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(Quasi-)conformal methods in two-dimensional free
boundary problems

Abstract. In this paper we relate the theory of quasi-conformal maps to the regularity of the solu-
tions to nonlinear thin-obstacle problems; we prove that the contact set is locally a finite union of
intervals and we apply this result to the solutions of one-phase Bernoulli free boundary problems
with geometric constraint. We also introduce a new conformal hodograph transform, which allows
to obtain the precise expansion at branch points of both the solutions to the one-phase problem with
geometric constraint and a class of symmetric solutions to the two-phase problem, as well as to
construct examples of free boundaries with cusp-like singularities.

1. Introduction

This note is dedicated to the analysis of the branch singularities arising in two different
types of free boundary problems in dimension two: non-linear thin-obstacle problems and
one-phase Bernoulli problems with geometric constraint. In the last part of the paper we
will present some results about branch points of the two-phase problem.

Our main motivation is the description of the structure of branch points arising in free
boundary problems of Bernoulli type. Our main model example is the following one-phase
problem with geometric constraint, which for simplicity we state for nonnegative functions
𝑢 defined on the unit ball 𝐵1 in R𝑑:

Δ𝑢 = 0 in Ω𝑢 ⊂ 𝐵1 ∩ {𝑥𝑑 > 0}
𝑢 = 0 on 𝐵1 ∩ {𝑥𝑑 = 0}

|∇𝑢 | = 1 on 𝜕Ω𝑢 ∩ {𝑥𝑑 > 0}
|∇𝑢 | ≥ 1 on 𝜕Ω𝑢 ∩ {𝑥𝑑 = 0},
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in which
Ω𝑢 := {𝑢 > 0}

and the geometric constraint is the inclusion Ω𝑢 ⊂ 𝐵1 ∩ {𝑥𝑑 > 0}. The (optimal) 𝐶1,1/2

regularity of the free boundary 𝜕Ω𝑢 ∩ 𝐵1 for this specific problem was proved by Chang-
Lara and Savin in [5]. On the other hand, as in the case of other Bernoulli free boundary
problems as the two-phase problem [10] and the vectorial problem [22], the𝐶1,𝛼 regularity
of the free boundary 𝜕Ω𝑢 ∩ 𝐵1 by itself does not give any information on the contact set

𝜕Ω𝑢 ∩ {𝑥𝑑 = 0} ∩ 𝐵1,

nor the structure of its relative boundary in 𝐵1 ∩ {𝑥𝑑 = 0}, which is the set of points at
which 𝜕Ω𝑢 branches away from {𝑥𝑑 = 0}. In dimension two, it is natural to expect that this
set is discrete and that around each branch point the set {𝑢 = 0} ∩ {𝑥𝑑 > 0} forms a cusp.
This is precisely the content of one of our main results, Theorem 1.1.

We will study these singularities in two different ways. First we will prove that branch
singularities for minimizers of a general non-linear thin-obstacle problem are isolated,
using the theory of quasiconformal maps, and then we will deduce the same result for
solutions of the problem above via an hodograph transform. Secondly, we will introduce a
conformal hodograph transform and use it to deduce the result directly. This second method
has two advantages: it allows us to give a precise description of the cuspidal behavior
of the free boundary at branch singularities and moreover, being reversible, it allows to
show that solutions of the 2-dimensional one phase problem with obstacle are in a 1 to 1
correspondence with solution to the thin-obstacle problem, thus producing many examples
of cuspidal singularities. Finally we will describe a special symmetric situation in which
our techniques apply to the branch points of solutions to the two-phase problem. Extending
our results to the general two-phase situation seems to require an entirely new idea, which
is similar in spirit to an analogue of the Almgren’s center manifold for this problem (see
[4]).

The quasi-conformal technique is needed to prove Theorem 1.1 and it is the only one
available there. On the other hand the conformal hodograph transform is the only technique
which allows to give the precise analytic expansion in Theorem 1.3 (b) and Theorem 1.6
(b), and to construct the corresponding examples in Theorem 1.4 and Theorem 1.8. Both
techniques can be used to prove Theorem 1.3 (a) and Theorem 1.6 (a).

We wish to remark that such precise results at branch points, that is singular points at
which the tangent to the free boundary is a plane, usually with multiplicity, are quite rare.
To our knowledge, the only such examples are the results of Chang on 2-dimensional area
minimizing currents ([4,7–9]), of Sakai on the 2-dimensional obstacle problem ([20,21]),
and of Lewy on the 2-dimensional thin-obstacle problem ([17], and also [16] for a less
precise result); like in the present paper, all these results are 2-dimensional.

Our approach is similar in spirit to the results of Sakai and Lewy, and makes use of
(quasi)-conformal techniques to prove both the local finiteness of the branch set and to
give a precise description of the cuspidal behavior at such points. A possible alternative
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approach, which could also be applicable in higher dimensions, would be to look for a
monotone quantity, such as the Almgren’s frequency function as done for instance in the
Chang’s paper [4]; in fact, for some thin-obstacle problems, as for instance the one involving
the classical Laplace operartor, the monotonicity of the Almgren’s frequency function is
known (see [1,16]) and can still be used to get information on the dimension of the branch
set (see [14]). However, the operators we study are not regular enough to guarantee the
monotonicity of the frequency function, and so we were naturally led to consider (quasi)-
conformal techniques. Furthermore, our techniques have the additional benefit of yielding
a very precise local description of the free-boundary at branch points (see Items (b) of
Theorems 1.1, 1.3 and 1.6) in a straightforward way, much simpler than the induction
procedure that would be needed using the frequency function as in [4].

Concerning the possible extensions of Theorem 1.1, Theorem 1.3 and Theorem 1.6
to higher dimensions we point out that, since the monotonicity of the frequency function
doesn’t seem to hold in none of these cases (and it certainly does not hold in the full gen-
erality of Theorem 1.1), a dimension reduction argument seems completely out of reach.

1.1. Non-linear thin-obstacle problem

Let 𝐵1 be the unit ball in R2 and let

𝐵+
1 := {(𝑥, 𝑦) ∈ 𝐵1 : 𝑦 > 0} and 𝐵′

1 = {(𝑥, 𝑦) ∈ 𝐵1 : 𝑦 = 0}.

Let F : R2 → R be a 𝐶2-regular function, and let F𝑗 , 𝑗 = 1, 2 and F𝑖 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2, be
the first and second order partial derivatives of F . Moreover, we identify R2 with the field
of complex numbers C, so we will often think of the functions on R2 = C as functions of
two real variables (𝑥, 𝑦) ∈ R2 and at the same time as a function of one complex variable
𝑧 = 𝑥 + 𝑖𝑦 ∈ C.

We consider solutions𝑈 ∈ 𝐶1 (𝐵+
1 ∪ 𝐵′

1) of the following nonlinear thin-obstacle prob-
lem

div(∇F (∇𝑈)) = 0 in 𝐵+
1 , (1.1)

𝑈 ≥ 0 on 𝐵′
1 , (1.2)

∇F (∇𝑈) · 𝑒2 = 0 on {𝑈 > 0} ∩ 𝐵′
1 , (1.3)

∇F (∇𝑈) · 𝑒2 ≤ 0 on {𝑈 = 0} ∩ 𝐵′
1 , (1.4)

where 𝑒2 = (0, 1). Our first main result is the following.

Theorem 1.1 (Non-linear thin-obstacle). Suppose that 𝑈 ∈ 𝐶1 (𝐵+
1 ∪ 𝐵′

1) is a solution to
(1.1)-(1.2)-(1.3)-(1.4) and that F : R2 → R is 𝐶2-regular function satisfying

∇F (0) = 0 and ∇2F (0) = Id. (1.5)

Then, the following holds:
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(a) The set of branch points

S(𝑈) :=
{
𝑧 ∈ 𝐵′

1 : 𝑈 (𝑧) = 0, ∇𝑈 (𝑧) = 0
}
, (1.6)

is a discrete (locally finite) subset of 𝐵′
1.

(b) For every point 𝑧0 ∈ S(𝑈) (without loss of generality 𝑧0 = 0), there are:

• a radius 𝑟 > 0 and a quasi-conformal homeomorphism Ψ : 𝐵𝑟 → Ω,
between 𝐵𝑟 and an open set Ω ⊂ 𝐵1, such that:

Ψ ∈ 𝑊
1,2
𝑙𝑜𝑐

(𝐵𝑟 ;R2) , (1.7)
Im(Ψ(𝑧)) ≡ 0 on Im(𝑧) ≡ 0 , (1.8)

|Ψ(𝑧) − 𝑧 | = 𝑜( |𝑧 |) ; (1.9)

• a holomorphic function Φ : 𝐵1 → C of the form

Φ(𝑧) = 𝑎𝑧𝑘 +𝑂 (𝑧𝑘+1) where 𝑘 ≥ 3 and 𝑎 ∈ C ; (1.10)

such that we can write the solution 𝑈 as

𝑈 (𝑧) = Re
(
Φ
(
Ψ(𝑧)

) 1/2
)

for every 𝑧 ∈ 𝐵𝑟 (𝑧0) . (1.11)

Remark 1.2 (Optimal regularity). We notice that one particular consequence of the previ-
ous theorem, is the optimal regularity for solutions of the non-linear thin-obstacle problem
(1.1)-(1.2)-(1.3)-(1.4). In fact, if 𝑈 ∈ 𝐶1 (𝐵+

1 ∪ 𝐵′
1) is as in Theorem 1.1, then from (1.11),

(1.10) and (1.9) it follows that 𝑈 ∈ 𝐶1,1/2 (𝐵+
1 ∪ 𝐵′

1).

In the case of the classical thin-obstacle problem in which the operator is the Laplacian,
that is F (𝑥, 𝑦) = 𝑥2 + 𝑦2, the results (a) and (b) of Theorem 1.1 were obtained by Lewy in
[17]; moreover, in this case, the claim (a) can also be obtained by means of the Almgren’s
monotonicity formula (see [1] and [16]); we also notice that for the classical thin-obstacle
problem, the map Ψ from Theorem 1.1 is the identity.

However, in order to apply this result to the one-phase problem described in the next
subsection, we will be interested in solutions 𝑢 of the thin-obstacle problem with

F (𝑥, 𝑦) :=
𝑥2 + 𝑦2

1 + 𝑦

and for which ∇𝑢 ∈ 𝐶0,1/2 and no better. In particular, it is easy to check that𝑈 is a solution
of an equation of the form

div(𝐴(𝑥)∇𝑈) = 0

where 𝐴(𝑥) is no better than 𝐶0,1/2. For these type of equations the results in [15] can not
be applied (and actually are known to fail) so in order to obtain our result we need to
exploit the “quasi-linear” structure of the problem and our approach, based on the use of
quasi-conformal maps, seems to be more suitable, although limited to dimension 2.
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1.2. One-phase problem with geometric constraint

Next, we consider the following one-phase problem constrained above an hyperplane, that
is let 𝑢 : 𝐵1 ∩ {𝑥𝑑 ≥ 0} → R be a continuous non-negative function solution of the problem

Δ𝑢 = 0 in Ω𝑢 := {𝑢 > 0} ⊂ 𝐵1, (1.12)
𝑢 = 0 on 𝐵1 ∩ {𝑥𝑑 = 0}, (1.13)

|∇𝑢 | = 1 on 𝜕Ω𝑢 ∩ {𝑥𝑑 > 0}, (1.14)
|∇𝑢 | ≥ 1 on 𝜕Ω𝑢 ∩ {𝑥𝑑 = 0}. (1.15)

In the recent paper by Chang-Lara and Savin [5] it was shown that if 𝑢 is a viscosity
solution of this problem (that is, if the boundary conditions (1.14) and (1.15) are intended
in viscosity sense), then in a neighborhood of any contact point 𝑥 = (𝑥′, 0) ∈ 𝜕Ω𝑢 ∩ {𝑥𝑑 = 0}
the boundary 𝜕Ω𝑢 is a 𝐶1,𝛼-regular graph over the hyperplane {𝑥𝑑 = 0}. More precisely
in a neighborhood of a point 𝑧0 ∈ 𝜕Ω𝑢 ∩ {𝑥𝑑 = 0}, the boundary 𝜕Ω is a 𝐶1,1/2-regular
surfaces, that is, there are a radius 𝜌 > 0 and a 𝐶1,1/2-regular function

𝑓 : 𝐵′
𝜌 (𝑧0) → [0,+∞),

such that, up to a rotation and translation of the coordinate system, we have{
𝑢(𝑥) > 0 for 𝑥 ∈ (𝑥′, 𝑥𝑑) ∈ 𝐵𝜌 (𝑧0) such that 𝑥𝑑 > 𝑓 (𝑥′);
𝑢(𝑥) = 0 for 𝑥 ∈ (𝑥′, 𝑥𝑑) ∈ 𝐵𝜌 (𝑧0) such that 𝑥𝑑 ≤ 𝑓 (𝑥′).

(1.16)

We denote by C1 (𝑢) the contact set of the free boundary 𝜕Ω𝑢 with the hyperplane {𝑥𝑑 = 0}

C1 (𝑢) := {𝑥𝑑 = 0} ∩ 𝜕Ω𝑢 ,

and by B1 (𝑢) the set of points at which the free boundary separates from {𝑥𝑑 = 0} :

B1 (𝑢) :=
{
𝑥 ∈ C1 (𝑢) : 𝐵𝑟 (𝑥) ∩

(
𝜕Ω𝑢 \ {𝑥𝑑 = 0}

)
≠ ∅ for every 𝑟 > 0

}
.

By S1 (𝑢) we denote the set of points in C1 (𝑢) at which 𝑢 has gradient precisely equal to 1

S1 (𝑢) :=
{
𝑧 ∈ C1 (𝑢) : |∇𝑢 | (𝑧) = 1

}
. (1.17)

We notice that a priori the set C1 (𝑢) is no more than a closed subset of {𝑥𝑑 = 0}. Moreover,
if at a point 𝑥 = (𝑥′, 0) we have that |∇𝑢 | (𝑥′, 0) > 1, then this point is necessarily in the
interior of C1 (𝑢) in the hyperplane {𝑥𝑑 = 0}. Thus,

S1 (𝑢) contains all branch points, B1 (𝑢) ⊂ S1 (𝑢).

Theorem 1.3 (Analyticity at the branch points in the one phase problem with obstacle).
Let 𝑢 be a solution of (1.12)–(1.15) in dimension 𝑑 = 2. Then, the following holds:
(a) S1 (𝑢) is locally finite and C1 (𝑢) is a locally finite union of disjoint closed intervals of

the axis {𝑥2 = 0};
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(b) For every point 𝑧0 ∈ S1 (𝑢), one of the following holds:

(b.1) 𝑧0 is an isolated point of C1 (𝑢) and, in a neighborhood of 𝑧0, the free boundary
𝜕Ω𝑢 is the graph of an analytic function that vanishes only at 𝑧0;

(b.2) 𝑧0 lies in the interior of C1 (𝑢) and there is 𝑟 > 0 such that 𝑢 is harmonic in
𝐵𝑟 (𝑧0) and |∇𝑢 | > 1 at all points of {𝑥2 = 0} ∩ 𝐵𝑟 (𝑧0) except 𝑧0;

(b.3) 𝑧0 is an endpoint of a non-trivial interval in the contact set C1 (𝑢); moreover,
there is an interval I𝜌 = (−𝜌, 𝜌) and analytic function 𝜙 : I𝜌 → R such that
𝜙(0) > 0 and, up to setting 𝑧0 = 0 and rotating the coordinate axis,

𝑓 (𝑥) =
{

0 if 𝑥 ≥ 0
𝑥

𝑘/2 𝜙(𝑥) if 𝑥 < 0 ,
(1.18)

where 𝑓 is the function from (1.16).

Δ𝑢 = 0
𝑢 > 0

|∇𝑢 | > 1

|∇𝑢 | = 1

𝑢 = 0

Δ𝑢 = 0
𝑢 > 0|∇𝑢 | = 1 |∇𝑢

| =
1

𝑢 = 0

Δ𝑢 = 0, 𝑢 > 0

|∇𝑢 | > 1 |∇𝑢 | > 1

|∇𝑢 | = 1︸    ︷︷    ︸
𝑢 = 0

As we mentioned above we will give two proofs of this result. The first will be obtained
combining Theorem 1.1 with the standard hodograph transform. The second proof instead,
more geometric in spirit, will be achieved via a conformal hodograph transform. This proof
has the advantage of being reversible, thus allowing us to construct examples of solutions
and free boundaries with any prescribed cuspidal behavior (without invoking any fixed
point argument, as usual in the literature).

Theorem 1.4 (Cuspidal points for one-phase problem). For any positive integer 𝑛 ∈ N,
there exists a solution of (1.12)–(1.15) in dimension 𝑑 = 2 such that (1.18) in Theorem 1.3
holds with 𝑘 = 4𝑛 − 1.

We point out that Theorem 1.3 and Theorem 1.4 can be deduced respectively from
Theorem 1.6 and Theorem 1.8 below by performing an odd reflection.

1.3. Symmetric two-phase problem

Finally, we consider solutions to the two-phase free boundary problem in viscosity sense,
that is we let 𝑢 : 𝐵1 → R be a continuous function and we denote by 𝑢+ and 𝑢− the functions

𝑢+ = max{𝑢, 0} and 𝑢− := min{𝑢, 0}.

and by Ω+
𝑢 and Ω−

𝑢 the sets
Ω±

𝑢 := {±𝑢 > 0}.
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Notice that with this notation 𝑢− is negative. Then 𝑢 is a viscosity solution of the problem

Δ𝑢 = 0 in Ω+
𝑢 ∪Ω−

𝑢 , (1.19)
|∇𝑢+ | = 1 on 𝜕Ω+

𝑢 \ 𝜕Ω−
𝑢 ∩ 𝐵1, (1.20)

|∇𝑢− | = 1 on 𝜕Ω−
𝑢 \ 𝜕Ω+

𝑢 ∩ 𝐵1, (1.21)
|∇𝑢+ | = |∇𝑢− | ≥ 1 on 𝜕Ω+

𝑢 ∩ 𝜕Ω−
𝑢 ∩ 𝐵1. (1.22)

In [10], we proved that if 𝑢 is a viscosity solution of this problem in any dimension 𝑑 ≥ 2,
then in a neighborhood of any two-phase point

𝑥0 ∈ 𝜕Ω+
𝑢 ∩ 𝜕Ω−

𝑢 ∩ 𝐵1,

both free boundaries 𝜕Ω+
𝑢 ∩ 𝐵1 and 𝜕Ω−

𝑢 ∩ 𝐵1 are 𝐶1,𝛼 regular. Thus, by the classical
elliptic regularity theory, also the functions 𝑢± are 𝐶1,𝛼 regular respectively on Ω

+
𝑢 ∩ 𝐵1

and Ω
−
𝑢 ∩ 𝐵1 and the equations (1.19)-(1.22) hold in the classical sense.

We will denote with C2 (𝑢+, 𝑢−) the two-phase free boundary, which is the contact set
between the free boundaries 𝜕Ω+

𝑢 and 𝜕Ω−
𝑢 , and with O± the remaining one-phase parts:

C2 (𝑢+, 𝑢−) := 𝜕Ω+
𝑢 ∩ 𝜕Ω−

𝑢 ∩ 𝐵1 and O± :=
(
𝜕Ω±

𝑢 ∩ 𝐵1

)
\ C2 (𝑢+, 𝑢−) .

We notice that the set C2 (𝑢+, 𝑢−) is closed, while O+ and O− are relatively open subsets
respectively of 𝜕Ω±

𝑢 ∩ 𝐵1. We define the set of branch points B2 (𝑢+,𝑢−) as the set of points
at which the two free boundaries 𝜕Ω±

𝑢 separate, that is

B2 (𝑢+, 𝑢−) =
{
𝑥 ∈ C2 (𝑢+, 𝑢−) : 𝐵𝑟 (𝑥) ∩ O± ≠ ∅ for every 𝑟 > 0

}
. (1.23)

By 𝐶1-regularity of 𝑢±, if 𝑥 ∈
(
𝜕Ω+

𝑢 ∪ 𝜕Ω−
𝑢

)
∩ 𝐵1 is such that

|∇𝑢+ | (𝑥) > 1 or |∇𝑢− | (𝑥) > 1,

then it is necessarily a two-phase non-branch point: 𝑥 ∈ C2 (𝑢+, 𝑢−) \ B2 (𝑢+, 𝑢−).
In particular, this implies that the set

S2 (𝑢+, 𝑢−) :=
{
𝑥 ∈ C2 (𝑢+, 𝑢−) : |∇𝑢+ | (𝑥) = |∇𝑢− | (𝑥) = 1

}
, (1.24)

contains the set of branch points B2 (𝑢+, 𝑢−).

In dimension 𝑑 = 2, 𝜕Ω±
𝑢 are locally parametrized by two 𝐶1,𝛼 curves. Precisely,

suppose that 𝑧0 = (𝑥0, 𝑦0) ∈ C2 (𝑢+, 𝑢−), without loss of generality we may assume that
𝑧0 = (0, 0), and that there is an interval I𝜌 := (−𝜌, 𝜌) and two 𝐶1,𝛼-regular functions

𝑓± : I𝜌 → R,

such that

𝑓+ ≥ 𝑓− on I𝜌 and 𝑓+ (0) = 𝑓− (0) = 𝜕𝑥 𝑓+ (0) = 𝜕𝑥 𝑓− (0) = 0 ,



8 G. De Philippis, L. Spolaor, B. Velichkov

and, up to rotations and translations,
𝑢(𝑥, 𝑦) > 0 for (𝑥, 𝑦) ∈ I𝜌 × I𝜌 such that 𝑦 > 𝑓+ (𝑥);
𝑢(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈ I𝜌 × I𝜌 such that 𝑓− (𝑥) ≤ 𝑦 ≤ 𝑓+ (𝑥);
𝑢(𝑥, 𝑦) < 0 for (𝑥, 𝑦) ∈ I𝜌 × I𝜌 such that 𝑦 < 𝑓− (𝑥).

(1.25)

Thus, in the square I𝜌 × I𝜌, the one-phase parts O+ and O− of the free boundary are the
union of 𝐶1,𝛼 (actually analytic) graphs over a countable family of disjoint open intervals:

O± :=
⋃
𝑖∈N

Γ𝑖
± ,

where, for every 𝑖 ∈ N, there is an open interval I𝑖 ⊂ I𝜌 such that

Γ𝑖
± =

{
(𝑥, 𝑓± (𝑥)) : 𝑥 ∈ I𝑖

}
. (1.26)

Definition 1.5 (Symmetric solutions of the two-phase problem). In dimension 𝑑 = 2, we
will say that a continuous function 𝑢 : 𝐵1 → R is a symmetric solution to the two-phase
problem if 𝑢 satisfies (1.19)-(1.22) and moreover

H1 (Γ𝑖
+) = H1 (Γ𝑖

−) for every 𝑖 ∈ N such that I𝑖 ⊂ I𝜌 . (1.27)

The main result of this section is the following.

Theorem 1.6 (Cuspidal points for the symmetric solutions of the two-phase problem). Let
𝑢 : 𝐵1 → R be a viscosity solution of the two-phase problem (1.19)-(1.22).
Then the following holds.
(a) If 𝑢 is symmetric in the sense of Definition 1.5, then the singular setS2 (𝑢+,𝑢−) defined

in (1.24) is locally finite, so in particular the two-phase free boundary C2 (𝑢+, 𝑢−) =(
𝜕Ω+

𝑢 ∪ 𝜕Ω−
𝑢

)
∩ 𝐵1 is a locally finite union of disjoint 𝐶1,𝛼-arcs;

(b) If 𝑧0 ∈ S2 (𝑢+,𝑢−) is an isolated point of S2 (𝑢+,𝑢−), then we have one of the following
possibilities:

(b.1) 𝑧0 is an isolated point of C2 (𝑢+, 𝑢−) and, in a neighborhood of 𝑧0, the free
boundaries 𝜕Ω+

𝑢 and 𝜕Ω−
𝑢 are analytic graphs meeting only in 𝑧0;

(b.2) 𝑧0 lies in the interior of C2 (𝑢+, 𝑢−) and moreover there is 𝑟 > 0 such that:
Δ𝑢 = 0 in 𝐵𝑟 (𝑧0) and |∇𝑢 | > 1 at all points of {𝑢 = 0} ∩ 𝐵𝑟 (𝑧0) except 𝑧0;

(b.3) 𝑧0 is an endpoint of a non-trivial arc in C2 (𝑢+, 𝑢−), and there are an interval
I𝜌 = (−𝜌, 𝜌) a constant 𝑘 ∈ N, 𝑘 ≥ 3, and an analytic function 𝜙 : I𝜌 → R such
that 𝜙(0) ≠ 0 and, up to setting 𝑧0 = 0 and changing the coordinates,

𝑓+ (𝑥) − 𝑓− (𝑥) =
{
𝑥𝑘/2 𝜙( |𝑥 |1/2) if 𝑥 ≤ 0
0 if 𝑥 ≥ 0 .

(1.28)
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Precisely, there are analytic functions Φ, 𝛽± and Θ such that for every 𝑥 ≤ 0

𝑓± (𝑥) = Φ

(
𝑥 + |𝑥 |5/2𝛽±

(
|𝑥 |1/2

) )
± Ψ

(
𝑥 + |𝑥 |5/2𝛽±

(
|𝑥 |1/2

) )
, (1.29)

where Ψ is of the form Ψ(𝑥) = |𝑥 |3/2Θ(𝑥).

𝑢 = 0|∇𝑢 | > 1 |∇𝑢
| =

1

|∇𝑢 | = 1

𝑢 > 0

𝑢 < 0

𝑢 = 0𝑢 = 0
|∇𝑢

| =
1

|∇𝑢
| =

1

𝑢 > 0

𝑢 < 0

|∇𝑢 | > 1

|∇𝑢 | > 1

|∇𝑢 | = 1︸    ︷︷    ︸𝑢 > 0

𝑢 < 0

Notice that (a) of the previous theorem requires that the function 𝑢 is symmetric in the
generalized sense of Definition 1.5, while (b.3) is always true at isolated branch points.
The question of whether the statement of Theorem 1.6 (a) is true without the generalized
symmetry assumption is extremely interesting and would probably require the introduction
of new techniques.

We also have the following result, which simply follows from the fact that if 𝑧0 is an isolated
point of B2 (𝑢+, 𝑢−), then it is also an isolated point of S2 (𝑢+, 𝑢−) for which Theorem 1.6
(b.2) does not hold.

Corollary 1.7 (Isolated cuspidal points of two-phase problem). Let 𝑢 be a solution of the
two-phase problem as in Definition 1.5. If 𝑧0 ∈ B2 (𝑢+, 𝑢−) is an isolated point of the set
B2 (𝑢+, 𝑢−) defined in (1.23), then at least one of the points (b.1) and (b.3) is true at 𝑧0.

We will prove Theorem 1.6 in Section 5, where we will also discuss the obstructions in
applying the conformal hodograph transform to the study of the branch points of the two-
phase problem in the absence of symmetries or in the presence of weights 𝜆± on the volume
of the positivity and the negativity sets.

Finally, as in Theorem 1.4, by reversing the argument from the proof of Theorem 1.6,
we can construct two-phase cusps with prescribed behavior.

Theorem 1.8 (Cuspidal points for two-phase problem). For any positive integer 𝑛 ∈ N,
there exists a solution of (1.19)–(1.22) in dimension 𝑑 = 2 such that (1.28) holds with
𝑘 = 4𝑛 − 1 and (1.29) with Φ(𝑥) = 𝑥𝑚 + 𝑜(𝑥), with 𝑚 ≥ 2.

The particular caseΦ ≡ 0 is an immediate consequence from Theorem 1.4 as a solution
of the one-phase problem, together with its reflection, gives a solution of the two-phase one.
However, the same method provides also non-symmetric examples in which the asymmetry
is given by the function Φ.

We notice that the examples constructed in Theorem 1.8 are minimizers of the two-
phase functional. Indeed, any flat monotone solution to (1.19)–(1.22) is unique and so it
minimizes the two-phase functonal; we prove this in Appendix A as a direct consequence
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of the maximum principle. We refer to the recent work [6] for some interesting examples
of almost-minimizing free boundaries.

2. Non-linear thin-obstacle problem

In this section we prove Theorem 1.1 using the theory of quasi-conformal map.

2.1. Notation and known results

Let 𝑈 ∈ 𝐶1 (𝐵+
1 ∪ 𝐵′

1) be a solution of the thin-obstacle problem (1.1)-(1.2)-(1.3)-(1.4),
where the function F : R2 → R is 𝐶2 regular.

2.1.1. Variational inequality formulation. The system (1.1)–(1.4) can be equivalently writ-
ten in the form of a variational inequality. Precisely, the following are equivalent:
(1) 𝑈 ∈ 𝐶1 (𝐵+

1 ∪ 𝐵′
1) and satisfies (1.1), (1.2), (1.3) and (1.4);

(2) 𝑈 ∈ 𝐻1
𝑙𝑜𝑐

(𝐵+
1 ∪ 𝐵′

1) (that is 𝑢 ∈ 𝐻1 (𝐵+
𝑟 ) for every 𝑟 < 1) and

ˆ
𝐵+

1

∇F (∇𝑈) · ∇(𝑈 − 𝑣) 𝑑𝑥 ≤ 0 for every 𝑣 ∈ K𝑈 , (2.1)

where K𝑈 is the convex set

K𝑈 :=
{
𝑣 ∈𝐻1

𝑙𝑜𝑐 (𝐵
+
1 ∪ 𝐵′

1) : 𝑣 ≥ 0 on 𝐵′
1 , 𝑣 =𝑈 in a neighborhood of 𝜕𝐵1 ∩ {𝑥𝑑 > 0}

}
.

Indeed, the implication (1) ⇒ (2) follows simply by an integration by parts, while (2) ⇒
(1) was proved by Frehse [13]. In particular, if 𝑈 ∈ 𝐻1 (𝐵+

1 ) minimizes the integral func-
tional

I(𝑣) :=
ˆ
𝐵+

1

F (∇𝑣) 𝑑𝑥 , (2.2)

among all functions in K𝑈 , then 𝑈 satisfies the variational inequality (2.1).

2.1.2. Higher regularity of the solutions. It was proved by Frehse in [13, Lemma 2.2] that
if 𝑈 ∈ 𝐻1 (𝐵+

1 ) is a solution of the variational inequality (2.1), then 𝑈 is in 𝐻2 (𝐵+
𝑟 ) for

every 𝑟 < 1. Moreover, in [11, Theorem 4.1] it was shown that the solution 𝑈 is actually
in 𝐶1,𝛼 (𝐵+

1 ∪ 𝐵′
1) for some 𝛼 > 0.

2.2. Local finiteness of the set of branch points

In this subsection we prove Theorem 1.1 (a). We introduce a special function 𝑄 that we
prove to be quasi-regular in the half-ball, then we obtain Theorem 1.1 (a) by applying
the Stoïlow’s factorization theorem for quasi-conformal and quasi-regular maps (see [2,
Chapter 5]).
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Given a solution𝑈 : 𝐵1 ∩ {𝑦 ≥ 0} → R of (1.1)-(1.2)-(1.3)-(1.4), we consider the function

𝑄 : 𝐵+
1 ∩ {𝑦 ≥ 0} → C , 𝑄(𝑥 + 𝑖𝑦) = 𝜕𝑥𝑈 − 𝑖F2 (∇𝑈 (𝑥, 𝑦)) (2.3)

We gather the fundamental properties of this function in the next lemma.

Lemma 2.1. The function 𝑄 defined in (2.3) satisfies the following properties:
(1) 𝑄2 ∈ 𝑊1,2 (𝐵+

𝑟 ;C), for every 𝑟 < 1;
(2) there is 𝑟0 > 0 such that, for every 𝑟 < 𝑟0, 𝑄 satisfies the Beltrami equation

𝜕𝑧̄𝑄 = 𝜇
(
∇𝑈,∇2𝑈

)
𝜕𝑧𝑄 in 𝐵+

𝑟 ,

and if for some 𝛿 ∈ (0, 1]

∥𝐼𝑑 − ∇2F (∇𝑈 (𝑧))∥2 ≤ 𝛿 for every 𝑧 = (𝑥, 𝑦) ∈ 𝐵+
𝑟 ,

then

|𝜇(∇𝑈 (𝑧),∇2𝑈 (𝑧)) | ≤ 𝛿
√

4 − 4𝛿 − 𝛿2
for every 𝑧 = (𝑥, 𝑦) ∈ 𝐵+

𝑟 ,

where for any real matrix 𝐴 = (𝑎𝑖 𝑗 )𝑖 𝑗 , ∥𝐴∥2 :=
( ∑

𝑖, 𝑗 𝑎
2
𝑖 𝑗

) 1/2

.

In particular, properties (1) and (2) imply that 𝑄 is a quasi-conformal map.

Proof. We first prove (1). By [13], we know that 𝑈 ∈ 𝐻2 (𝐵+
𝑟 ) and that |∇𝑈 | ∈ 𝐿∞ (𝐵+

𝑟 ).
Thus, (1) follows directly by the definition of 𝑄. Let us now prove (2).

For simplicity, we set

𝐴 := 𝜕𝑥𝑈 and 𝐵 := F2 (∇𝑈).

Thus, 𝑄 = 𝐴 − 𝑖𝐵 and
𝜕𝑧̄𝑄 = 1

2 (𝜕𝑥 + 𝑖𝜕𝑦) (𝐴 − 𝑖𝐵) = 1
2 (𝜕𝑥𝐴 + 𝜕𝑦𝐵) + 𝑖

2 (𝜕𝑦𝐴 − 𝜕𝑥𝐵),

𝜕𝑧𝑄 = 1
2 (𝜕𝑥 − 𝑖𝜕𝑦) (𝐴 − 𝑖𝐵) = 1

2 (𝜕𝑥𝐴 − 𝜕𝑦𝐵) − 𝑖
2 (𝜕𝑦𝐴 + 𝜕𝑥𝐵),

which implies 
4 |𝜕𝑧̄𝑄 |2 = (𝜕𝑥𝐴 + 𝜕𝑦𝐵)2 + (𝜕𝑦𝐴 − 𝜕𝑥𝐵)2,

4 |𝜕𝑧𝑄 |2 = (𝜕𝑥𝐴 − 𝜕𝑦𝐵)2 + (𝜕𝑦𝐴 + 𝜕𝑥𝐵)2.
(2.4)

We first compute 
𝜕𝑥𝐴 = 𝜕𝑥𝑥𝑈

𝜕𝑦𝐴 = 𝜕𝑥𝑦𝑈

𝜕𝑥𝐵 = F12 (∇𝑈)𝜕𝑥𝑥𝑈 + F22 (∇𝑈)𝜕𝑥𝑦𝑈
𝜕𝑦𝐵 = F12 (∇𝑈)𝜕𝑥𝑦𝑈 + F22 (∇𝑈)𝜕𝑦𝑦𝑈,

(2.5)
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and, using the equation for 𝑈, we obtain{
𝜕𝑥𝐴 + 𝜕𝑦𝐵 =

(
1 − F11 (∇𝑈)

)
𝜕𝑥𝑥𝑈 − F12 (∇𝑈)𝜕𝑥𝑦𝑈

𝜕𝑦𝐴 − 𝜕𝑥𝐵 = −F12 (∇𝑈)𝜕𝑥𝑥𝑈 +
(
1 − F22 (∇𝑈)

)
𝜕𝑥𝑦𝑈.

(2.6)

For simplicity, we use the following notation

𝑚𝑖 𝑗 := 𝛿𝑖 𝑗 − F𝑖 𝑗 (∇𝑈) for every 1 ≤ 𝑖, 𝑗 ≤ 2,

and

M := Id − ∇2F (∇𝑈) =
(
𝑚11 𝑚12
𝑚21 𝑚22

)
.

We also set
∥M∥2

2 := 𝑚2
11 + 2𝑚2

12 + 𝑚2
22.

Then, by (2.6) and the Cauchy-Schwartz inequality, we immediately obtain

(𝜕𝑥𝐴 + 𝜕𝑦𝐵)2 + (𝜕𝑦𝐴 − 𝜕𝑥𝐵)2 ≤ ∥M∥2
2 |∇𝐴|

2. (2.7)

In order to estimate |𝜕𝑧𝑄 |2 in (2.4), we write

(𝜕𝑥𝐴 − 𝜕𝑦𝐵)2 + (𝜕𝑦𝐴 + 𝜕𝑥𝐵)2 =

(
2𝜕𝑥𝐴 − (𝜕𝑥𝐴 + 𝜕𝑦𝐵)

)2
+
(
2𝜕𝑦𝐴 − (𝜕𝑦𝐴 − 𝜕𝑥𝐵)

)2

= 4|∇𝐴|2 − 4∇𝐴 · M(∇𝐴)
+ (𝜕𝑥𝐴 + 𝜕𝑦𝐵)2 + (𝜕𝑦𝐴 − 𝜕𝑥𝐵)2

=: 4|∇𝐴|2 + R,

where by (2.6) and (2.7), we have the estimate

|R | ≤
(
4∥M∥2 + ∥M∥2

2

)
|∇𝐴|2.

Now, if at some point ∇𝐴 = 0, then 𝜕𝑧𝑄 = 𝜕𝑧̄𝑄 = 0. Thus, we can define 𝜇 as follows:

𝜇 = 0 , if ∇𝐴 = 0 ; 𝜇 =
𝜕𝑧̄𝑄

𝜕𝑧𝑄
, if ∇𝐴 ≠ 0 .

Since 𝐴, 𝜕𝑧̄𝑄 and 𝜕𝑧𝑄 are all functions of ∇𝑈 and ∇2𝑈, also 𝜇 can be written in terms of
the same variables, that is: 𝜇 = 𝜇(∇𝑈,∇2𝑈). We notice that with this definition, 𝜇 remains
bounded. Indeed,

|𝜇 |2 =

����𝜕𝑧̄𝑄𝜕𝑧𝑄

����2 ≤
∥M∥2

2

4 − 4∥M∥2 + ∥M∥2
2

,

so that for 𝑟 sufficiently small the conclusion follows.
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Proof of Theorem 1.1 (a). Let 𝑄 be the function defined in (2.3) and let

𝑆(𝑧) :=

{
𝑄(𝑧)2 if Im(𝑧) ≥ 0
𝑆(𝑧) if Im(𝑧) ≤ 0

We notice that

Im(𝑄2 (𝑧)) = 𝜕𝑥𝑈 · F2 (∇𝑈) = 0 on {Im(𝑧) = 0} ,

so that the function 𝑆 is in 𝑊1,2 (𝐵𝑟 ) and satisfies the Beltrami equation

𝜕𝑧̄𝑆 = 𝜓(𝑧) 𝜕𝑧𝑆 in 𝐵+
𝑟 ,

where

𝜓(𝑧) = 𝜓(𝑥 + 𝑖𝑦) :=

{
𝜇
(
∇𝑈 (𝑥, 𝑦),∇2𝑈 (𝑥, 𝑦)

)
if Im(𝑧) ≥ 0 ,

𝜓(𝑧) if Im(𝑧) ≤ 0 .

Thus, by [2, Theorem 5.5.2], we conclude that the zeros of the function 𝑆 are isolated,
which is the claim.

2.3. Local behavior of the solutions at branch points

In this subsection we prove Theorem 1.1 (b). Given a branch point 𝑧0 ∈ S, we construct
a quasi-regular mapping whose real part is precisely the solution 𝑈. Assume that 𝑧0 = 0.
We consider the case where it exists a radius 𝑟 > 0 such that

{𝑈 = 0} ∩ 𝐵′
𝑟 = {𝑥 ≤ 0} ∩ 𝐵′

𝑟 and {𝑈 > 0} ∩ 𝐵′
𝑟 = {𝑥 > 0} ∩ 𝐵′

𝑟 , (2.8)

which is the case of a branch point, the other two cases being analogous.
We notice that the differential form

𝛼 = −F2 (∇𝑈) 𝑑𝑥 + F1 (∇𝑈) 𝑑𝑦

is closed in 𝐵+
𝑟 and so the potential

𝑉 : 𝐵+
𝑟 ∪ 𝐵′

𝑟 → R , 𝑉 (𝑥, 𝑦) :=
ˆ 1

0

(
− F2

(
∇𝑈 (𝑡𝑥, 𝑡𝑦)

)
𝑥 + F1

(
∇𝑈 (𝑡𝑥, 𝑡𝑦)

)
𝑦

)
𝑑𝑡

is Lipschitz continuous in 𝐵+
𝑟 ∪ 𝐵′

𝑟 , 𝐶2 in 𝐵+
𝑟 and satisfies

𝜕𝑥𝑉 = −F2 (∇𝑈) in 𝐵+
𝑟 ,

𝜕𝑦𝑉 = F1 (∇𝑈) in 𝐵+
𝑟 ,

𝑈𝑉 = 0 on 𝐵′
𝑟 ,

where the last equality follows from (2.8), (1.3) and the very definition of𝑉 . We next define
the complex function

𝑃 : 𝐵+
𝑟 ∩ {𝑦 ≥ 0} → C , 𝑃(𝑥 + 𝑖𝑦) = 𝑈 (𝑥, 𝑦) + 𝑖𝑉 (𝑥, 𝑦). (2.9)
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Remark 2.2. Notice that, by the definition of 𝑉 , we have 𝜕𝑥𝑃 = 𝑄 in 𝐵+
𝑟 .

We now prove the following lemma.

Lemma 2.3. The function 𝑃 defined in (2.9) satisfied the following properties.
(1) 𝑃2 ∈ 𝑊

1,∞
loc (𝐵+

1 ∪ 𝐵′
1),

(2) 𝑃 satisfies the Beltrami equation

𝜕𝑧̄𝑃 = 𝜂(∇𝑈) 𝜕𝑧𝑃 in 𝐵+
𝑟 , (2.10)

where 𝜂(∇𝑈) = 𝑜( |∇𝑈 |).

Proof. The first claim follows from the Lipschitz continuity of 𝑈 and 𝑉 . In order to prove
the second claim, we compute

2𝜕𝑧̄𝑃 = (𝜕𝑥 + 𝑖𝜕𝑦) (𝑈 + 𝑖𝑉) = (𝜕𝑥𝑈 − F1 (∇𝑈)) + 𝑖(𝜕𝑦𝑈 − F2 (∇𝑈)),

2𝜕𝑧𝑃 = (𝜕𝑥 − 𝑖𝜕𝑦) (𝑈 + 𝑖𝑉) = (𝜕𝑥𝑈 + F1 (∇𝑈)) − 𝑖(𝜕𝑦𝑈 + F2 (∇𝑈)),

Now, by the differentiability of F1 and F2 in zero and (1.5), we can write

F1 (𝑋) − 𝑋1 = 𝜀1 (𝑋) |𝑋 | and F2 (𝑋) − 𝑋2 = 𝜀2 (𝑋) |𝑋 |,

for every 𝑋 = (𝑋1, 𝑋2) ∈ R2, where the functions 𝜀1 and 𝜀2 are such that

lim
|𝑋 |→0

𝜀1 (𝑋) = lim
|𝑋 |→0

𝜀2 (𝑋) = 0 ,

from which the first part of the claim follows.

Proof of Theorem 1.1 (b). Let 𝑃 be the function defined in (2.9) and let

𝑇 (𝑧) :=

{
𝑃(𝑧)2 if Im(𝑧) ≥ 0
𝑇 (𝑧) if Im(𝑧) ≤ 0

Then
Im(𝑃2 (𝑧)) = 𝑈 (𝑧)𝑉 (𝑧) = 0 on {Im(𝑧) = 0} ,

so 𝑇 is Lipschitz continuous on 𝐵𝑟 , and satisfies the Beltrami equation

𝜕𝑧̄𝑇 = 𝜙(𝑧) 𝜕𝑧𝑇 in 𝐵𝑟 , (2.11)

where 𝜙 is the extension over the whole 𝐵𝑟 of the Beltrami coefficient 𝜂(∇𝑈) from (2.10)
:

𝜙(𝑧) = 𝜙(𝑥 + 𝑖𝑦) :=

{
𝜂(∇𝑈 (𝑥, 𝑦)) if Im(𝑧) ≥ 0 ,
𝜙(𝑧) if Im(𝑧) ≤ 0 .
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By [2, Theorem 5.5.1 and Corollary 5.5.3], there exists an homeomorphismΨ ∈𝑊1,2 (𝐵𝑟 ;𝐵1),
solution of (2.11) and such thatΨ(0) = 0 andΨ(𝜌) = 𝜌, for some 𝜌 < 𝑟 , and an holomorphic
function Φ : Ω → C such that

𝑇 (𝑧) = Φ(Ψ(𝑧)) ∀𝑧 ∈ 𝐵𝑟 . (2.12)

Next we prove (1.8). Observe that if Ψ is a solution to (2.11), then also Ψ(𝑧) is a solution
to (2.11), and moreover Ψ(0) = Ψ(0) = 0 and Ψ(𝜌) = Ψ(𝜌) = 1. It follows, by uniqueness
of normalized solutions, that Ψ(𝑧) = Ψ(𝑧), which implies (1.8).
Finally we come to (1.9). Suppose by contradiction that (1.9) is false. Then, there is a
sequence of radii 𝜌𝑘 → 0 such that the sequence of homeomorphisms Ψ𝑘 ∈𝑊1,2 (𝐵𝑟 , 𝐵1),
solutions of

𝜕𝑧̄Ψ𝑘 = 𝜙(𝑧) 𝜕𝑧Ψ in 𝐵𝑟 , Ψ𝑘 (0) = 0 , Ψ𝑘 (𝜌𝑘) = 𝜌𝑘 ,

doesn’t converge uniformly to the function 𝑧. Consider the sequence of functions Ψ̃𝑘 (𝑧) :=
𝜌−1
𝑘

Ψ𝑘 (𝜌𝑘 𝑧), then they are solutions of

𝜕𝑧̄Ψ̃𝑘 = 𝜙 (𝜌𝑘 𝑧) 𝜕𝑧Ψ̃ in 𝐵𝑟/𝜌𝑘 Ψ̃𝑘 (0) = 0 , Ψ̃𝑘 (1) = 1 .

Reasoning as in the proof of Lemma 2.3 and using the fact that ∇𝑈 (𝜌𝑘𝑧) → 0 as 𝑘 → ∞,
since 𝑈 ∈ 𝐶1 and ∇𝑈 (0) = 0, we have

lim
𝑘→0

𝜙 (𝜌𝑘 𝑧) = 0 a.e. 𝑧 ∈ 𝐵𝑟/𝜌𝑘 .

Using [2, Lemma 5.3.5], we have that Φ̃𝑘 converges locally uniformly to a homeomorphism
Ψ̃ : C→ C, which is a solution of

𝜕𝑧̄Ψ̃ = 0 in C, Ψ̃(0) = 0 , Ψ̃(1) = 1 .

But this implies that Ψ̃(𝑧) = 𝑧, which is a contradiction for 𝑘 sufficiently large.
In particular notice that, if Φ(𝑧) = 𝑧𝑘 +𝑂 (𝑧𝑘+1), then the 𝐶1 regularity of solutions to

the non-linear thin-obstacle problem (see for instance [12]) implies that 𝑘 ≥ 3.

3. Theorem 1.3: proof via quasiconformal maps

In this section, we will prove Theorem 1.3 as a consequence of Theorem 1.1 combined
with an application of the hodograph transform.

3.1. The hodograph transform

In this section we write the hodograph transformation of a solution 𝑢 of (1.12)–(1.15). We
do this in every dimension 𝑑 ≥ 2.
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3.1.1. Notation. We adopt the following notation. We write every point 𝑥 ∈ R𝑑 in coor-
dinates as 𝑥 = (𝑥′, 𝑥𝑑) ∈ R𝑑−1 × R. For every 𝜌 > 0, we denote by 𝐵𝜌 and 𝐵′

𝜌 the balls
centered in zero of radius 𝜌 in R𝑑 and R𝑑−1, respectively. We will identify R𝑑−1 with the
hyperplane R𝑑−1 × {0} ⊂ R𝑑 , thus

𝐵′
𝜌 = 𝐵𝜌 ∩ {𝑥𝑑 = 0} and 𝐵+

𝜌 = 𝐵𝜌 ∩ {𝑥𝑑 > 0}.

We denote by∇𝑥′ the gradient with respect to the first 𝑑 − 1 coordinates 𝑥′ = (𝑥1, . . . ,𝑥𝑑−1).
Thus, for every function 𝑢 : R𝑑 → R, we can write the full gradient ∇𝑢 as

∇𝑢 = (∇𝑥′𝑢, 𝜕𝑑𝑢) and |∇𝑢 |2 = |∇𝑥′𝑢 |2 + |𝜕𝑑𝑢 |2.

Let us assume that 0 ∈ S1 (𝑢), that is 0 is a branch point, and let 𝑓 ∈ 𝐶1,𝛼 be the function
that locally describes the free boundary 𝜕Ω𝑢 as in (1.16), so that

𝑓 (0) = 0 and ∇𝑥′ 𝑓 (0) = 0.

Now since 𝑢(𝑥′, 𝑓 (𝑥′)) vanishes for every 𝑥′ ∈ 𝐵′
𝜌, we have that ∇𝑥′𝑢(0) = 0. Thus

∇𝑢(0) = 𝜕𝑑𝑢(0) 𝑒𝑑 and 𝜕𝑑𝑢(0) ≥ 1 .

3.1.2. The hodograph transform. Let 0 ∈ 𝜕Ω𝑢 ∩ {𝑥𝑑 = 0} and 𝑓 : 𝐵′
𝜌 → [0, +∞) be as

above. We consider the change of coordinates

𝑦′ = 𝑥′ , 𝑦𝑑 = 𝑢(𝑥′, 𝑥𝑑).

Since 𝑢 ∈ 𝐶1,𝛼 (Ω𝑢 ∩ 𝐵1), and since 𝜕𝑑𝑢(0) ≥ 1 > 0, we have that the function

𝑇 : 𝐵𝜌 ∩Ω𝑢 → R𝑑 ∩ {𝑦𝑑 ≥ 0} , 𝑇 (𝑥′, 𝑥𝑑) = (𝑦′, 𝑦𝑑),

is invertible for 𝜌 small enough. In particular, the set 𝑇
(
𝐵𝜌 ∩Ω𝑢

)
is an open neighborhood

of 0 in the upper half-space R𝑑 ∩ {𝑦𝑑 ≥ 0}. Let

𝑆 : 𝑇
(
𝐵𝜌 ∩Ω𝑢

)
→ 𝐵𝜌 ∩Ω𝑢 , 𝑆(𝑦′, 𝑦𝑑) = (𝑥′, 𝑥𝑑),

be the inverse of 𝑇 . Since the map 𝑇 does not change the first 𝑑 − 1 coordinates, there is a
𝐶1,𝛼 regular function 𝑣, defined on the set 𝑇

(
𝐵𝜌 ∩Ω𝑢

)
, such that

𝑆(𝑦′, 𝑦𝑑) =
(
𝑦′, 𝑣(𝑦′, 𝑦𝑑)

)
.

We will write this in coordinates as

𝑥′ = 𝑦′ , 𝑥𝑑 = 𝑣(𝑦′, 𝑦𝑑).

Remark 3.1. The function 𝑣 contains all the information of the free boundary 𝜕Ω𝑢. Pre-
cisely, for every 𝑥′ in a neighborhood of 0 ∈ R𝑑−1, we have

𝑣(𝑥′, 0) = 𝑓 (𝑥′). (3.1)
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Indeed, it is immediate to check that for any point (𝑥′, 𝑥𝑑) in a neighborhood of zero,

𝑥𝑑 = 𝑓 (𝑥′) ⇔ (𝑥′, 𝑥𝑑) ∈ 𝜕Ω𝑢 ⇔ 𝑥𝑑 = 𝑣(𝑥′, 𝑢(𝑥′, 𝑥𝑑)) = 𝑣(𝑥′, 0).

As a consequence of (3.1), we get that

𝑣(𝑥′, 0) ≥ 0 for every 𝑥′ in a neighborhood of zero in R𝑑−1. (3.2)

Lemma 3.2 (Hodograph transform). Let 𝑢, 𝑇 , 𝐵𝜌 and 𝑣 be as above. Then, there is 𝑟 > 0
such that

𝐵𝑟 ∩ {𝑥𝑑 ≥ 0} ⊂ 𝑇
(
𝐵𝜌 ∩Ω𝑢

)
,

and such that the function
𝑣 : 𝐵𝑟 ∩ {𝑥𝑑 ≥ 0} → R,

exists, is 𝐶1,𝛼 in 𝐵𝑟 ∩ {𝑥𝑑 ≥ 0} and 𝐶∞ in 𝐵𝑟 ∩ {𝑥𝑑 > 0}. Moreover, the function

𝑤 : 𝐵𝑟 ∩ {𝑥𝑑 ≥ 0} → R , 𝑤(𝑥′, 𝑥𝑑) = 𝑣(𝑥′, 𝑥𝑑) − 𝑥𝑑

solves the nonlinear thin-obstacle problem

div(∇F (∇𝑤)) = 0 in 𝐵+
𝑟 , (3.3)

𝑤 ≥ 0 on 𝐵′
𝑟 , (3.4)

F𝑑 (∇𝑤) = 0 on {𝑤 > 0} ∩ 𝐵′
𝑟 , (3.5)

F𝑑 (∇𝑤) ≤ 0 on {𝑤 = 0} ∩ 𝐵′
𝑟 , (3.6)

for the nonlinearity F (𝑥′, 𝑥𝑑) :=
|𝑥′ |2 + 𝑥2

𝑑

1 + 𝑥𝑑
.

Remark 3.3. We notice that (3.1) implies that the contact sets of the solution of the one-
phase problem 𝑢 and the solution of the nonlinear thin-obstacle problem 𝑤 are mapped
one into the other:

C1 (𝑢) = 𝜕Ω𝑢 ∩ 𝐵′
𝑟 = 𝑆({𝑤 = 0} ∩ 𝐵′

𝑟 )

as well as the singular sets defined in (1.6) and (1.17)

S1 (𝑢) = 𝐵′
𝑟 ∩ {𝑢 = 0} ∩ {|∇𝑢 | = 1} = 𝑆(𝐵′

𝑟 ∩ {𝑤 = 0} ∩ {|∇𝑤 | = 0}).

Proof of Lemma 3.2. We first notice that

𝑤(𝑥′, 0) = 𝑣(𝑥′, 0) = 𝑓 (𝑥′) for every 𝑥′ ∈ 𝐵′
𝑟 .

This proves (3.4) and the first part of (3.6). Next, we notice that since

𝑣
(
𝑥′, 𝑢(𝑥′, 𝑥𝑑)

)
= 𝑥𝑑 for every (𝑥′, 𝑥𝑑) ∈ 𝐵𝜌 ∩Ω𝑢,

we have that

𝜕𝑖𝑣+
(
𝑥′, 𝑢+ (𝑥′, 𝑥𝑑)

)
+ 𝜕𝑑𝑣+

(
𝑥′, 𝑢(𝑥′, 𝑥𝑑)

)
𝜕𝑖𝑢+ (𝑥′, 𝑥𝑑) = 0 for 𝑖 = 1, . . . , 𝑑 − 1, (3.7)
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and
𝜕𝑑𝑣

(
𝑥′, 𝑢(𝑥′, 𝑥𝑑)

)
𝜕𝑑𝑢(𝑥′, 𝑥𝑑) ≡ 1. (3.8)

Thus, we can compute (
1 + 𝜕𝑑𝑤

(
𝑥′, 0

) )
𝜕𝑑𝑢(𝑥′, 𝑓 (𝑥′)) ≡ 1, (3.9)

and since 𝜕𝑑𝑢(𝑥′, 0) ≥ 1, we obtain also the second part of (3.6).
Next, in order to prove that the boundary condition (3.5) holds, we notice that it is

equivalent to (
𝜕𝑑𝑣(𝑥′, 0)

)2
= 1 + |∇𝑥′ 𝑓 (𝑥′) |2 for 𝑥′ ∈ 𝐵′

𝑟 ∩ { 𝑓 > 0},

and, in view of (3.9), also to(
𝜕𝑑𝑢(𝑥′, 𝑓 (𝑥′))

)2
(
1 + |∇𝑥′ 𝑓 (𝑥′) |2

)
= 1 for 𝑥′ ∈ 𝐵′

𝑟 ∩ { 𝑓 > 0},

which is a consequence of the identity

𝜕𝑖𝑢(𝑥′, 𝑓 (𝑥′)) + 𝜕𝑑𝑢(𝑥′, 𝑓 (𝑥′))𝜕𝑖 𝑓 (𝑥′) ≡ 0 for every 𝑖 = 1, . . . , 𝑑 − 1,

and the boundary condition

(−∇𝑥′ 𝑓 (𝑥′), 1) · ∇𝑢(𝑥′, 𝑓 (𝑥′)) = −
(
|∇𝑥′ 𝑓 (𝑥′) |2 + 1

) 1/2 on { 𝑓 > 0}.

In order to prove (3.3) we notice that, in Ω𝑢, 𝑢 is a local minimizer of the Dirichlet integral

𝐽 (𝑢) =
ˆ

|∇𝑢 |2 𝑑𝑥 ,

which can be expressed in terms of 𝑤 by applying (3.7) and (3.8):

|∇𝑢 |2 (𝑥′, 𝑥𝑑) =
|∇𝑥′𝑣 |2

(
𝑥′, 𝑢(𝑥′, 𝑥𝑑)

)
+ 1

|𝜕𝑑𝑣 |2
(
𝑥′, 𝑢(𝑥′, 𝑥𝑑)

) and det(∇𝑇) (𝑥′, 𝑥𝑑) = 𝜕𝑑𝑢(𝑥′, 𝑥𝑑).

Now, by the change of coordinates 𝑦′ = 𝑥′, 𝑦𝑑 = 𝑢(𝑥′, 𝑥𝑑), we get
ˆ
𝐵𝜌∩Ω𝑢

|∇𝑢 |2 𝑑𝑥 =

ˆ |∇𝑦′𝑣 |2 (𝑦′, 𝑦𝑑) + 1
|𝜕𝑑𝑣 |2 (𝑦′, 𝑦𝑑)

1
|𝜕𝑑𝑢(𝑥′, 𝑥𝑑) |

𝑑𝑦 =

ˆ |∇𝑦′𝑣 |2 (𝑦′, 𝑦𝑑) + 1
𝜕𝑑𝑣(𝑦′, 𝑦𝑑)

𝑑𝑦

where all the integrals in 𝑑𝑦 are over 𝑇 (𝐵𝜌 ∩Ω𝑢). Now, by the definition of 𝑤, we get
ˆ
𝐵𝜌∩Ω𝑢

|∇𝑢 |2 𝑑𝑥 =

ˆ
𝑇 (𝐵𝜌∩Ω𝑢 )

(
|∇𝑤 |2 (𝑦′, 𝑦𝑑)

1 + 𝜕𝑑𝑤(𝑦′, 𝑦𝑑)
+ 2

)
𝑑𝑦.

Thus, 𝑤 minimimizes the functional

𝐽 (𝑤) =
ˆ |∇𝑤 |2 (𝑦′, 𝑦𝑑)

1 + 𝜕𝑑𝑤(𝑦′, 𝑦𝑑)
𝑑𝑦

in the open set 𝑇 (𝐵𝜌 ∩ Ω𝑢) with respect to perturbations of the form 𝑤 + 𝜀𝜑 for small 𝜀
and smooth 𝜑. This concludes the proof of (3.3).

Proof of Theorem 1.3. Theorem 1.3 follows by combining Lemma 3.2 with Theorem 1.1.
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4. Theorems 1.3 and 1.4: proof via conformal hodograph transform

In this section we prove Theorem 1.3 by introducing a new, conformal version, of the
hodograph transform, which not only provides another proof of the fact that the one-phase
branch points are isolated, but also provides the full expansion of the solution, and a way
to construct examples of solutions with prescribed vanishing order (see Theorem 1.4).

4.1. The harmonic conjugate

Let 𝑢 be a solution of the one-phase problem (1.12)–(1.15), let S1 (𝑢) be the singular set
defined in (1.17) and let 0 ∈ S1 (𝑢). Let I𝜌 = (−𝜌, 𝜌) and let 𝑓 : I𝜌 → R be the 𝐶1,𝛼

function from (1.16) that describes locally the free boundary 𝜕Ω𝑢 ∩ 𝐵𝜌; we recall that 𝑓

is non-negative and 𝑓 (0) = 𝑓 ′ (0) = 0. Now, since the function

I𝜌 ∋ 𝑥 ↦→ 𝑢(𝑥, 𝑓 (𝑥)),

vanishes for every 𝑥 ∈ I𝜌, we have that 𝜕𝑥𝑢(0, 0) = 0. Thus

∇𝑢(0, 0) = 𝜕𝑦𝑢(0, 0) 𝑒2 and 𝜕𝑦𝑢(0, 0) ≥ 1 ,

where 𝑒2 = (0, 1). We next define the open set

Ω𝜌 =

{
(𝑥, 𝑦) ∈ I𝜌 × I𝜌 : 𝑓 (𝑥) > 𝑦

}
,

and the boundary
Γ𝜌 :=

{
(𝑥, 𝑦) ∈ I𝜌 × I𝜌 : 𝑓 (𝑥) = 𝑦

}
.

Since Ω𝜌 is simply connected, and 𝑢 is harmonic in Ω𝜌, there is a function

𝑈 : Ω𝜌 ∪ Γ𝜌 → R

which solves the problem

𝑈 (0, 0) = 0, 𝜕𝑥𝑈 = 𝜕𝑦𝑢 and 𝜕𝑦𝑈 = −𝜕𝑥𝑢 in Ω𝜌.

We recall that, for any (𝑥, 𝑦) ∈ Ω𝜌 ∪ Γ𝜌, 𝑈 (𝑥, 𝑦) is the line integral
ˆ
𝜎

𝛼 of the 1-form

𝛼 := 𝜕𝑦𝑢(𝑥, 𝑦) 𝑑𝑥 − 𝜕𝑥𝑢(𝑥, 𝑦) 𝑑𝑦

over any curve
𝜎 : [0, 1] → Ω𝜌 ∪ Γ𝜌

connecting the origin (0, 0) to (𝑥, 𝑦). In particular, 𝑈 is as regular as 𝑢:

𝑈 ∈ 𝐶1,𝛼 (Ω𝜌 ∪ Γ𝜌).

If we choose 𝜎 to be the curve parametrizing the free boundary Γ𝜌,

𝜎 : [0, 𝑥] → R2, 𝜎(𝑡) = (𝑡, 𝑓 (𝑡)),



20 G. De Philippis, L. Spolaor, B. Velichkov

then, by integrating 𝛼 over 𝜎 and using that

𝜕𝑥𝑢(𝑡, 𝑓 (𝑡)) + 𝑓 ′ (𝑡)𝜕𝑦𝑢(𝑡, 𝑓 (𝑡)) = 0 for every 𝑡 ∈ I𝜌 ,

we obtain the formula

𝑈 (𝑥, 𝑓 (𝑥)) : =
ˆ 𝑥

0

(
𝜕𝑦𝑢(𝑡, 𝑓 (𝑡)) − 𝜕𝑥𝑢(𝑡, 𝑓 (𝑡)) 𝑓 ′ (𝑡)

)
𝑑𝑡

=

ˆ 𝑥

0
|∇𝑢 | (𝑡, 𝑓 (𝑡))

√︃
1 + 𝑓 ′ (𝑡)2 𝑑𝑡 =

ˆ
𝜎

|∇𝑢 |.

In what follows, we will use the notation

𝜂(𝑥) := 𝑈 (𝑥, 𝑓 (𝑥)) =
ˆ
𝜎

|∇𝑢 |.

4.2. The conformal hodograph transform

With the notation from Section 4.1, we consider the change of coordinates

𝑥′ = 𝑈 (𝑥, 𝑦) , 𝑦′ = 𝑢(𝑥, 𝑦) ,

given by the 𝐶1,𝛼-regular map

𝑇 : Ω𝜌 ∪ Γ𝜌 → R2 ∩ {𝑦′ ≥ 0} , 𝑇 (𝑥, 𝑦) = (𝑥′, 𝑦′) .

Now, by the definition of 𝑈 and the fact that 𝜕𝑦𝑢(0, 0) ≥ 1, we have that the map 𝑇 is
invertible for 𝜌 small enough. In particular, the set 𝑇

(
Ω𝜌 ∪ Γ𝜌

)
is an open neighborhood

of (0, 0) in the upper half-plane R2 ∩ {𝑦′ ≥ 0}. Let

𝑆 : 𝑇
(
Ω𝜌 ∪ Γ𝜌

)
→ Ω𝜌 ∪ Γ𝜌 , 𝑆(𝑥′, 𝑦′) = (𝑥, 𝑦) ,

be the inverse of 𝑇 . We can write 𝑆 as

𝑆(𝑥′, 𝑦′) =
(
𝑉 (𝑥′, 𝑦′), 𝑣(𝑥′, 𝑦′)

)
,

which in coordinates reads as

𝑥 = 𝑉 (𝑥′, 𝑦′) , 𝑦 = 𝑣(𝑥′, 𝑦′) .

As in the case of the classical hodograph transform, the function 𝑣 contains all the infor-
mation of the free boundary Γ𝜌. Precisely, for every 𝑥 ∈ I𝜌, we have

𝑦 = 𝑓 (𝑥) ⇔ (𝑥, 𝑦) ∈ Γ𝜌 ⇔ 𝑦 = 𝑣
(
𝑈 (𝑥, 𝑦), 𝑢(𝑥, 𝑦)

)
= 𝑣(𝑥′, 0).

As a consequence, we obtain the equation

𝑓 (𝑥) = 𝑣(𝜂(𝑥), 0) for every 𝑥 ∈ I𝜌 .

In particular, for 𝑥′ ∈ R in a neighborhood of zero, 𝑣(𝑥′, 0) ≥ 0 and

𝑣(𝑥′, 0) > 0 ⇔ 𝑓 (𝜂−1 (𝑥′)) > 0. (4.1)
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Remark 4.1. We notice that, in terms of the contact sets

C1 (𝑢) = {𝑦 = 0} ∩ 𝜕Ω𝑢 and C(𝑣) = {𝑦′ = 0} ∩ {𝑣(𝑥′, 0) = 0},

the map 𝜂 is locally a 𝐶1 diffeomorphism, which is sending C1 (𝑢) into C(𝑣).

Lemma 4.2 (Equations for 𝑣). Let 𝑇 = (𝑈, 𝑢) and 𝑆 = (𝑉 , 𝑣) be as above.
Then, there is 𝑟 > 0 such that

𝐵𝑟 ∩ {𝑦′ ≥ 0} ⊂ 𝑇
(
Ω𝜌 ∪ Γ𝜌

)
,

and such that the function
𝑣 : 𝐵𝑟 ∩ {𝑦′ ≥ 0} → R,

is 𝐶1,𝛼-regular in 𝐵𝑟 ∩ {𝑦′ ≥ 0} and 𝐶∞ in 𝐵𝑟 ∩ {𝑦′ > 0}.
Moreover, if we denote by C𝑣 the contact set

C𝑣 :=
{
(𝑥′, 0) : 𝑥′ = 𝜂(𝑥), 𝑥 ∈ I𝜌, 𝑓 (𝑥) = 0

}
, (4.2)

then 𝑣 solves the problem

Δ𝑣 = 0 in 𝐵𝑟 ∩ {𝑦′ > 0}, (4.3)
𝑣 ≥ 0 on 𝐵𝑟 ∩ {𝑦′ = 0}, (4.4)

|∇𝑣 | = 1 on 𝐵𝑟 ∩ {𝑦′ = 0} \ C𝑣, (4.5)
𝑣 = 0 and |∇𝑣 | ≤ 1 on 𝐵𝑟 ∩ {𝑦′ = 0} ∩ C𝑣. (4.6)

Moreover, for every 𝑥 ∈ Γ𝜌, we have the identities

𝑓 ′ (𝑥) = 𝜕𝑥′𝑣(𝜂(𝑥), 0)
𝜕𝑦′𝑣(𝜂(𝑥), 0) and 𝜂′ (𝑥) = 1

𝜕𝑦′𝑣(𝜂(𝑥), 0) . (4.7)

Proof. We start by proving that 𝑣 satisfies the equations (4.3)–(4.6). First notice that 𝑣 is
harmonic since it is the second component of a conformal map. Moreover, since

𝑣
(
𝑈 (𝑥, 𝑦), 𝑢(𝑥, 𝑦)

)
= 𝑦 for every (𝑥, 𝑦) ∈ Ω𝜌,

taking the derivatives with respect to 𝑥 and 𝑦, we obtain that

𝜕𝑥′𝑣
(
𝑈 (𝑥, 𝑦), 𝑢(𝑥, 𝑦)

)
𝜕𝑥𝑈 (𝑥, 𝑦) + 𝜕𝑦′𝑣

(
𝑈 (𝑥, 𝑦), 𝑢(𝑥, 𝑦)

)
𝜕𝑥𝑢(𝑥, 𝑦) = 0,

𝜕𝑥′𝑣
(
𝑈 (𝑥, 𝑦), 𝑢(𝑥, 𝑦)

)
𝜕𝑦𝑈 (𝑥, 𝑦) + 𝜕𝑦′𝑣

(
𝑈 (𝑥, 𝑦), 𝑢(𝑥, 𝑦)

)
𝜕𝑦𝑢(𝑥, 𝑦) = 1.

By exploiting that 𝜕𝑥𝑈 = 𝜕𝑦𝑢 and 𝜕𝑦𝑈 = −𝜕𝑥𝑢, we get

𝜕𝑥′𝑣(𝑥′, 𝑦′) 𝜕𝑦𝑢(𝑥, 𝑦) + 𝜕𝑦′𝑣(𝑥′, 𝑦′) 𝜕𝑥𝑢(𝑥, 𝑦) = 0, (4.8)
−𝜕𝑥′𝑣(𝑥′, 𝑦′) 𝜕𝑥𝑢(𝑥, 𝑦) + 𝜕𝑦′𝑣(𝑥′, 𝑦′) 𝜕𝑦𝑢(𝑥, 𝑦) = 1. (4.9)

Solving the system (4.8)-(4.9) leads to

𝜕𝑦′𝑣(𝑥′, 𝑦′) =
𝜕𝑦𝑢(𝑥, 𝑦)
|∇𝑢 |2 (𝑥, 𝑦)

and 𝜕𝑥′𝑣(𝑥′, 𝑦′) = − 𝜕𝑥𝑢(𝑥, 𝑦)
|∇𝑢 |2 (𝑥, 𝑦)

. (4.10)
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Thus, we obtain
|∇𝑢 | (𝑥, 𝑦) |∇𝑣 | (𝑥′, 𝑦′) = 1 , (4.11)

which gives both (4.6) and (4.5). We next prove (4.7). Using that 𝑢(𝑥, 𝑓 (𝑥)) ≡ 0, we get

𝑓 ′ (𝑥) = −𝜕𝑥𝑢(𝑥, 𝑓 (𝑥))
𝜕𝑦𝑢(𝑥, 𝑓 (𝑥)) ,

which together with (4.10) gives the first part of (4.7). For the second part, we notice that
the identity 𝑣(𝜂(𝑥), 0) = 𝑓 (𝑥) gives that

𝑓 ′ (𝑥) = 𝜂′ (𝑥)𝜕𝑥′𝑣(𝜂(𝑥), 0) ,

which, combined with the first identity in (4.7), concludes the proof.

4.3. Proof of Theorem 1.3

Let 𝑣 be as in the previous section and let

𝑄 := 𝜕𝑧′𝑣 = 𝜕𝑥′𝑣 − 𝑖𝜕𝑦′𝑣,

where 𝑧′ = 𝑥′ + 𝑖𝑦′. Since 𝑣 satisfies (4.3)-(4.6), we get that
𝜕𝑧̄′𝑄 = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
|𝑄 | = 1 on 𝐵𝑟 ∩ {𝑦′ = 0} \ C𝑣,
Re𝑄 = 0 on 𝐵𝑟 ∩ {𝑦′ = 0} ∩ C𝑣,

where the set C𝑣 was defined in (4.2). Consider now the function

𝑃 = −𝑖 𝑄 + 𝑖

𝑄 − 𝑖
= −𝑖 (𝑄 + 𝑖) (𝑄̄ + 𝑖)

|𝑄 − 𝑖 |2
=

2 Re𝑄
|𝑄 − 𝑖 |2

− 𝑖
|𝑄 |2 − 1
|𝑄 − 𝑖 |2

.

Then, we have that 𝑃(0) = 0 and
𝜕𝑧̄′𝑃 = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
Re 𝑃 = 0 on 𝐵𝑟 ∩ {𝑦′ = 0} ∩ C𝑣,
Im 𝑃 = 0 on 𝐵𝑟 ∩ {𝑦′ = 0} \ C𝑣,

which implies that 𝑃2 (0) = 0 and{
𝜕𝑧̄′ (𝑃2) = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
Im (𝑃2) = 0 on 𝐵𝑟 ∩ {𝑦′ = 0}.

As a consequence, the zero set

Z(𝑃) =
{
𝑧′ ∈ 𝐵𝑟 : 𝑃(𝑧′) = 0, Im 𝑧′ = 0

}
,
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is discrete or coincides with 𝐵𝑟 ∩ {𝑦′ = 0}. Now, Theorem 1.3 (a) follows since

𝑃(𝑧′) = 0 ⇔
{
𝜕𝑥𝑢(𝑥, 𝑦) = 0,
𝜕𝑦𝑢(𝑥, 𝑦) = 1 ,

that is, every branch point (𝑥, 𝑦) ∈ S1 (𝑢) corresponds to a zero 𝑧′ of 𝑃.
We next prove Theorem 1.3 (b). Let 𝑧0 = 0 be an isolated point of S1 (𝑢) and 𝑧′0 = 0 be

the corresponding point in Z(𝑃). Since zero is an isolated point of Z(𝑃) and since

Re 𝑃(𝑧′) · Im 𝑃(𝑧′) = 0 on {Im 𝑧′ = 0},

we have the following three possibilities in a neighborhood of zero:
(1) Re 𝑃(𝑧′) ≡ 0 on {𝑦′ = 0}, and Im 𝑃(𝑧′) ≠ 0 on {𝑦′ = 0} \ {𝑥′ = 0};
(2) Im 𝑃(𝑧′) ≡ 0 on {𝑦′ = 0}, and Re 𝑃(𝑧′) ≠ 0 on {𝑦′ = 0} \ {𝑥′ = 0};
(3) up to changing the direction of the real axis {𝑦′ = 0} we have{

Re 𝑃(𝑧′) ≡ 0 and Im 𝑃(𝑧′) ≠ 0 on {𝑦′ = 0} ∩ {𝑥′ > 0};
Re 𝑃(𝑧′) ≠ 0 and Im 𝑃(𝑧′) ≡ 0 on {𝑦′ = 0} ∩ {𝑥′ < 0}.

We will show that each of these cases corresponds to one of the points (b.1), (b.2) and (b.3)
of Theorem 1.3. We first suppose that (3) holds. Then 𝑃 solves the problem

𝜕𝑧̄′𝑃 = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
Re 𝑃 = 0 on 𝐵′

𝑟 ∩ {𝑥′ ≥ 0},
Im 𝑃 = 0 on 𝐵′

𝑟 ∩ {𝑥′ < 0}.

We next notice that

𝜕𝑥′𝑣 − 𝑖𝜕𝑦′𝑣 = 𝑄 =
1 + 𝑖𝑃

𝑃 + 𝑖
=

2Re(𝑃)
|𝑃 + 𝑖 |2

− 𝑖
1 − |𝑃 |2
|𝑃 + 𝑖 |2

.

so that
𝜕𝑥′𝑣 =

2 Re(𝑃)
|𝑃 + 𝑖 |2

and 𝜕𝑦′𝑣 =
1 − |𝑃 |2
|𝑃 + 𝑖 |2

.

In particular, since the function 𝜂 is increasing and 𝜂(0) = 0, we get

𝜕𝑥′𝑣
(
𝜂(𝑥), 0

)
≡ 0 for 𝑥 ≥ 0 .

Integrating this identity and taking into account that 𝑣
(
𝜂(0), 0

)
= 𝑣(0, 0) = 0, we obtain

𝑓 (𝑥) = 𝑣
(
𝜂(𝑥), 0

)
=

ˆ 𝑥

0
𝜕𝑥′𝑣

(
𝜂(𝑡), 0

)
𝜂′ (𝑡) 𝑑𝑡 = 0 for 𝑥 ≥ 0 .

Conversely, assume that 𝑥 < 0 and let 𝑥′ = 𝜂(𝑥) < 0. Then, Im(𝑃(𝑥′)) = 0 and

𝜕𝑥′𝑣(𝑥′, 0) = 2𝑃(𝑥′)
1 + 𝑃2 (𝑥′)

and 𝜕𝑦′𝑣(𝑥′, 0) = 1 − 𝑃2 (𝑥′)
1 + 𝑃2 (𝑥′)

for 𝑧′ = 𝑥′ < 0 .



24 G. De Philippis, L. Spolaor, B. Velichkov

In particular, from (4.7) it follows that
𝜂′ (𝑥) = 1 + 𝑃2 (𝜂(𝑥))

1 − 𝑃2 (𝜂(𝑥))
if 𝑥 < 0

𝜂(0) = 0 ,

which implies, by Cauchy-Kovalevskaya theorem, that 𝜂 : (−𝜌, 0] → R is an analytic func-
tion, with 𝜂′ (0) = 1, since 𝑃(0) = 0. Since for 𝑥 < 0 we have

𝜂′ (𝑥) =
√︃

1 + 𝑓 ′ (𝑥)2 ⇒ 𝑓 ′ (𝑥) =
√︃
𝜂′ (𝑥)2 − 1, (4.12)

we get that 𝑓 ′ : (−𝜌, 0] → R is of the form

𝑓 ′ (𝑥) = 𝑥
𝑘/2𝜓(𝑥),

for some 𝑘 ≥ 1 and some analytic function 𝜓 : (−𝜌, 0] → R with 𝜓(0) > 0. It follows that
there is an analytic function 𝜙, such that 𝜙(0) > 0 and

𝑓 (𝑥) = 0 if 𝑥 ≥ 0 and 𝑓 (𝑥) = 𝑥
𝑘+2

2 𝜙(𝑥) if 𝑥 < 0 .

Suppose now that (2) holds. Then Im𝑃 ≡ 0 on the real axis {𝑦′ = 0} and so, 𝑃 (not only 𝑃2)
is an holomorphic function. As a consequence, also 𝑄 is holomorphic. Thus, 𝜕𝑦′𝑣(𝑥′, 0) is
analytic. Since, 𝜂 : (−𝜌, 𝜌) → R solves the equation

𝜂′ (𝑥) = 1
𝜕𝑦′𝑣(𝜂(𝑥), 0) , 𝜂(0) = 0 ,

we get that 𝜂 is analytic and, by (4.12), so is 𝑓 . This gives (b.2).
Finally, we suppose that (1) holds. Since Im 𝑃 ≠ 0 on {𝑦′ = 0} \ {0}, we get that the
contact set C𝑣 contains a neighborhood of zero. As a consequence also the contact set
C1 (𝑢) contains a neighborhood of zero (see Remark 4.1), from which we obtain (b.1).

4.4. Proof of Theorem 1.4

Finally we come to the proof of Theorem 1.4, which is obtained by reversing the construc-
tion from the previous subsection.

Proof of Theorem 1.4. For any 𝑘 of the form 𝑘 = 2𝑛 − 3
2 with 𝑛 ∈ N≥1, we define

𝑃(𝑧) = (𝑖𝑧)𝑘 = 𝜌𝑘
(
− sin(𝑘𝜃) + 𝑖 cos(𝑘𝜃)

)
.

In particular, setting C𝑃 := {(𝑥, 0) ∈ R2 : 𝑥 ≥ 0} we have
𝜕𝑧̄𝑃 = 0 in {𝑦 > 0},
Re 𝑃 = 0 and Im 𝑃 > 0 on {𝑥 > 0}
Re 𝑃 < 0 and Im 𝑃 = 0 on {𝑥 < 0} .
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Then we consider a radius 𝑟 ∈ (0, 1) and the function 𝑄 : 𝐵𝑟 ∩ {𝑦 ≥ 0} → C

𝑄 =
1 + 𝑖𝑃

𝑃 + 𝑖
=

2 Re(𝑃)
|𝑃 + 𝑖 |2

− 𝑖
1 − |𝑃 |2
|𝑃 + 𝑖 |2

.

Notice that 𝑄 is still conformal in 𝐵𝑟 ∩ {𝑦 > 0} and that we have
𝜕𝑧̄𝑄 = 0 in {𝑦 > 0},
Re𝑄 = 0 , Im𝑄 ∈ (−1, 0) and |𝑄 | < 1 on {𝑥 > 0} ,
Re𝑄 < 0, Im𝑄 ∈ (−1, 0) and |𝑄 | = 1 on {𝑥 < 0} .

Since 𝐵𝑟 ∩ {𝑦 > 0} is simply connected, there is a function 𝑣 : 𝐵𝑟 ∩ {𝑦 ≥ 0} → R such
that

𝜕𝑧𝑣 = 𝜕𝑥𝑣 − 𝑖𝜕𝑦𝑣 = 𝑄 in 𝐵𝑟 ∩ {𝑦 > 0} .

Precisely, for every 𝑧 = 𝑥 + 𝑖𝑦 in 𝐵𝑟 ∩ {𝑦 ≥ 0}, 𝑣 is given by the formula

𝑣(𝑧) = 𝑣(𝑥, 𝑦) =
ˆ 1

0

(
𝑥 Re𝑄(𝑡𝑧) − 𝑦 Im𝑄(𝑡𝑧)

)
𝑑𝑡.

Thus, 𝑣 is a solution to the problem
Δ𝑣 = 0 in 𝐵𝑟 ∩ {𝑦 > 0},
𝑣 = 0 and |∇𝑣 | < 1 on 𝐵𝑟 ∩ {𝑥 > 0} ,
𝑣 > 0 and |∇𝑣 | = 1 on 𝐵𝑟 ∩ {𝑥 < 0} .

Moreover, we notice that 𝑣(0, 0) = 0 and 𝜕𝑦𝑣(0, 0) = 1. Thus, by choosing 𝑟 > 0 small
enough, we may suppose that 𝑣 > 0 in 𝐵𝑟 ∩ {𝑦 > 0}. We next consider the harmonic con-
jugate 𝑉 : 𝐵𝑟 ∩ {𝑦 > 0} → R of 𝑣 and the inverse hodograph transform

𝑆 : 𝐵𝑟 ∩ {𝑦 ≥ 0} → R2 , 𝑆(𝑥, 𝑦) :=
(
𝑉 (𝑥, 𝑦), 𝑣(𝑥, 𝑦)

)
.

Tracing backwards the argument from Section 4.2, we have that when 𝑟 is small enough,
𝑆 is a diffeomorphism; we can then consider its inverse

𝑇 : 𝑆
(
𝐵𝑟 ∩ {𝑦 ≥ 0}

)
→ 𝐵𝑟 ∩ {𝑦 ≥ 0} , 𝑇 (𝑥′, 𝑦′) =

(
𝑈 (𝑥′, 𝑦′), 𝑢(𝑥′, 𝑦′)

)
,

where we notice that the positivity set Ω𝑢 = {𝑢 > 0} of the second component 𝑢 of 𝑇 is
precisely 𝑆

(
𝐵𝑟 ∩ {𝑦 > 0}

)
and that, since 𝑣 ≥ 0, Ω𝑢 = 𝑆

(
𝐵𝑟 ∩ {𝑦 > 0}

)
is contained in the

upper half-plane {𝑦′ > 0}. Now, reasoning as in Lemma 4.2 (see (4.11)), we get that

|∇𝑢(𝑥′, 𝑦′) | |∇𝑣(𝑥, 𝑦) | = 1,

and that, in a small ball 𝐵𝜌, 𝑢 is a solution to the problem

Δ𝑢 = 0 in Ω𝑢 ∩ 𝐵𝜌, (4.13)
𝑢 = 0 on 𝐵𝜌 ∩ {𝑦′ = 0}, (4.14)

|∇𝑢 | = 1 on 𝜕Ω𝑢 ∩ {𝑦′ > 0}, (4.15)
|∇𝑢 | ≥ 1 on 𝜕Ω𝑢 ∩ {𝑦′ = 0}, (4.16)
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where 𝜕Ω𝑢 ∩ {𝑦′ = 0} = {𝑥′ ≥ 0} ∩ {𝑦′ = 0} and |∇𝑢 | ≥ 1 on {𝑥′ ≥ 0} ∩ {𝑦′ = 0}. We now
define the function 𝑓 describing the boundary 𝜕Ω𝑢 (see (1.16)) and the function 𝜂(𝑥) =
𝑈 (𝑥, 𝑓 (𝑥)) to be as in the proof of Theorem 1.3. Then, 𝜂 is a solution to

𝜂′ (𝑥) = 1 + 𝑃2 (𝜂(𝑥))
1 − 𝑃2 (𝜂(𝑥))

if 𝑥 < 0

𝜂(0) = 0 ,

and so, it is analytic since 𝑃2 (𝑧) = 𝑖𝑧4𝑛−3 with 𝑛 ∈ N. Finally, since 𝜂(𝑥) = 𝑥 + 𝑜(𝑥), we
can write the function 𝜂 as

|𝜂(𝑥) |1/2 = |𝑥 |1/2𝜓(𝑥) for 𝑥 ≤ 0,

where 𝜓 is analytic and 𝜓(0) = 1. Thus, we get the precise form of 𝑓 by the formula

𝑓 (𝑥) = 𝑣(𝜂(𝑥), 0) =


ˆ 𝑥

0

−|𝜂(𝑡) |2𝑛−1/2

|𝜂(𝑡) |4𝑛−3 + 1
𝑑𝑡 if 𝑥 < 0,

0 if 𝑥 ≥ 0 ,

and we notice that 𝑓 (𝑥) = |𝑥 |2𝑛−1/2
(
1 + 𝑜(1)

)
for 𝑥 < 0. This concludes the proof.

5. The symmetric two-phase problem and some remarks

Let 0 = 𝑧0 ∈ S and let 𝑓± be as in (1.25). We define

Ω±
𝜌 =

{
(𝑥, 𝑦) ∈ I𝜌 × I𝜌 : 𝑓± (𝑥) > 𝑦

}
,

and
Γ±
𝜌 :=

{
(𝑥, 𝑦) ∈ I𝜌 × I𝜌 : 𝑓± (𝑥) = 𝑦

}
.

In what follows, we perform the hodograph transform of 𝑢+ in Ω+
𝜌 and in 𝑢− in Ω−

𝜌 .
In order to simplify the notation, we set

𝑖 := + or − .

Let 𝜂±,𝑇± = (𝑈±, 𝑢±), 𝑆± = (𝑉±, 𝑣±) be the functions constructed in Section 4.1 and Sec-
tion 4.2 separately for 𝑢+ and 𝑢− . Recall that the functions 𝑣𝑖 , 𝑖 = ±, contain all the infor-
mation of the free boundaries Γ𝑖

𝜌. Precisely, for every 𝑥 ∈ I𝜌, we have

𝑦 = 𝑓𝑖 (𝑥) ⇔ (𝑥, 𝑦) ∈ Γ𝑖
𝜌 ⇔ 𝑦 = 𝑣𝑖

(
𝑈𝑖 (𝑥, 𝑦), 𝑢𝑖 (𝑥, 𝑦)

)
= 𝑣𝑖 (𝑥′, 0).

As a consequence, we get the equation

𝑓𝑖 (𝑥) = 𝑣𝑖 (𝜂𝑖 (𝑥), 0) for every 𝑥 ∈ I𝜌.

In particular, we have

𝑣+ (𝜂+ (𝑥), 0) ≥ 𝑣− (𝜂− (𝑥), 0) for every 𝑥 ∈ I𝜌. (5.1)
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Lemma 5.1. There is 𝑟 > 0 such that

𝐵𝑟 ∩ {𝑦′ ≥ 0} ⊂ 𝑇+
(
Ω+

𝜌 ∪ Γ+
𝜌

)
and 𝐵𝑟 ∩ {𝑦′ ≤ 0} ⊂ 𝑇−

(
Ω−

𝜌 ∪ Γ−
𝜌

)
.

The functions
𝑣± : 𝐵𝑟 ∩ {±𝑦′ ≥ 0} → R ,

are both 𝐶1,𝛼-regular respectively in the half-disks 𝐵𝑟 ∩ {±𝑦′ ≥ 0} up to the hyperplane
{𝑦′ = 0}, and are𝐶∞ respectively in 𝐵𝑟 ∩ {±𝑦′ > 0}. Furthermore they solve the following
thin two-membrane problem

Δ𝑣+ = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
Δ𝑣− = 0 in 𝐵𝑟 ∩ {𝑦′ < 0},

𝑣+
(
𝜂+ (𝑥), 0

)
≥ 𝑣−

(
𝜂− (𝑥), 0

)
for 𝑥 ∈ I𝜌,

|∇𝑣± | (𝜂± (𝑥), 0) = 1 when 𝑣+ (𝜂+ (𝑥), 0) > 𝑣− (𝜂− (𝑥), 0),
𝜂′+ (𝑥) 𝜕𝑦′𝑣+ (𝜂+ (𝑥), 0) = 𝜂′− (𝑥) 𝜕𝑦′𝑣− (𝜂− (𝑥), 0) ≤ 1 when 𝑣+ (𝜂+ (𝑥), 0) = 𝑣− (𝜂− (𝑥), 0),

Moreover, for every 𝑥 ∈ Γ𝜌 we have the identities

𝑓 ′± (𝑥) = ±𝜕𝑥′𝑣± (𝜂± (𝑥), 0)
𝜕𝑦′𝑣± (𝜂± (𝑥), 0) and 𝜂′± (𝑥) =

1
𝜕𝑦′𝑣± (𝜂± (𝑥), 0) . (5.2)

Proof. We reason precisely as in Lemma 4.2. Since

𝑣𝑖
(
𝑈𝑖 (𝑥, 𝑦), 𝑢𝑖 (𝑥, 𝑦)

)
= 𝑦 for every (𝑥, 𝑦) ∈ Ω𝑖

𝜌,

taking the derivatives with respect to 𝑥 and 𝑦, we obtain that{
𝜕𝑥′𝑣𝑖

(
𝑈𝑖 (𝑥, 𝑦), 𝑢𝑖 (𝑥, 𝑦)

)
𝜕𝑥𝑈𝑖 (𝑥, 𝑦) + 𝜕𝑦′𝑣𝑖

(
𝑈𝑖 (𝑥, 𝑦), 𝑢𝑖 (𝑥, 𝑦)

)
𝜕𝑥𝑢𝑖 (𝑥, 𝑦) = 0,

𝜕𝑥′𝑣𝑖
(
𝑈𝑖 (𝑥, 𝑦), 𝑢𝑖 (𝑥, 𝑦)

)
𝜕𝑦𝑈𝑖 (𝑥, 𝑦) + 𝜕𝑦′𝑣𝑖

(
𝑈𝑖 (𝑥, 𝑦), 𝑢𝑖 (𝑥, 𝑦)

)
𝜕𝑦𝑢𝑖 (𝑥, 𝑦) = 1.

Since, 𝜕𝑥𝑈𝑖 = 𝜕𝑦𝑢𝑖 and 𝜕𝑦𝑈𝑖 = −𝜕𝑥𝑢𝑖 , we get{
−𝜕𝑥′𝑣𝑖 (𝑥′, 𝑦′)𝜕𝑦𝑢𝑖 (𝑥, 𝑦) + 𝜕𝑦′𝑣𝑖 (𝑥′, 𝑦′)𝜕𝑥𝑢𝑖 (𝑥, 𝑦) = 0,
𝜕𝑥′𝑣𝑖 (𝑥′, 𝑦′)𝜕𝑥𝑢𝑖 (𝑥, 𝑦) + 𝜕𝑦′𝑣𝑖 (𝑥′, 𝑦′)𝜕𝑦𝑢𝑖 (𝑥, 𝑦) = 1.

When 𝑦′ = 0, we can write

𝑥′ = 𝜂𝑖 (𝑥) and 𝑦 = 𝑓𝑖 (𝑥).

Thus, we have{
−𝜕𝑥′𝑣𝑖 (𝜂𝑖 (𝑥), 0)𝜕𝑦𝑢𝑖 (𝑥, 𝑓𝑖 (𝑥)) + 𝜕𝑦′𝑣𝑖 (𝜂𝑖 (𝑥), 0)𝜕𝑥𝑢𝑖 (𝑥, 𝑓𝑖 (𝑥)) = 0,
𝜕𝑥′𝑣𝑖 (𝜂𝑖 (𝑥), 0)𝜕𝑥𝑢𝑖 (𝑥, 𝑓𝑖 (𝑥)) + 𝜕𝑦′𝑣𝑖 (𝜂𝑖 (𝑥), 0)𝜕𝑦𝑢𝑖 (𝑥, 𝑓𝑖 (𝑥)) = 1,

which we will simply write as{
−𝜕𝑥′𝑣𝑖 𝜕𝑦𝑢𝑖 + 𝜕𝑦′𝑣𝑖 𝜕𝑥𝑢𝑖 = 0,
𝜕𝑥′𝑣𝑖 𝜕𝑥𝑢𝑖 + 𝜕𝑦′𝑣𝑖 𝜕𝑦𝑢𝑖 = 1,

(5.3)
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and we remember that all the derivatives of 𝑣 are computed in (𝜂𝑖 (𝑥), 0), while all the
derivatives of 𝑢 are calculated in (𝑥, 𝑓𝑖 (𝑥)). We next consider two cases:
Case 1. 𝑣+ (𝜂+ (𝑥), 0) = 𝑣− (𝜂− (𝑥), 0). We set

𝑓 (𝑥) := 𝑓+ (𝑥) = 𝑓− (𝑥) and 𝑓 ′ (𝑥) := 𝑓 ′+ (𝑥) = 𝑓 ′− (𝑥),

and we notice that we have the system

𝜕𝑥𝑢+ + 𝑓 ′ (𝑥)𝜕𝑦𝑢+ = 0 = 𝜕𝑥𝑢− + 𝑓 ′ (𝑥)𝜕𝑦𝑢− (5.4)
− 𝑓 ′ (𝑥)𝜕𝑥𝑢+ + 𝜕𝑦𝑢+ = − 𝑓 ′ (𝑥)𝜕𝑥𝑢− + 𝜕𝑦𝑢− (5.5)

− 𝑓 ′ (𝑥)𝜕𝑥𝑢± + 𝜕𝑦𝑢± ≥
(
1 + ( 𝑓 ′ (𝑥))2) 1/2. (5.6)

where again all the partial derivatives of 𝑢+ and 𝑢− are computed in (𝑥, 𝑓 (𝑥)).
Now, using (5.4) in (5.5) and (5.6), we get

𝜕𝑦𝑢+ = 𝜕𝑦𝑢− (5.7)√︃
1 + ( 𝑓 ′ (𝑥))2 𝜕𝑦𝑢± ≥ 1. (5.8)

On the other hand, using (5.4) in the system (5.3), it becomes{ (
𝜕𝑥′𝑣𝑖 + 𝜕𝑦′𝑣𝑖 𝑓

′ (𝑥)
)
𝜕𝑦𝑢𝑖 = 0,(

− 𝑓 ′ (𝑥) 𝜕𝑥′𝑣𝑖 + 𝜕𝑦′𝑣𝑖
)
𝜕𝑦𝑢𝑖 = 1,

(5.9)

so we get (
1 + 𝑓 ′ (𝑥)2) 𝜕𝑦′𝑣± 𝜕𝑦𝑢± = 1,

which gives that

𝜕𝑦′𝑣+ = 𝜕𝑦′𝑣− , 𝜕𝑥′𝑣+ = 𝜕𝑥′𝑣− and
√︃

1 + ( 𝑓 ′ (𝑥))2 𝜕𝑦′𝑣± ≤ 1 ,

all the derivatives of 𝑣± being calculated in (𝜂± (𝑥), 0).

Case 2. 𝑣+ (𝜂+ (𝑥), 0) > 𝑣− (𝜂− (𝑥), 0). In this case the two free boundaries separate, that is
𝑓+ > 𝑓− in a neighborhood of 𝑥. Then, for each 𝑖 = ±, we can proceed as in the proof of
(4.5) in Lemma 4.2.

Finally, we notice that (5.2) follows by taking the reflection 𝑢̄(𝑥, 𝑦) := −𝑢− (𝑥,−𝑦) and
applying the identities from (4.7) to 𝑢+ and 𝑢̄.

When 𝑢 is a symmetric solution to the two-phase problem, we have the following

Corollary 5.2. Let 𝑢 be a symmetric solution to the two-phase problem, then, up to taking
a smaller radius 𝑟 > 0, the functions 𝑣± constructed in Lemma 5.1 satisfy

Δ𝑣+ = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
Δ𝑣− = 0 in 𝐵𝑟 ∩ {𝑦′ < 0},

|∇𝑣± | (𝑥′, 0) = 1 when 𝑥′ ∈ 𝐵′
𝑟 \ C𝑣

|∇𝑣+ | (𝑥′, 0) = |∇𝑣− | (𝑥′, 0) ≤ 1 when 𝐵′
𝑟 ∩ C𝑣 ,
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where we denote by C𝑣 the contact set

C𝑣 :=
{
(𝑥′, 0) : 𝑥′ = 𝜂(𝑥), 𝑥 ∈ I𝜌, 𝑓+ (𝑥) = 𝑓− (𝑥)

}
. (5.10)

Proof. By definition

𝜂± (𝑥) =
ˆ 𝑥

0
|∇𝑢± | (𝑡, 𝑓± (𝑡))

√︃
1 + | 𝑓 ′± (𝑡) |2 𝑑𝑡 .

Let I𝑖 be the intervals defined in (1.26), then notice that
• if 𝑡 ∈ I𝑖 , then |∇𝑢± | (𝑡, 𝑓± (𝑡)) = 1;

• if 𝑡 ∈ (−𝜌, 𝜌) \ (⋃𝑖 I𝑖), then 𝑓+ (𝑡) = 𝑓− (𝑡) and |∇𝑢+ | (𝑡, 𝑓 (𝑡)) = |∇𝑢− | (𝑡, 𝑓 (𝑡)).
In particular the first bullet implies that

𝜂+ (I𝑖) = 𝜂− (I𝑖) ∀𝑖 ,

which combined with the second bullet implies that

𝜂+
({
𝑥 ∈ (−𝜌, 𝜌) : 𝑓+ (𝑥) > 𝑓− (𝑥)

})
= 𝜂−

({
𝑥 ∈ (−𝜌, 𝜌) : 𝑓+ (𝑥) > 𝑓− (𝑥)

})
,

from which the conclusion follows from the previous lemma.

Remark 5.3. Notice that, in the above proof, we are not claiming that 𝜂+ ≡ 𝜂− , but only
that branch points are sent in branch points.

5.1. Proof of Theorem 1.6 (a)

Let 𝑣± be the functions from Corollary 5.2 and let

𝑄± := 𝜕𝑥′𝑣± − 𝑖𝜕𝑦′𝑣± (5.11)

As in the proof of Theorem 1.3, we have that 𝑄 is a solution to
𝜕𝑧̄𝑄± = 0 in 𝐵𝑟 ∩ {±𝑦′ > 0} ,
|𝑄± | = 1 on 𝐵𝑟 ∩ {𝑦′ = 0} \ C𝑣 ,
𝑄+ = 𝑄− on 𝐵𝑟 ∩ {𝑦′ = 0} ∩ C𝑣 .

(5.12)

We then define

𝑃± = −𝑖 𝑄± + 𝑖

𝑄± − 𝑖
= −𝑖 (𝑄± + 𝑖) (𝑄̄± + 𝑖)

|𝑄± − 𝑖 |2
=

2 Re𝑄±
|𝑄± − 𝑖 |2

− 𝑖
|𝑄± |2 − 1
|𝑄± + 𝑖 |2

, (5.13)

and we notice that 
𝜕𝑧̄𝑃± = 0 in 𝐵𝑟 ∩ {±𝑦′ > 0} ,
𝑃+ = 𝑃− on 𝐵𝑟 ∩ {𝑦′ = 0} ∩ C𝑣 ,
Im 𝑃± = 0 on 𝐵𝑟 ∩ {𝑦′ = 0} \ C𝑣 .
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We now consider the reflection

𝑃′ : 𝐵𝑟 ∩ {𝑦′ ≥ 0} → C , 𝑃′ (𝑧) := 𝑃− (𝑧) ,

so that the functions 𝑃+ and 𝑃′ are both defined on the same domain and we can take

𝑀 (𝑧) :=
𝑃+ (𝑧) + 𝑃′ (𝑧)

2
and 𝐷 (𝑧) :=

𝑃+ (𝑧) − 𝑃′ (𝑧)
2

, (5.14)

which satisfy the equations{
𝜕𝑧̄𝑀 = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
Im 𝑀 = 0 on 𝐵𝑟 ∩ {𝑦′ = 0}.

(5.15)

and 
𝜕𝑧̄𝐷 = 0 in 𝐵𝑟 ∩ {𝑦′ > 0},
Re𝐷 = 0 on 𝐵𝑟 ∩ {𝑦′ = 0} ∩ C𝑣,
Im 𝐷 = 0 on 𝐵𝑟 ∩ {𝑦′ = 0} \ C𝑣,

Reasoning as in the proof of Theorem 1.3, 𝐷2 we get that Im(𝐷2) = 2Re𝐷 Im𝐷 = 0 on
{𝑦′ = 0} so that 𝐷2 can be extended to a conformal map on to the whole of 𝐵𝑟 , so the set

{𝐷 = 0} ∩ 𝐵𝑟 ∩ {𝑦′ = 0},

is either discrete or coincides with 𝐵𝑟 ∩ {𝑦′ = 0}. This proves Theorem 1.6 (a) since at
every 𝑧′ on the real line {𝑦′ = 0} we have

𝐷 (𝑧′) = 0 ⇔
{
𝑃+ = 𝑃−

Im𝑃± = 0
⇔

{
𝑄+ = 𝑄−

|𝑄± | = 1
⇔

{
∇𝑢+ = ∇𝑢−
|∇𝑢± | = 1 ,

that is every branch point of 𝑢 corresponds to a zero of 𝐷.

5.2. Proof of Theorem 1.6 (b) and Corollary 5.2

Remark 5.4. We notice that in this part of Theorem 1.6 we do not assume any symmetry
of the solutions, but only that the branch points are isolated.

Let 𝑧0 ∈ S2 (𝑢+,𝑢−) be an isolated point of S2 (𝑢+,𝑢−). If 𝑧0 is in the interior of the contact
set C2 (𝑢+,𝑢−), then (b.2) is immediate as the function 𝑢 = 𝑢+ − 𝑢− is harmonic in a neigh-
borhood of 𝑧0. Suppose then that 𝑧0 is a branch point: 𝑧0 ∈ B2 (𝑢+, 𝑢−); moreover, since
B2 ⊂ S2, we have that 𝑧0 is isolated in the set of branch points B2 (𝑢+,𝑢−). This means that
in order to complete the proof of Theorem 1.6 (b) we only need to prove Corollary 5.2. We
set 𝑧0 = 0 and we consider the following two cases:
Case 1. 0 is isolated also as point of the contact setC2 (𝑢+,𝑢−), that is 𝐵𝑟 ∩ C2 (𝑢+,𝑢−) = {0}
for some radius 𝑟 > 0. In this case, on the free boundaries 𝜕Ω±

𝑢 we have that |∇𝑢± | = 1 and
so, Corollary 5.2 (b.1) follows as in the proof of Theorem 1.3 (b.1).
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Case 2. 0 is not isolated in the set C2 (𝑢+,𝑢−). Then, since there are no other branch points
in a neighborhood of 0, we can assume that:

𝑓+ (𝑥) = 𝑓− (𝑥) when 𝑥 ≥ 0 and 𝑓+ (𝑥) > 𝑓− (𝑥) when 𝑥 < 0.

As above, we define 𝜂± as

𝜂± (𝑥) =
ˆ 𝑥

0
|∇𝑢± | (𝑡, 𝑓± (𝑡)) |

√︃
1 + ( 𝑓 ′± (𝑡))2 𝑑𝑡 , (5.16)

while 𝑣± are the hodograph transforms of 𝑢±, for which we recall the identities

𝑓± (𝑥) = 𝑣± (𝜂± (𝑥), 0) and |∇𝑣± | (𝜂± (𝑥), 0) = 1
|∇𝑢 | (𝑥, 𝑓± (𝑥))

.

for every 𝑥 in a neighborhood of zero. Then, since 𝜂+ (𝑥) = 𝜂− (𝑥) for 𝑥 ≥ 0, we get that:{
𝑣+ (𝑥′, 0) = 𝑣− (𝑥′, 0) and ∇𝑣+ (𝑥′, 0) = ∇𝑣− (𝑥′, 0) when 𝑥′ ≥ 0,
|∇𝑣+ | (𝑥′, 0) = |∇𝑣− | (𝑥′, 0) when 𝑥′ < 0.

Remark 5.5. Notice that when 𝑥 < 0 we cannot say if 𝜂+ (𝑥) = 𝜂− (𝑥). In particular, we
cannot say if 𝑣+ (𝑥′, 0) ≥ 𝑣− (𝑥′, 0) when 𝑥′ < 0 and so, we don’t know if {𝑥′ ≥ 0} is the
contact set {𝑥′ : 𝑣+ (𝑥′, 0) = 𝑣− (𝑥′, 0)}.

We next consider the functions𝑄± and 𝑃± given by (5.11) and (5.13), and the functions
𝐷 and 𝑀 defined in (5.14). Then, in a neighborhood (−𝑟, 𝑟) × [0, 𝑟) of zero, the difference
𝐷 satisfies 

𝜕𝑧̄𝐷 = 0 in (−𝑟 , 𝑟) × (0, 𝑟),
Re𝐷 = 0 on (0, 𝑟) × {0}
Im 𝐷 = 0 on (−𝑟, 0) × {0} .

(5.17)

Recall that by the definitions of 𝑀 , 𝐷 and 𝑃′, we have

𝑃+ (𝑧) = 𝑀 (𝑧) + 𝐷 (𝑧) and 𝑃− (𝑧) = 𝑀 (𝑧) − 𝐷 (𝑧)

and moreover

𝜕𝑥′𝑣± = Re(𝑄±) =
2 Re(𝑃±)
|𝑃± + 𝑖 |2

and 𝜕𝑦′𝑣± = −Im(𝑄±) =
1 − |𝑃± |2
|𝑃± + 𝑖 |2

.

We set 𝑔± (𝑥′) := 𝜂−1
± (𝑥′) and 𝑓± (𝑥′) := 𝑓± (𝑔± (𝑥′)). Since,

𝑓± (𝑥) = 𝑣± (𝜂± (𝑥), 0) and 𝜂′± (𝑥) =
1

𝜕𝑦′𝑣±
(
𝜂± (𝑥), 0

) ,

we get that
𝑓± (𝑥′) = 𝑣± (𝑥′, 0) and 𝑔′± (𝑥′) = 𝜕𝑦′𝑣± (𝑥′, 0) .

In particular,

𝑓± (𝑥′) =
ˆ 𝑥′

0
𝜕𝑥′𝑣± (𝑡, 0) 𝑑𝑡 =

ˆ 𝑥′

0

2 Re(𝑃± (𝑡))
|𝑃± (𝑡) + 𝑖 |2

𝑑𝑡
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and

𝑔± (𝑥′) =
ˆ 𝑥′

0
𝜕𝑦′𝑣± (𝑡, 0) 𝑑𝑡 =

ˆ 𝑥′

0

1 − |𝑃± (𝑡) |2
|𝑃± (𝑡) + 𝑖 |2

𝑑𝑡 .

Now, by (5.17) and (5.15), we have that

𝑀 = Re 𝑀 and 𝐷 = 𝑖 Im 𝐷 on [0, 𝑟) × {0} ,

which gives that on [0, 𝑟) × {0}, 𝑃+ = 𝑃− , precisely:

Re(𝑃+) = Re(𝑃−) = 𝑀 and Im(𝑃+) = Im(𝑃−) = Im 𝐷 = −𝑖𝐷.

This implies that

𝑓± (𝑥′) =
ˆ 𝑥′

0

2 𝑀 (𝑡)
𝑀2 (𝑡) +

(
1 + Im 𝐷 (𝑡)

)2 𝑑𝑡 ,

so that 𝑓+ ≡ 𝑓− on {𝑥′ ≥ 0}. Similarly,

𝑔± (𝑥′) =
ˆ 𝑥′

0

1 − 𝑀2 (𝑡) −
(
Im 𝐷 (𝑡)

)2

𝑀2 (𝑡) +
(
1 + Im 𝐷 (𝑡)

)2 𝑑𝑡 ,

which again implies that 𝑔+ ≡ 𝑔− . Combining these two identities, we get that

𝑓+ ≡ 𝑓− on {𝑥′ ≥ 0}.

Using again (5.17) and (5.15), this time for 𝑥′ ≤ 0, we get that

𝑀 = Re 𝑀 and 𝐷 = Re 𝐷 on (−𝑟 , 0) × {0} ,

which implies that 𝑃± are both real and

𝑃+ = 𝑀 + 𝐷 and 𝑃− = 𝑀 − 𝐷 on (−𝑟 , 0) × {0} .

As above, we compute

𝑓± (𝑥′) = 2
ˆ 𝑥′

0

𝑀 (𝑡) ± 𝐷 (𝑡)
1 + (𝑀 (𝑡) ± 𝐷 (𝑡))2 𝑑𝑡

and

𝑔± (𝑥′) =
ˆ 𝑥′

0

1 − (𝑀 (𝑡) ± 𝐷 (𝑡))2

1 + (𝑀 (𝑡) ± 𝐷 (𝑡))2 𝑑𝑡 .

We now define

Ψ(𝑥′) :=
𝑓+ (𝑥′) − 𝑓− (𝑥′)

2
= 2
ˆ 𝑥′

0
𝐷 (𝑡) 1 + 𝐷2 − 𝑀2

(1 + 𝑀2 + 𝐷2)2 − 4𝐷2𝑀2 𝑑𝑡

and

Φ(𝑥′) :=
𝑓+ (𝑥′) + 𝑓− (𝑥′)

2
= 2
ˆ 𝑥′

0
𝑀 (𝑡) 1 + 𝑀2 − 𝐷2

(1 + 𝑀2 + 𝐷2)2 − 4𝐷2𝑀2 𝑑𝑡

and we notice that:
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• Φ is an analytic function of the form Φ(𝑥′) = 𝑂 (𝑥′2);
• Ψ is of the form Ψ(𝑥′) = (𝑥′)3/2Θ(𝑥′), where Θ is an analytic function.
Also, let

𝜓 :=
𝑔+ (𝑥′) − 𝑔− (𝑥′)

2
=

ˆ 𝑥′

0

−4𝐷 (𝑡)𝑀 (𝑡)
(𝑀2 + 𝐷2 + 1)2 − 4𝑀2𝐷2 𝑑𝑡 ,

and

𝜙 :=
𝑔+ (𝑥′) + 𝑔− (𝑥′)

2
=

ˆ 𝑥′

0

1 −
(
𝑀2 − 𝐷2)2

(𝑀2 + 𝐷2 + 1)2 − 4𝑀2𝐷2 𝑑𝑡 ,

where, as above,
• 𝜙 is an analytic function of the form 𝜙(𝑥′) = 𝑥′ + 𝑜(𝑥′);
• 𝜓 is of the form 𝜓(𝑥′) = (𝑥′)5/2𝜃 (𝑥′), where 𝜃 is an analytic function.
Therefore we have{

𝑓+
(
𝜙(𝑥′) + 𝜓(𝑥′)

)
− 𝑓−

(
𝜙(𝑥′) − 𝜓(𝑥′)

)
= 2Ψ(𝑥′),

𝑓+
(
𝜙(𝑥′) + 𝜓(𝑥′)

)
+ 𝑓−

(
𝜙(𝑥′) − 𝜓(𝑥′)

)
= 2Φ(𝑥′),

and

𝑓+
(
𝜙(𝑥′) + 𝜓(𝑥′)

)
= Φ(𝑥′) + Ψ(𝑥′) and 𝑓−

(
𝜙(𝑥′) − 𝜓(𝑥′)

)
= Φ(𝑥′) − Ψ(𝑥′).

Since 𝜂± is the inverse of 𝜙 ± 𝜓, we get that 𝜂± of the form

𝜂± (𝑥) = 𝑥 + 𝑥
5/2𝛽± (𝑥

1/2),

where 𝛽± are analytic functions. Thus,

𝑓± (𝑥) = Φ

(
𝑥 + 𝑥

5/2𝛽±
(
𝑥

1/2
) )

± Ψ

(
𝑥 + 𝑥

5/2𝛽±
(
𝑥

1/2
) )

,

which concludes the proof of Corollary 5.2 and Theorem 1.6 (b.3).

5.3. Remarks on the non-symmetric case

For non-symmetric solutions, or more generally when different weights are put on the
gradients of 𝑢± (as in the more general Alt-Caffarelli-Friedman energy, see for instance
[10]), we cannot guarantee the validity of Corollary 5.2, and so branch points of the original
problem might not be sent into branch points of the thin two-membrane problem. In fact,
suppose that (𝑥0, 𝑓± (𝑥0)) and (𝑥1, 𝑓± (𝑥1)) are two consecutive points in B2 (𝑢+, 𝑢−) such
that 𝑥0 < 𝑥1 and 

𝑓+ (𝑥) = 𝑓− (𝑥) when 𝑥 ≤ 𝑥0,
𝑓+ (𝑥) > 𝑓− (𝑥) when 𝑥0 < 𝑥 < 𝑥1,
𝑓+ (𝑥) = 𝑓− (𝑥) when 𝑥 ≥ 𝑥1.
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Suppose that 𝑥0 = 0 and define 𝜂± as in (5.16). Now, we might have that

𝜂+ (𝑥1) =
ˆ 𝑥1

0

√︃
1 + ( 𝑓 ′+ (𝑡))2 𝑑𝑡 >

ˆ 𝑥1

0

√︃
1 + ( 𝑓 ′− (𝑡))2 𝑑𝑡 = 𝜂− (𝑥1). (5.18)

But then, for a generic point 𝑥′ between 𝜂− (𝑥1) and 𝜂+ (𝑥1), we get that |∇𝑣+ | (𝑥′, 0) = 1,
while |∇𝑣− | (𝑥′, 0) < 1, so that the equations (5.12) for 𝑄± are not satisfied.

We notice that the symmetry assumption in point (a) of Theorem 1.6 is precisely what
prevents (5.18) from happening. In particular, this assumption is fulfilled when

𝑓+ (𝑥) + 𝑓− (𝑥) ≡ 0 on 𝐵′
1. (5.19)

We also notice that (5.19) is equivalent to assuming that 𝜂+ ≡ 𝜂− .

Lemma 5.6. Suppose that 𝜂+ ≡ 𝜂− on (−1, 1), then 𝑢± : 𝐵±
1 ∪ 𝐵′

1 → R and moreover

𝑢− (𝑥, 𝑦) = −𝑢+ (𝑥,−𝑦) and 𝑓+ (𝑥) + 𝑓− (𝑥) = 0 for every 𝑥 ∈ (−1, 1).

Proof. Since 𝜂′+ ≡ 𝜂′− , (5.2) implies that 𝜕𝑦′𝑣+ (𝜂+ (𝑥), 0) = 𝜕𝑦′𝑣− (𝜂− (𝑥), 0). In particular,
• if 𝑓+ (𝑥) > 𝑓− (𝑥), then |∇𝑣± (𝜂(𝑥), 0) | = 1 and so 𝜕𝑥𝑣+ (𝜂+ (𝑥), 0) = 𝜕𝑥𝑣− (𝜂− (𝑥), 0);
• if 𝑓+ (𝑥) = 𝑓− (𝑥), then 𝜕𝑥𝑣+ (𝜂+ (𝑥), 0) = 𝜕𝑥𝑣− (𝜂− (𝑥), 0).
In conclusion we have that

∇𝑣+ (𝜂+ (𝑥), 0) = ∇𝑣− (𝜂− (𝑥), 0) ,

which using again (5.2) implies that 𝑓 ′+ (𝑥) ≡ − 𝑓 ′− (𝑥). Since 𝑓± (0) = 0, integrating we get

𝑓+ (𝑥) + 𝑓− (𝑥) =
ˆ 𝑥

0
( 𝑓 ′+ (𝑡) + 𝑓 ′− (𝑡)) 𝑑𝑡 = 0 .

Finally, 𝑢− (𝑥, 𝑦) + 𝑢+ (𝑥,−𝑦) is a harmonic function in Ω−
𝑢 which vanishes together with

its gradient on 𝜕Ω−
𝑢 . This implies that 𝑢− (𝑥, 𝑦) + 𝑢+ (𝑥,−𝑦) = 0 for every (𝑥, 𝑦) ∈ Ω−

𝑢 .

Appendix A. The flat monotone solutions are minimizers

In this section we show that the solutions constructed in Theorem 1.4 and Theorem 1.8
are minimizers. We prove this fact for monotone solutions to the two-phase problem, the
one-phase case being analogous.

Theorem A.1. There is a constant 𝜀 > 0 depending only on the dimenson 𝑑 such that the
following holds. Let 𝐵′

𝑟 be the ball of radius 𝑟 inR𝑑−1; let 𝜂± : 𝐵′
2 → R be two𝐶1 functions

with 𝜂± (0) = |∇𝑥′𝜂± (0) | = 0 and

|𝜂± | + |∇𝜂± | ≤ 𝜀 on 𝐵′
2.

Let

Γ± :=
{
(𝑥′, 𝜂± (𝑥′)) : 𝑥′ ∈ 𝐵′

2

}
and Ω± :=

{
(𝑥′, 𝑥𝑑) ∈ 𝐵′

2 × (−2, 2) : ±𝑥𝑑 > 𝜂± (𝑥′)
}
.
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Let 𝑢± : Ω± ∪ Γ± → R be two 𝐶1 functions on Ω± ∪ Γ± that solve

Δ𝑢± = 0 in Ω+ ∪Ω− , (A.1)
𝑢+ = 0 and |∇𝑢+ | = 1 on Γ+ \ Γ− , (A.2)
𝑢− = 0 and |∇𝑢− | = 1 on Γ− \ Γ+, (A.3)

|∇𝑢+ | = |∇𝑢− | ≥ 1 on Γ+ ∩ Γ− , (A.4)

and are such that
1 − 𝜀 ≤ 𝜕𝑥𝑑𝑢± ≤ 1 + 𝜀 on Ω±.

Then, the function 𝑢 = 𝑢+ − 𝑢− is the unique minimizer of the two-phase functional in
Ω := 𝐵′

1 × (−1, 1), with 𝑢 = 𝑢+ − 𝑢− as boundary datum on 𝜕Ω.

Proof. We first notice that

𝑥𝑑 − 2𝜀 ≤ 𝑢(𝑥′, 𝑥𝑑) ≤ 𝑥𝑑 + 2𝜀 for (𝑥′, 𝑥𝑑) ∈ 𝐵′
1 × (−2, 2).

Let 𝑣 = 𝑣+ − 𝑣− be a minimum of the two-phase functonal in Ω = 𝐵′
1 × (−1, 1), with bound-

ary datum 𝑢 on 𝜕Ω. Then,

𝑥𝑑 − 2𝜀 ≤ 𝑣(𝑥′, 𝑥𝑑) ≤ 𝑥𝑑 + 2𝜀 for (𝑥′, 𝑥𝑑) ∈ Ω.

Now, consider the family of functions (which are all defined on Ω when |𝑡 | < 1)

𝑢𝑡 (𝑥′, 𝑥𝑑) := 𝑢(𝑥′, 𝑥𝑑 − 𝑡).

Then 𝑢𝑡 are solutions to (A.1)–(A.4) in 𝐵′
1 × (−1, 1) and are monotone, that is,

𝑢𝑡 ≤ 𝑢𝑠 whenever 𝑡 ≤ 𝑠.

Now, for 𝑡 small enough, we have that 𝑢𝑡 ≤ 𝑥𝑑 − 2𝜀 ≤ 𝑣(𝑥). Let 𝑡 ≤ 0 be the largest parameter
for which 𝑢𝑡 ≤ 𝑣. In particular,

{𝑢𝑡 > 0} ⊂ {𝑣 > 0} and {𝑢𝑡 < 0} ⊃ {𝑣 < 0}.

Suppose that 𝑡 < 0. By the monotonicity of 𝑢±, we have that 𝑢𝑡 < 𝑢 = 𝑣 on 𝜕Ω. Thus, 𝑢𝑡
touches 𝑣 from below at a point (𝑥′, 𝑥𝑑) ∈ Ω and we have the following three possibilities:
(1) 𝑢𝑡 (𝑥′, 𝑥𝑑) = 𝑣(𝑥′, 𝑥𝑑) > 0;
(2) 𝑢𝑡 (𝑥′, 𝑥𝑑) = 𝑣(𝑥′, 𝑥𝑑) = 0 and (𝑥′, 𝑥𝑑) ∈ 𝜕{𝑢𝑡 > 0} ∩ 𝜕{𝑣 > 0};
(3) 𝑢𝑡 (𝑥′, 𝑥𝑑) = 𝑣(𝑥′, 𝑥𝑑) = 0 and (𝑥′, 𝑥𝑑) ∈ 𝜕{𝑢𝑡 < 0} ∩ 𝜕{𝑣 < 0}.
Now, (1) cannot happen by the strict maximum principle. Suppose that (2) holds. Then,
both 𝜕{𝑣 > 0} and 𝑣+ are𝐶1 in a neighborhood of (𝑥′,𝑥𝑑). Since 𝑢𝑡 touches 𝑣 from below, we
have that |∇𝑢+𝑡 | (𝑥′, 𝑥𝑑) ≤ |∇𝑣+ | (𝑥′, 𝑥𝑑). Now, if both gradients are strictly greater than one,
then both 𝑢𝑡 and 𝑣 are harmonic in a neighborhood of (𝑥′, 𝑥𝑑), so by the strong maximum
principle and the unique continuation property they should coincide. Then, since at least
one of the gradients should be smaller than 1, so necessarily |∇𝑢+𝑡 | (𝑥′, 𝑥𝑑) = 1. In order to
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rule out this possibility, we consider two further cases. Suppose first that |∇𝑣+ | (𝑥′, 𝑥𝑑) > 1.
Then, (𝑥′,𝑥𝑑) ∈ 𝜕{𝑣 > 0} ∩ 𝜕{𝑣 < 0}. But this means that (𝑥′,𝑥𝑑) ∈ 𝜕{𝑢𝑡 > 0} ∩ 𝜕{𝑢𝑡 < 0}
and |∇𝑢−𝑡 | (𝑥′, 𝑥𝑑) = 1. But this is impossible since −𝑢−𝑡 should remain smaller than −𝑣− .
Finally, the last possibility is that |∇𝑣+ | (𝑥′, 𝑥𝑑) = |∇𝑢+𝑡 | (𝑥′, 𝑥𝑑) = 1. But this is impossible
since it violates the Hopf maximum principle. Thus, we have showed that (2) cannot hap-
pen. By the same argument, (3) cannot happen neither. Then, the only possibility is that
𝑡 = 0, so 𝑣 ≥ 𝑢 in Ω. Analogously, 𝑣 ≤ 𝑢 in Ω, so we have that 𝑢 = 𝑣 in Ω.
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