

other changes in the upper plate of the system are the basis for our attempt at a 70 

comprehensive model of the 65 – 40 Ma tectonic evolution of the Washington Cascades and 71 

Pacific Northwest. 72 

In this paper, we synthesize data on the ages and types of sedimentary basins (Evans, 73 

1984; Johnson, 1984; Eddy et al., 2016a; Donaghy et al., 2021), age, geochemistry, and spatial 74 

patterns of magmatism (e.g., Breitsprecher et al., 2003; Madsen et al., 2006; Miller et al., 2009), 75 

and deformation styles and exhumation patterns across Vancouver Island to the Washington 76 

Cascades (e.g., Johnston and Acton, 2003; Miller et al., 2016) (Figs. 2, 3). We present this 25 77 

m.y. geologic history in a series of time slices and place the discussion in the context of the 78 

greater region from northern California to southern British Columbia and inland to the Rocky 79 

Mountains (Fig. 2). Integrated within this discussion are a series of new maps that restore slip 80 

on the major Paleocene - Eocene strike-slip faults (Figs. 4-7). Boundaries between time slices 81 

coincide with transitional periods in at least one of the major processes emphasized in the 82 

synthesis (i.e. magmatism, sedimentation, metamorphism, deformation, exhumation). A critical 83 

aspect of this work is the incorporation of new high-precision U-Pb zircon age constraints tied 84 

to detailed field observations (e.g., Eddy et al., 2016a; 2017a; b; Miller et al., 2016, 2022), which 85 

enables the construction of a detailed time line not previously possible. Moreover, the varied 86 

levels of exhumation within the region allow us to study how the changing tectonic setting was 87 
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manifested at a wide range of Eocene crustal levels. In particular, we explore the upper-plate 88 

events in the Washington Cascades and surrounding region in relation to changing plate 89 

boundaries, especially the formation and accretion of Siletzia (Wells et al., 2014), and the 90 

shifting location of ridge – trench interaction. The study area is described in terms of western, 91 

central, and eastern regions, which roughly correspond to the forearc, arc, and backarc regions 92 

of the North Cascades segment of the Coast Mountains batholith in the Late Cretaceous (Fig. 2). 93 

We utilize these geographic terms because the dynamic tectonic changes described herein 94 

make it difficult to define regions typically associated with a stable subduction zone.    95 

PLATE TECTONIC SETTING 96 

 There has long been uncertainty about the Late Cretaceous to early Cenozoic plate 97 

configuration in the northeast Pacific basin. There is general agreement that the Kula plate 98 

originated from rifting of the Pacific plate at ~83 Ma and that the northern boundary of the 99 

Farallon plate was a ridge, which intersected the continental margin at a poorly constrained 100 

location (, including the location of the Kula – Farallon – North America triple junction (e.g., 101 

Atwater, 1970; Wood and Davies, 1982; Engebretson et al., 1985;  Stock and Molnar, 1988; 102 

Thorkelson and Taylor, 1989). and Subsequent models proposed the potential existence of a 103 

now-subducted Resurrection plate (e.g., Haeussler et al., 2003; Madsen et al., 2006; Fuston and 104 

Wu, 2021) (Fig. 1) or Orcas plate (Clennett et al., 2020). During the interval Late Cretaceous to 105 

earliest Cenozoic, from ca. 85 Ma to 60 Ma, the northern Cordillera was an oblique, 106 

transpressional convergent margin (e.g., Engebretson et al., 1985; Doubrovine and Tarduno, 107 

2008), and northward translation of the Washington Cascades may have been rapid as the 108 

southern part of the Insular superterrane (the Baja BC hypothesis; e.g., Cowan et al., 1997; 109 
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Umhoefer and Blakey, 2006). Relative to North America, motion of the Farallon plate was to the 110 

NE to ENE, and motion of the Kula (and Resurrection or ?Orcas?) plate was to the N to NNE, and 111 

thus more oblique than that of the Farallon plate. Both oceanic plates were moving rapidly (50 112 

– 150 km/Myr) during this time (e.g., Engebretson et al., 1985; Doubrovine and Tarduno, 2008; 113 

Wright et al., 2015; Fuston and Wu, 2021).  114 

 Formation of the Siletzia terrane was Aa major factor in the Paleogene tectonic 115 

evolution of the Pacific Northwest was the formation of the Siletzia terrane. This terrane 116 

represents a large igneous province that developed between 56-49 Ma near an oceanic 117 

spreading center., and it is probably One explanation for this feature is that it represents an 118 

early manifestation of the Yellowstone hotspot (e.g., Gao et al., 2011; McCrory and Wilson, 119 

2013; Wells et al., 2014; Camp and Wells, 2021). We infer support previous work that infers the 120 

triple junction between theKula (or Resurrection) – Farallon – North America – Kula (or 121 

Resurrection or Orcas) plates triple junction lay along central Vancouver Island by 55–53 Ma 122 

(e.g., Madsen et al., 2006) (Figs. 1, 4). From 52–49 Ma, a triple junction is interpreted to have 123 

interacted with the continental margin along central to southern Vancouver Island (Fig. 1), as 124 

this interval is marked by near-trench magmatism (Groome et al., 2003; Madsen et al., 2006), 125 

geochemically anomalous backarc magmatism (Ewing, 1980; Breitsprecher et al., 2003; Ickert et 126 

al., 2009; Dostal and Jutras, 2021), and disruption of non-marine basins (Eddy et al., 2016a). The 127 

collision of Siletzia, which started by 53 Maa in SW Oregon (Wells et al., 2014) and by 51 Ma in 128 

northern Washington and southernmost Vancouver Island, led to a major change in plate 129 

geometries and profound changes in the upper plate of the system from 52–48 Ma, which we 130 

describe in more detail below. The plate boundary later shifted outboard (west) of Siletzia, 131 

Formatted: Font: 12 pt



7 
 

 

resulting in the new Cascadia subduction system at ca. 45–40 Ma (e.g.,  Wells et al., 1984, 2014; 132 

Schmandt and Humphreys, 2011; McCrory and Wilson, 2013; Eddy et al., 2017a; Kant et al., 133 

2018). 134 

 135 

PRE-PALEOGENE GEOLOGIC SETTING 136 

Prior to 65 Ma, the Pacific Northwest was characterized by a typical convergent margin 137 

with a forearc, continental magmatic arc, back-arc basin, and fold-and-thrust belt that 138 

deformed a Paleozoic passive margin sequence (e.g., Burchfiel et al., 1992). The arc and forearc 139 

were originally farther south relative to the inboard rocks by at leastmore than 300 km (e.g., 140 

Umhoefer and Blakey, 2006; Wyld et al., 2006), and potentially a much greater distance as 141 

discussed below.  142 

In the forearc (western belt of Fig. 2) are Paleozoic and Mesozoic oceanic and island arc 143 

rocks and overlapping Jura-Cretaceous marine clastic rocks, which were deformed in the mid-144 

Cretaceous Northwest Cascades thrust system (shown as a single Cretaceous unit on Fig. 3) 145 

(Misch, 1966; Brown, 1987; Brandon et al., 1988). Structurally above these rocks are mostly 146 

Jura-Cretaceous rocks of the western mélange belt (Fig. 3), which is interpreted as an 147 

accretionary complex (Tabor, 1994) and contains rocks at least as young as 72 Ma (Dragovich et 148 

al., 2014; Sauer et al., 2017a). The Upper Cretaceous to Paleocene Nanaimo Group (e.g., 149 

Mustard, 1994), exposed mostly on southern Vancouver Island, is interpreted as a foreland 150 

basin to the Northwest Cascades thrust system (Brandon et al., 1988), and has depositional 151 

ages extending from at least ca. 84 Ma to 63 Ma (e.g., Matthews et al., 2017; Coutts et al., 152 

2020). 153 
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The Cretaceous arc in northern Washington and southern British Columbia is 154 

represented by medium- to high-grade metamorphic and plutonic rocks in the crystalline core 155 

of the North Cascades and southern British Columbia (central belt of Fig. 2). The crystalline 156 

rocks are subdivided into the Wenatchee and Chelan blocks, which are separated by the high-157 

angle Eocene Entiat fault and bounded to the west by the Straight Creek-Fraser River fault (Fig. 158 

3). Magmatism in the Wenatchee block occurred from 96–87 Ma, and most biotite Ar/Ar and 159 

K/Ar cooling ages are >60 Ma, whereas magmatism in the Chelan block ranges from 92–45 Ma 160 

and Eocene cooling ages are common (e.g., Walker and Brown, 1991; Matzel, 2004; Miller et 161 

al., 2009, 2016). The Chelan block also records Paleogene ductile deformation and partial 162 

melting in the highest-grade rocks of the Skagit Gneiss Complex (Gordon et al., 2010a). 163 

Pre-Cenozoic rocks dDirectly east of the North Cascades in the eastern belt , pre-164 

Cenozoic rocks include: the Mesozoic Methow basin; ca. 160–105 Ma arc plutonic rocks of the 165 

Eagle Complex and Okanogan Range batholith; ca. 105 Ma arc volcanic rocks of the Spences 166 

Bridge Group; and arc volcanic and sedimentary rocks of the Quesnellia terrane (Fig. 3) (e.g., 167 

Greig, 1992; Hurlow and Nelson, 1993). Farther east are plutonic and metamorphic rocks of the 168 

Omineca belt, including multiple metamorphic core complexes, the Idaho batholith, and 169 

Cordilleran passive margin sediments involved in the Rocky Mountain-Sevier fold-and-thrust 170 

belt (Fig. 2).  171 

 172 

RESTORATION OF STRIKE-SLIP FAULTS  173 
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Dextral strike-slip faulting occurred in the northern Cordillera in the Late Cretaceous to 174 

Eocene (e.g., Gabrielse, 1985; Wyld et al., 2006), and within our study region displacements of 175 

~325 km on strike-slip faults active from ca. 60 – 35 Ma are well documented (Table 1). In the 176 

west, the N-S-striking Straight Creek – Fraser River fault separates the North Cascades 177 

crystalline core of the central belt from the outboard Paleozoic and Mesozoic Northwest 178 

Cascades system, mélange belts, and Paleogene rocks of the western belt (Fig. 3). The most 179 

recent estimate of dextral offset on this fault is ~150 km (Monger and Brown, 2016). The 180 

Leavenworth and Entiat faults (Fig. 3) involve the Cascades core and have a total displacement 181 

of ~60 km (Eddy et al., 2017b). The Entiat fault separates the Wenatchee and Chelan blocks 182 

within the core (see above) and the NE boundary of the Cascades core is the Ross Lake fault 183 

system (Ross Lake fault, Gabriel Peak tectonic belt, Hozameen fault, and Foggy Dew fault) (Fig. 184 

3), which probably has ~115 km of dextral offset (Umhoefer and Miller, 1996).  185 

These known displacements of ~325 km must be considered in tectonic restorations, 186 

particularly before 50 Ma. To summarize, after 50 Ma there is approximately 1) 150 km of 187 

offset between the western belt and Cascades core of the central belt; 2) 60 km of 188 

displacement within the core; 3) 50 km (of total 115 km) of offset between the core and the 189 

eastern belt; and 4) a cumulative offset of ~265 km between the western and eastern belts 190 

after 50 Ma (Table 1). If we assume that the strike-slip offset from 60 to 50 Ma occurred at 191 

rates comparable to those of the ~50–40 Ma interval, the implication is that another 192 

approximately 250–300 km of offset occurred across Washington from 60 to 50 Ma. About 60 193 

km of this slip has been documented on the Ross Lake fault system (Miller and Bowring, 1990) 194 

and Yalakom fault during that time (Umhoefer and Schiarizza, 1996); precise timing and offset 195 



10 
 

 

of faults are difficult to document. From this reasoning, at 55 Ma we showshow Vancouver 196 

Island and the western belt about 450 km south of the eastern belt (Fig. 4). We note that this is 197 

likely a conservative estimate and does not include any distributed dextral ductile displacement 198 

or movement on minor cryptic structures. Paleomagnetic data indicate much larger cumulative 199 

dextral displacements between ~85–55 Ma of 2000 km or more between the easternmost part 200 

of the eastern belt and the central and western belts, and ~1000 km between the western part 201 

of the eastern belt and rocks to the west (e.g., Enkin, 2006; Tikoff et al., 2023). From the 202 

paleomagnetic data, major displacements of the outboard rocks ended by 55 Ma (e.g., Cowan 203 

et al., 1997; Tikoff et al., 2023). Thus, uncertainties are much lower for the positions of units in 204 

the region in the 55 Ma and younger reconstructions (Figs. 4-7). 205 

Another potential complication is the rotation in the Oregon Coast Ranges and 206 

Cascades, which is probably related to distributed dextral strike slip and Basin and Range 207 

extension (e.g., Beck, 1984; Wells and Heller, 1988; Colgan and Henry 2009; Wells and 208 

McCaffrey, 2013; Wells et al., 2014). Rotation increases westward and decreases from the 209 

Klamath Mountains northward to the Olympic Peninsula. Statistically significant vertical axis 210 

rotation has not occurred after ca. 50 Ma in the Washington Cascades, at least as far south as 211 

the present latitude of Seattle (e.g., Beske et al., 1973; Beck et al., 1982; Fawcett et al., 2003). 212 

In our reconstructions, we utilize the present trends of structures in the north and restore the 213 

Klamath Mountains to northeastern-most California to account for Basin and Range extension 214 

(e.g., Colgan and Henry, 2009) and rotation. The resulting trend and position of Siletzia 215 

(Washington and Oregon Coast Ranges) in our reconstructions (Figs. 4–7) after accretion is 216 
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more northerly than in Wells et al. (2014), which suggests that a portion of the rotation in 217 

Siletzia was taken up on more local blocks at a scale of a few tens of km or less.  218 

  219 

PALEOGENE TECTONIC HISTORY 220 

In this section, we synthesize the Paleogene tectonic evolution across the Pacific 221 

Northwest (Fig. 3), and divide this ~25 Myr history into five intervals. The time slices are 222 

generally considered from west to east. The major events from 60–40 Ma are summarized on 223 

Fig. 8. 224 

65 – 60 Ma  225 

During this interval the plate boundary was one of oblique convergence. This 226 

interpretation is based on the arc-type tonalitic intrusions (Miller and Bowring, 1990; Miller et 227 

al., 2009), transpressional deformation in the North Cascades and southern Coast Mountain 228 

batholith arc (e.g., Brown and Talbot, 1989; Miller and Bowring, 1990), and contractional 229 

deformation (e.g., Brown et al., 1986; Simony and Carr, 2011) in the hinterland (eastern belt). 230 

 The forearc (western belt) record is sparse and the timing of deformation in this belt is 231 

poorly known (Tabor, 1994; Sauer et al., 2017a). The only known forearc rocks of this age are 232 

the uppermost clastic strata of the Nanaimo Group on Vancouver Island, which have maximum 233 

depositional ages (MDAs) as young as ca. 63 Ma (Coutts et al., 2020). The youngest dated 234 

(MDA) sandstone in the western mélange belt is ca. 72 Ma (Sauer et al., 2017a), and younger 235 

rocks may be present in this belt, as the upper limit for the mélange is only indicated by an 236 

angular unconformity with Eocene strata. 237 
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The 65 – 60 Ma interval includes the final stage of a magmatic flare-up in the North 238 

Cascades core (Chelan block) that began ca. 78 Ma (Miller et al., 2009), and was directly 239 

preceded by rapid burial and metamorphism of Cretaceous (protolith age) metasedimentary 240 

rocks that comprise the deep-crustal (up to 12 kbar) Swakane Biotite Gneiss (Valley et al., 2003) 241 

and Skagit Gneiss Complex (7 – 10 kbar; Whitney, 1992; Hanson, 2022) (Fig. 3), between ca. 79 242 

– 66 Ma and 74 – 65 Ma, respectively (Sauer et al., 2017b, 2018). Tonalitic magmatism is 243 

recorded by the 65 Ma Oval Peak pluton (Fig. 3), which crystallized at 5 – 6 kbar (Miller and 244 

Bowring, 1990), and sheets (now orthogneisses) in the Skagit Gneiss Complex (Miller et al., 245 

2016). Leucosomes of this age also are recognized in the Complex (Gordon et al., 2010a). K-Ar 246 

and Ar/Ar biotite cooling ages are sparse, but there is no evidence for major rapid cooling or 247 

exhumation of the Cascades core during this interval (Paterson et al., 2004), and no 248 

sedimentary or volcanic rocks of this age have been recognized in the arc. Dated deformation 249 

during this time interval is limited in the arc region where dextral and reverse shear in the 250 

Gabriel Peak tectonic belt of the Ross Lake fault system (Fig. 3) was inferred to be coeval with 251 

emplacement of the Oval Peak pluton (Miller and Bowring, 1990).  252 

In the eastern belt, igneous activity was sparse during this interval and volcanic rocks 253 

are absent. In NE Washington, magmatism was limited to a few ca. 64–56 Ma plutons (e.g., 254 

Stoffel et al., 1991). North of the international border, intrusion of the quartz monzonitic to 255 

granitic, peraluminous Ladybird granite suite into high-grade Shuswap Complex (Fig. 4) initiated 256 

at 62 Ma (Carr, 1992; Hinchey and Carr, 2006). In Idaho, peraluminous magmatism in the 257 

Bitterroot lobe (Fig. 4) of the Idaho batholith began at ca. 66 Ma and peaked at ca. 60 Ma 258 

(Gaschnig et al. (2010). These peraluminous rocks are part of the “Cordilleran anatectic belt” of 259 
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Chapman et al. (2021a), and the magmatism is ascribed to partial melting of crustal rocks 260 

(Mueller et al., 1996; Hinchey and Carr, 2006; Gaschnig et al., 2011).  261 

Sedimentary rocks of this age are also very rare in NE Washington. Aside from a <30 km2 262 

body of Paleocene conglomerate (Pipestone Canyon Formation) directly west of the Pasayten 263 

fault (Fig. 3) (Kriens et al., 1995), no other strata have been recognized between central 264 

Washington and the Sevier foreland basins. The scarcity of sedimentary rocks, and the evidence 265 

of crustal melting, are compatible with the existence of a high-standing orogenic plateau in the 266 

hinterland during this interval (Whitney et al., 2004; Bao et al., 2014).  Thrusting also occurred 267 

in the eastern belt in the Shuswap Complex and in the Rocky Mountain - Sevier fold and thrust 268 

belt (e.g., Price, 1981). 269 

60 – 52 Ma 270 

This interval is marked by major changes in magmatism and sedimentation throughout 271 

the region. Near-trench intrusions strongly suggest that an oceanic spreading center lay off 272 

central to southern Vancouver Island by 52 - 51 Ma (Fig. 5) (Groome et al., 2003; Madsen et al 273 

2006). Magmatism and sedimentation occurred in the western belt near the spreading ridge, 274 

but igneous activity was nearly absent in the Cascades core and eastern belt, until the onset of 275 

Challis-Kamloops magmatism at ca. 53 Ma (e.g., Ickert et al., 2009). The formation of 276 

metamorphic core complexes and associated basins in the eastern region also started at ca. 56 277 

Ma (e.g., Brown et al., 2012). 278 

Basaltic magmatism began in the Siletzia terrane by ca. 55 Ma in the south (southwest 279 

Oregon) and by 53.2 Ma outboard of the Northwest Cascades system and mélange belts in 280 

western Washington and Vancouver Island in the north, where it continued until at least 48 Ma 281 
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(Crescent and Metchosin basalts) (Fig. 2) (Wells et al., 2014; Eddy et al., 2017a). Siletzia consists 282 

of thick sequences of basalt that transition from deep-water lava flows of normal mid-oceanic-283 

ridge basalt (N-MORB) to shallow water and subaerial flows of enriched mid-oceanic-ridge 284 

basalt (E-MORB) and oceanic-island basalt (OIB) (e.g., Wells et al., 2014). Siletzia is comparable 285 

in volume to other large igneous provinces (Trehu et al., 1994; Wells et al., 2014) and this, 286 

combined with isotopic evidence, supports its formation over a ‘plume-like’ mantle source, 287 

thought to be the Yellowstone hot spot (e.g., Pyle et al., 2015; Phillips et al., 2017; Stern and 288 

Dumitru, 2019; Camp and Wells, 2021).  In southern Oregon, the submarine basalts were 289 

overlain by deep-water sediments (Umpqua Group) in this time interval (Wells et al., 2014), 290 

while in Washington sedimentation was initiated in the non-marine Chuckanut and Swauk 291 

Formations of the greater Swauk basin (Fig. 3) (Eddy et al., 2016a).  This basin developed on 292 

accreted Paleozoic and Mesozoic rocks of the Northwest Cascades thrust system and the 293 

southern end of the Cascades core. A 56.8 Ma tuff from the lower part of the Chuckanut 294 

Formation and a 59.9 Ma maximum depositional age (MDA) near the base of the Swauk 295 

Formation are compatible with sedimentation in the greater Swauk basin starting at 60 – 57 Ma 296 

(Eddy et al., 2016a). The 56.8 Ma tuff, a 53.7 Ma tuff higher in the Chuckanut section 297 

(Breedlovestrout et al., 2013), and a 53.7 Ma tuff with arc affinities (Summit Creek section; Kant 298 

et al., 2018) in the southern Washington Cascades are the only record of volcanism inboard of 299 

Siletzia in the western belt. There is also no well-documented deformation between 60 Ma and 300 

52 Ma, although a local angular unconformity in the middle to lower part of the Swauk 301 

Formation may be a link to the early collision of Siletzia (Doran, 2009). 302 
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In the North Cascades core a magmatic lull began at ca. 60 Ma (Miller et al., 2009), and 303 

that lull extended into the southern Coast Mountains to the northwest (Cecil et al., 2018). The 304 

transpressional Gabriel Peak belt (Fig. 3) of the Ross Lake fault system continued to be active 305 

between at least 60 – 55(?) Ma, and was cut by the transtensional Foggy Dew fault zone of the 306 

Ross Lake system at ca. 55–53 Ma (Miller and Bowring, 1990). Ductile deformation probably 307 

occurred in domains in the Skagit Gneiss Complex, but otherwise, deformation is not well 308 

documented.  309 

In northeastern Washington, magmatism is represented only by scattered, small-volume 310 

intrusions until ~53 Ma, while small mafic bodies began intruding the Idaho batholith region at 311 

ca. 58 Ma (Foster and Fanning, 1997; Gaschnig et al., 2010).  Peraluminous magmatism 312 

(Ladybird granite suite), metamorphism, and migmatization continued during the 60–52 Ma 313 

time interval in the Shuswap and Okanogan complexes (e.g., Crowley et al., 2001; Kruckenberg 314 

et al., 2008; Gervais et al., 2010; Brown et al., 2012), and peraluminous magmatism persisted in 315 

the Bitterroot lobe of the Idaho batholith until ca. 53 Ma (Gaschnig et al., 2010) and the 316 

Anaconda core complex of Montana until ca. 56 Ma (e.g., Howlett et al., 2021). This magmatism 317 

in Idaho was directly followed by the Challis magmatic event (ca. 53 – 43 Ma; e.g., Janecke and 318 

Snee, 1993; Ickert et al., 2009; Gaschnig et al., 2010), which extended from Oregon to South 319 

Dakota and Washington and into central British Columbia as the Kamloops belt (Figs. 5, 6) (e.g., 320 

Ewing, 1980; Breitsprecher et al., 2003). Shallow plutons, dikes, and volcanic rocks characterize 321 

this magmatic event with geochemical affinities ranging from arc to within-plate, and some 322 

rocks being almost entirely crustal melts and others only weakly contaminated melts of the 323 

lithospheric mantle (Ewing, 1980; Thorkelson and Taylor, 1989; Lewis and Kiilsgaard, 1991; 324 
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Morris et al., 2000; Breitsprecher et al., 2003; Ickert et al., 2009; Dostal and Jutras, 2021). The 325 

alkalinity of magmas increases markedly south of ca. 51.5° N and the width of the belt widens 326 

south of the international border (e.g., Breitsprecher et al., 2003). 327 

In the eastern belt, ductile deformation and thrusting continued in the hinterland of the 328 

Rocky Mountain fold and thrust belt for the early part of this interval (e.g., Simony and Carr, 329 

2011). A major transition from contraction to extension, which was time transgressive (e.g., 330 

Parrish et al., 1988; Harlan et al., 1988; Brown et al., 2012), led to the formation of 331 

metamorphic core complexes and associated extensional basins in NE Washington, British 332 

Columbia, Idaho, and Montana (Fig. 4). Core complexes (e.g., Priest River, Okanogan) and 333 

associated basins initiated earlier north of the WNW-striking Lewis and Clark fault zone than to 334 

the south (Anaconda, Bitterroot) (Foster et al., 2007). Sedimentary basin formation initiated 335 

from ca. 56 Ma next to the Okanogan core complex directly east of the North Cascades to ca. 53 336 

Ma adjacent to the Bitterroot and Anaconda core complexes (e.g., Foster et al., 2007; Howlett 337 

et al., 2021), and in NE Washington continued to 48 Ma (Pearson and Obradovich, 1977; 338 

Suydam and Gaylord, 1997). The absence of sedimentary deposits between the Swauk basin in 339 

the west and the foreland basin east of the thrust belt until extension began and basins formed 340 

suggests that the hinterland region continued to be a high orogenic plateau until ca. 55 Ma 341 

(Whitney et al., 2004; Bao et al., 2014). 342 

 We postulate that the near complete termination of arc-type magmatism in the North 343 

Cascades core and southern Coast Mountains, and paucity of magmatism east of there, records 344 

a change to low-angle subduction of the Farallon plate at ca. 60 Ma. The peraluminous 345 
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magmatism in the east probably resulted mainly from concentrated crustal thickening (e.g., 346 

Gaschnig et al., 2010).  347 

In the eastern belt, the shift to shallow, widespread, and diverse magmatism at ca. 53 348 

Ma accompanied by extension points to a major change from the earlier peraluminous 349 

magmatism.  This shift marks the onset of Challis activity and is discussed in more detail in the 350 

next section. 351 

52 – 49.5 Ma 352 

A fundamental change in plate boundary stresses occurred between 52 Ma and 49.5 353 

Ma, as Siletzia encountered the subduction zone in southern Oregon. Collision progressed 354 

northward during this time interval from Oregon to Washington and southern Vancouver Island 355 

(Wells et al., 2014). This collision was coincident with major changes in magmatism, 356 

sedimentation, and the strain field in the upper plate. The Siletzia collision also ultimately led to 357 

a westward shift in the location of the plate boundary (e.g., Schmandt and Humphreys, 2011). 358 

The Siletzia collision was accompanied from central Vancouver Island to northwest 359 

Washington by near-trench magmatism from ca. 51 – 49 Ma (Madsen et al., 2006), which is 360 

thought to record the location of a subducting spreading ridge and the Kula-Farallon-North 361 

America or Resurrection-Farallon-North America triple junction (Fig. 5) (e.g., Cowan, 2003; 362 

Groome et al., 2003; Haeussler et al., 2003; Madsen et al., 2006) that would have been the 363 

northern boundary of Siletzia (Wells et al., 2014). This inference is also consistent with the 51 364 

Ma age of the ophiolitic Metchosin Complex on southern Vancouver Island (Massey, 1986, Eddy 365 

et al., 2017a). Near-trench magmatic rocks on Vancouver Island include: 51.2 – 50.5 Ma 366 
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bimodal, but dominantly dacitic rocks (Flores volcanics) (Irving and Brandon, 1990); 51.2–48.8 367 

Ma, hypabyssal tonalite, trondhjemite, and granodiorite (Clayquot intrusions) (Madsen et al., 368 

2006); and in the south peraluminous 50.9 – 50.7 Ma intrusions (Walker Creek intrusions) 369 

(Groome et al., 2003). The Leech River Schist on southern Vancouver Island also records high 370 

T/low P metamorphism at ~51 Ma (Fairchild and Cowan, 1982; Groome et al., 2003). In NW 371 

Washington, local peraluminous magmatism occurred as the ca. 49 Ma Mt. Pilchuck stock (Fig. 372 

3) and nearby Bald Mountain pluton (Yeats and Engels, 1971).  373 

Farther inboard, but still west of the Cascades core, basaltic to rhyolitic volcanism began 374 

with the eruption of 51.4 Ma lavas and tuffs (Silver Pass member) of the upper Swauk 375 

Formation (Peterson and Tepper, 2021) and 51.3 Ma dacitic to rhyolitic lavas and pyroclastic 376 

rocks (Taneum Formation) which overlie clastic rocks correlative with the Swauk Formation (Fig. 377 

3) (Tabor et al., 1984; Eddy et al., 2016a; Wallenbrock and Tepper, 2017).  These units represent 378 

the initiation of a magmatic belt that roughly parallels the leading edge of subducted Siletzia in 379 

the subsurface (Fig. 2) (Wells et al., 2014), and is attributed to tearing of the Farallon slab (Kant 380 

et al., 2018). 381 

The approach and collision of Siletzia is also recorded in folding and changes in 382 

paleotopography in the western belt.  Sedimentation in the Swauk basin persisted until at least 383 

ca. 50.8 Ma, the youngest MDA from stratigraphically high in the basin (Eddy et al., 2016a; 384 

Senes, 2019), but a drainage reversal from SW- to NE-flowing streams occurred at ca. 51 Ma 385 

(Eddy et al., 2016a) and may record the initial stages of collision of Siletzia at the latitude of the 386 

Swauk basin. A NW-vergent fold-and-thrust belt developed in SW Oregon in response to 387 

collision and involved Siletzia basalts, overlying Umpqua Group, and Klamath basement 388 
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terranes. Unconformably overlying marine strata (Tyee Formation) demonstrate that accretion 389 

was completed between 50.5 Ma and 49 Ma at that latitude (Wells et al., 2000, 2014). In the 390 

central Washington Cascades, the Swauk Formation is folded and locally faulted under a short-391 

lived (<1.5 Myr) angular unconformity with the overlying Teanaway Formation (Foster, 1958). 392 

The Teanaway Formation includes a 49.3 Ma rhyolite near its base (Eddy et al., 2016a) and is 393 

dominated by subaerial basalts, in contrast to the marine strata in SW Oregon. Contractional 394 

structures also attributed to the accretion of Siletzia are folds in the Chuckanut Formation in 395 

the northwestern Swauk basin (Misch, 1966; Johnson, 1984), some of the upright folds in the 396 

Skagit Gneiss Complex of the North Cascades core (Miller et al., 2016), and the Cowichan fold-397 

and-thrust belt on Vancouver Island, which is approximately the same age and has a similar 398 

northwesterly trend as the Chuckanut folds (Fig. 5) (Johnston and Acton, 2003).  399 

The magmatic lull continued in the North Cascades core (Miller et al., 2009), although 400 

minor partial melting persisted in the Skagit Gneiss Complex (Gordon et al., 2010a). The deep-401 

crustal (9-12 kbar) Swakane Gneiss in the crystalline core was probably rapidly exhumed during 402 

this interval, in part during distributed ductile shear and top-to-N to –NNE motion on the 403 

Dinkelman decollement (Fig. 3) (Paterson et al., 2004). Dextral-normal slip and associated 404 

mylonitization continued in the Foggy Dew fault zone, a southern strand of the Ross Lake fault 405 

system, and dextral displacement also occurred on the NW-striking Yalakom fault and other 406 

faults west of the Straight Creek-Fraser River fault (Fig. 5) (Miller and Bowring, 1990; Umhoefer 407 

and Schriazza, 1996). 408 

East of the Cascades core, magmatism increased with the emplacement of granitoid 409 

plutons, and dominantly metaluminous tonalites and granodiorites.  Although arc-like in 410 
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mineralogy, many of these plutons have trace element traits compatible with slab-breakoff 411 

magmas (e.g., Sr/Y>10, La/YbN>10; Whalen and Hildebrand, 2019) and Sr-Nd isotopic 412 

compositions indicative of significant contributions from older crust (Tepper and Eddy, 2017). 413 

The earliest U-Pb date associated with this renewed activity is 52 Ma in central Idaho, and 414 

subsequent plutonism appears to have migrated to the SW across NE Washington (Fig. 6C) 415 

(Tepper, 2016). Metamorphism and deformation continued in the metamorphic core 416 

complexes in southern British Columbia, NE Washington, Idaho, and Montana, as did Challis-417 

Kamloops magmatism and sedimentation in extensional basins where MDAs of locally derived 418 

sediments cluster around 50 Ma in southern British Columbia and northeastern Washington 419 

(e.g., Ewing, 1980; Suydan and Gaylord, 1997; Foster et al., 2007; Brown et al., 2012; Rubino et 420 

al., 2021). In contrast to NE Washington, no pattern of magmatism migration is seen across the 421 

Challis to Absaroka area in Idaho and Wyoming (e.g., Feeley and Cosca, 2003). The thermal 422 

peak in the Shuswap metamorphism was at ca. 53–49 Ma (Crowley et al., 2001). 423 

 Deformation in the eastern belt was dominated by roughly east-west extension, 424 

although contraction may have continued at deep levels in the Shuswap metamorphic core 425 

complex until ca. 52–49 Ma (Crowley et al., 2001; Gervais et al., 2010; Gervais and Brown, 426 

2011). The peak of extension and exhumation in the Okanogan core complex occurred at 53 – 427 

50 Ma (Brown et al., 2012). Brittle slip of uncertain sense reactivated the high-angle, ≥250-km-428 

long Pasayten fault (Fig. 3) along the eastern boundary of the Methow basin, and ended in 429 

Washington before eruption of ca. 48 Ma volcanic rocks, which overlap the fault (White, 1986).  430 

 In summary, the transition from a low-angle, transpressional subduction regime to a 431 

dextral transtensional regime was largely complete by the end of this time interval. The 432 
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collision of Siletzia explains the deformation in the Swauk basin and along strike to the NW, and 433 

the southwestward migration of magmatism in NE Washington is consistent with rollback of the 434 

northern Farallon slab (Figs. 5, 6C). The slab ruptured west of the Cascades core and is marked 435 

in part by a belt of magmatism that started at the end of this time period and lasted until ca. 48 436 

Ma (Kant et al., 2018) (Fig. 6). Previous explanations for this Challis – Kamloops magmatism 437 

include a decrease in the rate of plate convergence (Constenius, 1996), passage of a slab 438 

window (Thorkelson and Taylor, 1989; Breitsprecher, et al., 2003; Ickert et al., 2009), buckling 439 

and “sideways” slab rollback (Humphreys, 1995, 2009), and rollback and breakoff of the 440 

Farallon slab (Tepper, 2016). Slab rollback and breakoff, and slab window evolution are the 441 

most widely cited scenarios (see review by Humphreys and Grunder, 2022), and we favor this 442 

interpretation as discussed below. 443 

49.5 – 45 Ma   444 

 The short-lived deformation episode resulting from the collision of Siletzia was followed 445 

by profound changes in the tectonic evolution of the Pacific Northwest. A new subduction zone 446 

of the Kula or Resurrection plate beneath North America was established along the west side of 447 

Siletzia during this time interval (Fig. 6) (e.g., Schmandt and Humphreys, 2011). A dextral 448 

transtensional regime dominated, and a new non-marine strike-slip basin formed next to the 449 

Cascades core (Fig. 6). A magmatic flare-up occurred in the Cascades core and in the adjacent 450 

parts of the western belt, and magmatism and extension continued in the eastern belt, but 451 

were more aerially restricted after ca. 48 Ma.   452 
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In the west, the effects of the collision of Siletzia were waning by this time as 453 

magmatism ended in the southern part of Siletzia at ca. 50-49 Ma (Wells et al., 2014), and in 454 

northern Siletzia at ca. 48 Ma (Eddy et al., 2017a). The collision was followed in the Olympic 455 

Mountains (northern Siletzia) by deposition of turbidites (Blue Mountain unit) that have 456 

maximum depositional ages ranging from 47.8 to 44.7 Ma (Eddy et al., 2017a).  457 

To the east of Siletzia, magmatism attributed to slab rollback, tear, and breakoff 458 

continued until ca. 45 Ma, producing compositionally diverse volcanic and plutonic rocks that in 459 

part formed parallel to the edge of Siletzia in the subsurface and are commonly near the 460 

Straight Creek fault and its splays (Fig. 6) (Trehu et al., 1994; Kant et al., 2018).  Distinctive traits 461 

of these rocks include their bimodal nature, with OIB affinities of the mafic lavas and crustal 462 

signatures of the silicic rocks. On the west side of the Straight Creek fault are basalt and lesser 463 

rhyolite flows interbedded with nonmarine sedimentary rocks in the Naches and Barlow Pass 464 

units (Fig. 3). East of the Straight Creek fault, the prolific Teanaway dike swarm intruded the 465 

deformed rocks of the Swauk basin (Fig. 3) (Tabor et al., 1984; Miller et al., 2022), and is 466 

interpreted to be related to the dominantly basaltic, ca. 49.3 Ma Teanaway Formation. The 467 

mafic rocks are medium-K tholeiitic basalts and basaltic andesites (Clayton, 1973; Peters and 468 

Tepper, 2006; Roepke et al., 2013), which are derived from mantle that is inferred to have been 469 

metasomatized during earlier subduction (Tepper et al., 2008). The NNE (035°) average 470 

orientation of the dikes provides the most robust evidence for initiation of right-lateral strike-471 

slip on the Straight Creek fault at ~49 Ma (e.g., Miller, et al., 2022).   472 

Starting at 49.2 Ma, the Chumstick basin formed between the right-stepping 473 

Leavenworth and Entiat strike-slip faults, directly west of the Chelan block (Evans, 1994; Eddy et 474 
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al., 2016a) (Fig. 3). Abundant stratigraphic, paleocurrent, and detrital geochronologic data 475 

suggest that the basin formed during strike-slip faulting (Eddy et al., 2016a; Donaghy et al., 476 

2021). The main western subbasin formed from 49.2 to ~46.5 Ma, and fault reorganization at 477 

~46.5 - 44 Ma started inversion of the western subbasin and the formation of a narrow eastern 478 

subbasin next to the Entiat fault (Fig. 3). After this reorganization, strike-slip faulting localized 479 

on the Entiat and Straight Creek faults. The youngest (<45.9 Ma) sediments of the Chumstick 480 

Formation top the Leavenworth fault and probably correlate with the arkosic Roslyn Formation, 481 

which overlies the Teanaway Formation (Evans, 1994; Eddy et al., 2016a) (Fig. 3). 482 

 The magmatic lull in the Cascades core ended at ~49.4 Ma, close in time to the eruption 483 

of Teanaway volcanic rocks south of the Cascades core. The ensuing short-lived (until ca. 45 484 

Ma) flare-up has the highest magmatic addition rate and the shortest duration of the three 485 

flare-up events in the North Cascades since the mid-Cretaceous. It began with the ca. 49.6 Ma 486 

Lost Peak stock, followed by two large (ca. 300 km2 each) plutons, the Cooper Mountain and 487 

Golden Horn batholiths, which intruded at 49.3-47.9 Ma and 48.5–47.7 Ma (Eddy et al., 2016b; 488 

Miller et al., 2016), respectively, across the Ross Lake fault zone and into both the Cascades 489 

core and the Methow basin (Fig. 3). These plutons and coeval variably deformed 49.4–47.2 Ma 490 

intrusions (now orthogneisses) in the Skagit Gneiss Complex are commonly granodioritic in 491 

contrast to the mainly Cretaceous tonalitic intrusions of the two older flare-ups (e.g., Misch, 492 

1966; Haugerud et al., 1991; Miller et al., 2009). The ca. 49–48 Ma intrusions also range from 493 

gabbro to granite, and include alkaline granites. Between ~47.9–46.5 Ma, magmatism in the 494 

core migrated westward from the Ross Lake fault zone. The ~46.5 Ma Duncan Hill pluton and 495 

45.5 Ma Railroad Creek pluton (Fig. 3) were the last of the large intrusions in the North 496 
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Cascades (Miller et al., 2021), and on the basis of their age and location, they appear to be the 497 

youngest sizable elements related to slab rollback (Fig. 6C). The youngest magmatic rocks are 498 

ca. 44.9 Ma lineated granite sheets (Misch, 1968; Haugerud et al., 1991; Wintzer, 2012; Miller 499 

et al., 2016). εNdi values for some of the 49.3–45 Ma intrusive rocks are the least radiogenic 500 

values for North Cascades intrusions, and imply a greater crustal component than in earlier 501 

flare-ups (Matzel et al., 2008).  502 

 Extensive dike intrusion into a ≥600 km2 region of the Cascades core and adjacent rocks 503 

to the east and south began at ca. 49.3 with the Teanaway dikes and at least one other dike 504 

swarm, and continued until ca. 45 Ma (Miller et al., 2022). The largest number of dikes intruded 505 

between ca. 49.3–47 Ma. Many of these rhyolitic to basaltic dikes overlap spatially with the 49–506 

46.5 Ma granodioritic plutons of the core.  Some of the dikes have trace element signatures of 507 

arc magmas and some are adakites; they are interpreted to be the product of melting of 508 

eclogitic lower crust in response to intrusion of mantle-derived basalts (Davidson et al., 2015).  509 

 Metamorphism during this time interval is restricted to domains in the Skagit Gneiss 510 

Complex of the Cascades core where metamorphic monazite growth continued at least locally 511 

until 46 Ma (Gordon et al., 2010a). NW-striking foliation and subhorizontal lineation formed in 512 

the Complex from ca. 49.5–45 Ma (Haugerud et al., 1991; Wintzer, 2012; Miller et al., 2016), 513 

and foliation was deformed into upright gentle to open, generally SE- or NW-plunging folds of 514 

foliation between ca. 49 Ma to 47 Ma (Miller et al., 2016). Motion of the Ross Lake fault zone 515 

ended at ca. 49 Ma, but the Entiat fault was active until at least 46.9 Ma and ended by 44.4 Ma, 516 

and the N-S-trending Straight Creek fault experienced dextral slip from ca. 49 Ma and was 517 

sealed by 35 Ma (Misch, 1966; Tabor et al., 1984; Miller and Bowring, 1990). Excision and top-518 



25 
 

 

to-the north motion continued on the Dinkelman decollement at least until ca. 49–47 Ma 519 

(Matzel, 2004; Paterson et al., 2004). The Eocene dikes also provide information on the strain 520 

field. Their average orientation is ~035°, and the resultant extension direction (305°–125°) is 521 

oblique to the strike (~320°) of the North Cascades orogen and to the stretching lineation 522 

(average trend of 330°–150°) in the Skagit Gneiss Complex (Miller et al., 2022). Overall, these 523 

structures are compatible with the regional dextral transtensional tectonic regime.  524 

 The 49.5–45 Ma interval was marked by rapid cooling and exhumation of parts of the 525 

Cascades core. The 8–12 kbar Swakane Gneiss was in part exhumed by the Dinkelman 526 

decollement and was at the surface in the Chumstick basin by 48.5 Ma (Tabor et al., 1987; Eddy 527 

et al., 2016a). Most of the 40Ar/39Ar and K-Ar hornblende, biotite, and muscovite cooling ages in 528 

the 7–10 kbar Skagit Gneiss Complex are ca. 50–44 Ma (Engels et al., 1976; Wernicke and Getty, 529 

1997; Tabor et al., 2003; Gordon et al., 2010b), and thermochronology indicates very rapid 530 

cooling in some areas, with rates of perhaps 100°C/m.y. at ca. 47–45 Ma (Wernicke and Getty, 531 

1997).  532 

 In the eastern belt, magmatism, sedimentation, and extension all continued during the 533 

early part of this interval, but and magmatism and extension were largely waning by the end. 534 

Igneous activity was still migrating southwestward across NE Washington (Fig. 6C). In British 535 

Columbia, the >200 km2, granodioritic Needle Peak pluton intruded the Methow basin at ca. 48 536 

Ma (Monger, 1989), but and Challis-Kamloops magmatism to the east had largely ended by ca. 537 

47 Ma (Ickert et al., 2009; Dostal and Jutras, 2021).  538 

 Extension and sedimentation related to the metamorphic core complexes in NE 539 

Washington and British Columbia were on the wane during this interval. Termination of 540 
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sedimentation at ~48 in NE Washington was roughly coeval with the end of volcanism (Suydam 541 

and Gaylord, 1997). Mylonitization in the Okanogan Complex ended at ca. 49 Ma with cooling 542 

through 47 Ma (Kruckenberg et al., 2008). The Priest River Complex was rapidly exhumed from 543 

ca. 50–48 Ma (Doughty and Price, 2000; Stevens et al., 2016), but extension and exhumation 544 

continued through this interval in Idaho and Montana in the Bitterroot and Anaconda core 545 

complexes (Foster et al., 2007, 2010; Howlet et al., 2021). The Lewis and Clark fault zone 546 

continued to act as a boundary between the older core complexes to the north and the 547 

younger complexes to the south. 548 

45 - 40 Ma  549 

 This interval marks the end of slab foundering and the establishment of a new north-550 

south subduction zone and arc that became Cascadia. Subduction was occurring beneath much, 551 

if not all, of Oregon and Washington by the end of this period (Fig. 7). Sedimentation occurred 552 

in the western belt, but ended in the Chumstick basin, as did Challis-Kamloops magmatism in 553 

the eastern belt. 554 

Arc magmatism began at ca. 45 Ma in southwest Washington where local basaltic 555 

andesites and andesites erupted (du Bray and John, 2011) and by 40 Ma in southwest Oregon 556 

(e.g., Darin et al., 2022). In northwestern Washington, similar volcanic rocks occur in a belt that 557 

lies west of the younger part of the Cascades arc and also includes 45 – 35 Ma granodioritic 558 

intrusions, and abundant 45–40 Ma tuffs occur in the Puget Group (Fig. 3) (Vine, 1969; Tabor et 559 

al., 1993, 2000; Dragovich et al., 2009, 2011, 2013, 2016; MacDonald et al., 2013). Within this 560 

belt the oldest rocks appear to be at the northern end, but there is a lack of precise dates for 561 
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units in the south. Local dacite and rhyolite domes (Wenatchee domes) intruded the Chumstick 562 

basin to the east at ca. 44.5 Ma (Gilmour, 2012; Eddy et al., 2017b) and may be the youngest 563 

intrusive rocks related to slab rollback and/or breakoff (White et al., 2021). In SW Washington 564 

and Oregon, the Tillamook magmatic episode occurred from 42 to 34 Ma (Parker et al., 2010; 565 

Chan et al., 2012; Wells et al., 2014).  This episode included volcanic rocks (Tillamook Volcanics, 566 

Yachats basalt, and Grays River Volcanics) in NW Oregon and SW Washington, which are 567 

interpreted by some workers to be related to the Yellowstone hotspot, and were synchronous 568 

with margin-parallel extension (e.g., Wells et al., 2014; Camp and Wells, 2021). 569 

 Sedimentation in the western belt includes both deep and shallow marine deposits on 570 

the Olympic Peninsula (Einarsen, 1987; Babcock et al., 1994). Inboard, in the Puget Sound 571 

region, the deltaic to shallow marine middle(?) to late Eocene Puget Group (Fig. 3; Vine, 1969; 572 

Buckovic, 1979; Johnson and O’Connor, 1994) was deposited on Siletzia on the west and the 573 

older rocks of the western North Cascades on the east. The Puget Sound basin likely formed in 574 

the forearc to the early Cascadia arc.  575 

 Sedimentation ended in the Chumstick basin, but continued in the overlying, ca. 44–42 576 

Ma arkosic Deadhorse Canyon unit and the Roslyn Formation (Evans, 1994; Eddy et al., 2016a). 577 

(Fig. 3). The latter, which rests on the Teanaway Formation south of the Cascades core, may be 578 

the easternmost part of the regional depositional system that included the Puget Group.  579 

 Magmatism ceased in the Cascades core at ca. 44.9 Ma and ductile deformation in the 580 

Skagit Gneiss Complex had also ended at ca. 45 Ma (Miller et al., 2016). Dextral strike slip ended 581 

between 46.9 Ma and 44.5 Ma on the Entiat fault (Evans, 1994; Eddy et al., 2016a) and 582 
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continued to a later time on the Straight Creek fault, which is intruded by a 34 Ma pluton (e.g., 583 

Tabor et al., 2003). 584 

 East of the Cascades core, Challis magmatism terminated at ca. 43 Ma (Gaschnig et al., 585 

2010). Extension and cooling of the Bitterroot and Anaconda core complexes continued until ca. 586 

39 Ma, as did sedimentation (Foster et al., 2010; Howlett et al., 2021). Motion on the Lewis and 587 

Clark fault zone presumably ended as well. 588 

  589 

DISCUSSION 590 

 We emphasized in the introduction that the Pacific Northwest in the Paleogene is an 591 

excellent place to examine a variety of processes resulting from ridge-trench interaction and 592 

oceanic plateau collision. In the following, we explore the upper-plate response shortly before, 593 

during, and after the Farallon- Kula or Farallon-Resurrection ridge encountered the trench 594 

bordering North America near Vancouver Island, and the consequences of the collision of 595 

Siletzia. 596 

Relation of the 60 – 50 Ma Magmatic Lull to Slab Dynamics 597 

 It is likely that the end of long-lived arc magmatism in the Cascades core at ca. 60 Ma 598 

and the overall low volume of magmatism from ca. 60–50 Ma eastward to the Idaho batholith 599 

resulted from flat-slab subduction. Moreover, magmatism in the Idaho batholith during this 600 

interval probably resulted from crustal thickening and not subduction-related processes 601 

(Gaschnig et al., 2010). The shallowing of the slab may be attributable to the subduction of 602 
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young buoyant lithosphereThe shallowing of the slab may be attributable to the rapid 603 

subduction of young buoyant lithosphere, as also proposed by others for the greater region 604 

(e.g., Thorkelson and Taylor, 1989; Haeussler et al., 2003). generated at a ridge close to the 605 

trench, and by the approach of overthickened oceanic crust of Siletzia. Strong suction in the 606 

mantle wedge due to approach of the slab with its decreasing dip toward the craton may have 607 

played a role, as proposed for the Laramide belt to the south (Humphreys, 2009; O’Driscoll et 608 

al., 2009). Note that the Laramide belt in northern Wyoming was directly east of Siletzia at 55 609 

Ma in our reconstruction (Fig. 4). Another explanation for the postulated flat-slab subduction is 610 

that the Farallon subduction zone was old and wide (Schellart, 2020), which is viable if the flat 611 

slab before an approximately 60 Ma plate reorganization was a smaller part of the northern 612 

Farallon plate subducting beneath western North America since at least the earliest Cretaceous 613 

(Engebretson et al., 1985).  614 

 The northern boundary of the flat slab is inferred to be northeast of central Vancouver 615 

Island (Fig. 4) where there is a transition in pluton ages within the Coast Mountains batholith. 616 

The southern Coast Mountains have a 60 – 50 Ma magmatic lull much like the Cascades core of 617 

this study, whereas to the north, a high magma addition event attributed to arc magmatism 618 

occurred from 61–48 Ma (Cecil et al., 2018). A projection of the triple junction off central 619 

Vancouver Island through the boundary in the Coast Mountains to the NE may run to the 620 

northern edge of the Shuswap Complex at this time, which potentially explains the location of 621 

the belt of major extension along the eastern edge of the flat slab from British Columbia to 622 

southern Idaho and western Montana. Alternatively, the flat slab may underlie have underlain 623 

the region of the magmatic lull, but just south of most of the Shuswap to Okanogan extensional 624 
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belt (Fig. 4), in which case the latter would be kinematically tied to the Tintina fault – Rocky 625 

Mountain trench (Price and Carmichael, 1986) and magmatism would occur in a slab window 626 

(e.g., Breitsprecher et al., 2003). Seismic tomography and reconstructions of plate motions in 627 

the NE Pacific also suggest a major boundary inboard from Vancouver Island (Fuston and Wu, 628 

2021). Plate motion models suggest indicate rapid northward rates of either the Kula or 629 

Resurrection plates from ca. 65–50 Ma that were highly oblique to the North American plate 630 

boundary (Engebretson et al. 1985; Matthews et al., 2016), and this may have produced a large 631 

slab window under western Canada (Fuston and Wu, 2021; cf. Madsen et al., 2006) north of the 632 

proposed flat slab.  633 

The magmatic lull and flat slab extended to the south of the crystalline core of the North 634 

Cascades, which on the basis of known strike-slip faults (Wyld et al., 2006; this study) was at the 635 

latitude of current central Oregon to the Oregon – Washington border at ca. 60–50 Ma. Post-50 636 

Ma volcanic and sedimentary strata obscure relations to the south and east of the Wenatchee 637 

block; in our reconstruction at 55 Ma (Fig. 4), and projecting faulting back to 60 Ma, the North 638 

Cascades would have lain near the NW edge of the Klamath – Blue Mountains terranes and the 639 

flat slab beneath the Pacific Northwest would be continuous with the well-established Laramide 640 

flat slab to the south (see Tikoff et al., [20232], for an alternative hypothesiss).   641 

 642 

Consequences of Collision of Siletzia  643 

 The inferred position of the intersection of the Farallon – Resurrection/Kula ridge with 644 

the trench is complicated by the eruption of Siletzia basalts and the construction of an oceanic 645 
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plateau above a hot spot mantle plume (e.g., Wells et al., 2014). In the region of the 646 

Washington Cascades, major changes occurred in the upper plate of the system due to collision 647 

of this oceanic plateau.  648 

 Notable aspects of Siletzia collision are the short duration of the associated 649 

deformation, its profound inboard influence, and the subsequent change in plate boundary 650 

stresses along the newly established North America margin. The most important structural 651 

response was the brief shortening that migrated from southwest Oregon to central Washington 652 

and Vancouver Island during the 51 – 49 Ma interval (Fig. 5) (Wells et al., 2014). In the Swauk 653 

basin, folding and formation of an angular unconformity is tightly bracketed between ~50.8 Ma 654 

and 49.3 Ma (Eddy et al., 2016a). The reversal of drainage in the Swauk basin at ~51 Ma is 655 

probably one of the first signs of Siletzia collision at that latitude (Eddy et al., 2016a). Younger 656 

upright folding continued until ca. 48 Ma at  deeper crustal  levels in the Skagit Gneiss Complex 657 

of the Chelan block of the Cascades core ~175 km inboard of Siletzia (Miller et al., 2016). 658 

Folding only bracketed between ca. 65 Ma and 48 Ma (Kriens et al., 1995) in the Methow basin 659 

farther to the northeast may have been induced by collision. In contrast, in the eastern belt, 660 

≥235 km inboard of Siletzia, extension in most of the core complexes continued unabated.  661 

Peak metamorphism of the voluminous Shuswap Complex and several other core complexes at 662 

~53–49 Ma was roughly coincident with the proposed flat slab and Siletzia collision. One 663 

explanation for the widespread eastern extension and timing of magmatism and 664 

metamorphism may be the rollback of the flat slab, which we propose was underway in 665 

Washington by ca. 52 Ma (Figs. 5, 6C).  666 
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 In the western belt, sedimentation continued in the early stages of collision after the 667 

drainage reversal in the Swauk basin at 51 Ma, but presumably ended during folding and 668 

certainly before the Swauk-Teanaway unconformity and eruption of Teanaway volcanic rocks at 669 

49.3 Ma. Note that the youngest Swauk Formation strata are in lake and fluvial facies in the far 670 

eastern end of the Swauk basin near the Leavenworth fault (Tabor et al., 1982; Senes, 2019), 671 

and their position may be related to an eastward migration of late basin subsidence related to 672 

the collision. In the eastern belt, sedimentation continued in the supra-detachment extensional 673 

basins and grabens until ca. 48 Ma, just after this slab is inferred to have rolled back to the SW. 674 

 The approach and collision of Siletzia with the continental margin influenced 675 

magmatism much farther eastward than it influenced deformation and sedimentation. We 676 

attribute this to the shut off of northeastward flat subduction caused by the collision-related 677 

plate reorganization (e.g., Schmandt and Humphreys, 2011). Magmatism migrated to the 678 

southwest across NE Washington and reached the Golden Horn batholith at the northeast 679 

margin of the Cascades core at ca. 48.3 Ma (Figs. 3, 6C). This migration has been interpreted to 680 

result from slab rollback (Tepper, 2016) and breakoff, as the Farallon plate detached and 681 

formed the subvertical “slab curtain” currently imaged seismically beneath Idaho and eastern 682 

Washington (Schmandt and Humphreys, 2011).  683 

 684 

What Drove the 49.3 Ma to 45.5 Ma Magmatic Flare-up?  685 

 Plutons in the North Cascades crystalline core and dike swarms across the study area 686 

record a major magmatic flare-up at 49.3–45.5 Ma (Miller et al., 2009), shortly after Siletzia 687 
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collision. This flare-up is concentrated in the Chelan block of the core, but also includes plutons 688 

that intruded the Methow basin directly east and northward of the core for ca. 70 km into 689 

Canada (e.g., Needle Peak pluton), volcanic rocks on the west and south sides of the core, and 690 

voluminous dike swarms (Figs. 3, 6) (e.g., Tabor et al., 1984; Eddy et al., 2016b; Miller et al., 691 

2016, 2022). The Eocene flare-up is marked by the highest magmatic addition rate and shortest 692 

duration of any of the magmatic events in the North Cascades.  693 

The factors that control initiation and termination of magmatic ‘flare-ups’, such as the 694 

Eocene event, are controversial (e.g., Chapman et al., 2021b). Isotopic data from intrusions 695 

emplaced during flare-ups in some arcs imply increased crustal melting and have led to the 696 

orogenic cycle hypothesis in which flare-ups are driven by melting of fertile backarc crustal 697 

material thrust into the deep levels of an arc or underlying mantle (e.g., Ducea and Barton, 698 

2007; DeCelles et al., 2009). Others have argued that voluminous melting results dominantly 699 

from processes external to the arc, including slab break-off and ridge subduction, and largely 700 

involves mantle-derived melts (e.g., Decker et al., 2017; Schwartz et al., 2017; Ardila et al., 701 

2019), which in turn can drive an increase of partial melting of the crust. 702 

The Eocene Cascades core plutons have been considered the latest pulse of arc 703 

magmatism in the North Cascades by earlier workers (e.g., Matzel et al., 2008; Miller et al., 704 

2009), and magmatism to the east in the Challis-Kamloops belt has been interpreted to occur 705 

within a slab window (e.g., Thorkelson and Taylor, 1989; Breitsprecher et al., 2003).  but Iin our 706 

view, the flare-up is related to the Farallon slab rollback and breakoff. At ~49.5 Ma, the 707 

southwest-migrating rollback magmatism had reached the northeast margin of the Cascades 708 

core (Tepper, 2016) and the edge of a large slab window may have lain nearby to the north (Fig. 709 
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6). The accretion of Siletzia and termination of subduction led the slab to break off, as shown in 710 

part by the belt of bimodal volcanic rocks lacking an arc signature near the Straight Creek fault 711 

(Figs. 3, 6, 9) (Kant et al., 2018). The Eocene age Cascades core plutons have a wider isotopic 712 

range than earlier plutons (Matzel et al., 2008), but their geochemistry does not permit 713 

distinguishing between an arc or slab break-off origin as the crustal component of melt during 714 

break-off would be mafic lower crust of the Late Cretaceous arc. Dextral strike-slip, slab 715 

rollback, and breakoff were concentrated in and near the Cascades core, and we infer that the 716 

slab was ripped apart leading to upwelling of asthenospheric mantle and decompression 717 

melting (Fig. 9).  718 

A speculative additional interpretation is that the breakoff-related magmatism 719 

continued to the southeast beneath the Columbia River Basalt Group in the Pasco basin to the 720 

Clarno Formation of NE Oregon (Figs. 2, 6). The Pasco basin is on strike with the Eocene 721 

Chumstick basin and seismic velocities suggest that beneath the Miocene basalt is a thick, 722 

asymmetric sedimentary basin of probable Eocene age and an associated mafic underplate 723 

(Catchings and Mooney, 1988; Gao et al., 2011). These mafic rocks may be similar to the 724 

Teanaway Basalt of the flare-up. A speculative additional interpretation is that the breakoff-725 

related magmatism continued to the southeast to the Clarno Formation of NE Oregon (Figs. 2, 726 

6). The Clarno Formation is not well dated, but available ages suggest that the volcanic rocks 727 

erupted starting at ca. 53–50 Ma (Bestland et al., 2002). Note that in our reconstruction for 48 728 

Ma the Clarno area is about 100 km SE of the North Cascades flare-up and the western breakoff 729 

belt west of the Straight Creek fault would have been about 40–50 km closer to the Clarno at 50 730 

Ma. If the Siletzia terrane lay on a small microplate within the shrinking northern Farallon plate 731 
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as we show (Fig. 6), then the southeast edge of the slab that rolled back and broke off may have 732 

been near the Clarno volcanics (cf. Humphreys, 2009).  733 

 734 

Upper Plate Deformation After Siletzia Collision 735 

 The ca. 49–45 Ma structural record west of the Fraser River-Straight Creek fault is 736 

largely restricted to high-angle NW-striking faults and associated local folds, whereas in the 737 

central and eastern belts a wide array of structures can be used to evaluate deformation. 738 

Eocene dikes, dextral strike-slip faults, basins, and ductile structures in the Cascades are broadly 739 

coeval with dikes, faults bounding non-marine basins, and ductile fabrics in metamorphic core 740 

complexes in NE Washington and southern British Columbia (Fig. 6) (e.g., Ewing, 1980; Parrish 741 

et al., 1988; Eddy et al., 2016a; Miller et al., 2016). Dikes in the eastern belt are not well dated, 742 

but most K-Ar dates from volcanic rocks in NE Washington range between 51–48 Ma (Pearson 743 

and Obradovich, 1977), and thus overlap temporally with the older (49.3–47.5 Ma) dikes in the 744 

Cascades and the magmatic flare-up. Dikes intruding the Kettle metamorphic core complex, 745 

~140 km east of the North Cascades, strike ~012°–022° (McCarley Holder et al., 1990; their Fig 746 

1). These dikes are subparallel to the normal faults that separate the Kettle and Okanogan core 747 

complexes from Eocene grabens (Keller, Republic, and Toroda), which strike 008–020°. Farther 748 

east, ENE-WSW (~075°-255°) brittle slip occurred on the Newport fault, which is the upper 749 

boundary of the Priest River Complex (Harms and Price, 1992), and east and south of the Lewis 750 

and Clark fault zone, slip on the Bitterroot and Anaconda detachments is top-to-the-east-751 

southeast (~100–110°) (Kalakay et al., 2003; Foster et al., 2007).  Brittle extension directions 752 

from the dikes and faults bounding the grabens suggest that they are oblique (ca. 15°–50° 753 
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counter clockwise) to those of the voluminous N–NE-striking (average of 035°), ~49.3–47.5 Ma 754 

dikes in the Cascades. 755 

 A major difference between faults in the eastern belt and those in the western and 756 

central belts is that the eastern faults are apparently purely dip slip, whereas faults (Ross Lake, 757 

Entiat, Leavenworth, Straight Creek) in the central and western belts are dextral strike slip, and 758 

most have a subordinate component of normal slip. Dextral slip does occur to the east on the 759 

Lewis and Clark fault zone (Figs. 2, 6), but this structure strikes ~E-W and transfers slip between 760 

the Anaconda, Bitterroot, and Priest River core complexes (e.g., Foster, et al., 2007). The 761 

combination of dextral strike-slip faults and dike swarms of the Cascades core region is most 762 

compatible with a N-S dextral shear and related WNW – ESE extension.  763 

 Eocene ductile stretching in mylonites in core complexes ranges from ~105–285° in the 764 

Bitterroot and Anaconda complexes in Montana (Foster et al. 2007), to 074-254° in the Priest 765 

River Complex (Harms and Price, 1992; Doughty and Price, 1999) near the Washington – Idaho 766 

border, to E-W in the Kettle Complex (Rhodes and Cheney (1981), to W-NW – E-SE (~295-115°) 767 

in the Okanogan Complex (Kruckenberg, 2008; Brown et al., 2012) ~ 40 km east of the Cascades 768 

core. Broadly coeval, subhorizontal Eocene ductile stretching in the North Cascades is ~330 - 769 

150° in the Skagit Gneiss Complex to close to N-S in the Swakane Gneiss. Thus, ductile extension 770 

directions rotate progressively clockwise by ~75° from east to west. The sense of rotation is the 771 

same, but the magnitude of rotation is greater, then that of the upper-crustal structures.   772 

 Rotation of extension directions fits with the progressively greater influence of dextral 773 

shear closer to the plate margin in response to the plate reorganization at ~49.5 Ma after 774 

Siletzia collision. Extension and transtension led to orogenic collapse in the core complexes 775 
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(e.g., Price and Carmichael, 1986; Parrish et al., 1988; Vanderhaege and Teyssier, 2001), 776 

whereas strike slip occurred to the west on the faults bounding and cutting the North Cascades 777 

core.   778 

 779 

Eocene Global Plate Reorganization  780 

 The dramatic tectonic transitions in the Pacific Northwest region at ca. 52–49 Ma 781 

coincide with a fundamental plate reorganization in the Pacific Basin and a global change in 782 

plate vectors at ~53–47 Ma (e.g., Whittaker et al., 2007; O’Connor et al., 2013; Seton et al., 783 

2015). This plate reorganization in the Pacific may have been driven by subduction of the 784 

Izanagi-Pacific ridge at ca. 60–46 Ma (Wu and Wu, 2019), with the ensuing initiation of 785 

subduction in the Tonga-Kermedec and Izu-Bonin-Mariana system occurring at ca. 53–50 Ma 786 

(Sharp and Clague, 2006; Whittaker et al., 2007a; Tarduno et al., 2009). The ~50 Ma bend in the 787 

Hawaiian –Emperor seamount chain also coincides with a change in Pacific plate motion and 788 

Australian-Antarctic plate reorganization at that time (Sharp and Clague, 2006; Whittaker et al., 789 

2007). It has been suggested that Pacific – Kula plate spreading also changed at ca. 53.3 Ma to 790 

43.8 Ma (Lonsdale, 1988), and that Kula – North America relative motion became more 791 

northerly and faster at 57 Ma (Doubrovine and Tarduno, 2008). Other major global events 792 

roughly coeval with the fundamental changes in the Pacific Northwest region include initiation 793 

of the Aleutian arc and the dramatic slowing of Greater India at ca. 50 Ma resulting from 794 

collision with Asia (e.g., Copley et al., 2010; van Hinsbergen et al., 2011). 795 
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 It appears that the significant changes in the tectonics of the Pacific Northwest at 52 – 796 

49 Ma are the consequence of both a global plate reorganization and the regional collision of 797 

the ridge-centered Siletzia oceanic plateau. The global plate changes resulted in faster and 798 

perhaps more northerly relative plate motion in the Pacific Northwest, which in turn resulted in 799 

the formation of the new N-S- striking strike-slip Straight Creek – Fraser River fault. However, 800 

most of the complex changes summarized here are the result of the profound changes due to 801 

the Siletzia collision and westward stepping of the subduction zone, and triple-junction 802 

migration during the 60 – 40 Ma interval. 803 
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TABLE 1450 

Table 1. STRIKE-SLIP FAULT OFFSETS ACROSS WASHINGTON CASCADES. 1451 

 1452 

FIGURE CAPTIONS 1453 

Figure. 1. Simple plate reconstruction models of the NE Pacific at 60 Ma and 52 Ma showing 1454 

locations of triple junctions. A. Kula – Farallon – North America triple junction. Note the 1455 

southward sweep of the Kula – Farallon Ridge from 60 Ma to 52 Ma in this model (e.g., Bradley 1456 

et al, 2003). B. Two triple junctions result from the hypothetical Resurrection plate (e.g., 1457 

Hauessler et al., 2003). Note that in either model there is a triple junction near central to 1458 

southern Vancouver Island at ca. 52 Ma (e.g., Breitsprecher et al., 2003) and that the Kula ridge 1459 

interacted with the continental margin back to ca. 83 Ma (e.g., Engebretson et al., 1985; 1460 

Thorkelson and Taylor (1989). The hypothetical Orcas plate model is on a coarser scale and is 1461 

not shown; it calls for the final consumption of the plate at ~50 Ma (Clennett et al., 2020).. 1462 
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Sanak-Baranof is a belt of near-trench intrusions, which provide part of the evidence of a ridge 1463 

interacting with a trench (e.g., Bradley et al., 2003).  1464 

 1465 

Figure 2. Generalized tectonic map of Paleogene rock types, structures, and tectonics of the 1466 

greater Pacific Northwest region considered in this study. Note the location of Siletzia (including 1467 

subsurface), near-trench intrusions, major dextral strike-slip faults, basins, magmatic rocks, and 1468 

metamorphic core complexes and bounding normal faults. Western, Central, and Eastern belts 1469 

are subdivisions used in text. An = Anaconda core complex; Br = Bitterroot lobe of Idaho 1470 

batholith; Cb = Chelan block of North Cascades crystalline core; Csz = Coast shear zone; Ef = 1471 

Entiat fault; Ff = Fraser fault; K = Kettle core complex; LCfz = Lewis and Clark fault zone; Ok = 1472 

Okanogan core complex; P = Priest River core complex; Pf = Pasayten fault; RLf = Ross Lake 1473 

fault; SCf = Straight Creek fault; Sh = Shuswap core complex; V = Valhalla complex. VI = 1474 

Vancouver Island; Wb = Wenatchee block of North Cascades crystalline core; Yf = Yalakom fault. 1475 

Box shows location of Fig. 3. States and Provinces: BC = British Columbia; ID = Idaho; MT = 1476 

Montana; OR = Oregon; WA = Washington.  1477 

 1478 

Figure 3. Simplified geologic map of central and northern Washington State, and adjacent 1479 

southern British Columbia (modified from Eddy et al., 2016a). BP=Barlow Pass Formation; 1480 

Ccb=Chilliwack batholith; CHK=Chuckanut Formation; CM=Cooper Mountain pluton; CP=Castle 1481 

Peak stock; CRb=Columbia River Basalt Group; DD=Dinkelman decollement; DH=Duncan Hill 1482 

pluton; Ef=Entiat fault; Epc=Eagle Plutonic Complex; FDfz = Foggy Dew fault zone; FRfz=Frazer 1483 
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River fault zone; GH=Golden Horn batholith; GPsz=Gabriel Peak shear zone; HZf=Hozameen 1484 

fault; Lfz=Leavenworth fault zone; LP=Lost Peak stock; MO=Mount Outram pluton; 1485 

MP=Monument Peak stock; MPS=Mount Pilchuck stock; N=Naches Formation; NP=Needle Peak 1486 

pluton; NWCts=Northwest Cascades thrust system; OP=Oval Peak pluton; Orb=Okanogan Range 1487 

batholith; PC=Pipestone Canyon Formation; Pf=Pasayten fault; PG=Puget Group; Pv=Princeton 1488 

volcanics; R=Roslyn Formation; RC=Railroad Creek pluton; RLf=Ross Lake fault; SW=Swauk 1489 

Formation; SWG=Swakane Gneiss; T=Teanaway Formation; WEMB=Western and eastern 1490 

mélange belts; Yi=Yale intrusions. 1491 

 1492 

Figure 4. Reconstruction map at ca. 55 Ma based on features in Figures 2 and 3 (see text for 1493 

details). Note that the western belt has been offset 150 km to the south relative to the central 1494 

zone and >300 km to the south relative to the eastern belt. The ridge which Siletzia formed on 1495 

is near central to southern Vancouver Island and the Swauk basin has formed inboard of Siletzia 1496 

in the western belt. There is a lull in magmatism in the southern part of the Coast Mountains 1497 

and North Cascades arc. B. Proposed plate tectonic setting at ca. 55 Ma based on features in 1498 

Figures 2 and 3. Note the position of major faults (both active and non-active) in gray for 1499 

reference. Br = Bitterroot lobe of Idaho batholith; Cb = Chelan block of North Cascades 1500 

crystalline core; Csz = Coast shear zone; Ef = Entiat fault; K = Kettle core complex; Ok = 1501 

Okanogan core complex; P = Priest River core complex; Pf = Pasayten fault; RLf = Ross Lake 1502 

fault; Sh = Shuswap core complex; V = Valhalla complex; VI = Vancouver Island; Wb = 1503 

Wenatchee block of North Cascades crystalline core; Yf = Yalakom fault. States and Provinces: 1504 

BC = British Columbia; MT = Montana; WA = Washington.   1505 
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 1506 

Figure 5. A. Reconstruction map and proposed plate tectonic setting at ca. 51 Ma based on 1507 

features in Figures 2 and 3. By 51 Ma, the ridge has reached Vancouver Island and Siletzia has 1508 

collided with the continental margin. The Swauk basin has begun to invert and Challis-Kamloops 1509 

magmatism is active, as are core complexes and extensional basins in the eastern zone. B. 1510 

Proposed plate tectonic setting. An = Anaconda core complex; Br = Bitterroot core complex; Cb 1511 

= Chelan block of North Cascades crystalline core; Csz = Coast shear zone; Ef = Entiat fault; K = 1512 

Kettle core complex; LCfz = Lewis and Clark fault zone; Ok = Okanogan core complex; P = Priest 1513 

River core complex; Pf = Pasayten fault; RLf = Ross Lake fault; Sh = Shuswap core complex; V = 1514 

Valhalla complex; VI = Vancouver Island; Wb = Wenatchee block of North Cascades crystalline 1515 

core; Yf = Yalakom fault. States and Provinces: BC = British Columbia; CA = California; ID = Idaho; 1516 

MT = Montana; NV = Nevada; UT = Utah; WA = Washington. 1517 

 1518 

Figure 6. A. Reconstruction map and proposed plate tectonic setting at ca. 48 Ma based on 1519 

features in Figures 2 and 3. The subduction zone has shifted outboard of Siletzia. Some of the 1520 

dextral strike-slip faults in the North Cascades have accelerated or initiated, and major dike 1521 

swarms intruded in the central and northern Washington Cascades coincident with a magmatic 1522 

flare-up. Challis-Kamloops magmatism continued, but is beginning to wane, as is extension 1523 

associated with core complexes. B. Proposed plate tectonic setting. The approximate location of 1524 

the idealized slab window assumes that the Farallon plate was moving NE and the Kula-Farallon 1525 

ridge intersected the continental margin as shown. In C., Eocene magmatism across NE to 1526 
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north-central Washington and the pattern of inferred rollback of magmatism to the southwest 1527 

are shown.n Filled circles are localities of U-Pb zircon ages of plutonic rocks., as inferred from  1528 

Heavy dashed lines are contours of the U-Pb zircon ages (references cited in text).  An = 1529 

Anaconda core complex; Br = Bitterroot core complex; Cb = Chelan block of North Cascades 1530 

crystalline core; Chb = Chumstick basin; Csz = Coast shear zone; Ef = Entiat fault; Fa = Farallon 1531 

plate; Ff = Fraser fault; K = Kettle core complex; LCfz = Lewis and Clark fault zone; Ok = 1532 

Okanogan core complex; P = Priest River core complex; Pab = Pasco basin; Pf = Pasayten fault; 1533 

RLf = Ross Lake fault; SCf = Straight Creek fault; Sh = Shuswap core complex; V = Valhalla 1534 

complex; VI = Vancouver Island; Wb = Wenatchee block of North Cascades crystalline core. 1535 

States and Provinces: BC = British Columbia; ID = Idaho; MT = Montana; NV = Nevada; UT = 1536 

Utah; WA = Washington. 1537 

 1538 

Figure 7. Reconstruction map and proposed plate tectonic setting at ca. 44–40 Ma based on 1539 

features in Figures 2 and 3. The ancestral Cascades arc (“Cascadia”) has initiated, scattered 1540 

basins extend from the western to eastern belts, and magmatism has ended in the North 1541 

Cascades and almost all of the Challis-Kamloops belt. The Farallon – Pacific ridge is migrating to 1542 

the northwest relative to North America. Ff = Fraser River fault; LCfz = Lewis and Clark fault 1543 

zone; PG = Puget Group; Rb = Roslyn basin; SCf = Straight Creek fault. VI = Vancouver Island; Yf 1544 

= Yalakom fault. States and Provinces: BC = British Columbia; ID = Idaho; MT = Montana; OR = 1545 

Oregon; WA = Washington. 1546 

 1547 
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Figure 8. Summary of timing of major events described in the text. Within the magmatism, 1548 

sedimentation and deformation panels, features are generally arranged from west (left) to east 1549 

(right). Arrows designate where processes began before 60 Ma or ended after 40 Ma. 1550 

 1551 

Figure 9. Tectonic model for 49.5–45 Ma magmatic flare-up in the Washington Cascades. The 1552 

star schematically shows the location of the northern Washington Cascades where the slab has 1553 

broken, south of the postulated slab window to the north. See text for explanation. 1554 
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