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(Quasi-)conformal methods in two-dimensional free
boundary problems

Abstract. In this paper we relate the theory of quasi-conformal maps to the regularity of the solu-
tions to nonlinear thin-obstacle problems; we prove that the contact set is locally a finite union of
intervals and we apply this result to the solutions of one-phase Bernoulli free boundary problems
with geometric constraint. We also introduce a new conformal hodograph transform, which allows
to obtain the precise expansion at branch points of both the solutions to the one-phase problem with
geometric constraint and a class of symmetric solutions to the two-phase problem, as well as to
construct examples of free boundaries with cusp-like singularities.

1. Introduction

This note is dedicated to the analysis of the branch singularities arising in two different
types of free boundary problems in dimension two: non-linear thin-obstacle problems and
one-phase Bernoulli problems with geometric constraint. In the last part of the paper we
will present some results about branch points of the two-phase problem.

Our main motivation is the description of the structure of branch points arising in free
boundary problems of Bernoulli type. Our main model example is the following one-phase
problem with geometric constraint, which for simplicity we state for nonnegative functions
u defined on the unit ball B in R¥:

Au=0 in &, cC B N{xy >0}
u=0 on B;n{xy=0}
[Vul=1 on 08Q, N {xg > 0}
[Vu| > 1 on 9Q, N {x4g =0},
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in which
Q, :={u >0}

and the geometric constraint is the inclusion Q, ¢ By N {x4 > 0}. The (optimal) C Ll
regularity of the free boundary 9Q,, N B; for this specific problem was proved by Chang-
Lara and Savin in [5]. On the other hand, as in the case of other Bernoulli free boundary
problems as the two-phase problem [10] and the vectorial problem [22], the C!@ regularity
of the free boundary 9€2,, N B; by itself does not give any information on the contact set

nor the structure of its relative boundary in B; N {x; = 0}, which is the set of points at
which 0Q,, branches away from {x; = 0}. In dimension two, it is natural to expect that this
set is discrete and that around each branch point the set {u = 0} N {x; > 0} forms a cusp.
This is precisely the content of one of our main results, Theorem 1.1.

We will study these singularities in two different ways. First we will prove that branch
singularities for minimizers of a general non-linear thin-obstacle problem are isolated,
using the theory of quasiconformal maps, and then we will deduce the same result for
solutions of the problem above via an hodograph transform. Secondly, we will introduce a
conformal hodograph transform and use it to deduce the result directly. This second method
has two advantages: it allows us to give a precise description of the cuspidal behavior
of the free boundary at branch singularities and moreover, being reversible, it allows to
show that solutions of the 2-dimensional one phase problem with obstacle are in a 1 to 1
correspondence with solution to the thin-obstacle problem, thus producing many examples
of cuspidal singularities. Finally we will describe a special symmetric situation in which
our techniques apply to the branch points of solutions to the two-phase problem. Extending
our results to the general two-phase situation seems to require an entirely new idea, which
is similar in spirit to an analogue of the Almgren’s center manifold for this problem (see
[4D.

The quasi-conformal technique is needed to prove Theorem 1.1 and it is the only one
available there. On the other hand the conformal hodograph transform is the only technique
which allows to give the precise analytic expansion in Theorem 1.3 (b) and Theorem 1.6
(b), and to construct the corresponding examples in Theorem 1.4 and Theorem 1.8. Both
techniques can be used to prove Theorem 1.3 (a) and Theorem 1.6 (a).

We wish to remark that such precise results at branch points, that is singular points at
which the tangent to the free boundary is a plane, usually with multiplicity, are quite rare.
To our knowledge, the only such examples are the results of Chang on 2-dimensional area
minimizing currents ([4,7-9]), of Sakai on the 2-dimensional obstacle problem ([20,21]),
and of Lewy on the 2-dimensional thin-obstacle problem ([17], and also [16] for a less
precise result); like in the present paper, all these results are 2-dimensional.

Our approach is similar in spirit to the results of Sakai and Lewy, and makes use of
(quasi)-conformal techniques to prove both the local finiteness of the branch set and to
give a precise description of the cuspidal behavior at such points. A possible alternative
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approach, which could also be applicable in higher dimensions, would be to look for a
monotone quantity, such as the Almgren’s frequency function as done for instance in the
Chang’s paper [4]; in fact, for some thin-obstacle problems, as for instance the one involving
the classical Laplace operartor, the monotonicity of the Almgren’s frequency function is
known (see [1,16]) and can still be used to get information on the dimension of the branch
set (see [14]). However, the operators we study are not regular enough to guarantee the
monotonicity of the frequency function, and so we were naturally led to consider (quasi)-
conformal techniques. Furthermore, our techniques have the additional benefit of yielding
a very precise local description of the free-boundary at branch points (see Items (b) of
Theorems 1.1, 1.3 and 1.6) in a straightforward way, much simpler than the induction
procedure that would be needed using the frequency function as in [4].

Concerning the possible extensions of Theorem 1.1, Theorem 1.3 and Theorem 1.6
to higher dimensions we point out that, since the monotonicity of the frequency function
doesn’t seem to hold in none of these cases (and it certainly does not hold in the full gen-
erality of Theorem 1.1), a dimension reduction argument seems completely out of reach.

1.1. Non-linear thin-obstacle problem

Let B, be the unit ball in R? and let
By :={(x,y) € By : y>0} and By ={(x,y) € B; : y=0}.

Let F :R? > Rbea C2-regular function, and let #;, j = 1,2 and F;, 1 <i,j <2, be
the first and second order partial derivatives of . Moreover, we identify R? with the field
of complex numbers C, so we will often think of the functions on R? = C as functions of
two real variables (x,y) € R? and at the same time as a function of one complex variable
z=x+iyeC.

We consider solutions U € C! (B} U BY) of the following nonlinear thin-obstacle prob-
lem

div(VF(VU)) =0 in BT, (1.1)
U>0 on Bj, (1.2)
VF(VU)-e2=0 on {U>0}nB], (1.3)
VF(VU) e, <0 on {U=0}NB|, (1.4)

where e, = (0, 1). Our first main result is the following.

Theorem 1.1 (Non-linear thin-obstacle). Suppose that U € C 1(BJlr U B)) is a solution to
(1.1)-(1.2)-(1.3)-(1.4) and that F : R> — R is C?-regular function satisfying

VF(0)=0 and  V*F(0)=1d. (1.5)

Then, the following holds:
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(a) The set of branch points
SW):={zeB) : U(z) =0, VU(z) =0}, (1.6)
is a discrete (locally finite) subset of B.
(b) For every point zg € S(U) (without loss of generality zg = 0), there are:

e aradius r > 0 and a quasi-conformal homeomorphism ¥ : B, — Q,
between B, and an open set Q C By, such that:

¥ e W, (BRY), 1.7
Im(P(z)) =0 on Im(z) =0, (1.8)
[¥(z) —zl = o(lz]); (1.9)

e a holomorphic function ®: B; — C of the form

®(z) =azf +0(Z*") where k>3 and acC; (1.10)

such that we can write the solution U as
U(z) = Re(q>(‘P(z))’/2) for every 7 € By (20) - (1.11)

Remark 1.2 (Optimal regularity). We notice that one particular consequence of the previ-
ous theorem, is the optimal regularity for solutions of the non-linear thin-obstacle problem
(1.1)-(1.2)-(1.3)-(1.4). In fact, if U € C! (B} U BY) is as in Theorem 1.1, then from (1.11),
(1.10) and (1.9) it follows that U € C"'* (B} U B).

In the case of the classical thin-obstacle problem in which the operator is the Laplacian,
that is 7 (x, y) = x* + y?, the results (a) and (b) of Theorem 1.1 were obtained by Lewy in
[17]; moreover, in this case, the claim (a) can also be obtained by means of the Almgren’s
monotonicity formula (see [1] and [16]); we also notice that for the classical thin-obstacle
problem, the map ¥ from Theorem 1.1 is the identity.

However, in order to apply this result to the one-phase problem described in the next
subsection, we will be interested in solutions u of the thin-obstacle problem with

x2+y?

1+y

F(x,y) =

and for which Vu € C%'” and no better. In particular, it is easy to check that U is a solution
of an equation of the form
div(A(x)VU) =0

where A(x) is no better than C%'”. For these type of equations the results in [15] can not
be applied (and actually are known to fail) so in order to obtain our result we need to
exploit the “quasi-linear” structure of the problem and our approach, based on the use of
quasi-conformal maps, seems to be more suitable, although limited to dimension 2.
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1.2. One-phase problem with geometric constraint

Next, we consider the following one-phase problem constrained above an hyperplane, that
isletu : By N {xz > 0} — R be a continuous non-negative function solution of the problem

Au=0 in Q,:={u >0} C By, (1.12)
u=0 on B;Nn{xg=0} (1.13)
[Vu|=1 on 0Q, N {xg >0}, (1.14)
[Vu| >1 on 9Q, N {xqs =0}. (1.15)

In the recent paper by Chang-Lara and Savin [5] it was shown that if u is a viscosity
solution of this problem (that is, if the boundary conditions (1.14) and (1.15) are intended
in viscosity sense), then in a neighborhood of any contact point x = (x”,0) € dQ, N {x4 =0}
the boundary 4Q,, is a C'*?-regular graph over the hyperplane {x; = 0}. More precisely
in a neighborhood of a point zg € 4, N {x4 = 0}, the boundary dQ is a C'/-regular
surfaces, that is, there are a radius p > 0 and a Cl"/z-regular function

f B, (z0) — [0, +00),

such that, up to a rotation and translation of the coordinate system, we have

{ u(x) >0 for x e (x',xq) € Bp(z0) suchthat xg> f(x'); (1.16)

u(x)=0 for x e (x',xq) € Bo(z0) suchthat x4 < f(x').
We denote by C; (u) the contact set of the free boundary 9Q,, with the hyperplane {x; =0}
Ci(u) = {xq =0} N 0%,
and by B (u) the set of points at which the free boundary separates from {x; = 0} :
B (u) = {x € Ci(u) : By(x) N (99 \ {xg=0}) # 0 forevery r > o}.
By S;(u) we denote the set of points in C; («) at which u has gradient precisely equal to 1
Si(u) ={z€Ci(u) : |Vul(z) = 1}. (1.17)

We notice that a priori the set C; (#) is no more than a closed subset of {x; = 0}. Moreover,
if at a point x = (x’,0) we have that |Vu|(x’,0) > 1, then this point is necessarily in the
interior of C; () in the hyperplane {x; = 0}. Thus,

S (1) contains all branch points, B (1) € Sy (u).

Theorem 1.3 (Analyticity at the branch points in the one phase problem with obstacle).
Let u be a solution of (1.12)—(1.15) in dimension d = 2. Then, the following holds:

(@) Si(u) is locally finite and Cy (u) is a locally finite union of disjoint closed intervals of
the axis {x; = 0},
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(b) For every point zo € S)(u), one of the following holds:

(b.1) zg is an isolated point of C1 (1) and, in a neighborhood of 7, the free boundary
0Q,, is the graph of an analytic function that vanishes only at 7o,

(b.2) zg lies in the interior of C(u) and there is r > 0 such that u is harmonic in
B, (z0) and |Vu| > 1 at all points of {x, = 0} N B, (z¢) except zo;

(b.3) zo is an endpoint of a non-trivial interval in the contact set C(u); moreover,
there is an interval I, = (—p, p) and analytic function ¢ : 1, — R such that
¢(0) > 0 and, up to setting zg = 0 and rotating the coordinate axis,

0 ifx>0
= 1.1
£ () {x%q&m <0, (118)

where f is the function from (1.16).

As we mentioned above we will give two proofs of this result. The first will be obtained
combining Theorem 1.1 with the standard hodograph transform. The second proof instead,
more geometric in spirit, will be achieved via a conformal hodograph transform. This proof
has the advantage of being reversible, thus allowing us to construct examples of solutions
and free boundaries with any prescribed cuspidal behavior (without invoking any fixed
point argument, as usual in the literature).

Theorem 1.4 (Cuspidal points for one-phase problem). For any positive integer n € N,
there exists a solution of (1.12)—(1.15) in dimension d = 2 such that (1.18) in Theorem 1.3
holds with k = 4n — 1.

We point out that Theorem 1.3 and Theorem 1.4 can be deduced respectively from
Theorem 1.6 and Theorem 1.8 below by performing an odd reflection.

1.3. Symmetric two-phase problem

Finally, we consider solutions to the two-phase free boundary problem in viscosity sense,
thatis we letu : B — R be a continuous function and we denote by u, and u_ the functions

uy = max{u,0} and u_ := min{u, 0}.

and by QF and Q, the sets
QF = {zu > 0}.
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Notice that with this notation u_ is negative. Then u is a viscosity solution of the problem

Au=0 in Q' uQ;, (1.19)

IVuy|=1 on 0Q\dQ; NB, (1.20)
IVu_|=1 on 0Q;\dQ NB, (1.21)
|Vuy|=|Vu_|>1 on 0Q:NaoQ, NB. (1.22)

In [10], we proved that if u is a viscosity solution of this problem in any dimension d > 2,
then in a neighborhood of any two-phase point

X0 € 0 N IQ, N By,

both free boundaries Q2 N By and dQ;, N By are C*® regular. Thus, by the classical
elliptic regularity theory, also the functions u. are C'*® regular respectively on 5; N By
and ﬁ; N B; and the equations (1.19)-(1.22) hold in the classical sense.

We will denote with C,(u,., u_) the two-phase free boundary, which is the contact set
between the free boundaries Q) and 62, and with O.. the remaining one-phase parts:

Co(uy,u_) := 09 N AQ, N By and 0, = (693 N B1) \Co(uy,u_).

We notice that the set C,(uy, u—) is closed, while O, and O_ are relatively open subsets
respectively of Q= N B;. We define the set of branch points B, (., u_) as the set of points
at which the two free boundaries dQ; separate, that is

By (us,u-) = {x € Co(us,u_) : By(x) N O # 0 forevery r > 0}. (1.23)
By C!-regularity of u., if x € (0Q, U 9Q;) N By is such that
Vuel(x) > 1 or [Vu_|(x) > 1,

then it is necessarily a two-phase non-branch point: x € Cy (uy,u_) \ Bo(uy, u_).
In particular, this implies that the set

So(upus) = {x € Cousp,u-) @ |Vuy|(x) = |Vu_|(x) = 1}, (1.24)
contains the set of branch points B, (u4, u_).

In dimension d = 2, Q% are locally parametrized by two C*@ curves. Precisely,
suppose that zg = (xg, o) € Ca(us, u_), without loss of generality we may assume that
z0 = (0,0), and that there is an interval Z, := (—p, p) and two C!:%-regular functions

fe 1L, - R,
such that

fez f- on I, and  fi(0) = f-(0) = 6xfi(0) = 0, f-(0) = 0,
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and, up to rotations and translations,

u(x,y) >0 for (x,y) € I,x 1, suchthat y> fi(x);
u(x,y)=0 for (x,y) € Z,x1, suchthat f_(x) <y < fi(x); (1.25)
x 1,

u(x,y) <0 for (x,y) €1, such that y < f_(x).

Thus, in the square 7, X I,,, the one-phase parts O, and O_ of the free boundary are the
union of C»® (actually analytic) graphs over a countable family of disjoint open intervals:

O, :=UFi,
ieN

where, for every i € N, there is an open interval Z; C I, such that
Il ={(x fo(x)) : x € I;}. (1.26)

Definition 1.5 (Symmetric solutions of the two-phase problem). In dimension d =2, we
will say that a continuous function u : By — R is a symmetric solution to the two-phase
problem if u satisfies (1.19)-(1.22) and moreover

HUTL) = H'(TL) forevery i€N suchthar I; C I,. (1.27)
The main result of this section is the following.

Theorem 1.6 (Cuspidal points for the symmetric solutions of the two-phase problem). Let
u : By — R be aviscosity solution of the two-phase problem (1.19)-(1.22).
Then the following holds.

(@) Ifuis symmetric in the sense of Definition 1.5, then the singular set Sy (u..,u_) defined
in (1.24) is locally finite, so in particular the two-phase free boundary Cy(uy,u_) =
(09} U 0Q;) N By is a locally finite union of disjoint C'*-arcs;

(b) Ifzo € Sa(uy,u_) is anisolated point of Sy(u,u_), then we have one of the following
possibilities:

(b.1) zo is an isolated point of Co(uy, u_) and, in a neighborhood of zy, the free
boundaries 0Q] and 0Q;; are analytic graphs meeting only in zo;

(b.2) zq lies in the interior of C(us,u_) and moreover there is r > 0 such that:
Au = 0in B, (z0) and |Vu| > 1 at all points of {u = 0} N B, (z9) except 7o,

(b.3) zg is an endpoint of a non-trivial arc in Cy(us,u_), and there are an interval
1, =(-p,p) aconstant k €N, k > 3, and an analytic function ¢ : 1, — R such
that ¢(0) # 0 and, up to setting 7o = 0 and changing the coordinates,

g ifx <0
() — f(x) = 1.28
Je(x) = f=(x) {0 x>0, (1.28)
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Precisely, there are analytic functions @, 5. and © such that for every x < 0

£o) = v+ el (1)) £ W (x+ e PBu (). (1.29)

where W is of the form ¥ (x) = |x|0(x).

Notice that (a) of the previous theorem requires that the function u is symmetric in the
generalized sense of Definition 1.5, while (b.3) is always true at isolated branch points.
The question of whether the statement of Theorem 1.6 (a) is true without the generalized
symmetry assumption is extremely interesting and would probably require the introduction
of new techniques.

We also have the following result, which simply follows from the fact that if z is an isolated
point of B, (u,u_), then it is also an isolated point of S, (u,, u_) for which Theorem 1.6
(b.2) does not hold.

Corollary 1.7 (Isolated cuspidal points of two-phase problem). Let u be a solution of the
two-phase problem as in Definition 1.5. If zg € By (u4, u_) is an isolated point of the set
By (us, u_) defined in (1.23), then at least one of the points (b.1) and (b.3) is true at z.

We will prove Theorem 1.6 in Section 5, where we will also discuss the obstructions in
applying the conformal hodograph transform to the study of the branch points of the two-
phase problem in the absence of symmetries or in the presence of weights 4. on the volume
of the positivity and the negativity sets.

Finally, as in Theorem 1.4, by reversing the argument from the proof of Theorem 1.6,
we can construct two-phase cusps with prescribed behavior.

Theorem 1.8 (Cuspidal points for two-phase problem). For any positive integer n € N,
there exists a solution of (1.19)—(1.22) in dimension d = 2 such that (1.28) holds with
k =4n -1 and (1.29) with ®(x) = x™ + o(x), with m > 2.

The particular case @ = 0 is an immediate consequence from Theorem 1.4 as a solution
of the one-phase problem, together with its reflection, gives a solution of the two-phase one.
However, the same method provides also non-symmetric examples in which the asymmetry
is given by the function ®.

We notice that the examples constructed in Theorem 1.8 are minimizers of the two-
phase functional. Indeed, any flat monotone solution to (1.19)—(1.22) is unique and so it
minimizes the two-phase functonal; we prove this in Appendix A as a direct consequence
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of the maximum principle. We refer to the recent work [6] for some interesting examples
of almost-minimizing free boundaries.

2. Non-linear thin-obstacle problem

In this section we prove Theorem 1.1 using the theory of quasi-conformal map.

2.1. Notation and known results

Let U € Cl(BT U B}) be a solution of the thin-obstacle problem (1.1)-(1.2)-(1.3)-(1.4),
where the function 7 : R? — R is C? regular.

2.1.1. Variational inequality formulation. The system (1.1)—(1.4) can be equivalently writ-
ten in the form of a variational inequality. Precisely, the following are equivalent:

(1) Ue CI(B;r U B}) and satisfies (1.1), (1.2), (1.3) and (1.4);

(2) UeH! (B} U B)) (thatis u € H'(B}) for every r < 1) and

loc

/ VF(VU)-V(U -v)dx <0 forevery ve Ky, 2.1
B+

1

where K is the convex set

7(11::{1)6H1

loc

(BfUB}) : v>0 on B}, v=U in a neighborhood of dB; ﬁ{xd>0}}.

Indeed, the implication (1) = (2) follows simply by an integration by parts, while (2) =
(1) was proved by Frehse [13]. In particular, if U € H' (B}) minimizes the integral func-
tional

I(v):= / F (Vo) dx, 2.2)
By
among all functions in Ky, then U satisfies the variational inequality (2.1).

2.1.2. Higher regularity of the solutions. It was proved by Frehse in [13, Lemma 2.2] that
if U € H'(BY) is a solution of the variational inequality (2.1), then U is in H*(B}) for
every r < 1. Moreover, in [11, Theorem 4.1] it was shown that the solution U is actually
in C@(Bt U B!) for some a > 0.

2.2. Local finiteness of the set of branch points

In this subsection we prove Theorem 1.1 (a). We introduce a special function Q that we
prove to be quasi-regular in the half-ball, then we obtain Theorem 1.1 (a) by applying
the Stoilow’s factorization theorem for quasi-conformal and quasi-regular maps (see [2,
Chapter 5]).
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Givenasolution U: By N {y > 0} — Rof (1.1)-(1.2)-(1.3)-(1.4), we consider the function
Q:Bin{y20}>C.,  Q(x+iy)=0:U-iF(VU(x,y)) 2.3)
We gather the fundamental properties of this function in the next lemma.

Lemma 2.1. The function Q defined in (2.3) satisfies the following properties:
(1) Q? e W'2(B};C), foreveryr < 1;

(2) there is ro > 0 such that, for every r < rg, Q satisfies the Beltrami equation
8:0 = u(VU,V?U) 8,0 in B},
and if for some 6 € (0, 1]

|ld = V>*F(VUG)|l2 <6 forevery  z=(x,y) € B,

then
lu(VU(2), VU (2))| < —6 for every z=(x,y) € Bf
Va—45-¢2 '

1/
where for any real matrix A = (a;;)ij, ||All2 == (Zi,j a?].) .
In particular, properties (1) and (2) imply that Q is a quasi-conformal map.

Proof. We first prove (1). By [13], we know that U € H*(B}) and that [VU| € L*(BJ).
Thus, (1) follows directly by the definition of Q. Let us now prove (2).
For simplicity, we set

A =0,U and B := 7 (VU).
Thus, Q = A —iB and
8:0 = 1(0x +idy)(A - iB) = L(8:A + 0,B) + £(9yA — 0+B),
8.0 = 3(0x —i0y)(A—iB) = 1(0xA — 8yB) — $(8yA + 0,B),

which implies

410:01> = (9:A+0yB)>+(3,A - .B), s
410,01 = (0:A-0,B)* + (0,A+0,B)%
We first compute
OxA = 0 U
0yA = 0yU (2.5)

B = Fi2(VU)dxxU + Fa(VU) Dy U
0B = F12(VU)Oxy U + F22(VU) Oy, U,
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and, using the equation for U, we obtain

IA+0yB = (1=F11(VU))dxxU — F12(VU) 0, U 2.6)

yA—3B = ~Fia(VU)dxxU + (1 = F22(VU))dy, U. '
For simplicity, we use the following notation

mij :=8;j — Fij(VU) for every 1<i,j<2,
and
M i=1d - V2F(VU) = (’"“ ”“2) .
map ma
We also set
IMI13 := m3, +2m2, + m3,.
Then, by (2.6) and the Cauchy-Schwartz inequality, we immediately obtain
(OxA +0yB)* + (0yA — 9y B)* < [ M|I3IVAJ*. 2.7)

In order to estimate |8ZQ|2 in (2.4), we write

2 2
(9:A — 0yB) + (9, A + 8, B)? = (ZHXA — (0, A+ 6yB)) + (2ayA — (ByA - BXB))

4|VA]> —4VA - M(VA)
+(0xA +0yB)* + (9yA — 0, B)*
S 4|VAI> + R,

where by (2.6) and (2.7), we have the estimate
IR < (41IMIl + IMIZ) VAP,

Now, if at some point VA = 0, then 3,0 = 9;:Q = 0. Thus, we can define u as follows:

= 9:0
0.0
Since A, 9:Q and 8, Q are all functions of VU and VU, also u can be written in terms of

the same variables, that is: u = u(VU, V2U). We notice that with this definition, 4 remains
bounded. Indeed,

p=0, if VA=0; if VA#0.

90
9:0

so that for r sufficiently small the conclusion follows. ]

2 IMII3
<

|ul? < :
4= 4IM(l2 + [IMI13
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Proof of Theorem 1.1 (a). Let Q be the function defined in (2.3) and let

2 .
S {9(_1) %fIm(z) >0
S(z) if Im(z) <0

We notice that
Im(Q*(2)) = U - F2(VU) =0 on  {Im(z) =0},
so that the function S is in W!?(B,.) and satisfies the Beltrami equation
058 =y (z) 0,8 in By,

where
u(VU(x,y),V2U(x,y)) if Im(z) 20,

Y(z) =¥(x+iy) = {E(z) if Im(z) <0.

Thus, by [2, Theorem 5.5.2], we conclude that the zeros of the function S are isolated,
which is the claim. u

2.3. Local behavior of the solutions at branch points

In this subsection we prove Theorem 1.1 (b). Given a branch point zg € S, we construct
a quasi-regular mapping whose real part is precisely the solution U. Assume that zo = 0.
We consider the case where it exists a radius r > 0 such that

{U=0}nB.={x<0}nB. and {U>0}nB. ={x>0}NnB,, (2.8)

which is the case of a branch point, the other two cases being analogous.
We notice that the differential form

a=-F(VU)dx+F,(VU) dy

is closed in B} and so the potential
1
V:BfUB. >R, V(x,y) = / ( - F(VU(1x,ty))x + F1 (VU (¢x, ty))y) dt
0

is Lipschitz continuous in B} U B., C? in B} and satisfies

0xV = =F(VU) in B},
0,V = F1(VU) in B},
uv=0 on B,

where the last equality follows from (2.8), (1.3) and the very definition of V. We next define
the complex function

P:Bn{y>0}—>C, P(x+iy) =U(x,y) +iV(x,y). (2.9)
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Remark 2.2. Notice that, by the definition of V, we have 0P = Q in Bj.
We now prove the following lemma.

Lemma 2.3. The function P defined in (2.9) satisfied the following properties.
(1) P2e W-°(BtUB),

loc

(2) P satisfies the Beltrami equation
0;P =n(VU) 9, P in B, (2.10)
where n(VU) = o(|VU]).

Proof. The first claim follows from the Lipschitz continuity of U and V. In order to prove
the second claim, we compute

20:P = (0x +i0y)(U +iV) = (0xU — F1(VU)) +i(0,U — F2(VU)),
20,P = (0x — i0y)(U +iV) = (0xU + F1(VU)) = i(0,U + F2(VU)),
Now, by the differentiability of #7 and 7, in zero and (1.5), we can write
Fi(X)-Xi=e(XN)[X]  and  H(X) - X = £2(X)[X],
for every X = (X1, X3) € RZ, where the functions &, and &, are such that

l}l(lgoel(X) = Dl(llgoaz(x) =0,

from which the first part of the claim follows.

(]
Proof of Theorem 1.1 (b). Let P be the function defined in (2.9) and let
P(z)? ifIm(z) 20
P | PO TN
T(z) ifIm(z) <0
Then
Im(P%*(z)) = U(z)V(z) =0 on {Im(z) =0},
so T is Lipschitz continuous on B,, and satisfies the Beltrami equation
0:T = ¢(z) 0;,T in B,, (2.11)

where ¢ is the extension over the whole B, of the Beltrami coefficient (VU) from (2.10)

n(VU(x,y)) if Im(z) =20,

#2) = plx+iy) := {5(2) if Im(z) <0.
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By [2, Theorem 5.5.1 and Corollary 5.5.3], there exists an homeomorphism ¥ € wl2 (B,;By),
solution of (2.11) and such that ¥ (0) = 0 and ¥(p) = p, for some p < r, and an holomorphic
function ®: Q — C such that

T'(z) =®(¥(z)) VzeB,. (2.12)

Next we prove (1.8). Obﬁ:rve that if ¥ is a solﬂtion to (2.11), then also @(Z) is a solution
to (2.11), and moreover ‘I‘(O): Y (0) =0and ¥(p) = ¥(p) = 1. It follows, by uniqueness
of normalized solutions, that ¥(z) = ¥(z), which implies (1.8).

Finally we come to (1.9). Suppose by contradiction that (1.9) is false. Then, there is a
sequence of radii p; — 0 such that the sequence of homeomorphisms ¥, € W'2(B,, By),
solutions of

0:¥r =¢(2)0;¥ in B,, Yr(0)=0, Yi(px)=p«,

doesn’t converge uniformly to the function z. Consider the sequence of functions ¥ (z) :=
Pz Wk(pk 2), then they are solutions of

;P = ¢ (pk2) ;¥ inB,)p, Pr(0)=0, Pr(l)=1.

Reasoning as in the proof of Lemma 2.3 and using the fact that VU (prz) — 0 as k — oo,
since U € C! and VU(0) = 0, we have

Ilir%¢ (pkz)=0  ae.z€B, ), .

Using [2, Lemma 5.3.5], we have that ®; converges locally uniformly to ahomeomorphism
¥.Cc—> C, which is a solution of

:¥=0inC, ¥0)=0, ¥(1)=1.

But this implies that ¥(z) = z, which is a contradiction for & sufficiently large.
In particular notice that, if ®(z) = zK + O(z**!), then the C! regularity of solutions to
the non-linear thin-obstacle problem (see for instance [12]) implies that k > 3. |

3. Theorem 1.3: proof via quasiconformal maps

In this section, we will prove Theorem 1.3 as a consequence of Theorem 1.1 combined
with an application of the hodograph transform.

3.1. The hodograph transform

In this section we write the hodograph transformation of a solution u of (1.12)—(1.15). We
do this in every dimension d > 2.
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3.1.1. Notation. We adopt the following notation. We write every point x € R in coor-
dinates as x = (x’, x4) € R4"! x R. For every p > 0, we denote by B, and B, the balls
centered in zero of radius p in R¢ and R?~!, respectively. We will identify R¢~! with the
hyperplane R4~! x {0} c R4, thus

B;) = Bp N {xqg =0} and B; = Bp N {xq > 0}.

We denote by V., the gradient with respect to the first d — 1 coordinates x” = (xy,...,xXg-1).
Thus, for every function u : R4 — R, we can write the full gradient Vu as

Vu=(Vyu,dqu) and |Vul® =|Vyul* +|0qul’.

Let us assume that 0 € S (u), that is 0 is a branch point, and let f € C La pe the function
that locally describes the free boundary 0Q,, as in (1.16), so that

f(0)=0 and V, f(0)=0.
Now since u(x’, f(x")) vanishes for every x” € B/,, we have that V- u(0) = 0. Thus

Vu(0) = d4u(0) egq and Oqu(0) > 1.

3.1.2. The hodograph transform. Let 0 € 0Q, N {xz =0} and f : B, — [0, +c0) be as
above. We consider the change of coordinates

y=x'", ya=ulx,xg).

Since u € C*(Q, N By), and since d4u(0) > 1 > 0, we have that the function
T:BpmﬁuﬁRdﬂ{deO}’ T(X/,Xd)z(y,,yd),

is invertible for p small enough. In particular, the set 7(B, N ﬁu) is an open neighborhood
of 0 in the upper half-space Ry N {yys = 0}. Let

S:T(B,NnQ,) — B,NQ,, SO, va) = (x', xq),

be the inverse of T'. Since the map 7" does not change the first d — 1 coordinates, there is a
C! regular function v, defined on the set T(B, N Q,), such that

SO ya) = (v, 00y, ya))-
We will write this in coordinates as

’

xX'=y, xa=v0,ya)-

Remark 3.1. The function v contains all the information of the free boundary 9Q,,. Pre-
cisely, for every x’ in a neighborhood of 0 € R?~!, we have

v(x’,0) = f(x). (3.1)
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Indeed, it is immediate to check that for any point (x’,x4) in a neighborhood of zero,
xg=f(x) © (X,x4) €0Q, © xqg=v(x",u(x’,xq)) =v(x’,0).
As a consequence of (3.1), we get that
v(x’,0) > 0 for every x" in a neighborhood of zero in R4~". (3.2)

Lemma 3.2 (Hodograph transform). Let u, T, B, and v be as above. Then, there isr > 0
such that
B, N{xqg >0} c T(B, NQy),

and such that the function
v:B,N{xg =0} >R,

exists, is C® in B, N {xg > 0} and C* in B, N {x4 > 0}. Moreover, the function
w:B N{xg =20} >R, w(x',xq) =v(x’,xq) — xa

solves the nonlinear thin-obstacle problem

div(VF(Vw)) =0 in B, 3.3)
w>0 on B, (3.4)
Fa(Vw)=0 on {w>0}NB., (3.5)
Fa(Vw) <0 on {w=0}nNB,, (3.6)

[x’|? +x§

for the nonlinearity F (x',xg4) =
1+xy4

Remark 3.3. We notice that (3.1) implies that the contact sets of the solution of the one-
phase problem u and the solution of the nonlinear thin-obstacle problem w are mapped
one into the other:

Ci(u)=09Q,NB,.=S{w=0}nB,)

as well as the singular sets defined in (1.6) and (1.17)
Si(w) =B, Nn{u=0}n{|Vu| =1} = S(B,. N {w =0} N {|Vw| = 0}).
Proof of Lemma 3.2. We first notice that
w(x’,0) =v(x’,0) = f(x’) forevery x" € B..
This proves (3.4) and the first part of (3.6). Next, we notice that since
v(x" u(x',xq)) =xq4 forevery (x',xq) € B, nQ,,
we have that

Bvs (X", usr (x",x4)) + Oqus (x", u(x’,x4)) Bus (x',xg) =0 for i=1,....d-1, (3.7)
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and
Aav(x', u(x’, xq))0qu(x’,xq) = 1. (3.8)

Thus, we can compute
(1 +6dw(x',0))6du(x',f(x’)) =1, (3.9)

and since d u(x’,0) > 1, we obtain also the second part of (3.6).
Next, in order to prove that the boundary condition (3.5) holds, we notice that it is
equivalent to

(Bav(x',0))” = 1+ |V f(x)? for x' € B.n{f >0},
and, in view of (3.9), also to
(', FN) (1410 fGOF) =1 for ¥ € By {f > 0),
which is a consequence of the identity
Ou(x’, f(x") +Oqu(x’, fF(x')N0; f(x') =0 forevery i=1,...,d -1,
and the boundary condition
(=Va [, 1) - V', f () = =192 fGOP + 1) " on {f >0},

In order to prove (3.3) we notice that, in Q,,, u is a local minimizer of the Dirichlet integral
J(u) = / |Vul|? dx
which can be expressed in terms of w by applying (3.7) and (3.8):

Vo) (¥, u(x’, xq)) + 1
10av]? (x", u(x’, xa))

IVul?(x’,xq) = and  det(VT)(x,xq) = dqu(x’, xq).

Now, by the change of coordinates y’ = x’, yg = u(x’, x4), we get

Vrl)2 /, +1 1 V/U2 ,, +1
/ QIVulde=/|y|(y yd) dyz/lyl(y Ya) dy
B,NQ,

10av? (¥, ya)  10qu(x’,xq)l 0qv(y’,ya)

where all the integrals in dy are over T'(B, N Q,,). Now, by the definition of w, we get

\v} 2 /’
/ |VM|2dx:/ (M+2) dy
B,nQ,, 7(B,n%,) \1 +0aw(y’, ya)

Thus, w minimimizes the functional
\vj 2 /,
= [T,
L+ 30qw(y’, ya)

in the open set T(B,, N &,,) with respect to perturbations of the form w + ¢ for small &
and smooth ¢. This concludes the proof of (3.3). (]

Proof of Theorem 1.3. Theorem 1.3 follows by combining Lemma 3.2 with Theorem 1.1.
(]
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4. Theorems 1.3 and 1.4: proof via conformal hodograph transform

In this section we prove Theorem 1.3 by introducing a new, conformal version, of the
hodograph transform, which not only provides another proof of the fact that the one-phase
branch points are isolated, but also provides the full expansion of the solution, and a way
to construct examples of solutions with prescribed vanishing order (see Theorem 1.4).

4.1. The harmonic conjugate

Let u be a solution of the one-phase problem (1.12)—(1.15), let S;(u) be the singular set
defined in (1.17) and let 0 € S1(u). Let 1, = (-p, p) and let f : I, — R be the che
function from (1.16) that describes locally the free boundary 0, N B,,; we recall that f
is non-negative and f(0) = f’(0) = 0. Now, since the function

I, 3 x = ux, f(x)),
vanishes for every x € 1,,, we have that 0,u(0,0) = 0. Thus
Vu(0,0) = dyu(0,0) es and 0yu(0,0) > 1,

where e; = (0, 1). We next define the open set

Q, = {(x,y) el,xI, : f(x)> y},
and the boundary

I, := {(x,y) el,x1, : f(x)= y}.
Since €2, is simply connected, and u is harmonic in €, there is a function

U:Q,ul’, > R

which solves the problem

U(0,0)=0, 0U=0dyu and 0yU=-0u in €.

We recall that, for any (x,y) € , UT,, U(x,y) is the line integral / a of the 1-form

len

a = Oyu(x,y) dx — Oxu(x,y) dy

Over any curve
o:[0,1] - Q,uUr,

connecting the origin (0, 0) to (x, y). In particular, U is as regular as u:
UeCh*(Q,Ur,).
If we choose o to be the curve parametrizing the free boundary I',,

o [0,x] = R%, (1) = (1, f(2)),



20 G. De Philippis, L. Spolaor, B. Velichkov

then, by integrating @ over o~ and using that
Oxu(t, (1) + f'(1)dyu(t, f(1)) =0 for every tel,,

we obtain the formula

U f() : = A (Byutt, (1) = dute, f() £ (1)) e

=/Ox IVul(t,f(t))\/l+f’(t)2dt:/(T|Vu|.

In what follows, we will use the notation

n(x) = Ulr. f(x) = / 19l

o

4.2. The conformal hodograph transform
With the notation from Section 4.1, we consider the change of coordinates
X =Uy), ¥ =uly),
given by the C!®-regular map
T:Q,UT, 5 R*N{y >0},  T(xy) =.)y).

Now, by the definition of U and the fact that d,u(0,0) > 1, we have that the map T is
invertible for p small enough. In particular, the set T(Qp urT, p) is an open neighborhood
of (0,0) in the upper half-plane R? N {y’ > 0}. Let

S:T(Q,UT,) - Q,Ul,,  SK&,y)=(xy),
be the inverse of 7. We can write S as
S,y = (VI y),0(x", "),
which in coordinates reads as
x=V(E,y), y=ol"y).

As in the case of the classical hodograph transform, the function v contains all the infor-
mation of the free boundary I',,. Precisely, for every x € 7,,, we have

y=fx) & (x,y)el, & y=v(U(x,y),u(x,y)) =v(x",0).
As a consequence, we obtain the equation
f(x) =v(n(x),0) forevery xel,.
In particular, for x” € R in a neighborhood of zero, v(x’,0) > 0 and

v(x,00>0 o f(p ') >0. 4.1)
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Remark 4.1. We notice that, in terms of the contact sets
Ci(w)={y=0}NndQ, and  C(v)={y" =0} n {v(x’,0) =0},
the map 1 is locally a C' diffeomorphism, which is sending C (u) into C(v).

Lemma 4.2 (Equations for v). Let T = (U,u) and S = (V,v) be as above.
Then, there is r > 0 such that

B, N{y >0} cT(Q,Ul},),

and such that the function
v:B,N{y >0} >R,

is C"-regular in B, N {y’ > 0} and C* in B, N {y" > 0}.
Moreover, if we denote by C, the contact set

Cy = {(x’,O) cx =n(x), x eI, f(x)= O}, 4.2)
then v solves the problem
Av=0 in B,n{y >0}, 4.3)
v>0 on B,n{y =0}, 4.4
[Vo|=1 on B,n{y =0}\C, 4.5)
v=0 and |Vv|<1 on B, N{y =0}nC,. (4.6)

Moreover, for every x € Iy, we have the identities

_ (9x’v(77(x)’0) and /(x) — 1
" 0,0(7(x).0) T (). 0)°

Proof. We start by proving that v satisfies the equations (4.3)—(4.6). First notice that v is
harmonic since it is the second component of a conformal map. Moreover, since

J'(x) 4.7

v(U(x,y),u(x,y)) =y forevery (x,y)€Q,,
taking the derivatives with respect to x and y, we obtain that
A v(U(x,y),u(x,y))0xU(x,y) + 0y v(U(x,y), u(x,y))dxu(x,y) =0,
Ayo(U(x,y),u(x,y))0,U(x,y) + 0y v(U(x,y), u(x,y))dyu(x,y) = 1.
By exploiting that 0U = dyu and 8,U = —0,u, we get
Ov(x’,y") Oyu(x,y) + dyv(x’,y") dxu(x,y) =0, (4.8)
=0 v(x',y") Oxu(x,y) + dyv(x’,y") dyu(x,y) = 1. 4.9)
Solving the system (4.8)-(4.9) leads to

, Oyu(x,y)
Oyv(x’,y") = Y

7 ! axu(x’y)
=20 d  Oeo(x,y) = -2 4.10
NVl Gy) an o(x’,y") (4.10)

Vul?(x,y)
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Thus, we obtain
[Vu|(x, ) [Vol (X', ") = 1, (4.11)

which gives both (4.6) and (4.5). We next prove (4.7). Using that u(x, f(x)) = 0, we get

dau(x, f(x)
Byu(x. ()

which together with (4.10) gives the first part of (4.7). For the second part, we notice that
the identity v(n(x),0) = f(x) gives that

J'(x) =7 (x)0xv(n(x),0) ,

f'(x) =

which, combined with the first identity in (4.7), concludes the proof. ]

4.3. Proof of Theorem 1.3
Let v be as in the previous section and let
Q :=0yv=0xv—i0yv,
where 7/ = x” +iy’. Since v satisfies (4.3)-(4.6), we get that
0Q=0 in B, Nn{y >0},

[Ol=1 on B,N{y =0}\Cy
ReQ=0 on B,Nn{y =0}nC,

where the set C, was defined in (4.2). Consider now the function

Qi (Q+D(Q+i) _ 2ReQ O -1

- - = — — — .
0-i |0 —il? 0 —il> 10-il?
Then, we have that P(0) = 0 and

P=

dP=0 in B,n{y >0},
ReP=0 on B,n{y =0}nC,
ImP=0 on B,Nn{y =0}\C,,

which implies that P?(0) = 0 and

9> (P>)=0 in B,n{y >0},
Im(P>)=0 on B,Nn{y =0}.

As a consequence, the zero set

Z(P) = {Z' €B, : P()=0, Im¢ = 0},
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is discrete or coincides with B, N {y” = 0}. Now, Theorem 1.3 (a) follows since

0 ,y) =0,
P(Z/) -0 1 (x )’)
Oyu(x,y) =1,
that is, every branch point (x,y) € S;(u) corresponds to a zero 7’ of P.
We next prove Theorem 1.3 (b). Let zo = 0 be an isolated point of S; (u) and z;, = 0 be
the corresponding point in Z(P). Since zero is an isolated point of Z(P) and since
ReP(Z)-ImP(z’)=0 on {Imz =0},

we have the following three possibilities in a neighborhood of zero:
(1) ReP(z’)=0on{y =0},andIm P(z’) # Oon {y’ =0} \ {x’ =0};
(2) ImP(z’) =0on {y’ =0}, and Re P(z’) #0on {y' =0} \ {x’' =0};

(3) up to changing the direction of the real axis {y" = 0} we have
ReP(z’)=0 and ImP(z’) #0 on {y =0}n{x’ >0}
ReP(z’)#0 and ImP(z’)=0 on {y =0}n{x’ <0}

We will show that each of these cases corresponds to one of the points (b.1), (b.2) and (b.3)
of Theorem 1.3. We first suppose that (3) holds. Then P solves the problem

0P =0 in B,Nn{y >0},

ReP=0 on B, n{x" >0},

ImP=0 on B.n{x" <0}
We next notice that

1+iP 2Re(P) .1-|P]?

Oy —i0yv=0 = = l .
¥ 0=0= 5 P+i>2  |P+il]?
so that
P 2Re(P) d 1-|P]?
D= an 0= .
P+ YU P+

In particular, since the function 7 is increasing and 1(0) = 0, we get
dyv(n(x),0) =0 for x>0.

Integrating this identity and taking into account that v(7(0),0) = v(0,0) = 0, we obtain

fx) =v(n(x),0) = /Ox Ay v(n(®),0)n’ (t)di =0 for x>0.

Conversely, assume that x < 0 and let x’ = (x) < 0. Then, Im(P(x")) =0 and

2P(x")

1- PX(x’
O v(x’,0) = and dyv(x’,0) = ng,; for 7 =x"<0.
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In particular, from (4.7) it follows that

1+ P2(n(x))
1 - P2(n(x))
n(0)=0,

which implies, by Cauchy-Kovalevskaya theorem, that 7: (—p, 0] — R is an analytic func-
tion, with " (0) = 1, since P(0) = 0. Since for x < 0 we have

' (x) =1+ f(x)? = flx)=ynx?*-1 (4.12)

we get that 7 : (—p, 0] — Ris of the form

n'(x) = ifx <0

f1(x) =x"Py(x),

for some k > 1 and some analytic function ¢ : (—p, 0] — R with ¢(0) > 0. It follows that
there is an analytic function ¢, such that ¢(0) > 0 and

f(x)=0 if x>0 and f(x)=x7T¢(x) if x<O0.

Suppose now that (2) holds. Then Im P = 0 on the real axis {y’ = 0} and so, P (not only P?)
is an holomorphic function. As a consequence, also Q is holomorphic. Thus, dy/v(x’,0) is
analytic. Since, 7 : (—p, p) — R solves the equation

1
dyv(n(x),0)
we get that 77 is analytic and, by (4.12), so is f. This gives (b.2).

Finally, we suppose that (1) holds. Since Im P # 0 on {y’ = 0} \ {0}, we get that the
contact set C, contains a neighborhood of zero. As a consequence also the contact set
C1 (u) contains a neighborhood of zero (see Remark 4.1), from which we obtain (b.1). =

n'(x) = n(0) =0,

4.4. Proof of Theorem 1.4

Finally we come to the proof of Theorem 1.4, which is obtained by reversing the construc-
tion from the previous subsection.

Proof of Theorem 1.4. For any k of the form k = 2n — % with n € N, we define
P(2) = (i2)* = p*( - sin(k6) +i cos(k0)).
In particular, setting Cp := {(x,0) € R? : x > 0} we have

0:P=0 in {y> 0},
ReP=0 and ImP >0 on {x>0}
ReP <0 and ImP=0 on {x<O0}.
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Then we consider a radius r € (0, 1) and the function Q: B, N {y >0} - C

1+iP 2Re(P) .1-|P)?
= -1 .
P+i |P+i]? |P +i|?

0=
Notice that Q is still conformal in B, N {y > 0} and that we have

9:0=0 in {y>0},
ReQ =0, ImQe€(-1,0) and |Q|<1 on {x>0},
ReQ <0, ImQ e (-1,0) and |Q|=1 on {x<O0}.

Since B, N {y > 0} is simply connected, there is a function v: B, N {y > 0} — R such
that
Ov=0ww—idyv=0 in B, N{y>0}.

Precisely, for every z = x + iy in B, N {y > 0}, v is given by the formula

1
v(z) = v(x,y) = / (x Re Q(1z) — yImQ(tz)) dt.
0
Thus, v is a solution to the problem

Av=0 in B, Nn{y> 0},
v=0 and |Vv|<1 on B,nNn{x>0},
v>0 and |Vo|=1 on B,N{x<0}.

Moreover, we notice that v(0,0) = 0 and d,v(0, 0) = 1. Thus, by choosing r > 0 small
enough, we may suppose that v > 0 in B, N {y > 0}. We next consider the harmonic con-
jugate V: B, N {y > 0} — R of v and the inverse hodograph transform

S:B,N{y =0} > R*, S(x,y) :=(V(x,y),0(x,)).

Tracing backwards the argument from Section 4.2, we have that when 7 is small enough,
S is a diffeomorphism; we can then consider its inverse

T:S(B,n{y=0}) > B, Nn{y>0}, T,y)=(UX,y),ux,y))),

where we notice that the positivity set €, = {u > 0} of the second component u of T is
precisely S(B, N {y > 0}) and that, since v > 0, Q,, = S(B, N {y > 0}) is contained in the
upper half-plane {y” > 0}. Now, reasoning as in Lemma 4.2 (see (4.11)), we get that

[Vu(x’, ) [Vo(x, y)| = 1,

and that, in a small ball B,,, u is a solution to the problem

Au=0 in Q,NB,, (4.13)
u=0 on B,Nn{y =0}, (4.14)
Vu|=1 on 0Q,N{y >0} (4.15)

IVul >1 on 4Q.N{y =0}, (4.16)
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where 0Q, N{y' =0} ={x" 20} n{y’ =0} and |Vu| > 1 on {x’ > 0} N {y’ = 0}. We now
define the function f describing the boundary dQ,, (see (1.16)) and the function 5(x) =
U(x, f(x)) to be as in the proof of Theorem 1.3. Then, 5 is a solution to

1+ P2(5(x))

1 - P2(n(x))
n(0)=0,

n'(x) = ifx<0

and so, it is analytic since P?(z) = iz**~3 with n € N. Finally, since 77(x) = x + o(x), we
can write the function 7 as

In()|” = x|y (x) forx <0,

where ¢ is analytic and ¥ (0) = 1. Thus, we get the precise form of f by the formula

X _|n(t 2n-1/
/ %dt ifx <0,
f(x) =v(n(x),0) =14 Jo In(®*">+1
0 ifx >0,
and we notice that f(x) = |x|**="(1 + o(1)) for x < 0. This concludes the proof. n

5. The symmetric two-phase problem and some remarks
Let 0 = zg € S and let f. be as in (1.25). We define

Q= {(x,y) eI, xI, : filx)> y},

and
7= {(x,y) eI, x1, : fulx)= y}.

In what follows, we perform the hodograph transform of u, in Q; andinu_ in Q.
In order to simplify the notation, we set

I:=+o0r —.

Let ., Te = (Us,uzx), S+ = (Vi,vs:) be the functions constructed in Section 4.1 and Sec-
tion 4.2 separately for u, and u_. Recall that the functions v;, i = +, contain all the infor-
mation of the free boundaries F},. Precisely, for every x € 1,,, we have

y=fi(x) & (xy) €Ty, & y=0v;(Ui(x,y),ui(x,y)) = v;(x',0).
As a consequence, we get the equation
fi(x) =vi(ni(x),0) forevery x €I,
In particular, we have

0:(7+(x),0) > v_(17-(x),0) forevery x €I, 5.1
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Lemma 5.1. There is r > 0 such that
B, Nn{y 20} cT.(QUT}) and B, N{y <0} cT_(Q,UT,).
The functions
vt B, N{xy >0} >R,
are both C"-@-regular respectively in the half-disks B, N {+y’ > 0} up to the hyperplane
{y’ =0}, and are C* respectively in B, N {xy’ > 0}. Furthermore they solve the following
thin two-membrane problem
Av, =0 in B,n{y >0},
Av_=0 in B,n{y <0},
v+ (74+(x),0) > v_(n-(x),0) for x€1,,
[Voi|(n:(x),0) =1 when  v(n:(x),0) > v_(7-(x),0),
14 (x) Oy v (14:(x), 0) = n”(x) Byrv-(-(x),0) < 1 when v (1+(x),0) = v-(7-(x),0),

Moreover, for every x € I, we have the identities

8x'vt(ni(x)50) and / (x) _ 1
Byr02 (12 (x), 0) T = G (12(x),0)

Proof. We reason precisely as in Lemma 4.2. Since

fix) =% (5.2)

vi(Ui(x,y),u;(x,y)) =y forevery (x,y)e€Qi,
taking the derivatives with respect to x and y, we obtain that
00 (Ui (x,y), ui(x,9)) 0xUi(x, y) + 3y (Ui (x,y), ui (x, y)) dxui (x, y) = 0,
6x’vi(Ui(x’ y)? Mi(x’ )’))ain(% Y) + ay’vi (Ui(x’ }’)’ M[(.x, }’))ayui(x, }’) = 1
Since, 0xU; = dyu; and 0,U; = —0xu;, we get
=0x0; (X', y")0yu;i(x,y) + 0y 0; (x", y")Oxui (x,y) = 0,
Ox i (X7, y")Oxuti(x,y) + 0y 0; (x", ¥ )Oyui(x,y) = 1.
When y’ = 0, we can write
x'=ni(x) and y=fi(x).
Thus, we have
=0x0; (i (x), 0)0yu; (x, fi(x)) + 0yv; (7:(x), 0)dxu; (x, fi(x)) =0,
0y i (17:(x), 0)Oxu; (x, fi(x)) + Byrvi (17:(x), 0)dyu; (x, fi(x)) = 1,

which we will simply write as

{ 0y v; Oyt + Dy vi Dty = 0, (5.3)

(9x’ Uy 6Xui + 6y/v,~ 6yu,~ =1,
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and we remember that all the derivatives of v are computed in (1;(x), 0), while all the
derivatives of u are calculated in (x, f;(x)). We next consider two cases:

Case 1. v, (+(x),0) = v_(n-(x),0). We set
f(x) = filx)=f-(x) and  f'(x):= fi(x) = fL(x),

and we notice that we have the system

Oxtty + [/ (x)Oyuy =0 = dxu_ + f'(x)Oyu_ (5.4)
—f (x)Oxuy + Oyuy = —f'(X)Oxu_ + Oyu_ (5.5)
—F (X) Bty + Oyus > (1+ (F/(x))2)". (5.6)

where again all the partial derivatives of u,. and u_ are computed in (x, f(x)).
Now, using (5.4) in (5.5) and (5.6), we get

Oyuy = Oyu_ 6.7

1+ (f7(0))? dyus > 1. (5.8)

On the other hand, using (5.4) in the system (5.3), it becomes

(B0 + Dyrvi £ (x)) Byu; = 0, 59)
(_fl(x) avai+ayrvi) ayui =1, .

SO we get
(1+ £ (x)?) dyrvs dyuy = 1,

which gives that

Ayrvy = Oyru_, OxrVy = Oprv_ and NI+ (f(x))? 0yve <1,

all the derivatives of v. being calculated in (17+(x), 0).

Case 2. v, (17+(x),0) > v_(n-(x),0). In this case the two free boundaries separate, that is
f+ > f- in a neighborhood of x. Then, for each i = +, we can proceed as in the proof of
(4.5) in Lemma 4.2.

Finally, we notice that (5.2) follows by taking the reflection i(x, y) := —u_(x,—y) and
applying the identities from (4.7) to u, and i. ]

When u is a symmetric solution to the two-phase problem, we have the following

Corollary 5.2. Let u be a symmetric solution to the two-phase problem, then, up to taking
a smaller radius r > 0, the functions vy constructed in Lemma 5.1 satisfy
Av, =0 in B.n{y >0},
Av_=0 in B,n{y <0},
|[Voie|(x',0) =1 when x' €B.\GC,
[Voi|(x”,0) = |Vo_|(x",0) <1 when B,.NC,,
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where we denote by C, the contact set
Cl) = {(-x,a()) : xl = n(x)a X € —Z.p7 f+(x) = f—(x)} . (510)

Proof. By definition

na(x) = /0 Va2, £o(0) 1 + £ .

Let 1; be the intervals defined in (1.26), then notice that
b lfIGZ;?then'Vuil(t?fi(t)):1’

o ifre(=p.p)\ (U ), then f(1) = f-(1) and [Var | (1, £(1)) = [Vu|(1, £(1)).

In particular the first bullet implies that
(L) =n-(L) Vi,

which combined with the second bullet implies that

n(fre oo £ > £} =n-(fr e (pp) 1 £00 > £(0)}),
from which the conclusion follows from the previous lemma. ]

Remark 5.3. Notice that, in the above proof, we are not claiming that n. = n—, but only
that branch points are sent in branch points.

5.1. Proof of Theorem 1.6 (a)
Let v, be the functions from Corollary 5.2 and let
+ 1= Opvs — 10y 0s (5.11)
As in the proof of Theorem 1.3, we have that Q is a solution to
0:0.=0 in B,n{xy >0},

0.1=1 on B, n{y =0}\G,, (5.12)
0,=0- on B, N{y=0}nC,.

We then define

) N AL 2_
P, = —iQi Tl _l.(Qi"'l)(Q:'H) _ 2Re Q. . 10" -1 (5.13)

. . . l . b
Q. —i |Qﬂ:_l|2 |Q:—l|2 |Qi+l|2

and we notice that

0;P. =0 in B, N{xy >0},
P.,=P_ on B.n{y=0}nC,,
ImP.=0 on B, N{y =0}\C,.
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We now consider the reflection
P:B.n{y >0} —>C, P'(z) := P_(3),
so that the functions P, and P’ are both defined on the same domain and we can take

P.(2)+ P (2) P.(z) - P'(2)

M(z) = 3 and D(z) := > , (5.14)
which satisfy the equations
zM =0 in B,n{y >0}
: " >0 (5.15)
ImM=0 on B,Nn{y =0}

and
;D=0 in B,n{y >0},

ReD=0 on B,Nn{y =0}nC,
ImD=0 on B,Nn{y =0}\C,

Reasoning as in the proof of Theorem 1.3, D? we get that Im(D?) = 2ReD ImD = 0 on
{y" = 0} so that D? can be extended to a conformal map on to the whole of B,, so the set

{D=0}nB.N{y =0},

is either discrete or coincides with B, N {y’ = 0}. This proves Theorem 1.6 (a) since at
every z’ on the real line {y’ = 0} we have

Pt =pP" t=0" Vu, =Vu_
D(Z)=0 o s Q" =0 o e =
ImP, =0 0+ =1 Vu.| =1,
that is every branch point of u corresponds to a zero of D. ]

5.2. Proof of Theorem 1.6 (b) and Corollary 5.2

Remark 5.4. We notice that in this part of Theorem 1.6 we do not assume any symmetry
of the solutions, but only that the branch points are isolated.

Let zg € S>(uy, u—) be an isolated point of Sy (u4,u_). If zg is in the interior of the contact
set Co (i, u—), then (b.2) is immediate as the function u = u, — u_ is harmonic in a neigh-
borhood of zg. Suppose then that zq is a branch point: zg € B, (1., u_); moreover, since
B, C Sy, we have that zg is isolated in the set of branch points B, (1, u_). This means that
in order to complete the proof of Theorem 1.6 (b) we only need to prove Corollary 5.2. We
set zo = 0 and we consider the following two cases:

Case 1. O isisolated also as point of the contact set Cy (1, u_), thatis B, N Cy(uy,u—_) ={0}
for some radius r > 0. In this case, on the free boundaries 9Q;; we have that |Vu.| =1 and
so, Corollary 5.2 (b.1) follows as in the proof of Theorem 1.3 (b.1).
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Case 2. 0 is not isolated in the set C; (u4, #_). Then, since there are no other branch points
in a neighborhood of 0, we can assume that:

fi(x)=f-(x) when x>0 and fi(x) > f-(x) when x <O0.

As above, we define 7. as

na(x) = /0 Vua (e, o)1+ (L) der (5.16)

while v, are the hodograph transforms of u.., for which we recall the identities

1
|Vul (x, fie(x))

for every x in a neighborhood of zero. Then, since 7, (x) = n_(x) for x > 0, we get that:

fe(®) =v2(m+(x),0) and |Vovi|(n+(x),0) =

vi(x’,0) =v-(x’,0) and Vo,(x’,0) = Vo_(x",0) when x’ >0,
|[Vog|(x,0) = |[Vo_|(x’,0) when x’ <O.

Remark 5.5. Notice that when x < 0 we cannot say if n+(x) = n-(x). In particular, we
cannot say if vy (x’,0) > v_(x",0) when x’ < 0 and so, we don’t know if {x’ > 0} is the
contact set {x’ : v4(x’,0) =v_(x",0)}.

We next consider the functions Q.. and P-. given by (5.11) and (5.13), and the functions
D and M defined in (5.14). Then, in a neighborhood (-r, r) X [0, r) of zero, the difference

D satisfies
0:D =0 in (-r,r)x(0,r),

ReD=0 on (0,r)x{0} (5.17)
ImD=0 on (-r,0)x{0}.
Recall that by the definitions of M, D and P’, we have

P.(2)=M(2)+D(z) and  P_(z)=M(2) - D(3)

and moreover

2 Re(P.)
[Py +i]?

We set g2 (x") :=n7'(x') and fi(x") := fi(g+(x")). Since,

1= |P.P

dvvs = Re(Qs) = e

and Oyvy = -Im(Q4) =

fo(®) = 02(e(x),0)  and ’WFW’
Y O UT£A )

we get that
Fo(@) =ve(x,0) and 8. (x") = 0yv.(x',0).

In particular,

’

[T _ [ 2 Re(Pu(1)
fi(x)—/o 6vai(t,0)dt—/0 EXORYE dt
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and

, x - |PL(r)?
= Oyrv4(t,0) dt = ——dt
g2 (x') /0 1 02(1,0) /0 TRORSE

Now, by (5.17) and (5.15), we have that
M=ReM and D=ilmD on [0,r)x{0},
which gives that on [0,r) x {0}, P, = P_, precisely:
Re(P;) = Re(P-)=M and Im(P;)= Im(P-)=ImD =-iD.

This implies that
2M(t)

fi(x):/o M2(r) + (1 +Im D(1))°

dt,

so that f; = £ on {x” > 0}. Similarly,

) ¥ 1 = M*(1) - (Im D (1))°
+ = d
8:(x) /0 M2(t) + (1+Im D(1))’ '

which again implies that g, = g_. Combining these two identities, we get that
fi=f on {x' >0}
Using again (5.17) and (5.15), this time for x” < 0, we get that
M=ReM and D=ReD on (-r,0)x{0},
which implies that P.. are both real and
P,=M+D and P_.=M-D on (-r,0)x{0}.

As above, we compute

s [T M@®£D()
fi(X)_z/o [+ (M) D)

and

oo [T 1-M@) D)’
g*(x)_/ T+ M) =) "

We now define

W)= EEEE s [T Rt —
0

2 (1+ M2+ D?)2 —4D2M?
and _ _ , 5 5
no D)+ () /x 1+M"-D
() = =) M (t dt
) 2 . MO Ay Dy —apiar

and we notice that:
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e @ is an analytic function of the form ®(x’) = O (x?);
e W is of the form ¥(x’) = (x’)"@(x’), where O is an analytic function.
Also, let

v o= 8+ () —g-(x) _ /X' —4D ()M (1) dt
: 2 o (M2+D?2+1)2-4M2D2 """
and
¢ = g+(xX) +g-(x) _ /’“’ 1- (M2 - D%’ dt
o 2 “Jo (M2+D2+1)2-4M2D2 "

where, as above,
e ¢ is an analytic function of the form ¢(x") = x" + o(x’);
ey is of the form y (x’) = (x")6(x’), where 6 is an analytic function.

Therefore we have
{f+(¢(x'> +0 () = f-(8(x) =y (x)) = 2% (x),
Fe(@() + 0 () + £-(¢(x) =g (') = 20(x),

and
F(@o() +y () =) +¥(x)  and  f(p(x) —y(x')) = @) - P(x).
Since . is the inverse of ¢ % 1, we get that 7, of the form
s (x) =x+x7"Bu(x),

where . are analytic functions. Thus,

0 =0{0 i) o+

which concludes the proof of Corollary 5.2 and Theorem 1.6 (b.3). ]

5.3. Remarks on the non-symmetric case

For non-symmetric solutions, or more generally when different weights are put on the
gradients of u. (as in the more general Alt-Caffarelli-Friedman energy, see for instance
[10]), we cannot guarantee the validity of Corollary 5.2, and so branch points of the original
problem might not be sent into branch points of the thin two-membrane problem. In fact,
suppose that (xg, f+(x0)) and (x1, f+(x1)) are two consecutive points in B (u,u_) such
that xo < x; and

fe(x) = f-(x) when x < xo,

fi(x) > f-(x) when xg<x <xp,

fi(x) = f-(x) when x > x.
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Suppose that xo = 0 and define 7. as in (5.16). Now, we might have that

m@O=AIJH%ﬂMVm>AIJH{ﬂme=m@& (5.18)

But then, for a generic point x” between r_(x;) and n.(x;), we get that |Vo,|(x”,0) =1,
while |Vov_|(x’,0) < 1, so that the equations (5.12) for Q. are not satisfied.

We notice that the symmetry assumption in point (a) of Theorem 1.6 is precisely what
prevents (5.18) from happening. In particular, this assumption is fulfilled when

fi(x)+f-(x)=0 on Bj. (5.19)
We also notice that (5.19) is equivalent to assuming that 7, = 7_.
Lemma 5.6. Suppose that n, =n- on (=1,1), then us: Bf U B] — R and moreover

u_(x,y) = —uy(x,-y) and fi(x)+ f-(x)=0 forevery xe€(-1,1).

Proof. Since i, = n’_, (5.2) implies that dy v, (7+(x),0) = dyv_(n-(x),0). In particular,
o if fi(x) > f-(x), then [Vus(7(x),0)| = 1 and 50 0x04(17+(x), 0) = dxv-(17-(x),0);
o if fi(x) = f=(x), then 8xv4(7+(x), 0) = dxv-(n-(x),0).
In conclusion we have that

Vo, (74(x),0) = Vo_(n-(x),0),

which using again (5.2) implies that f;(x) = —f’ (x). Since f.(0) = 0, integrating we get

ﬁuwﬁxm=43ﬂm+ﬂa»m=o

Finally, u_(x,y) + u+(x, —y) is a harmonic function in €, which vanishes together with
its gradient on 0€2;,. This implies that u_ (x, y) + u.(x,—y) = 0 forevery (x,y) € Q,. =

Appendix A. The flat monotone solutions are minimizers

In this section we show that the solutions constructed in Theorem 1.4 and Theorem 1.8
are minimizers. We prove this fact for monotone solutions to the two-phase problem, the
one-phase case being analogous.

Theorem A.1. There is a constant € > 0 depending only on the dimenson d such that the
following holds. Let B.. be the ball of radius r in R4~} let .. : B}, — R betwo C! functions
with 7+ (0) = [V, (0)] = 0 and

[+l +1Vnl <& on Bj.
Let

| RS {(x',ni(x’)) cx' € B’z} and Q. := {(x',xd) € By x(=2,2) : x4 > ni(x’)}.
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Letus : Q. UL, — Rbetwo C! Sfunctions on Q. U I'y that solve

Auy =0 in Q,UQ_, (A.1)

u, =0 and |Vuy=1 on T \T_, (A2)
u-=0 and |Vu_|=1 on T_\Tj, (A.3)
|Vuy| =|Vu_| 21 on TinT_, (A4)

and are such that
l-e<0yus<1l+e on Q..

Then, the function u = u, — u_ is the unique minimizer of the two-phase functional in
Q= B| X (=1,1), withu = uy — u_ as boundary datum on 9Q.
Proof. We first notice that

xqg—2e <u(x',xg) <xq+2¢ for (x',xq) € B} x(-2,2).

Let v = v; — v_ be a minimum of the two-phase functonal in Q = B’1 X (=1, 1), with bound-
ary datum u on 9Q. Then,

Xxqg—2e < v(x',xq) Sxq+2e for (x',x4) € Q.
Now, consider the family of functions (which are all defined on Q when [¢| < 1)
u(x',xq) = u(x’,xq —1).
Then u, are solutions to (A.1)=(A.4) in B} X (-1, 1) and are monotone, that is,
u; < ugy whenever t<s.

Now, for # small enough, we have that u, < x; —2e < v(x). Lett < 0 be the largest parameter
for which u; < v. In particular,

{u; >0} c {v >0} and {u; <0} o {v < 0}.

Suppose that r < 0. By the monotonicity of u., we have that u; < u = v on Q. Thus, u,
touches v from below at a point (x’,x4) € Q and we have the following three possibilities:

(D) u(x',xq) = v(x",xq) > 0;

2) u(x’',xq) =v(x’,xg) =0and (x",x4) € d{u; > 0} N {v > 0};

3) u;(x",xq) =v(x’,xq) =0and (x’,x4) € d{u, < 0} N I{v < 0}.

Now, (1) cannot happen by the strict maximum principle. Suppose that (2) holds. Then,
both {v > 0} and v, are C' in a neighborhood of (x’,x4). Since u, touches v from below, we
have that [Vu7|(x’,x4) < |Vvi|(x’,x4). Now, if both gradients are strictly greater than one,
then both u, and v are harmonic in a neighborhood of (x’,x4), so by the strong maximum

principle and the unique continuation property they should coincide. Then, since at least
one of the gradients should be smaller than 1, so necessarily |Vu;|(x’,x4) = 1. In order to
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rule out this possibility, we consider two further cases. Suppose first that |Vo,|(x",x4) > 1.
Then, (x",x4) € d{v > 0} N d{v < 0}. But this means that (x’,x4) € d{u; > 0} N I{u, <0}
and |Vu; |(x”,x4) = 1. But this is impossible since —u; should remain smaller than —v_.
Finally, the last possibility is that [Vo.|(x",x4) = |[Vu}|(x’,x4) = 1. But this is impossible
since it violates the Hopf maximum principle. Thus, we have showed that (2) cannot hap-
pen. By the same argument, (3) cannot happen neither. Then, the only possibility is that
t =0,s0v > uin Q. Analogously, v < u in Q, so we have that # = v in Q. [
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