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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES

WILLIAM BALDERRAMA

Abstract. We describe how power operations descend through homotopy
limit spectral sequences. We apply this to describe how norms appear in the
C2-equivariant Adams spectral sequence, to compute norms on π0 of the equi-
variant KU-local sphere, and to compute power operations for the K(1)-local
sphere. An appendix contains material on equivariant Bousfield localizations
which may be of independent interest.
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1. Introduction

Let G be a finite group. The best analogue of a commutative ring in the context
of G-equivariant stable homotopy theory is that of a G-E∞ ring, or G-equivariant
commutative ring spectrum in the sense of [HHR16]. If R is a G-E∞ ring, then not
only is R equipped with the usual ring operations of addition and multiplication,
but also with multiplicative norms

NG
KR → R

for all subgroups K ⊂ G, reflecting a higher form of commutativity present on R.
Here, NG

K is the Hill–Hopkins–Ravenel norm [HHR16]; informally, NG
KR = R⊗G/K ,

with equivariance intertwining the action of K on R and the action of G on G/K.
This additional structure is reflected in algebra. If R is a G-E∞ ring, then the col-

lection π0R = {πK
0 R : K ⊂ G} carries the rich algebraic structure of a G-Tambara

functor [Tam93], [Bru07]. This means that, in addition to the linear structure of re-
strictions, transfers, and products, one has multiplicative but generally nonadditive
norm maps

NG
K : πK

0 R → πG
0 R,
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2 WILLIAM BALDERRAMA

interacting with the linear structure in rich ways. More generally, norms exist
outside degree 0 as maps

Pα : πK
α R → πG

IndG
K

αR

defined for all subgroups K ⊂ G and virtual orthogonal representations α ∈
RO(K). This rich algebraic structure has seen extensive study over the past decade,
e.g. [Str12,Nak12,Ull13a,Hil17,BH18,AB18,HM19]. However, despite this wealth
of theoretical work, relatively few specific computations are available, outside cer-
tain well behaved cases. One need not go all the way to equivariant homotopy
theory to see this: ordinary E∞ rings already carry power operations, but rela-
tively few computations are available, outside the most well-behaved examples of
E∞ rings in positive characteristic and certain complex-oriented theories.

Consider the problem of computing just the groups π�R. The homotopy theo-
rist’s tools of choice for such computations are a wide array of spectral sequences,
which arise whenever one has a way of building R out of simpler pieces. In some
cases, these simpler pieces may even be simple enough that one can understand
their norms. This leads to the question: how can we take this information and
descend it through the spectral sequence?

Norms in spectral sequences have been considered previously, such as in the
context of the slice spectral sequence in [Ull13b, Section I.5] and [HHR17, Section 4].
Our own interest is in situations that are orthogonal to this; in short, in spectral
sequences where Euler classes are detected on the 0-line. Moreover, we care not
just about norms of G-E∞ spectra, but also other operations of a similar nature,
such as power operations for ordinary E∞ rings [BMMS86] and power operations
in the global equivariant context [Sch18,Sta21].

This paper describes how such operations may be computed in homotopy limit
spectral sequences (HLSSs), such as generalized Adams spectral sequences and ho-
motopy fixed point spectral sequences. We then give applications which demon-
strate how this plays out in practice. In fact these applications, described in
Subsection 1.1, might be considered the core of the paper, although it is the tools
used which seem more widely applicable. Let us describe these in the context of
equivariant norms as above.

Let R : J → CommG be a diagram of G-E∞ ring spectra. From the underlying
diagram of G-spectra, one may produce for all K ⊂ G and α ∈ RO(K) an HLSS
which we shall index as

KEs+α,t+α
2 = Ht−s(J;πK

t+αR) ⇒ πK
s+α lim

j∈J
R(j).

Here, we have written Hn(J;−) for the nth right derived functor of limj∈J :
Fun(J,Ab) → Ab. For example, when J = Δ, this is the usual spectral sequence of
a cosimplicial object.

Write Zs,t
r and Bs,t

r for the r-cycles and r-boundaries of this spectral sequence,
and write aGK ∈ πG

1−R[G/K]SG for the class represented by the inclusion of fixed
points S1 → SR[G/K].

1.0.1. Theorem (Subsection 3.2).
(1) The composite aGKPα is additive. In particular, for t ≥ s ≥ 0 there are

induced maps

Qα = (aGK)tPt+α : KEs+α,t+α
2 → GE

s+IndG
K α,t+IndG

K α
2 .
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 3

(2) Qα(KZs+α,t+α
r ) ⊂ GZ

s+IndG
K α,t+IndG

K α
r for t ≥ s ≥ 0.

(3) Qα(KBs+α,t+α
r ) ⊂ GB

s+IndG
K α,t+IndG

K α
r for t ≥ s ≥ −1.

(4) For x ∈ KEs+α,t+α
r with s ≥ 0, we have

dr(Qα(x)) =

{
Qα(dr(x)), t ≥ 1;
Qα(dr(x)) + c(dr(x), x), t = s = 0;

where c is related to the addition formula for Pα. For example, when
K = e and G = C2, we have c(dr(x), x) = tr(dr(x)·x) with x the involution
applied to x.

(5) If x ∈ Eα,t+α
2 is a permanent cycle detecting f ∈ πK

α limj∈J R(j), then the
permanent cycle Qα(x) detects Pα(f) modulo classes in higher filtration.

Informally, Pα is modeled in filtration t by (aGK)tPt+α. This is immediately
applicable to computations, and we give applications below. As usual, the develop-
ment was the other way around: we found ourselves with various computations we
realized we could carry out, and questions we could answer, if only we had some
theorem along these lines. It was clear from the start that such a theorem should
follow by a consideration of the space-level norm

(1) Pα : MapSpK (Sα, resGK R) → MapSpG(SIndG
K α, R),

and in fact most of Theorem 1.0.1 does follow quickly from an inspection of Eq. (1),
the main observation being that πtPα = (aGK)tPt+α. The bulk of the work in
the proof of Theorem 1.0.1 stems from the additional care needed to handle what
happens on the fringe; for example, to describe d2(Pα(x)) for x ∈ H0(J;πK

α R).
Although the applications we give below do not need this more refined information,
we expect it will be useful in future work.

1.1. Applications. Let us now describe applications. We begin with an applica-
tion to the C2-equivariant Adams spectral sequence. Let

Acl = π∗(HF2 ⊗HF2), AC2 = πC2
� (HFC2

2 ⊗HFC2
2 )

denote the classical and C2-equivariant dual Steenrod algebras, and write
Extcl = H∗(Acl), ExtC2 = H∗(AC2)

for their cohomology, serving as the E2-pages of the classical and C2-equivariant
Adams spectral sequences [HK01, Section 6], [GHIR20]. Algebraically, the latter is
of the form

ExtC2
∼= ExtR⊕ExtNC .

Here, ExtR ⊂ ExtC2 is the cohomology of the R-motivic Steenrod algebra, the
inclusion of which is compatible with Adams differentials, and ExtNC is some other
summand. Let ρ = aC2

e ∈ π−σSC2 denote the Euler class of the sign representation.
By [DI17, Theorem 4.1], there is an isomorphism ExtR[ρ−1] ∼= Extcl[ρ±1], with a
suitable shift in degrees. In fact, the proof gives rise to an explicit splitting

(2) ExtC2
∼= Extcl[ρ] ⊕ Extρ-torsion

R
⊕ExtNC ,

where the copy of Extcl is given as follows. Write
Acl = F2[ξ1, ξ2, . . .],(3)

AR = F2[τ, ρ][ξ1, ξ2, . . . , τ0, τ1, . . .]/(τ2
i + τξi+1 + ρ(τ0ξi+1 + τi+1)).
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Then the map

(4) P : Acl → AR ⊂ AC2 , P (ξi) = ξi

is a map of Hopf algebroids, and the induced map P : Extcl → ExtC2 picks out the
copy of Extcl in Eq. (2).

The isomorphism ExtR[ρ−1] ∼= Extcl[ρ±1] extends to an isomorphism ExtC2 [ρ−1]
∼= Extcl[ρ±1], and both of these isomorphisms have a direct geometric interpreta-
tion: the first models real Betti realization, and the second models taking geometric
fixed points. On the other hand, the map P appears at first glance to be purely
algebraic: for example, it does not preserve permanent cycles. It turns out to have
the following geometric significance.

1.1.1. Theorem (Section 4). Let x ∈ Extcl be a class in filtration f . If x survives
to the Er-page, then ρfP (x) ∈ ExtC2 survives to the Er-page, and

dr(ρfP (x)) = ρf+r−1P (dr(x)).

Moreover, if x is a permanent cycle detecting α ∈ πnS, then the permanent cycle
ρfP (x) ∈ ExtC2 detects the symmetric square Sq(α) ∈ πn(1+σ)SC2 .

Theorem 1.1.1 is not surprising, given the general shape of ExtC2 . If x ∈ Extcl
detects α ∈ πnS, then as the geometric fixed points of Sq(α) are α, one finds
that Sq(α) is detected by some preimage of α under the localization ExtC2 →
ExtC2 [ρ−1] ∼= Extcl[ρ±1]. If x is in filtration f , then this indicates that Sq(α) is
detected by ρfP (x) plus possible ρ-torsion error terms. Theorem 1.1.1 says that in
fact Sq(α) is detected by ρfP (x) on the nose, and describes what happens when x
is not a permanent cycle. The proof amounts to relating Eq. (4) to the norms on
π�(HFC2

2 ⊗HFC2
2 ), and then applying Theorem 1.0.1.

1.1.2. Example. We have ρP (h1) = ρh2, and thus Sq(ηcl) is detected by the same
class detecting ρνC2 , where ηcl is the nonequivariant complex Hopf fibration and
νC2 is the C2-equivariant quaternionic Hopf fibration. As Sq(ηcl) must also lift η2

cl,
by consulting the tables in [DI17] and using the fact that π�SC2 agrees with π∗,∗SR

in this range, we find that the only possibility is

Sq(ηcl) = ηclηC2 + ρνC2 .

This was originally computed by Araki–Iriye [AI82, Theorem 10.12], and its compu-
tation via Theorem 1.1.1 can be considered overkill: as soon as one knows πC2

� SC2

in these degrees, Sq(ηcl) is determined by the fact that it lifts η2
cl and has geometric

fixed points ηcl.

1.1.3. Example. Consider ρP (h3) = ρh4. As h3 is a permanent cycle, it follows
that ρh4 is a permanent cycle, as was first shown by Belmont–Isaksen [BI22]. More-
over, ρh4 detects Sq(σ), a fact closely related to the Mahowald invariant R(σ) = σ2.
This was observed in [BCQ21, Theorem 7.4.7], which was one of the inspirations for
Theorem 1.1.1. This example illustrates that the additional ρ’s in Theorem 1.1.1
are necessary: h4 = P (h3) itself supports the differential d2(h4) = h0h

2
3, and

ρh4 = ρP (h3) is not divisible by ρ on the E3-page.
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 5

Our next applications are to power operations in the context of chromatic homo-
topy theory, at chromatic height 1. We begin with the following. In recent work,
Bonventre–Guillou–Stapleton have shown that if G is an odd p-group, then there
is an isomorphism

π0LKUG
SG

∼= RQ⊗ π0LKUS = RQ[ε]/(2ε, ε2)

of Green functors [BGS22, Theorem 1.1, Proposition 6.7]. Here, LKUG
SG is the

localization of the G-equivariant sphere spectrum with respect to G-equivariant
K-theory, and RQ is the Green functor whose value at K ⊂ G is the rational
representation ring of K. They also verify that KUG-localization preserves G-E∞
structures for G an odd p-group. This gives π0LKUG

SG the structure of a Tambara
functor, but they are only able to determine its norms in the case where G = Cpn

is cyclic [BGS22, Proposition 10.6]. Theorem 1.0.1 allows us to directly compute
norms in contexts like this, and in the end we find the following.

1.1.4. Theorem (Subsection 5.4). Fix an odd p-group G and subgroup K ⊂ G.
Let Q̃[G/K] = Coker(Q → Q[G/K]) be the reduced permutation representation of
the G-set G/K, and define

e(G/K) =
∑
n

(−1)nΛn(Q̃[G/K]) ∈ RQ(G).

Then the norm

NG
K : RQ(K)[ε]/(2ε, ε2) → RQ(G)[ε]/(2ε, ε2)

arising from the G-E∞ structure of LKUG
SG satisfies

NG
K(ε) = e(G/K) · ε.

In particular, if K ⊂ G is normal, then NG
K(ε) 
= 0 if and only if G/K is cyclic,

in which case NG
K(ε) = Q̃[G/N ] · ε where N ⊂ G is the unique subgroup of index

p containing K.

The proof of Theorem 1.1.4 amounts to using Theorem 1.0.1 to show that NG
K(ε)

is detected in the KUG-based Adams spectral sequence by e(G/K) · ε. In fact this
is true for an arbitrary finite group G and subgroup K ⊂ G, not just for odd
p-groups. For this and other reasons, the correct context for our computation is
not G-equivariant homotopy theory for any particular group G, but rather global
equivariant homotopy theory.

Let Glob be the category of global equivariant spectra with respect to the family
of finite groups, and let KU the global spectrum of equivariant K-theory, both as
developed by Schwede in [Sch18]. There are forgetful functors UG : Glob → SpG

satisfying UGKU = KUG; as far as we are concerned, this can be treated as the
definition of KUG. In order to ensure compatibility between statements made in
the global context and statements made in the context of [BGS22], we prove the
following.

1.1.5. Proposition (Proposition A.4.4). Let Globnil be the category of global equi-
variant spectra with respect to the family of finite nilpotent groups

(1) Bousfield localization in Globnil with respect to KU is smashing, agrees
with KU-nilpotent completion, and preserves ultracommutative ring spec-
tra;
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6 WILLIAM BALDERRAMA

(2) If G is nilpotent, then Bousfield localization in SpG with respect to KUG

is smashing, agrees with KUG-nilpotent completion, and preserves G-E∞
ring spectra;

(3) In particular, UGLKUS � LKUG
UGSG for G nilpotent.

The proof of Proposition 1.1.5 requires some general theory regarding equivariant
Bousfield localizations. This theory is interesting in its own right, and also applies
to other examples of interest in chromatic equivariant homotopy theory. For this
reason, we have separated out our discussion of equivariant Bousfield localizations
into Appendix A, which may be read independently of the rest of the paper.

Now let us return to considering power operations. Observe that Theorem 1.1.4
is a genuinely integral result, mixing 2-primary homotopy with odd-primary equiv-
ariance. If instead of working integrally we work K(1)-locally, then equivariant
norms amount to ordinary K(1)-local power operations (see Remark A.4.14). In
[Hop14], Hopkins explains how one may use K(1)-local splittings
(5) LK(1)BΣp+ � SK(1) ⊕ SK(1)

to define the structure of a θ-ring on π0 of an arbitrary K(1)-local E∞ ring spectrum
(see Remark 6.4.4). At p = 2, the θ-ring structure of π0SK(1) = Z2[ε]/(2ε, ε2) has
been clarified only recently by Carmeli–Yuan [CY23, Theorem 5.4.8], who prove
that θ(ε) = ε.

The story should not stop with π0. However, the picture quickly becomes less
clear, as there is no analogue of Eq. (5) for LK(1)(S2n)⊗p

hΣp
when n 
= 0. One of the

original motivations for this paper was a desire to be able to compute with these
more complicated examples, where power operations cannot be described as some
clean algebraic object, such as a θ-ring. Using a suitable variant of Theorem 1.0.1,
we carry out the following computation.

1.1.6. Theorem. Let SK(1) = LKU/(p)S. Then the pth total power operation

P : [Sn, SK(1)] → [(Sn)⊗p
hΣp

, SK(1)]

is as given in Theorem 6.3.2 for p odd and Theorem 6.4.3 for p even, modulo a
certain indeterminacy at p = 2 when n ≡ 1 (mod 8) and n 
= 1.

1.2. Organization. This paper is organized as follows. In Section 2, we study
the naturality of the HLSS of a diagram of spectra with respect to its underlying
diagram of pointed spaces. This analysis is well-suited for any homotopy operations
obtained from pointed functors between stable categories, and in Section 3 we make
this explicit in the case of the m-fold smash power functors Pm : SpG → SpΣm�G.

Both sections culminate in Subsection 3.2, which puts everything together into
a form suitable for applications, including Theorem 1.0.1 and variants. The reader
interested in the applications may wish to start here.

We then give the promised applications. In Section 4, we prove Theorem 1.1.1;
in Section 5, we prove Theorem 1.1.4; and in Section 6, we carry out the compu-
tation of Theorem 1.1.6. In Appendix A, we give some material on equivariant
localizations, including Proposition 1.1.5.

2. Unstable naturality of the homotopy limit spectral sequence

This section studies the naturality of stable HLSSs with respect to unstable maps.
We begin by recalling the construction of the HLSS in the form most convenient
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 7

to us in Subsection 2.1 and Subsection 2.2. In Subsection 2.3, we consider the
analogous unstable construction, and in Subsection 2.4 we compare the two. We
state and prove the main naturality theorem, Theorem 2.5.3, in Subsection 2.5.

In some sense, this material should be known to those who have worked with
extended homotopy spectral sequences in the sense of Bousfield–Kan [BK72, Ch.
IX, §4]. The main naturality theorem holds by construction, and most of our
work in this section is to recall enough of the construction that we may be sure
of this. Moreover, we package this unstable information entirely into the context
of ordinary spectral sequences, thereby removing any need to contend with the
extended spectral sequences lurking in the background.

2.1. The spectral sequence of a tower. Let
F (t + 1) F (t) F (t− 1)

· · · X(t + 1) X(t) X(t− 1) · · ·
be a tower of spectra, where F (t) = Fib(X(t) → X(t−1)). Then there is a spectral
sequence
(6) Es,t

2 = πsF (t) ⇒ πs lim
n→∞

X(n), ds,tr : Es,t
r → Es−1,t+r−1

r .

Write Zs,t
r and Bs,t

r for the r-cycles and r-boundaries of this spectral sequence, so
that

0 = Bs,t
1 ⊂ Bs,t

2 ⊂ · · · ⊂ Zs,t
2 ⊂ Zs,t

1 = πsF (t), Es,t
r = Zs,t

r−1/B
s,t
r−1.

We will find it convenient to interpret the differentials in this spectral sequence as
relations, just as in [Bou89], so we begin by recalling the construction in this form.
Define
(7) Ds,t

r = πsF (t) ×πsX(t) Im (πsX(t + r − 2) → πsX(t) × πs−1F (t + r − 1)) ,
where πsX(t + r − 2) → πs−1F (t + r − 1) is obtained from the boundary map
X(t + r − 2) → ΣF (t + r − 1). Note that

Ds,t
r ⊂ πsF (t) × πs−1F (t + r − 1) = Zs,t

1 × Zs−1,t+r−1
1 .

Recall the following basic fact about additive relations.

2.1.1. Lemma. Let M and N be abelian groups and R ⊂ M × N a subgroup.
Define

Z = Im(R → M) K = Ker(R → M)
B = Im(K → N) C = Coker(B → N).

Then the relation Im(R → Z × C) gives a well-defined function Z → C.

The spectral sequence of Eq. (6) is now given as follows.

2.1.2. Lemma (Definition). The following hold, where Zs,t
1 = πsF (t) = Es,t

2 as
above.

(1) Zs,t
r−1 = Im(Ds,t

r → Zs,t
1 );

(2) Bs−1,t+r−1
r−1 = Im(Ker(Ds,t

r → Zs,t
1 ) → Zs−1,t+r−1

1 );
(3) ds,tr : Zs,t

r−1 → Zs−1,t+r−1
1 /Bs−1,t+r−1

r−1 is the function associated with the
relation Ds,t

r ;
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8 WILLIAM BALDERRAMA

(4) Zs,t
r = Ker(Ds,t

r → Zs−1,t+r−1
1 );

(5) Bs−1,t+r−1
r = Im(Ds,t

r → Zs−1,t+r−1
1 ).

2.2. The homotopy limit spectral sequence. Given a diagram M : J → Ab of
abelian groups, let H(J;M) denote the limit of the composite

J Ab SpM H ,
and let

Hn(J;M) = Ω∞−nH(J;M), Hn(J;M) = π−nH(J;M) = π0H
n(J;M).

We may identify Hn(J;−) as the nth right derived functor of limj∈J : Fun(J,Ab) →
Ab. Given a diagram X : J → Sp, each πtX is a diagram J → Ab. The HLSS

Es,t
2 = Ht−s(J;πtX) ⇒ πs lim

j∈J
X(j)

is then the spectral sequence associated to the tower

Σt+1H(J;πt+1X) ΣtH(J;πtX) Σt−1H(J;πt−1X)

· · · limj∈J(X(j)≤t+1) limj∈J(X(j)≤t) limj∈J(X(j)≤t−1) · · ·
.

Note in particular
Ds,t

r ⊂ Ht−s(J;πtX) ×Ht+r−s(J;πt+r−1X)
and

Es,t
r = 0 for t < s.

2.3. Unstable homotopy limits. The preceding construction is not quite suffi-
cient for our purposes, as it lacks the naturality properties we require. If X,Y : J →
Sp are two diagrams of spectra, then a natural transformation X → Y does induce
a map of HLSSs in the usual way; however, we are interested in the more exotic
situation where we are given a natural transformation Ω∞X → Ω∞Y of diagrams
of spaces, not necessarily stable. Here, one may suppose without loss of generality
that X and Y are valued in connective spectra.

All of our applications described in Subsection 1.1 are of this form, requiring
a space-level analysis of unstable natural transformations. For example,
Theorem 1.0.1 will follow from a consideration of the natural norm map

Pα : Ω∞SpK(Sα, resGK R) → Ω∞SpG(SIndG
K α, R)

of Eq. (1), where R is a diagram of G-E∞ rings. This map is pointed, but is
essentially never stable. To access naturality with respect to this sort of map, we
need a construction of the HLSS which depends on only the underlying diagram of
spaces.

Let T be a space. Then T has a Postnikov tower:
· · · → T≤t+1 → T≤t → T≤t−1 → · · · → T≤1 → T≤0 = π0T.

The layers of this tower are determined by suitable k-invariants. If T is simply
connected then these are of the form T≤t−1 → K(πtT, t + 1), but the situation
is more subtle in general: if T is merely pointed and connected then the target
must take into account the natural action of π1T on πtT , and in the most general
case one must instead consider a variant of K(πtT, t+ 1) which regards “πtT” as a
bundle of groups over the fundamental groupoid of T .
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 9

We are in a certain reasonably pleasant middle ground where T need not be
connected, but for all points x ∈ T and t ≥ 1 the natural action of π1(T, x) on
πt(T, x) is trivial. Call such a space simple. Informally, a simple space is a disjoint
union of connected spaces for which the theory of Postnikov towers is at its simplest.
For n,m ≥ 1, let Bm

π0T
ΠnT =

∐
t∈π0T

K(πn(T, t),m). Then we have the following
standard fact.

2.3.1. Lemma. If T is a simple space, then there are Cartesian squares

K(πt(T, x), t) T≤t π0T

{pt(x)} T≤t−1 Bt+1
π0T

ΠtT

pt ,

where the right square always exists naturally in T , and the left square exists
naturally in T and the choice of a point x ∈ T≤t, provided such a point exists.

In other words, Bt+1
π0T

ΠtT , treated as a bundle of abelian groups over the discrete
space π0T , is the correct replacement for K(πtT, t + 1) in the theory of Postnikov
towers for non-connected simple spaces. It is, in particular, natural in T . This
bit of maneuvering would not be necessary if we restricted ourselves to considering
only the case where T is connected. In the context of the main theorem of this
section, Theorem 2.5.3, it is needed only to account for what happens with the path
components living at the very fringe of the spectral sequence.

Now say that T : J → Gpd∞ is a diagram of simple spaces. Let

H0(J;π0T ) = lim
j∈J

π0T (j).

Observe that as T is simple, if x ∈ H0(J;π0T ) and t ≥ 1, then πt(T, x) is naturally
a J-shaped diagram of abelian groups. Let

Ht+1
π0T

(J; ΠtT ) = lim
j∈J

Bt+1
π0T (j)ΠtT (j) �

∐
x∈H0(J;π0T )

Ht+1(J;πt(T, x)).

2.3.2. Lemma. There are Cartesian squares

Ht(J;πt(T, x)) limj∈J(T (j)≤t) H0(J;π0T )

{pt(x)} limj∈J(T (j)≤t−1) Ht+1
π0T

(J; ΠtT )

pt ,

where the right square always exists naturally in T , and the left square exists
naturally in T and the choice of a point x ∈ limj∈J(T (j)≤t), provided such a
point exists.

Proof. This follows by taking limits over Lemma 2.3.1. �

Fix s ≥ 0, t ≥ 0, r ≥ 2 and x ∈ π0 limj∈J(T (j)≤t+r−2), and write the same for
the image of x in π0 limj∈J(T (j)≤n) for n ≤ t + r − 2. Define

(8) Ds,t
r,x = lim

(
πsp

−1
t (x) → πs

(
lim
j∈J

(T (j)≤t), x
)

← Is,tr,x

)
,
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10 WILLIAM BALDERRAMA

where

Is,tr,x = Im

(
πs

(
lim
j∈J

(T (j)≤t+r−2), x
)

→ πs

(
lim
j∈J

(T (j)≤t), x
)
× πs

(
Ht+r

π0T
(J; Πt+r−1X), x

))
.

When s = 0, we extend this notation to be defined having fixed just x ∈
π0 limj∈J(T (j)≤t−1). We will only make use of the simplest case, where T is pointed
and either s = t = 0 or x is the basepoint, but make no such restriction for the
moment. Observe that Ds,t

r,x ⊂ Js,t
r,x where

(9) Js,t
r,x =

{
Ht−s(J;πt(T, x)) ×Ht+r−s(J;πt+r−1(T, x)), s ≥ 1;
Ht(J;πt(T, x)) ×

∐
y∈H0(J;π0T ) H

t+r(J;πt+r−1(T, y)), s = 0.

Let S : J → Gpd∞ be another diagram of simple spaces, and f : T → S a map of
diagrams. This induces maps

f : lim
j∈J

(T (j)≤t) → lim
j∈J

(S(j)≤t)

of spaces, and for x ∈ H0(J;π0T ) and t ≥ 1, a map

f : πt(T, x) → πt(S, f(x))

of diagrams of abelian groups. Combined, these yield

f : Js,t
r,x(T ) → Js,t

r,f(x)(S).

2.3.3. Lemma. The map f : Js,t
r,x(T )→Js,t

r,f(x)(S) satisfies f(Ds,t
r,x(T )) ⊂ Ds,t

r,f(x)(S).

Proof. This is clear from the construction. �

2.4. Comparing the stable and unstable constructions. Let X be a spec-
trum, and consider the underlying simple space Ω∞X. For x ∈ π0X, write Ω∞

x X
for the path component of Ω∞X corresponding to x. As Ω∞X is a group, there
are equivalences

γx : Ω∞
x X → Ω∞

0 X, γx(a) = a− x.

2.4.1. Lemma. The above patch together into an equivalence

Ω∞X � π0X × Ω∞
0 X,

compatible on Postnikov towers with equivalences

Bt+1
π0X

ΠtX ∼= π0X ×K(πtX, t + 1)

for t ≥ 1. These equivalences are natural with respect to Ω∞X as a group object.

Now say that X is a diagram of spectra, and consider the underlying diagram
Ω∞X of simple spaces. For s ≥ 0 and r ≥ 2, define

(10) Js,t
r =

{
Ht−s(J;πtX) ×Ht+r−s(J;πt+r−1X), s ≥ 1,
Ht(J;πtX) ×H0(J;π0X) ×Ht+r(J;πt+r−1X), s = 0.
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2.4.2. Lemma. Let Ds,t
r,x and Js,t

r,x and be defined as in Eq. (8) and Eq. (9) for the
diagram Ω∞X. Then there are isomorphisms

Js,t
r,x

∼= Js,t
r ,

and

Ds,t
r,x =

⎧⎪⎨⎪⎩
Ds,t

r,0 s ≥ 1,
D0,t

r,0 s = 0 and we have a lift of x to π0 limj∈J(X≤t+r−2),
∅ otherwise,

as subsets of Js,t
r . These identifications are natural in Ω∞X as a diagram of

group objects.

Proof. As X is a diagram of spectra, Ω∞X is a diagram of group objects. The
lemma then follows by applying Lemma 2.4.1 to the constructions of the sets in-
volved. �

There are obvious maps

(11) q : Js,t
r → Ht−s(J;πtX) ×Ht+r−s(J;πt+r−1) = Zs,t

1 × Zs−1,t+r−1
1 ,

given by the identity for s ≥ 1 and the projection q(w, x, y) = (w, y) for s = 0.

2.4.3. Lemma. Recall Ds,t
r ⊂ Ht−s(J;πtX) × Ht+r−s(J;πt+r−1X) and Ds,t

r,0 ⊂
Js,t
r,0

∼= Js,t
r from Eq. (7) and Eq. (8). We have

Ds,t
r = Im

(
q : Ds,t

r,0 → Ht−s(J;πtX) ×Ht+r−s(J;πt+r−1X)
)

for s ≥ 0. Moreover,

q−1(Ds,t
r ) =

⎧⎪⎨⎪⎩
Ds,t

r,0, s ≥ 1;
{(x, 0, y) : (x, y) ∈ D0,t

r }, s = 0, t ≥ 1;
{(x, x, y) : (x, y) ∈ D0,0

r }, s = t = 0.

Proof. Immediate from the definitions. �

The following now relates the stable construction of Lemma 2.1.2 with the above
unstable constructions.

2.4.4. Lemma. The HLSS for X satisfies the following for s ≥ 0.
(1) Zs,t

r−1 = Im(Ds,t
r,0 → Ht−s(J;πtX));

(2) Zs,t
r = Im(Ds,t

r,0 ×Ht+r(J;πt+r−1X) {0} → Ht(J;πtX));
(3) Bs−1,t+r−1

r−1 = Im({0} ×Ht−s(J;πtX) D
s,t
r,0 → Ht+r−s(J;πt+r−1X));

(4) Bs−1,t+r−1
r = Im(Ds,t

r,0 → Ht+r−s(J;πt+r−1X));
(5) For x∈Es,t

r and y ∈ Es−1,t+r−1
r , we have dr(x) = y if and only if x and y

lift to elements of Ht−s(J;πtX) and Ht+r−s(J;πt+r−1X) respectively with
the property that
(a) If s ≥ 1, then (x, y) ∈ Ds,t

r,0;
(b) If s = 0 and t ≥ 1, then (x, 0, y) ∈ D0,t

r,0;
(c) If s = t = 0, then (x, x, y) ∈ D0,0

r,0 .

Proof. These follow from Lemma 2.1.2 and Lemma 2.4.3. �
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12 WILLIAM BALDERRAMA

2.5. Naturality with respect to pointed maps. Let X and Y be spectra, and
let

F : Ω∞X → Ω∞Y

be a map of pointed spaces. For n ≥ 0, let
(12) Q : πnX → πnY

be the map induced by πn(−, 0). For x ∈ π0X and n ≥ 1, write

(13) Qx = γQ(x) ◦ πn(−, x) ◦ γ−1
x : πnX ∼= πn(X,x) → πn(Y,Q(x)) ∼= πnY.

In particular, Q0 = Q.

2.5.1. Lemma. Define

Q− : π0X ×K(πtX, t + 1) → π0Y ×K(πtY, t + 1), Q−(x, y) = (Q(x), Qx(y)).
Then the diagram

Bt+1
π0X

ΠtX π0X ×K(πtX, t + 1)

Bt+1
π0Y

ΠtY π0Y ×K(πtY, t + 1)

	

F Q−

	

commutes, where the left vertical map is that naturally induced from the map
F : Ω∞X → Ω∞Y of simple spaces.

Proof. This holds by construction. �

Now suppose that X,Y : J → Sp are diagrams of spectra, and fix a map
F : Ω∞X → Ω∞Y

of diagrams of pointed spaces. As before, write
Q : π0X → π0Y

for the map on path components. Following Lemma 2.3.3 and discussion it succeeds,
there are maps

F : Js,t
r,x(Ω∞X) → Js,t

r,Q(x)(Ω
∞Y ),

and these satisfy
F (Ds,t

r,x) ⊂ Ds,t
r,Q(x)

for s ≥ 0. On the other hand, because F is a map of diagrams of pointed simple
spaces, there are maps

Qx : πtX → πtY

of diagrams of groups for x ∈ H0(J;π0X) and t ≥ 1, induced by Eq. (13). We
abbreviate Q0 to Q. These induce maps on H∗(J;−).

2.5.2. Lemma. Recall the sets Js,t
r from Eq. (10). Define

Q+ : Js,t
r (X) → Js,t

r (Y )
for s ≥ 0 by ⎧⎪⎨⎪⎩

Q+(w, y) = (Q(w), Q(y)), s ≥ 1;
Q+(w, x, y) = (Q(w), Q(x), Q(y)), s = 0, t ≥ 1;
Q+(w, x, y) = (Q(w), Q(x), Qx(y)), s = t = 0.
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Then Q+ = F , in the sense that the diagram

Ds,t
r,0(Ω∞X) Ds,t

r,0(Ω∞Y )

Js,t
r (X) Js,t

r (Y )

F

⊂ ⊂
Q+

commutes, where the top horizontal map is as in Lemma 2.3.3.

Proof. By Lemma 2.3.3, this diagram commutes should we replace the bottom map
with F : Js,t

r,0(X) → Js,t
r,0(Y ). By Lemma 2.4.2, Q+ and F have isomorphic domain

and codomain, and we must only check that Q+ = F under this isomorphism. For
t ≥ 1, the map F is just that induced by the pointed map F : Ω∞X → Ω∞Y
on homotopy groups at the basepoint, which is exactly as described by Q+. Now
consider s = t = 0. Define

Q− : H0(J;π0X) ×Hr+1(J;πrX) → H0(J;π0Y ) ×Hr+1(J;πrY ),
Q−(x, y) = (Q(x), Qx(y)).

Taking limits over Lemma 2.5.1, we find that the diagram

H0(J;π0X) ×Hr+1(J;πrX) H0(J;π0Y ) ×Hr+1(J;πrY )

limj∈J Ω∞(X≤r−1) limj∈J Ω∞(Y≤r−1)

H0(J;π0X) H0(J;π0Y )

Q−

Q

commutes. By definition, F = Q × Q− as maps J0,0
r (X) → J0,0

r (Y ), and this is
exactly Q+ as described. �

We can now give the main naturality theorem.

2.5.3. Theorem. Given diagrams X,Y : J → Sp of spectra and map F : Ω∞X →
Ω∞Y of diagrams of pointed spaces, the maps Q and Qx of Eq. (12) and Eq. (13)
interact with the HLSSs for limj∈J X(j) and limj∈J Y (j) as follows.

(1) Q(Zs,t
r (X)) ⊂ Zs,t

r (Y ) for s ≥ 0;
(2) Q(Bs,t

r (X)) ⊂ Bs,t
r (Y ) for s ≥ −1;

(3) If x ∈ Z0,0
r (X) then Qx(B−1,r−1

r−1 (X)) ⊂ B−1,r−1
r−1 (Y );

(4) For x ∈ Es,t
r (X) with s ≥ 0, we have

dr(Q(x)) =

{
Q(dr(x)), t ≥ 1,
Qx(dr(x)), t = s = 0;

(5) For s ≥ 0, if x∈Es,t
2 (X) is a permanent cycle detecting f ∈πs limj∈J X(j),

then the permanent cycle Q(x) ∈ Es,t
2 (Y ) detects Q(f) modulo classes in

higher filtration.

Proof. (1)–(4) follow from Lemma 2.5.2, which describes the map Ds,t
r,0(Ω∞X) →

Ds,t
r,0(Ω∞Y ) induced by F , and Lemma 2.4.4, which explains how cycles, boundaries,

and differentials are naturally defined in terms of Ds,t
r,0. Let us just illustrate this

with a proof of (3).
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14 WILLIAM BALDERRAMA

Let x ∈ Z0,0
r (X) and y ∈ B−1,r−1

r−1 (X). This implies (x, x, y) ∈ D0,0
r,0 (Ω∞X),

and thus (Q(x), Q(x), Qx(y)) ∈ D0,0
r,0 (Ω∞Y ). Taking y = 0 shows Q(x) ∈ Z0,0

r (Y ).
As Q(x) ∈ Z0,0

r (Y ) and (Q(x), Q(x), Qx(y)) ∈ D0,0
r (Y ), it follows that Qx(y) ∈

B−1,r−1
r−1 (Y ) as claimed.
(5) holds as Q is compatible with the maps limj∈J Ω∞(X≤t) → limj∈J Ω∞(Y≤t).

�

3. Looping power operations

If C is a stable category, then for any X,Y ∈ C one may form the mapping
spectrum C(X,Y ). This construction preserves limits in Y , allowing one to form
HLSSs for diagrams in arbitrary stable categories. If N : C → D is a pointed functor
between stable categories, then for any X,Y ∈ C one obtains a map

Ω∞C(X,Y ) = MapC(X,Y ) → MapD(NX,NY ) = Ω∞D(NX,NY )
of pointed spaces. Theorem 2.5.3 describes how these maps appear in HLSSs, at
least once one understands how they behave on higher homotopy groups. This
section describes explicitly what happens in the main example of interest, eventually
leading to Theorem 3.1.1. In Subsection 3.2, we put everything together, yielding
Theorem 1.0.1 and variations thereon.

3.1. Looping power operations. Fix a compact Lie group G, let SpG be the
category of G-spectra, and for m ≥ 0 write

Pm : SpG → SpΣm�G

for the m-fold smash power functor. These are the functors denoted ∧m in [Boh14].
Note that the group G will not play a real role in the following. Write ρm for the
permutation representation of Σm on Rm, and observe that

Pm(Sα) � Sρm⊗α

for α ∈ RO(G). Thus, external power operations in this context take the form

Pm
α : πG

αX → πΣm�G
ρm⊗αP

mX

for X ∈ SpG. Given x ∈ παX and n ≥ 1, write

Pm,(n)
α,x : πG

n+αX → πΣm�G
n+ρm⊗αP

mX

for the composite
πn+αX ∼= πn(MapSpG(Sα, X), x)

→ πn MapSpΣm�G(Sρm⊗α,PmX), Pm
α (x)) ∼= πΣm�G

n+ρm⊗αP
mX,

the inner map being induced by functoriality of Pm. The goal of this subsec-
tion is to describe the operations P

m,(n)
α,x explicitly. This description is given in

Theorem 3.1.1, the proof of which amounts to a collection of standard observations
about the behavior of the functors Pm, which we now make.

3.1.1. Euler classes. Write ρm for the reduced permutation representation of Σm.
This may be regarded as a representation of Σm � G by restriction along the pro-
jection Σm � G → Σm. Write am ∈ πΣm�G

−ρm
SΣm�G for the Euler class of ρm, i.e. the

class represented by the inclusion of poles S0 → Sρm , or what is equivalent, the
inclusion of fixed points S1 → Sρm .
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3.1.2. The addition formula. The functors Pm satisfy

Pm(A⊕B) �
⊕

i+j=m

IndΣm�G
Σi,j �G

(
Pi(A) � Pj(B)

)
,

where Σi,j = Σi × Σj ⊂ Σi+j and Pi(A) � Pj(B) is Pi(A)⊗ Pj(B) considered with
its natural Σi,j �G-action. This allows us to identify the operation

Pm
(α,β) : πG

αX × πG
β X = [Sα ⊕ Sβ, X] → [Pm(Sα ⊕ Sβ),PmX]

as
Pm

(α,β)(x, y) =
∑

i+j=m

trΣm�G
Σi,j �G(P i

α(x) · P j
β(y)).

Here, the products appearing on the right are external products of signature

πΣi�G
ρi⊗αP

iX ⊗ π
Σj �G
ρj⊗βP

jX → π
Σi�G×Σj �G
ρi⊗α+ρj⊗β

(
PiX � PjX

)
= π

Σi,j �G
ρi⊗α+ρj⊗β resΣm�G

Σi,j �G PmX.

3.1.3. Colimit comparison maps. For a space F and object A, write F · A =
colimx∈F A for the unbased tensor with F . The basepoint of Sn yields a natu-
ral retraction

A → Sn · A → A,

and this gives rise to a splitting

(14) Sn ·A � ΣnA⊕A.

Observe that there are natural colimit comparison maps

Sn · Pm(A) → Pm(Sn ·A).

As Pm is compatible with the monoidal structure, these are determined by their
effect when A = S0, i.e. by the map

(15) Sn ⊕ S0 � Sn · Pm(S0) → Pm(Sn · S0) �
⊕

i+j=m

IndΣm�G
Σi,j �G Sρi⊗n.

This is the map given by the unreduced suspension spectrum of the diagonal

Sn → (Sn)×m

map of spaces. The splitting of the target in Eq. (15) as a direct sum amounts to
the standard splitting Σ(X1×· · ·×Xm) � Σ

∨
I⊂{1,...,m}

∧
i∈I Xi, valid for pointed

spaces X1, . . . , Xm. The restriction of Eq. (15) to S0 is just the inclusion into the
i = 0 summand. On Sn, one has maps

Sn → IndΣm�G
Σi,j �G Sρi⊗n,

which are seen to be adjoint to the inclusion of fixed points ani : Sn → Sρi⊗n.

3.1.4. Looping operations. Abbreviate MapG = MapSpG , and consider the diagram

MapG(Sn+α, X) MapΣm�G(Pm(Sn · Sα)/PmSα,PmX) MapΣm�G(ΣnPm(Sα),PmX)

MapG(Sn · Sα, X) MapΣm�G(Pm(Sn · Sα),PmX) MapΣm�G(Sn · Pm(Sα),PmX)

MapG(Sα, X) MapΣm�G(Pm(Sα),PmX) MapΣm�G(Pm(Sα),PmX)

q p
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of spaces. Here, the bottom vertical maps are induced by the basepoint of Sn, and
the columns are fiber sequences. By definition, Pm,(n)

α,x is the induced map
π0q

−1(x) → π0p
−1(Pm

α (x)).
Here, under the splitting of Eq. (14), we may write the inner row as

MapG(Sn+α, X) × MapG(S,X) � MapG(Sn+α ⊕ Sα, X)
→ MapΣm�G(Pm(Sn+α ⊕ Sα),PmX)
→ MapΣm�G(Sn+ρm⊗α ⊕ Sρm⊗α,PmX)
� MapΣm�G(Sn+ρm⊗α,PmX) × MapΣm�G(Sρm⊗α,PmX),

(16)

and identify
q−1(x) = MapG(Sn+α, X) × {x},

p−1(Pm
α (x)) = MapΣm�G(Sn+ρm⊗α, X) × {Pm

α (x)}.
Putting this together for all x, on path components the composite Eq. (16) yields
the map

P
m,(n)
α,• : πG

n+αX × πG
αX → πΣm�G

n+ρm⊗αP
mX × πΣm�G

ρm⊗αP
mX,

P
m,(n)
α,• (f, x) = (Pm,(n)

α,x (f), Pm
α (x)).

3.1.5. Putting everything together.

3.1.1. Theorem. Fix X ∈ SpG, α ∈ RO(G), and x ∈ παX. Then the operation

Pm,(n)
α,x : πG

n+αX → πΣm�G
n+ρm⊗αP

mX

is given by

Pm,(n)
α,x (f) =

∑
0<i≤m

trΣm�G
Σi,m−i�G

(
ani P

i
n+α(f) · Pm−i

α (x)
)
.

Proof. The first map in Eq. (16) is described in Subsubsection 3.1.2, and the second
map is described in Subsubsection 3.1.3. Tracing through these descriptions and
identifying P

m,(n)
α,x (f) as the first coordinate of Pm,(n)

α,• (f, x) yields the theorem. �

3.2. Power operations in the HLSS. Let R : J → SpG be a diagram of G-
spectra. For each α ∈ RO(G), one may take mapping spectra levelwise to obtain a
diagram SpG(Sα, R) of spectra, with limj∈J SpG(Sα, R(j)) � SpG(Sα, limj∈J R(j)).
Thus there is an HLSS

Es+α,t+α
2 = Ht−s(J;πG

t+αR) ⇒ πG
s+α lim

j∈J
R(j).

The composite PmR : J → SpΣm�G is likewise a diagram of Σm �G-spectra for each
m, with its own HLSS E∗,∗

∗,m. For each α ∈ RO(G) and m ≥ 1, there are maps
Pm
α : MapSpG(Sα, R) → MapSpΣm�G(Sρm⊗α,PmR)

of diagrams of pointed spaces. The extent to which this induces a map E∗,∗
∗ → E∗,∗

∗,m
of spectral sequences is exactly as described in Theorem 2.5.3, once one under-
stands how Pm

α behaves on higher homotopy groups, which is then as described in
Theorem 3.1.1. Putting everything together, we learn the following.

As before, write am for the class induced by the inclusion S1 → Sρm of fixed
points, where ρm is the permutation representation of Σm.
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 17

3.2.1. Theorem. With notation as above,
(1) The composite amPm

α is additive. In particular, for s ≥ 0 there are maps

Qm
α = atmPm

t+α : Es+α,t+α
2 → Es+ρm⊗α,t+ρm⊗α

2,m .

(2) Qm
α (Zs+α,t+α

r ) ⊂ Zs+ρm⊗α,t+ρm⊗α
r,m for s ≥ 0;

(3) Qm
α (Bs+α,t+α

r ) ⊂ Bs+ρm⊗α,t+ρm⊗α
r,m for s ≥ −1;

(4) For x ∈ Es+α,t+α
r with s ≥ 0, we have

dr(Qm
α (x)) =

{
Qm

α (dr(x)), t ≥ 1;
Qm

α (dr(x)) +
∑

0<i<m trΣm�G
Σi,j �G

(
Qi

α(dr(x)) ·Qm−i
α (x)

)
, s = t = 0.

(5) If x ∈ Eα,t+α
2 is a permanent cycle detecting f ∈ πG

α limj∈J R(j), then
Qm

α (x) detects Pm
α (f) ∈ πΣm�G

ρm⊗α limj∈J P
mR(j) modulo classes in higher

filtration.

We now describe three specializations of Theorem 3.2.1. The first is
Theorem 1.0.1. Let G be a finite group and R a G-E∞ ring. Let K ⊂ G be a
subgroup of index m and α ∈ RO(K), and consider the norm

Pα : πK
α R → πG

IndG
K

αR.

This factors as

πK
α R πΣm�K

ρm⊗αP
mR πG

resΣm�K
G

(ρm⊗α)
resΣm�K

G PmR
Pm

α res

πG
IndG

K
α
NG

KR πG
IndG

K
α
R

∼= NG
K .

Here, the restriction is along a suitable embedding G ⊂ Σm �K, and the final map
is induced by the G-E∞ ring structure on R. The behavior of the first map with
respect to HLSSs is what was described in Theorem 3.2.1. The remaining maps are
stable, and entirely compatible with HLSSs. Thus we may regard Theorem 1.0.1
as a specialization of Theorem 3.2.1.

For the second, let R be an ordinary E∞ ring. Then for n ∈ Z and m ≥ 1, the
mth total power operation

Pm : πnR = [Sn, R] → [(Sn)⊗m
hΣm

, R]

is the map induced on path components by the composite

MapSp(Sn, R) MapSpΣm (Sρm⊗n,PmR)

MapSp((Sn)⊗m
hΣm

, R⊗m
hΣm

) MapSp((Sn)⊗m
hΣm

, R).

Pm

colim μ

The situation is analogous to the G-E∞ case.
For the third, let R be an ultracommutative ring spectrum in the sense of [Sch18,

Definition 5.1.1]. Then R is equipped with strictly Σm-equivariant maps R⊗m → R
within the category of orthogonal spectra. Following [Sch18, Theorem 4.5.25], we
may produce from R the G-spectrum UGR by considering the orthogonal spectrum
R as an orthogonal G-spectrum with trivial G-action. The Σm-equivariant maps
R⊗m → R may then be considered as maps PmUGR → UΣm�GR, and this yields
norms

Pm
α : πG

αR → πΣm�G
ρm⊗αR
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18 WILLIAM BALDERRAMA

for α ∈ RO(G). The situation is now analogous to the previous examples. See
[Sch18, Chapter 5], [Sta21] for more on power operations in the global equivariant
context, as well as [GM97] for earlier related material.

4. Norms in the C2-equivariant Adams spectral sequence

We now prove Theorem 1.1.1. As HFC2
2 is a C2-E∞ ring, so too is HFC2

2 ⊗HFC2
2 ,

and thus there are norms
(17) Acl

∗ = πe
∗(HFC2

2 ⊗HFC2
2 ) → πC2

∗(1+σ)(HFC2
2 ⊗HFC2

2 ) = AC2
∗(1+σ).

The main point of the proof is to understand something about these.
We must first recall some of the structure of AC2 ; we mostly follow the treatment

in [GHIR20, Section 2]. Let MC2 = π�HFC2
2 and MR = π�HFR

2 be the bigraded co-
efficient rings of C2-equivariant and R-motivic mod 2 homology respectively. Then

MR = F2[τ, ρ], MC2 = MR ⊕NC, NC = F2{
γ

ρjτk
: j ≥ 0, k ≥ 1},

where these symbols have homological degrees
|τ | = 1 − σ, |ρ| = −σ, |γ| = σ − 1.

Moreover,
AR = MR[ξ1, ξ2, . . . , τ0, τ1, . . .]/(τ2

i +τξi+1+ρ(τ0ξi+1+τi+1)), AC2 = MC2⊗MRAR.

The right unit for AC2 restricts to define an AR-comodule structure on the sum-
mand NC ⊂ MC2 . Conversely, the AR-comodule structure on NC makes MC2 into
a comodule algebra over AR, and this enables one to endow AC2 = MC2 ⊗MR AR

with the structure of a Hopf algebroid. In particular, this construction extends to
show that if I ⊂ MC2 is an AR-comodule ideal, then the quotient (MC2/I)⊗MR AR

still carries the structure of a Hopf algebroid.
The norms of Eq. (17) are not additive, but they are additive modulo transfers.

Using the C2-equivariant cofiber sequence C2+ → S0 ρ−→ Sσ, one finds that the
transfer ideal equals the annihilator of the Euler class ρ. Explicitly, the transfers
on MC2 are given by

tr : F2 → MC2
n(1−σ), tr(1) =

{
0 n ≥ −1,

γ
τ−n−1 n ≤ −2,

as these are the only classes in their respective degrees killed by ρ. If we write Itr
for the transfer ideal in MC2 or AC2 , then

AC2/Itr ∼= (MC2/Itr) ⊗MR AR,

and this retains the structure of a Hopf algebroid.

4.0.1. Lemma. The group of primitives in AC2/Itr is zero in degrees of the form
|ξn| = (2n − 1)(1 + σ) for n ≥ 2.

Proof. We may identify the primitives Prim(AC2/Itr) as an Ext group:
Prim(AC2/Itr) ∼= Ext1AC2/Itr

(MC2/Itr,M
C2/Itr) ∼= Ext1AR(MR,MC2/Itr).

Abbreviate M = MC2/Itr. The groups Ext1AR(MR,M) may be computed via a
Koszul complex of the form

ΛR[0] ⊗MR M ΛR[1] ⊗MR M ΛR[2] ⊗MR M · · ·δ0 δ1 ,
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 19

where ΛR is the R-motivic lambda algebra; see [BCQ21, Remark 2.3.5]. It therefore
suffices to show that Ker(δ1) = 0 in degrees of the form |ξn| for n ≥ 2.

Note that ΛR[1]⊗MR M is generated by elements of the form λrx with r ≥ 0 and
x ∈ M , and that internal algebraic degrees we have

|λr| =
⌊r
2

⌋
+ 1 +

⌈r
2

⌉
σ.

Given an object x with RO(C2)-degree a + bσ, write v(x) = a− b. Then

v(ξn) = 0, v(τ ) = 2, v(ρ) = 1, v(γ) = −2, v(λr) =

{
1 r even,
0 r odd.

Thus if v(λrx) = v(ξn) = 0 then x = 1 and r is odd. The only such elements in
Ker(δ1) are those of the form λ2a−1 for a ≥ 1, and these are not in the degree of
ξn for n ≥ 1. �

4.0.2. Proposition. The norm N : Acl
∗ → AC2

∗(1+σ)/Itr is a map of Hopf algebroids,
given on generators by N(ξn) = ξn. In other words, N is compatible with the map
P of Eq. (4).

Proof. The structure maps in the Hopf algebroid AC2 are obtained from various
C2-E∞ maps between the spectra (HFC2

2 )⊗k for k ≥ 1. It follows by naturality
that norms commute with these structure maps. As AC2/Itr is a quotient Hopf
algebroid of AC2 , the same is true for N : Acl

∗ → AC2
∗(1+σ)/Itr. As this map is

moreover additive, it is a map of Hopf algebroids. We induct on n to show that
N(ξn) = ξn for n ≥ 1.

First consider n = 1. Even before modding out by the transfer ideal, N(ξ1) ∈
AC2

1+σ must be some class lifting ξ2
1 under the forgetful map AC2

1+σ → Acl
2 . The class

ξ1 ∈ AC2
1+σ is the only possibility.

Next let n ≥ 2 and suppose we have verified N(ξi) = ξi in AC2/Itr for all i < n.
As N is a map of Hopf algebroids, we find

Δ(N(ξn)) = N(Δ(ξn)) = N(
∑

0≤i≤n

ξ2i

n−i ⊗ ξi)

= N(ξn) ⊗ 1 +
∑

0<i<n

N(ξn−i)2
i ⊗N(ξi) + 1 ⊗N(ξn)

= N(ξn) ⊗ 1 +
∑

0<i<n

ξ2i

n−i ⊗ ξi + 1 ⊗N(ξn),

where the last equality is an application of our inductive hypothesis. It follows that
the difference N(ξn) − ξn is primitive, and thus N(ξn) = ξn by Lemma 4.0.1. �

We have now all but given the following.

Proof of Theorem 1.1.1. Consider the HLSS associated to the canonical resolution

SC2 → lim
n∈Δ

(HFC2
2 )⊗n+1.

This yields the C2-equivariant Adams spectral sequence upon taking fixed points,
and the classical Adams spectral sequence upon taking underlying spectra. This
puts us squarely in the context of Theorem 1.0.1, which tells us that Sq : π∗S →
π∗(1+σ)SC2 is modeled in filtration f by ρfN , with N the norm for (HFC2

2 )⊗f+1.
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20 WILLIAM BALDERRAMA

When f = 0, the norm is simply given by N(1) = 1. When f ≥ 1, as ρ annihilates
the transfer ideal, Proposition 4.0.2 implies ρN = ρP , and the theorem follows. �

5. Norms on π0 of the equivariant KU-local sphere

We now consider Theorem 1.1.4 and related matters.

5.1. Preliminaries. We begin by recalling some background on equivariant K-
theory. Fix for now a finite group G, and write KUG for the G-equivariant spec-
trum of G-equivariant complex K-theory. Equivariant Bott periodicity takes the
following form: If V ∈ RU(G) is a virtual complex G-representation, then there is
an invertible Bott class

βV ∈ KU0
G(SV ).

As usual, there are two natural choices of Bott classes, related by complex conju-
gation. With notation from [Ati68], we shall take our Bott classes to be defined
by βV = λV when V is a G-representation. In particular, β = βC = 1 − L ∈
KU0(S2) = π2KU , where L → S2 is the canonical line bundle. It is this choice that
is well-behaved with respect to power operations in K-theory (see Lemma 5.1.1).

If V is a complex G-representation, then the Euler class e(V ) ∈ RU(G) of V , in
the sense of [tD79, Chapter 7], is defined as the image of βV under the map

KU0
G(SV ) → KUG(S0) ∼= RU(G)

given by restriction along the inclusion of poles S0 → SV . We will discuss these
further in Subsection 5.3.

Now let Glob denote the homotopy theory of global equivariant spectra with
respect to the family of finite groups, formalized as in [Sch18], and let KU be the
global spectrum of equivariant complex K-theory constructed in [Sch18, Section
6.4]. This is a refinement of the G-equivariant spectra KUG, in the sense that there
are symmetric monoidal functors UG : Glob → SpG and KUG � UGKU. For our
purposes, we may take this as the definition of the G-spectra KUG, to be assured
that the G-E∞ structure on KUG is compatible with the ultracommutative ring
structure of KU; it is not obvious whether the G-E∞ structure on KUG is unique,
see for instance [BHI+22].

The ultracommutative ring structure on KU gives rise to maps PmKUG →
KUΣm�G, and this in turn induces power operations of the following form: if X is
a G-space, then X×m is naturally a Σm �G-space, and there are power operations

Pm : KU0
G(X+) → KU0

Σm�G(X×m
+ ).

If X is a based G-space, then one may instead consider

Pm : KU0
G(X) → KU0

Σm�G(X∧m).

We round out this discussion by noting the following.

5.1.1. Lemma. If V is a virtual complex G-representation, then

Pm(βV ) = βρm⊗V ∈ KU0
Σm�G(Sρm⊗V ).

Proof. This is essentially classical, so let us just sketch how the pieces fit to-
gether. By multiplicativity, we may reduce to the case where V is a complex
G-representation. The proof of [Sch18, Theorems 6.3.32(iii)] extends to show
that if X is a G-space and E ∈ KU0

G(X+) is the class of a vector bundle, then
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 21

PmE ∈ KU0
Σm�G(X×n

+ ) is the class of the external tensor power E�m. Put an-
other way, the power operations arising from the ultracommutative ring structure
on KU agree with the classic power operations constructed by Atiyah in [Ati66].
At this point, with notation from [Ati68], one computes that Pm(βV ) = Pm(λV ) =
λ⊗m
V = λρm⊗V = βρm⊗V . This is where we have used our choice of Bott classes, as

for example P 2(λ∗
C
) = −λ∗

ρ2⊗C
, still with notation from [Ati68]. �

5.2. The main proposition. In the appendix (Proposition A.4.4) we verify
Proposition 1.1.5. This implies, among other things, that the global ultracom-
mutative ring spectrum S∧

KU = limn∈Δ KU⊗n+1 refines the G-spectra LKUG
SG,

at least for G a finite nilpotent group. Now define
L = π0S

∧
KU.

Then L is a global power functor for the family of finite groups in the sense of
[Sch18, Chapter 5]. This means that for each finite group G we are given an abelian
group L(G), together with restrictions along arbitrary homomorphisms, transfers
along injective homomorphisms, external pairings L(G) ⊗ L(K) → L(G×K), and
power operations

Pm
G : L(G) → L(Σm �G),

all subject to a number of compatibilities. When the group G is clear from context,
we shall write Pm = Pm

G . The assertion that if G is nilpotent then S∧
KU refines the

G-spectrum LKUG
SG says, among other things, that

L(G) = πG
0 LKUG

SG.

Each π0LKUG
SG is a G-Tambara functor, and this is contained in the global power

structure of L. In short, if K ⊂ G is a subgroup of index m, then the norm
NG

K : L(K) → L(G) is recovered by postcomposing Pm
K : L(K) → L(Σm �K) with

restriction along a suitable embedding G → Σm �K. See [Sch18, Remark 5.17] for
a more detailed discussion.

We do not know the value of L(G) in general, even as a mere abelian group. When
G is an odd p-group, L(G) ∼= RQ(G)[ε]/(ε2, 2ε) [BGS22, Theorem 1.1, Proposition
6.7]. It is also not hard to show directly that the same is true for G = C2. It seems
plausible that L(G) might be approachable via an analysis of the KUG-based Adams
spectral sequence. We shall not attempt to carry out any such analysis here, but
for the interested reader point out that the descent from KUG to KOG is fully
described in [MNN17, Example 9.19], and it may be fruitful to start with KOG

rather than KUG.
As L is equipped with restrictions along arbitrary homomorphisms, the sequence

e → G → e shows that, for every group G, the ring L(G) is an augmented L(e)-
algebra. We may identify L(e) explicitly as

L(e) = π0LKUS = Z[ε]/(2ε, ε2).
In particular, the class ε resides in L(G) for any group G, and we would like to
understand how power operations behave on ε. Observe that

Pm
G (ε) = Pm(reseG(ε)) = resΣm

Σm�G(Pm
e (ε)).

Thus, to determine Pm
G (ε), it suffices to consider the case where G = e, at least

once the underlying global Mackey functor of L is known. Although we have not
computed L(Σm), we can say the following.

Write ρCm for the reduced complex permutation representation of Σm.
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5.2.1. Proposition. The class Pm(ε) ∈ L(Σm) is detected in the KUΣm
-based

Adams spectral sequence by e(ρCm) · ε.

Proof. Consider the KU-based Adams spectral sequence. This is the HLSS asso-
ciated to the canonical resolution

S∧
KU � lim

n∈Δ
KU⊗n+1,

and gives, for every finite group G and α ∈ RO(G), the KUG-based Adams spectral
sequence of signature

GEs+α,t+α
1 = πG

t+α(KU⊗t−s+1
G ) ⇒ πG

s+αLKUG
SG,

compatible with all restrictions and transfers.
When G = e, this is the nonequivariant KU -based Adams spectral sequence. The

class ε ∈ π0LKUS is detected by some class ε̃ ∈ eE0,2
2 in filtration 2. It follows from

Theorem 3.2.1 that Pm(ε) is detected by Q(ε̃) ∈ ΣmE0,2
2 , where Q : eE0,2

2 → ΣmE0,2
2

is induced by
a2
mPm

2 : πe
2KU → πΣm

ρC
m
KUΣm

→ πΣm
2 KUΣm

.

By Lemma 5.1.1, we may identify this as

Z{β} → RU(Σm){βρC

m} → RU(Σm){β},

where the first map acts by β �→ βρC

m and the second map acts by βρC

m �→ e(ρCm) ·
β. More succinctly, the map Q is given by multiplication with e(ρCm), and the
proposition follows. �

5.3. Euler classes. To translate from Proposition 5.2.1 to Theorem 1.1.4, we must
recall some information about Euler classes. Let G be a finite group. Given a
complex G-representation V , the Euler class e(V ) may be identified explicitly as

e(V ) =
∑
n

(−1)nΛn(V ) ∈ RU(G).

This follows from the definition of e(V ) and the construction of the Bott class βV ,
see for instance [AT69, IV §1]. In particular, write Cl(G;C) for the ring of class
functions on G, and for V ∈ RU(G) write χ(V,−) ∈ Cl(G;C) for its character. For a
complex G-representation V and g ∈ G, write f(V, g)(t) ∈ C[t] for the characteristic
polynomial of the linear map g : V → V . Then we obtain the following identification
of the character of an Euler class.

5.3.1. Lemma. Let V be a complex G-representation. Then χ(e(V ), g)=f(V, g)(1).

Proof. The claim is that the characteristic polynomial of g : V → V evaluated at 1
agrees with the alternating sum of the traces of g : ΛnV → ΛnV . This is a standard
fact from linear algebra, see for instance [Bou48, §8, no. 11]. �

Given a finite G-set X, let

C̃[X] = Coker(C → C[X])

be the associated reduced permutation representation, and set

e(X) = e(C̃[X]) ∈ RU(G).

We then have the following.
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5.3.2. Proposition.
(1) Given a finite G-set X, we have e(X) 
= 0 if and only if there exists some

g ∈ G such that the cyclic group 〈g〉 acts transitively on X.
(2) Let p be a prime, and suppose that K ⊂ G is a normal subgroup such that

G/K is cyclic of order pn. Let N ⊂ G be the unique subgroup of index p
containing K. Then e(G/K) = pn−1(pC− C[G/N ]).

(3) In particular, in the situation of (2), if p is odd then e(G/K) ≡ C̃[G/N ]
(mod 2).

Proof. (1) Given g ∈ G, we may identify

f(C̃[X], g)(t) = f(C[X], g)(t)
1 − t

.

It follows from Lemma 5.3.1 that χ(C̃[X], g) 
= 0 if and only if 1 is not a repeated
root of f(C[X], g)(t). The element g acts on C[X] by a permutation matrix, and
an elementary computation shows that this holds if and only if g acts transitively
on X. The claim follows as e(X) 
= 0 if and only if χ(C̃[X], g) 
= 0 for some g ∈ G.

(2) Write q : G → G/K ∼= Cpn . Then e(G/K) = q∗e(Cpn), so we may reduce
to the case where K = e and G = Cpn . An elementary computation, following the
ideas in (1), shows that

χ(e(Cpn), g) =

{
pn if g generates Cpn ;
0 otherwise.

A second elementary computation shows that pn−1(pC − C[Cpn/Cpn−1 ]) has the
same character, implying that e(Cpn) = pn−1(pC− C[Cpn/Cpn−1 ]) as claimed.

(3) If p is odd, then pn−1(pC − C[G/N ]) ≡ C − C[G/N ] ≡ C̃[G/N ] (mod 2) in
RU(G). �

5.4. The proof of Theorem 1.1.4. Note the following immediate corollary of
Proposition 5.2.1 and the interaction between the power operations Pm and the
norms NG

K .

5.4.1. Corollary (Of Proposition 5.2.1). Let K ⊂ G be a subgroup. Then NG
K(ε) ∈

L(G) is detected in the KUG-based Adams spectral sequence by e(G/K) · ε.

We are now in a position to prove Theorem 1.1.4. Let us again recall the main
players. Fix an odd prime p. In [BGS22, Theorem 1.1, Proposition 6.7], Bonventre–
Guillou–Stapleton prove that if G is a p-group, then there is an isomorphism

π0LKUG
SG

∼= RQ[ε]/(2ε, ε2)

of Green functors, where RQ is the Green functor whose value at a subgroup K ⊂ G
is the rational representation ring RQ(K). In our context, this says that if G is
any p-group, then

(18) L(G) ∼= RQ(G)[ε]/(2ε, ε2).

This easily extends to an identification of the restriction of the global Green functor
L to the family of p-groups. We now give the following.

Proof of Theorem 1.1.4. Consider the norm

NG
K : RQ(K)[ε]/(2ε, ε2) → RQ(G)[ε]/(2ε, ε2).
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By Corollary 5.4.1, NG
K(ε) is detected in the KUG-based Adams spectral sequence

by e(G/K) ·ε. As all elements of RQ(G)[ε]/(2ε, ε2) are detected either on the 0-line,
as an element of RQ(G), or on the 2-line, as the product of an element of RQ(G)
with ε, we may deduce that NG

K(ε) = e(G/K) · ε on the nose. The final claims
regarding the case where K ⊂ G is normal follow from Proposition 5.3.2. �

6. Power operations for the K(1)-local sphere

This section carries out the computation promised in Theorem 1.1.6.

6.1. Generalities on power operations. We begin by recalling some basic prop-
erties of power operations, cf. [BMMS86, Chapter VIII]. Fix a prime p, and for a
spectrum R define

πs,wb(R) = [Σs−pw(Sw)⊗p
hΣp

, R] = R(p−1)w−s Th(wρp ↓ BΣp)
= πs−pw+wρp

F (EΣp, i∗R).

These are all different names for the same object; the third term is the R-cohomology
of the Thom spectrum of a multiple of the reduced permutation representation ρp
of Σp, and the fourth term is a piece of the Σp-equivariant spectrum obtained as
the Borel construction on R with trivial action. There are maps

a : πs,wb(R) → πs−(p−1)w,w−1b(R), i : πsR → πs,0b(R),
resw : πs,wb(R) → πsR, trw : πsR → πs,wb(R),

given by multiplication with the Euler class of ρp, inflation, restriction, and transfer.
We shall write tr = trw and res = resw when w is clear from context, and shall use
i to regard π∗R as a subobject of π∗,0b(R).

Now suppose that R is a p-local E∞ ring. Then the pair (π∗R, π∗,∗b(R)) is a good
device for understanding power operations on R. The pth total power operation
for R takes the form

P : πnR → πpn,nb(R),
and the behavior of P may be encoded in structure present on π∗,∗b(R), as we now
recall.

First, π∗,∗b(R) is a bigraded ring, and P is multiplicative, i.e. P (xy) = P (x)P (y)
for x ∈ πnR and y ∈ πmR. Second, define

h[w] = trw(1)
(p− 1)!

∈ π0,wR,

and abbreviate h = h[0]. These elements satisfy

a · h[w] = 0.

Let C(x, y) = p−1((x + y)p − xp − yp). Then for x, y ∈ πnR, we have

P (x + y) = P (x) + C(x, y) · h[n] + P (y).

In particular, for k ∈ Z we have

(19) P (k) = k − k − kp

p
h.

Third, we note that aP is additive, and if R arises as a limit of E∞ rings then
P is modeled in filtration f of the associated HLSS by afP , as described in
Theorem 3.2.1.
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6.2. Morava E-theory. Let E be a Morava E-theory with formal group G →
Spf E0. See [Pet18] for a textbook reference. We wish to describe the general shape
of π∗,∗b(E). Let

ω = π2E, R = π0,0b(E) = E0BΣp, L = π2(p−1),2b(E) = E0 Th(C⊗ ρp).
Then R is a commutative E0-algebra and L is an invertible R-module. Writing
Ln = L⊗Rn, we have the following picture:

R L−1

R/(h) π−(p−1),−1E

a2

a

∼=

a .

That the Euler class a annihilates h is standard, and that the resulting map
R/(h) → π−(p−1),−1b(E) is an isomorphism may be found in dual form in [Rez09,
Proposition 7.2, Remark 7.4]. Note in particular that postcomposing the product
on R/(h) with a gives a map

(20) R/(h) ⊗R/(h) → R/(h) → L−1.

6.2.1. Lemma. There are isomorphisms
π2a(p−1)+2b,2ab(E) = ωb ⊗E0 L

a,

π(2a+1)(p−1)+2b,2a+1b(E) = ωb ⊗E0 L
a ⊗R R/(h),

all other degrees being zero. The ring structure is induced by the canonical iso-
morphisms (ωb ⊗E0 La) ⊗R (ωb′ ⊗E0 La′) ∼= ωb+b′ ⊗E0 La+a′ , applying the Euler
class as in Eq. (20) when needed.

Proof. The Morava E-theory of BΣp is concentrated in even degrees [HKR00, The-
orem E]. The lemma then combines the above discussion with the Thom isomor-
phisms π(a+2a′)(p−1)+2(b+b′),(a+2a′)b(E) ∼= πa(p−1)+2b,ab(E)⊗R π2a′(p−1)+2b,2a′b(E).

�

6.2.2. Proposition. The Adams operation ψk for k ∈ Z×
p acts on La by multipli-

cation with (1 − 1
p (1 − ka(p−1))h).

Proof. First we consider the case a = 0, where L0 = R = E0BΣp. Here we are
claiming that ψk acts trivially on E0BΣp. By Strickland’s theorem [Str98], R/(h)
is the E0-algebra classifying rank p subgroups of G. The Adams operation ψk

corresponds to the automorphism [k] : G → G defined over Spf E0. This fixes all
subgroups of G, and so ψk acts trivially on R/(h). As the transfer is split K(n)-
locally [CM17], it follows that ψk acts trivially on R.

Now consider general a. As ψk acts on ωa by multiplication with ka, it suffices
to show that ψk acts on ωa ⊗ La by multiplication with ka(1 − 1

p (1 − ka(p−1))h).
Observe that this is exactly the element P (ka) seen in Eq. (19). Choose a generator
u ∈ ω, so that we have P (ua) ∈ ωa ⊗E0 L

a. As P (ua) ·P (u−a) = P (1) = 1, we find
that P (ua) gives a trivialization of the invertible R-module ωa ⊗E0 L

a. As ψk acts
trivially on R, it thus suffices to show that ψk(P (ua)) = P (ka)P (ua). Indeed, as
ψk acts on E by E∞ automorphisms, we have

ψk(P (ua)) = P (ψk(ua)) = P (kaua) = P (ka)P (ua)
as needed. �
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Now write KUp for the spectrum of p-adic complex K-theory. We consider
complex K-theory to be oriented as described in Subsection 5.1.

6.2.3. Proposition. Let τ−2 ∈ π0,2b(KUp) be the Thom class of ρCp , i.e. the Bott
class of ρCp − pC, and abbreviate d = a2βτ−2 ∈ π0,0b(KUp). Then h = p− d and

π∗,∗b(KUp) ∼= Zp[β±1, τ±2, a]/(ah).

The Adams operation ψk for k ∈ Z×
p acts by ring automorphisms, and is deter-

mined by
ψk(β) = kβ, ψk(τ2) = τ2(1 + 1

p (kp−1 − 1)d).
Power operations are determined by general properties and

P (β) = βpτ−2.

Proof. Restriction along Cp ⊂ Σp identifies KU0
pBΣp as the subring of KU0

pBCp

fixed under the action of Aut(Cp). It follows quickly that h is the image of the
permutation representation ρCp under the completion map R(Σp) → KU0

pBΣp, and
that

KU0
pBΣp

∼= Zp[h]/(h2 − ph).
On the other hand, d = a2βτ−2 is the Euler class of ρCp . By Proposition 5.3.2, both
d and p− h have the same image in KU0

pBCp, and thus d = p− h in KU0
pBΣp. It

follows that
KU0

pBΣp
∼= Zp[d]/(dh).

The full identification of π∗,∗KUp then follows from the recipe of Lemma 6.2.1,
where now we have fixed trivializations βa(p−1)+bτ−2a ∈ ωb ⊗E0 L

a. The action of
the Adams operations was given in Proposition 6.2.2. The identity P (β) = βpτ−2

was given in Lemma 5.1.1. In this Borel context, it may also be regarded as a
consequence of the fact that the map MUP → KU classifying our choice of periodic
complex orientation is H∞. �

6.3. Odd primes. Let p be an odd prime and fix a topological generator k ∈ Z×
p .

Then there is a fiber sequence

(21) SK(1) KUp KUp
ψk−1

.

We can use this to easily compute power operations for SK(1). For a spectrum X

and class x ∈ KUn
p X, write [x] ∈ Sn+1

K(1)X for the image of x under the boundary
map associated to Eq. (21). We then have

π0SK(1) = Zp, π2n−1SK(1) = Zp/(kn − 1){[βn]},
all other groups being zero. So it suffices to compute

P ([βn]) ∈ π(2n−1)p,2n−1b(SK(1)).

6.3.1. Lemma. We have
π(2n−1)p,2n−1b(SK(1)) = Zp/(kn − 1){[aβpnτ−2n]}.

Proof. By Proposition 6.2.3, we have
π∗,2n−1b(KUp) ∼= Zp[β±1]{aβpnτ−2n}, ψk(aβpnτ−2n) = knaβpnτ−2n.

The lemma then follows from Eq. (21). �
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6.3.2. Theorem. The pth total power operation

P : π2n−1SK(1) → π(2n−1)p,2n−1b(SK(1))

is additive, and satisfies
P ([βn]) = [aβpnu−n].

Proof. The long exact sequence associated to the fibering of Eq. (21) can be inter-
preted as the HFPSS

H∗(Z{ψk};KUp) ⇒ π∗KUhZ{ψk}
p

∼= π∗SK(1).

As P (βn) = βpnτ−2n, it follows from Theorem 3.2.1 that P (k[βn]) is detected in
the HFPSS by k[aβpnτ−2n] for k ∈ Z. As there is nothing in higher filtration, we
must have P (k[βn]) = k[aβpnτ−2n] on the nose. �

6.4. Even primes. Now consider p = 2. There is a fiber sequence

(22) SK(1) KO2 KO2
ψ3−1

,

and we may compute power operations for SK(1) following the same approach as
for odd primes, only by descent from KO2 rather than KUp. We begin by recalling
the structure of the former. Write ηC2 ∈ π1,1b(S) for the C2-equivariant Hopf map.
This is characterized by

h = 2 + aηC2 .

Also write ηcl ∈ π1S ⊂ π1,0b(S) for the nonequivariant Hopf map.

6.4.1. Lemma. Write

π∗KO2 = Z2[β±4, 2β2, ηcl]/(2 · ηcl, 2β4 · ηcl, η
3
cl, (2β2)2 − 4β2).

Then
π∗,∗b(KO2) = Z2[β±4, τ±4, a, ηC2 , τ

2h, 2β2, β2τ2h, ηcl]/I,

where I is generated by a number of relations, including ρ · τ−2β2h = ηC2η
2
cl.

The Adams operation ψ3 fixes all torsion classes, and otherwise is determined
by the map π∗,∗b(KO2) → π∗,∗b(KU2), which sends to classes of the same name,
only where moreover ηcl �→ 0 and ηC2 �→ −aβτ−2. The norms P : πnKO2 →
π2n,nb(KO2) are determined by general properties and

P (β4) = β8τ−8, P (2β2) = (4 + aηC2)β4τ−4, P (ηcl) = ηclηC2 .

Proof. See for instance [Bal21] or [Bal22]; for the former note that our πs,wb(KO2)
is its πs,s−wb(KO) and ηC2 = −η0, and for the latter note πs,wb(KO2) =
π(s−w)+wσKOC2 ⊗ Z2 and ηC2 = −ησ. �

One may compute the groups π∗,∗b(SK(1)) from this, using Eq. (22). This com-
putation was also carried out in [Bal21], but our situation is much simpler: the hard
work there was to pin down the ring structure on π∗,∗b(SK(1)), which we don’t need,
and even for the additive structure we need only the particular groups π2n,nSK(1).
Because we need details of the computation, it is easier to just proceed directly.
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28 WILLIAM BALDERRAMA

Write [x] for classes in SK(1)-cohomology detected in the boundary of Eq. (22).
Define

ρn = [β4n] ∈ π8n−1SK(1), ξn = [2β4n+2] ∈ π8n+3SK(1),

μn = β4nηcl ∈ π8n+1SK(1),

ρn,n = [τ−4nβ4n] ∈ π8n−1,4nb(SK(1)), μn,n = τ−4nμn ∈ π8n+1,4nb(SK(1)).

These names are chosen to be compatible with [Bal21]; note, however, that πs,w

here is πs,s−w there, and that we write a instead of ω0 below. A choice must be
made here: in writing μn = β4nηcl, we mean that μn is some class detected by
β4nηcl ∈ π8n+1KO2, and there are two such classes, and likewise for μn,n. This
choice is relevant to the indeterminacy in Theorem 6.4.3 and carefully handled in
[Bal21], but for our purposes it does not matter what choice is made.

6.4.2. Lemma. The nonzero homotopy groups of SK(1) are π0SK(1) = Z2{1} ⊕
Z/(2){ηclρ0}, and otherwise

πiSK(1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z2/(34a − 1){ρn} i = 8n− 7;
Z/(2){ηclρn} i = 8n;
Z/(2){η2

clρn, μn} i = 8n + 1;
Z/(2){ηclμn} i = 8n + 2;
Z/(8){ξn} i = 8n + 3.

Moreover, we have

π2i,ib(SK(1)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z2/(32n − 1){aρn,n} i = 4n− 1;
Z/(2){ηclρn,n, aηclηC2ρn,n} i = 4n;
Z/(2){η2

clηC2ρn,n, μn,nηC2} i = 4n + 1;
0 i = 4n + 2;

only with an additional summand of the form Z2{1, aηC2} in π0,0b(SK(1)).

Proof. These follow by a direct computation from Eq. (22), only one must verify
that π8n+1SK(1) 
= Z/(4) and π8n+2,4n+1SK(1) 
= Z/(4), for which we cite [Rav84,
Theorem 8.15] and [Bal21, Lemma 3.3.3]. �

6.4.3. Theorem. The symmetric squares

P : πnSK(1) → π2n,nSK(1)

are additive for n 
= 0, and satisfy

P (ρn) = aρ2n,2n,

P (ηclρn) = aηclηC2ρ2n,2n,

P (η2
clρn) = 0,

P (μn) ∈ μ2n,2nηC2 + Z/(2){η2
clηC2ρ2n,2n},

P (ηclμn) = 0,
P (ξn) = 2aρ2n+1,2n+1.

Moreover,
P (ηcl) = ηclηC2(1 + ηclρ0).
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Proof. Both P (ρn) and P (ξn) may be computed along the same lines as the odd-
primary case. Combining Theorem 3.2.1 and Lemma 6.4.1, we find

P (ρn) = P ([β4n]) = [aβ8nτ−8n] = aρ2n,2n

and

P (ξn) = P ([2β4n+2]) = [a(2+h)β8n+4τ−8n−4] = 2a[β8n+4τ−8n−4] = 2aρ2n+1,2n+1.

That P (μn) ∈ μ2n,2nηC2 + Z/(2){η2
clηC2ρ2n,2n} follows by comparison with KO2.

Despite the indeterminacy, this is sufficient to deduce the remaining values of P by
multiplicativity. We have been unable to resolve this indeterminacy in general, but
can describe what happens in the case n = 0.

There is a Hurewicz map π∗,∗SC2 → π∗,∗SK(1) from the C2-equivariant sta-
ble stems, compatible with all power operations, sending a C2-equivariant map
f : Sa+bσ → S0 to the induced map (Sa+bσ)hC2 � Σa−b(Sb)⊗2

hΣ2
→ S → SK(1). In

π∗,∗SC2 , we have
P (ηcl) = ηclηC2 + aνC2 ,

where νC2 ∈ π3,2SC2 is the C2-equivariant quaternionic Hopf fibration
(Example 1.1.2; note a = ρ). As SK(1) detects the nonequivariant quaternionic
Hopf fibration, b(SK(1)) must detect νC2 . We may compute from Eq. (22) and
Lemma 6.4.1 that

π3,2b(SK(1)) = Z/(8){[τ−2β2h]},
and so the only possibility is that νC2 is detected by some odd multiple of [τ−2β2h].
As

a · [τ−2β2h] = [a · τ−2β2h] = [η2
clηC2 ] = η2

clηC2ρ0,

the identity P (ηcl) = ηclηC2(1 + ηclρ0) follows. �

6.4.4. Remark. If R is any K(1)-local E∞ ring, then there is a natural isomorphism

π0,0b(R) = π0R{1, h}.

Following [Hop14], if we define θ : π0R → π0R by declaring −θ(x) to be the coeffi-
cient of h in P (x), then θ makes π0R into a θ-ring. This applies at any prime p, but
let us continue focusing on p = 2. Write ε = ηclρ0, so that π0SK(1) = Z2[ε]/(2ε, ε2).
As aηC2 ≡ −h (mod 2), it follows from Theorem 6.4.3 that the action of θ on
π0SK(1) satisfies

θ(ε) = ε.

In fact this already follows from Proposition 5.2.1. This yields an alternate proof
of [CY23, Theorem 5.4.8], using completely different methods.

Appendix A. Equivariant Bousfield localizations

This appendix, which may be read independently of the rest of the paper, gives
some general material on Bousfield localizations in equivariant stable homotopy
theory. See especially [Hil19,Car22] for prior work on the topic; our approach differs
in that we focus primarily on the role of nilpotent completion. Insofar as the body
of the paper is concerned, this appendix contains the proof of Proposition 1.1.5 (in
Proposition A.4.4).
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A.1. Bousfield localizations. We begin by reviewing some of the general the-
ory of Bousfield localizations. Nothing in this subsection is new, we just collect
everything we need in one place and in the form most convenient for us. In par-
ticular, most of this material is either routine or may be found in some form in
[Bou79, HPS97, Mat15, Mat18]. Fix for this subsection a presentable symmetric
monoidal stable ∞-category M with unit denoted S, together with an object R ∈ M.
A.1.1. Definition. Fix X ∈ M.

(1) X is R-acyclic if R⊗X � 0;
(2) X is R-local if M(C,X) � 0 for any R-acyclic C;
(3) X → Y is an R-equivalence of R⊗X → R⊗ Y is an equivalence;
(4) The R-localization of X is an R-local object LRX ∈ M equipped with an

R-equivalence X → LRX.
(5) The Bousfield class of R shall be the class 〈R〉 = {X ∈ M : R ⊗ X} of

R-acyclics.
Observe that R-localization depends only on the Bousfield class of R, and that

〈R〉 ⊂ 〈T 〉 when there is a natural transformation LR → LT . The functor of R-
localization is lax symmetric monoidal, and in particular there is a natural map
X ⊗ LRS → LRX for each X ∈ M.
A.1.2. Definition. R-localization is smashing if X ⊗ LRS � LRX for all X ∈ M.

Suppose from now on that R carries a unital product; we shall just say that R is
a ring. Let R = Fib(S → R), let A(R) = {R⊗s} be the R-Adams tower [Bou79, §5],
and let C(R) = {Cof(R⊗s → S)} be the associated tower under S.
A.1.3. Definition.

(1) The R-nilpotent completion of X ∈ M is X∧
R = lim(X ⊗ C(R)).

(2) Say that X is R-convergent if the natural map LRX → X∧
R is an equiva-

lence, or equivalently if the natural map X → X∧
R is an R-equivalence.

A.1.4. Lemma. Let N be another presentably symmetric monoidal stable ∞-
category, and let F : M → N be a symmetric monoidal, conservative, and limit-
preserving functor. Then

(1) F (X∧
R) � F (X)∧F (R) for X ∈ M.

(2) If F (X) is F (R)-convergent, then X is R-convergent, and F (LRX) �
LF (R)F (X).

(3) If F (R)-localization is smashing and F (X) is F (R)-convergent for all
X ∈ M, then R-localization is smashing.

Proof. (1) As F is limit-preserving, it is exact. As F is symmetric monoidal and
exact, F (X ⊗ C(R)) � F (X) ⊗ C(F (R)). Thus F (X∧

R) = F (limX ⊗ C(R)) �
lim (F (X) ⊗ C(F (R))) = F (X)∧F (R).

(2) Suppose that F (X) is F (R)-convergent. We must show that R⊗X → R⊗X∧
R

is an equivalence. As F is conservative, it suffices to show that F (R ⊗ X) →
F (R ⊗X∧

R) is an equivalence. As F is symmetric monoidal, and by (1), this map
is F (R) ⊗ F (X) → F (R) ⊗ F (X)∧F (R), which is an equivalence as F (X) is F (R)-
convergent. Thus X is R-convergent, and F (LRX) � F (X∧

R) � F (X)∧F (R) �
LF (R)F (X).

(3) Suppose that F (R)-localization is smashing and that F (X) is F (R)-conver-
gent for all X ∈ M. We must show that X ⊗LRS → LRX is an equivalence. As F
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is conservative, it suffices to show that F (X ⊗LRS) → F (LRX) is an equivalence.
As F is symmetric monoidal, and by (2), this is F (X)⊗LF (R)F (S) → LF (R)F (X),
which is an equivalence as F (R)-localization is smashing. �

Write Thick⊗(R) for the thick ⊗-ideal of M generated by R. Following [Mat15,
Section 3], let Tow(M) denote the category of towers {Xn} = {· · · → X1 → X0} in
M, let Townil(M) be the category of towers {Xn} for which there exists some r > 0
such that all Xn → Xn−r are null, and let Towfast(M) be the category of towers
{Xn} for which the associated tower Fib ({limXn} → {Xn}) is in Townil(M), where
{limXn} is the constant tower on lim{Xn}.

A.1.5. Definition. Say that R is locally descendable if C(R) ∈ Towfast(M).

Given towers X = {Xn} and Y = {Yn}, write X ∼ Y if {Xn}n≥s � {Yn}n≥s for
some s. Observe that X ∈ Towfast(M) if and only if X ∼ C⊕N with C a constant
tower and N ∈ Townil(M), and in this case C � limX.

A.1.6. Proposition. Consider the following conditions:
(1) R is locally descendable, i.e. C(R) ∈ Towfast(M);
(2) LRA(R) ∈ Townil(M);
(3) The map LRS → Cs(R) admits a retraction for some s;
(4) R-localization is smashing and agrees with R-nilpotent completion;
(5) LRS ∈ Thick⊗(R);
(6) For all X ∈ M, the spectral sequence associated to the tower M(S,X ⊗

C(R)) of spectra collapses at a finite page with a horizontal vanishing line
independent of X;

(7) For all F ∈ M compact, the spectral sequence associated to the tower
M(F,C(R)) of spectra collapses at a finite page with a horizontal vanishing
line independent of F .

Always (1)⇔(2)⇔(3)⇒(4), (5), (6), (7). If R-localization is smashing, then
(5)⇔(1), (2), (3). If M is a Brown category [HPS97, Definition 4.1.4], then
(7)⇔(1), (2), (3). If all compact objects in M are dualizable, then (6)⇒(7).

Proof. Abbreviate A = A(R) and C = C(R) for this proof.
(2)⇔(3). As R-localization is exact, there is a fiber sequence of towers LRA →

LRS → LRC, these localizations taken levelwise. As Cs ∈ Thick⊗(R) for each s,
we have LRC � C. Thus there is a fiber sequence LRA → LRS → C. Now, if
LRA ∈ Townil(M), then LRR

⊗s → LRS is null for some s, and thus LRS → Cs

admits a retraction. Conversely, if LRS → Cs admits a retraction, then LRR
⊗s →

LRS is null. Any s-fold composite LRR
⊗n+s → LRR

⊗n in LRA is obtained by
applying LR to R⊗n ⊗LRR

⊗s → R⊗n ⊗ LRS, and must therefore be null, proving
LRA ∈ Townil(M).

(2), (3)⇒(1). If LRS → Cs admits a retraction, then C ∼ LRS ⊕ LRA. As
LRA ∈ Townil(M), it follows that C ∈ Towfast(M).

(1)⇒(4). Suppose that C ∈ Towfast(M). Then C ∼ S∧
R⊕K with K ∈ Townil(M).

It follows that if X ∈ M, then X∧
R � lim(X⊗C) � X⊗S∧

R⊕ lim(X⊗K) � X⊗S∧
R,

the last equivalence being as X ⊗K ∈ Townil(M). Applied to X = R, as R∧
R � R,

we find that S → S∧
R is an R-equivalence, so that LRS � S∧

R. Combining these
gives X∧

R � X⊗LRS. In particular, X⊗LRS is R-local, and thus X⊗LRS � LRX.
Altogether, this proves (4).

Licensed to Univ of Virginia. Prepared on Wed Jun  5 08:03:58 EDT 2024 for download from IP 199.111.228.13.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



32 WILLIAM BALDERRAMA

(1), (4)⇒(3). Suppose C ∈ Towfast(M). Then C ∼ S∧
R⊕F with F ∈ Townil(M).

By (4), we know S∧
R � LRS, and this implies (3).

(3)⇒(5). This holds as Cs ∈ Thick⊗(R) for each s.
(5)⇒(3) assuming R-localization is smashing. One may prove by filtering

Thick⊗(R) (cf. [Bou79, Lemma 3.8] or [Mat18, Construction 2.5]) that if X is
R-nilpotent then X ⊗ A ∈ Townil(R). In particular, if LRS ∈ Thick⊗(R) and
R-localization is smashing, then LRA � LRS ⊗A ∈ Townil(R).

(1)⇒(6), (7). These follow from the construction of the spectral sequence of a
tower, cf. [Mat15, Proposition 3.12].

(6)⇒(7) assuming that all compact objects in M are dualizable. This holds as
M(F,C(R)) � M(S,DF ⊗ C(R)) for F dualizable, where DF is the dual of F .

(7)⇒(1) assuming M is a Brown category. Let K = Fib(S∧
R → C), so that

R is locally descendable if and only if K ∈ Townil(M). By [Mat15, Proposition
3.12], condition (7) ensures that there exists some r > 0 such that for all F ∈ M

compact, all r-fold composites in the tower [F,K] of abelian groups vanish. In other
words, there exists some r > 0 such that all r-fold composites in K are phantom
maps. [HPS97, Theorem 4.2.5] proves that all composites of phantom maps are
nullhomotopic. Thus all 2r-fold composites in K are nullhomotopic, proving that
K ∈ Townil(M) and so C ∈ Towfast(M). �

A.1.7. Corollary. Let T ∈ M be another ring. Suppose that R ∈ Thick⊗(T ) and
〈R〉 ⊂ 〈T 〉. If R is locally descendable then T is locally descendable.

Proof. As R ∈ Thick⊗(T ), we have 〈T 〉 ⊂ 〈R〉. Thus R and T have the same
Bousfield class. As R is locally descendable, R-localization is smashing. As R and
T have the same Bousfield class, it follows that T -localization is smashing. As
T -localization is smashing and LTS = LRS ∈ Thick⊗(R) ⊂ Thick⊗(T ), it follows
that T is locally descendable. �

A.1.8. Proposition. Let N be another presentably symmetric monoidal stable ∞-
category, and let F : M → N be an exact and symmetric monoidal functor. If R is
locally descendable, then F (R) is locally descendable, and F (LRX) � LF (R)F (X)
for any X ∈ M.

Proof. Suppose that R is locally descendable, and write C(R) ∼ LRS ⊕ K with
K ∈ Townil(M). As F is exact and symmetric monoidal, we have C(F (R)) �
F (C(R)) ∼ F (LRS) ⊕ F (K). As K ∈ Townil(M) and F is exact, we have F (K) ∈
Townil(N). Thus C(F (R)) ∈ Towfast(N), implying that F (R) is locally descendable.
Moreover, LF (R)S � limC(F (R)) � lim (F (LRS) ⊕ F (K)) � F (LRS). As both
R-localization and F (R)-localization are smashing and F is symmetric monoidal,
it follows that F (LRX) � F (X ⊗ LRS) � F (X) ⊗ LF (R)S � LF (R)F (X) for any
X ∈ M. �

A.2. Isotropy separation. Fix a finite group G. This section records some tech-
niques that allow one to relate a G-spectrum R to its geometric fixed points ΦKR.
We expect that this material is well known to the experts; the reader may observe
that the basic approach appears in the proof of the tom Dieck splitting [tD75],
and similar statements appear in [LMSM86, Chapter 2] and [GM95, Part IV].
Recently, more sophisticated theorems have appeared which give complete recon-
structions of G-spectra from their geometric fixed points and appropriate gluing
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data [Gla17,AMR19], though our purposes turn out to be better served by a more
elementary approach.

We begin by fixing some notation. We continue to write SpG for the homotopy
theory of genuine G-spectra. Given a category C, write Fun(BG,C) for the category
of objects in C with G-action. Given a subgroup K ⊂ G and G-spectrum X, write
resGK X for the underlying K-spectrum of X, and XK and ΦKX for the genuine and
geometric K-fixed points of X. Both XK and ΦKX carry residual actions by the
Weyl group WGK = NG(K)/K, the former via the formula XK = SpG(G/K+, X)
and the latter as ΦKX is a localization of XK . In particular, we may regard ΦK

as a functor
ΦK : SpG → Fun(BWGK, Sp).

Recall that a family of subgroups of G is a collection F of subgroups of G
closed under subconjugacy. Given such a family, write OF(G) for the associated
full subcategory of the orbit category of G, consisting of those G-sets G/H with
H ∈ F. Associated to any family F are two G-spaces EF and ẼF, which fit into a
cofiber sequence

EF+ → S0 → ẼF,

and are characterized by the fixed points

EFK
+ =

{
∗ K /∈ F,

S0 K ∈ F;
ẼFK =

{
S0 K /∈ F,

∗ K ∈ F.

The suspension spectra of these spaces play a central role in equivariant stable
homotopy theory; see especially [MNN17,MNN19] for a modern account, and [tD79,
Chapter 7] for a classical account. We will make use of the following formula for
EF, see [MNN19, Appendix A].

A.2.1. Lemma. There is an equivalence EF � colimG/H∈OF(G) G/H.

A G-spectrum X is said to be F-nilpotent if the map EF+ ⊗ X → X is an
equivalence, and F−1-local if the map X → ẼF⊗X is an equivalence. An important
special case of F−1-localization is the following, see for instance [MNN17, Section
6.2].

A.2.2. Lemma. Let P be the family of proper subgroups of G. Then

(ẼP⊗X)G � ΦGX,

and ΦG gives an equivalence from the category of P−1-local G-spectra to the cat-
egory of ordinary spectra.

An inclusion of families F1 ⊂ F2 induces a map EF1+ → EF2+, and so any G-
spectrum X may be filtered by the G-spectra EF+ ⊗X. Our main observations in
this subsection concern the layers of this filtration. Given families F1 ⊂ F2, define

E[F1,F2] = Cof (EF1+ → EF2+) � ẼF1 ⊗ EF2+.

Note that for any G-spectrum X, there is a natural square

(23)
X EF2+ ⊗X

ẼF1 ⊗X E[F1,F2] ⊗X.
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A.2.3. Lemma. The square Eq. (23) consists of equivalences if and only if ΦHX �
0 for all H /∈ F2 \F1. In particular, the homotopy type of E[F1,F2] depends only
on F2 \ F1.

Proof. Note that ΦHX � 0 for all H /∈ F2 \ F1 if and only if ΦHX � 0 for all
H /∈ F2 and all H ∈ F1. The condition that ΦHX � 0 for all H ∈ F1 is equivalent
to X → ẼF1 ⊗ X being an equivalence, and the condition that ΦHX � 0 for all
H /∈ F2 is equivalent to EF2+ ⊗X → X being an equivalence. This shows that if
Eq. (23) consists of equivalences, then ΦHX � 0 for all H /∈ F2 \F1, as well as half
of the converse. The other half follows by applying the same argument to ẼF1 ⊗X
and EF2+ ⊗X. �

Given a subgroup K ⊂ G, one says that a pair F1 ⊂ F2 is adjacent at K if
F2 \F1 = (K). In this case, we write E[K] = E[F1,F2]; Lemma A.2.3 ensures that
the homotopy type of E[K] depends only on the conjugacy class of K. Say that a
G-spectrum X is concentrated at K if X � E[K] ⊗X.

A.2.4. Proposition. If X is concentrated at K, then
XG � (ΦKX)hWGK .

Moreover, ΦK defines an equivalence from the full subcategory of G-spectra con-
centrated at K to Fun(BWGK, Sp).

Proof. First, note that if X is concentrated at K, then resGK X is P−1
K -local, where

PK is the family with respect to K of proper subgroups of K. In particular,
Lemma A.2.2 implies that XK � ΦKX.

Now, let F≤K be the family of subgroups of G subconjugate to K. As X is
concentrated at K, it is F≤K-nilpotent, and thus

XG � (EF≤K ⊗X)G � colim
G/H∈OF≤K

(G)
(G/H ⊗X)G � colim

G/H∈F≤K

XH .

If H ∈ F≤K is not conjugate to K, then the condition that X is concentrated
at K implies that XH � 0. This ensures that, though the inclusion BWGK �
B Aut(G/K) ⊂ OF≤K

(G) need not be cofinal as K ⊂ G need not be normal, this
inclusion still induces an equivalence

colim
G/H∈F≤K(G)

XH � colim
BWGK

XK � (XK)hWGK � (ΦKX)hWGK .

It remains to verify that ΦK : SpG → Fun(BWGK, Sp) is an equivalence when
restricted to the full subcategory of G-spectra concentrated at K. First we claim
that it is fully faithful. Indeed, let X and Y be G-spectra concentrated at K. Then
the same argument as above shows
SpG(X,Y ) � lim

G/H∈OF≤K
(G)

SpH(resGH X, resGH Y ) � SpK(resGK X, resGK Y )hWGK .

Lemma A.2.2 implies that SpK(resGK X, resGK Y ) � Sp(ΦKX,ΦKY ), and so we have
SpG(X,Y ) � Sp(ΦKX,ΦKY )hWGK .

This is the mapping spectrum in Fun(BWGK, Sp), so that ΦK is fully faithful on
G-spectra concentrated at K as claimed.

Next we claim that it is essentially surjective. As ΦK preserves colimits, it suffices
to show that if T is a WGK-set then Σ∞

+ T ∈ Fun(BWGK, Sp) is in its essential
image. To that end, it suffices to produce a pointed G-space X satisfying XK = T+
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and XH = ∗ for H not conjugate to K, for then Σ∞X ∈ SpG is concentrated at
K and satisfies ΦKΣ∞X = Σ∞

+ T . Indeed, one easily constructs a presheaf on the
orbit category O(G) of G satisfying

G/H �→
{
T+ H conjugate to K,

∗ otherwise,

and with AutO(G)(G/K) ∼= WGK acting on T+ in the prescribed manner. This
then gives rise to the necessary G-space by Elmendorf’s theorem. �

A.2.5. Lemma. Any G-spectrum X admits a natural finite filtration with

grX �
⊕
(K)

E[K] ⊗X,

this sum being over the conjugacy classes of subgroups of G.

Proof. Any maximal chain F0 ⊂ F1 ⊂ · · · ⊂ Fn of families of subgroups of G has
the property that each Fi ⊂ Fi+1 is adjacent at some subgroup, and that every
conjugacy class appears as Fi+1 \ Fi for exactly one i, so the associated filtration
EF0+ ⊗X → EF1+ ⊗X → · · · → EFn+ ⊗X has the desired properties. �

A.2.6. Proposition. Any G-spectrum X admits a natural finite filtration with

grXG �
⊕
(K)

(ΦKX)hWGK ,

this sum being over the conjugacy classes of subgroups of G.

Proof. Combine Lemma A.2.5 and Proposition A.2.4. �

A.2.7. Corollary. Let F : J → SpG be a diagram of G-spectra, and f : X →
limj∈J F (j) be a map of G-spectra. For f to be an equivalence, it suffices that f
induces an equivalence

(ΦKX)hWHK � lim
j∈J

(
(ΦKF (j))hWHK

)
of ordinary spectra for all subgroups K ⊂ H ⊂ G.

Proof. The map f is an equivalence if and only if it induces an equivalence
fH : XH → limj∈J F (j)H for all subgroups H ⊂ G. By Proposition A.2.6, both
source and target admit a natural finite filtration, with

gr fH :
⊕
(K)

(ΦKX)hWHK →
⊕
(K)

lim
j∈J

(
(ΦKF (j))hWHK

)
,

these sums being over the conjugacy classes of subgroups K ⊂ H. The corollary
follows as fH is an equivalence provided gr fH is an equivalence. �

A.3. Equivariant Bousfield localizations. We are now in a good position to
discuss equivariant Bousfield localization. Fix a ring G-spectrum R. Our main
observation is the following.

A.3.1. Theorem. R is locally descendable if and only if each ΦKR is locally
descendable as an object of Fun(BWGK, Sp). If WGK acts trivially on ΦKR,
then this holds if and only if ΦKR is locally descendable as an ordinary spectrum.
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Proof. Proposition A.1.8 implies that if the G-spectrum R is locally descendable,
then each ΦKR ∈ Fun(BWGK, Sp) is locally descendable; and that if WGK acts
trivially on ΦKR, then ΦKR is locally descendable in Fun(BWGK, Sp) if and only
if it is locally descendable in Sp.

Now suppose that each ΦKR ∈ Fun(BWGK, Sp) is locally descendable. By
Lemma A.2.5, C(R) admits a finite filtration with filtration quotients of the form
E[K] ⊗ C(R). As Towfast(SpG) ⊂ Tow(SpG) is a thick subcategory, it suffices
to show that E[K] ⊗ C(R) ∈ Towfast(SpG) for all K ⊂ G. Under the embed-
ding of Proposition A.2.4, E[K] ⊗ C(R) corresponds to the tower C(ΦKR) ∈
Tow(Fun(BWGK, Sp)), so this follows from the assumption that ΦKR is locally
descendable in Fun(BWGK, Sp). �

We can extend this to the global equivariant context. First, some notation. For
our purposes, a global family shall be a collection F of finite groups closed under
products, subgroups, and quotients. Schwede [Sch18] has shown that to each global
family F, there is a good symmetric monoidal and stable category GlobF of global
spectra with respect to F.

Associated to any G ∈ F is a symmetric monoidal functor

UG : GlobF → SpG,

which preserves limits and colimits [Sch18, Theorem 4.5.25]. Moreover, these func-
tors are jointly conservative as G is taken to range through F, and are compatible
with each other in the sense that resGK UG = UK for K ⊂ G.

Associated to any X ∈ GlobF and G ∈ F are the genuine and geometric fixed
points XG and ΦGX. The genuine fixed points XG are represented by the global
suspension spectrum of the global classifying space BglG, in the sense that XG �
GlobF(BglG+, X) [Sch18, Theorem 4.4.3]. In particular, XG carries a natural action
by the space Aut(BglG) of automorphisms of the global classifying space BglG. This
in turn is equivalent to the space of automorphisms of the ordinary classifying space
BG, as can be easily seen from the orbispace model for global spaces [Kör18].

Genuine and geometric fixed points are compatible with the functors UG, in the
sense that (UG)K � XK and ΦKUGX � ΦKX. Following the discussion after
[Sch18, Theorem 4.5.25], if we write L for the left adjoint to UG, then the natural
equivalences GlobF(BglK,X) � XK � SpG(G/K+, UGX) � GlobF(L(G/K)+, X)
show that L(G/K+) � BglK for K ⊂ G. It follows that WGK acts on XK through
its action on BK � EG×G (G/K).

A.3.2. Theorem. Let F be a global family, and suppose that for all G ∈ F and
K ⊂ G, the spectrum ΦKR is locally descendable as an object of Fun(BWGK, Sp).
Then R-localization is smashing and agrees with R-nilpotent completion, UGR ∈
SpG is locally descendable for all G ∈ F, and UGLRX � LUGRUGX for all X ∈
GlobF.

Proof. The hypotheses ensure that we may apply Theorem A.3.1 to deduce that
UGR ∈ SpG is locally descendable for all G ∈ F. The remaining assertions follow
by applying Lemma A.1.4 to (UG)G∈F : GlobF →

∏
G∈F SpG. �

In general, it seems difficult to determine when a ring R ∈ Fun(BG, Sp) is locally
descendable when G acts nontrivially on R. We will make use of the following simple
case.
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A.3.3. Lemma. Let G be a finite group and R ∈ Fun(BG, Sp) be a ring. If |G|
acts invertibly on R and the ordinary spectrum RhG is locally descendable, then
R is locally descendable.

Proof. As there is a G-equivariant map i : RhG → R of rings, we have 〈RhG〉 ⊂ 〈R〉.
As G acts invertibly on R, the composite RhG → R → RhG → RhG, with last map
the transfer, is an equivalence. Thus RhG ∈ Thick⊗(R), and the lemma then follows
from Corollary A.1.7. �

We also need the following.

A.3.4. Proposition. Suppose that R is a G-E∞ ring. Then R-nilpotent com-
pletion preserves G-E∞ rings. In particular, if all G-spectra are R-convergent,
such as if R is locally descendable, then R-localization preserves G-E∞ rings. The
same statements hold with G-E∞ ring spectra replaced by global ultracommutative
ring spectra.

Proof. If R is an A∞ ring, then C(R) may be identified as the tower of partial
totalizations of the cosimplicial object [n] �→ R⊗n+1 [MNN17, Proposition 2.14],
and thus R-nilpotent completion is given by X∧

R = limn∈Δ(X ⊗ Rn+1). When
moreover R and X are G-E∞ rings, this is the totalization of a cosimplicial diagram
of G-E∞ rings, and is therefore itself a G-E∞ ring. The same proof applies in the
global ultracommutative case. �

So far we have focused on localizations with particularly good finiteness prop-
erties. We also note an orthogonal case. First, a bit more notation. The forgetful
functors U : SpG → Fun(BG, Sp) and U : GlobF → Sp admit right adjoints, which
we shall denote bG and bF respectively. In particular, bGU(X) � F (EG+, X),
where EG+ is the classifying space for the family {e}.
A.3.5. Proposition. Let T be an ordinary ring spectrum.

(1) If T tG = 0, then LbG(T )X � bG(LTUX) for all X ∈ SpG.
(2) If T tG = 0 for all G ∈ F, then LbF(T )X � bF(LTUX) for all X ∈ GlobF.

Proof. The proof is essentially the same in both cases, so we shall just prove the
first. The assumption that T is a ring and T tG = 0 implies that ΦKbG(T ) = 0 for
all nontrivial subgroups K ⊂ G [MNN19, Proposition 2.13]. At this point, we could
deduce (1) by observing that bG(T ) is Bousfield equivalent to G+⊗T and applying
[Car22, Proposition 3.21]; however, we shall give the direct proof that also applies
in case (2).

First we show that bG(LTUX) is bG(T )-local. Fix C ∈ SpG which is bG(T )-
acyclic. As U(bG(T ) ⊗ C) � T ⊗ UC, it follows that UC is T -acyclic. Thus

SpG(C, bG(LTUX)) � Sp(UC,LTUX)hG � 0,
and this implies that bG(LTUX) is bG(T )-local as claimed.

Next we show that X → bG(LTUX) is a bG(T )-equivalence. To that end, we
must show that the map
(24) bG(T ) ⊗X → bG(T ) ⊗ bG(LTUX)
is an equivalence. It suffices to verify this after applying ΦK for all K ⊂ G. If
K = e, then Φe = U and Eq. (24) is the equivalence T ⊗ UX → T ⊗ LTUX.
If K 
= e, then both sides of Eq. (24) vanish as ΦK is symmetric monoidal and
ΦKbG(T ) = 0 for K 
= e.
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Together these prove that X → bG(LTUX) realizes bG(LTUX) as the bG(T )-
localization of X. �

A.4. Examples. We now give examples, beginning with the proof of
Proposition 1.1.5. Recall that KU denotes the global spectrum of equivariant K-
theory [Sch18, Section 6.4], satisfying UGKU � KUG for all G. We need the
following.

A.4.1. Lemma ([tD79, Section 7.7]). For any group G, we have

ΦGKU �
{
KU [ 1

n ](ζn) G ∼= Cn;
0 otherwise.

Given a subgroup K ⊂ G, define VGK = Im(NGK → Aut(K)); we comment
that |VGK| = [NGK : CGK] where CGK is the centralizer of K in G. Say that G
is KU-allowable if for all cyclic subgroups C ⊂ G, the order of VGC is invertible
in Z[ 1

|C| ].

A.4.2. Theorem. KUG ∈ SpG is locally descendable if and only if G is KU-
allowable.

Proof. Suppose that G is KU -allowable. By Theorem A.3.1, we must show that
ΦKKUG ∈ Fun(BWGK, Sp) is locally descendable for all subgroups K ⊂ G. By
Lemma A.4.1, we need only consider the case where K = C is a cyclic sub-
group of order n. Here ΦCKUG = KU [ 1

n ](ζn) is an Aut(C)-Galois extension of
KU [ 1

n ], and the Weyl group WGC acts on KU [ 1
n ](ζn) through a natural Aut(BC)-

action extending its Aut(C)-action. As Aut(BC) is 1-truncated and the order of
π1 Aut(BC) = C is invertible in KU [ 1

n ](ζn), the Aut(BC)-action on KU [ 1
n ](ζn)

factors through the truncation Aut(BC) → π0 Aut(BC) ∼= Aut(C). Thus WGC
acts on KU [ 1

n ](ζn) through the natural map WGC → VGC, and it suffices to show
that KU [ 1

n ](ζn) ∈ Fun(BVGC, Sp) is locally descendable.
By assumption, the order of VGC is invertible in KU [ 1

n ](ζn), so by Lemma A.3.3
it suffices to show that the ordinary spectrum KU [ 1

n ](ζn)hVGC is locally
descendable. This assumption moreover implies that π∗(KU [ 1

n ](ζn)hVGC) ∼=
(π∗KU [ 1

n ](ζn))VGC ; this is in particular a free π∗KU [ 1
n ]-module, and thus

KU [ 1
n ](ζn)hVGC is a free KU [ 1

n ]-module. Hence by Corollary A.1.7 it suffices to
verify that KU [ 1

n ] is locally descendable. This is the classical example of a lo-
cally descendable spectrum: [Bou79, Corollary 4.7] shows that KU -localization is
smashing and LKUS ∈ Thick⊗(KU), so the same is true for KU [ 1

n ], and local
descendability then follows from Proposition A.1.6.

Now suppose that G is not KU -allowable. We may thus find a cyclic subgroup
C ⊂ G of order n, prime p not dividing n, and cyclic p-subgroup D ⊂ NGC for which
the composite D → NGC → Aut(C) is nonzero. Write ΦCKUG = KU [ 1

n ](ζn). By
Proposition A.1.8, to show that KUG ∈ SpG is not locally descendable it suffices to
show that KU [ 1

n ](ζn) ∈ Fun(BD, Sp) is not locally descendable. In the following,
abbreviate L = LKU [ 1

n ](ζn).
For a spectrum X write i(X) ∈ Fun(BD, Sp) for the corresponding object with

trivial action. Then i(S) is the unit of Fun(BD, Sp), so by Proposition A.1.6 it
suffices to show that Li(S) /∈ Thick⊗(KU [ 1

n ](ζn)). Observe that we may additively
identify KU [ 1

n ](ζn) � Aut(C)+⊗KU [ 1
n ]. As the image of D in Aut(C) is nontrivial,
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it follows that if X ∈ Thick⊗(KU [ 1
n ](ζn)) then ΦDbD(X) = 0, so it suffices to verify

that ΦDbD(Li(S)) 
= 0.
Observe that KU [ 1

n ](ζn) ∈ Fun(BD, Sp) has the same Bousfield class as
i(KU [ 1

n ]). By Proposition A.1.8, as KU [ 1
n ] is locally descendable, we find Li(S) �

Li(KU [ 1
n ])i(S) � i(LKU [ 1

n ]S). As D is a cyclic p-group and p � n, it is easily verified
that ΦDbD(i(LKU [ 1

n ]S)) 
= 0, see for instance [MNN19, Proposition 5.36], and this
finishes the proof. �

A good supply of KU -allowable groups is given by the following.

A.4.3. Lemma. Suppose that G is nilpotent. Then G is KU-allowable.

Proof. As G is a finite nilpotent group, we may write G =
∏

p G(p) with G(p) ⊂ G

the Sylow p-subgroup. It follows that if C ⊂ G is any subgroup, then C =
∏

p C(p)
with C(p) = C ∩G(p), and that VGC =

∏
p VG(p)C(p). Thus if a prime p divides the

order of VGC, then VG(p)C(p) 
= e, implying that C(p) 
= e and thus that p divides
the order of C. As every prime dividing the order of VGC divides the order of C,
we find that the order of VGC is invertible in Z[ 1

|C| ], and so G is KU -allowable as
claimed. �

The following now suffices to prove Proposition 1.1.5.

A.4.4. Proposition. Let F be a family of groups, all of which are KU-allowable.
(1) Bousfield localization in GlobF with respect to KU is smashing, agrees

with nilpotent completion, and preserves ultracommutative ring spectra;
(2) If G is KU-allowable, then KUG ∈ SpG is locally descendable and KUG-

localization preserves G-E∞ ring spectra;
(3) UGLKUX � LKUG

UGX for all G ∈ F and X ∈ GlobF.

Proof. Given Theorem A.4.2, these follow from Theorem A.3.1, Theorem A.3.2,
and Proposition A.3.4. �

At this point, we have provided everything needed in the body of the paper. The
remainder of the appendix is dedicated to giving some additional examples of the
theory developed above. We start by noting that the techniques of Appendix A.2
may be used to give more quantitative information about equivariant K-theory
localizations.

A.4.5. Proposition. Let G be a KU-allowable group and let X be a G-spectrum.
Then for K ⊂ G, we may identify

ΦKLKUG
X �

{
LKU [ 1

n ]
(
ΦKX

)
K ∼= Cn,

0 otherwise,

and LKUG
X admits a finite filtration with

gr(LKUG
X)G �

⊕
(C) cyclic

L
KU [ 1

|C| ]
(ΦCX)hWGC ,

this sum being over conjugacy classes of cyclic subgroups of G.

Proof. The identification of ΦKLKUG
X follows from Proposition A.1.8 and

Lemma A.4.1, and the filtration from Proposition A.2.6. �
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If G is a p-group, then (KUG)(p) is Bousfield equivalent to bG(KUp). This
suggests looking at bG(En)-localization, where En is a height n Morava E-theory,
as a higher chromatic analogue of (KUG)(p)-localization. We start by recalling
the smash product theorem [Rav92, Chapter 7] in its strong form. Say that a
Landweber exact spectrum R is of finite height if there exists some n ≥ 0 such that
R∗/(p, v1, . . . , vn) = 0 at all primes p.
A.4.6. Lemma. Let R be a Landweber exact ring spectrum of finite height. Then
R is locally descendable.
Proof. This is clear if R � 0, so we may suppose that R is nonzero. By
Proposition A.1.6, it suffices to show that for all spectra X, the R-based Adams
spectral sequence for X collapses at a finite page with a horizontal vanishing line
which is independent of X. As p-localization is exact, we may identify the R(p)-
based Adams spectral sequence for X as the p-localization of the R-based Adams
spectral sequence for X. It therefore suffices to show that the R(p)-based Adams
spectral sequence for X collapses at a finite page with a horizontal vanishing line
which is independent of X, as well as of p for all sufficiently large primes p.

Fix a prime p, and let m ≤ n be maximal for which R∗/(p, v1, . . . , vm−1) 
= 0.
Applying the theory of [HS03] to the zigzag R(p) → R(p) ⊗ E(m) ← E(m), we
find that the R(p)-based Adams spectral sequence is isomorphic to the E(m)-based
Adams spectral sequence from the E2 page on.

If p > m + 1, then the E(m)-based Adams spectral sequence has a horizontal
vanishing line on the E2-page of y-intercept at most m2 +m [HS99a, Theorem 5.1].
This gives a horizontal vanishing line in the R(p)-based Adams spectral sequence
for p > n + 1 which is independent of such p.

It now suffices to show that the R(p)-based Adams spectral sequence has some
horizontal vanishing line for each of the finitely many primes p ≤ n+1. As above, we
may replace the R(p)-based Adams spectral sequence with the E(m)-based Adams
spectral sequence. The lemma then follows from [HS99b, Proposition 6.5]. �
A.4.7. Lemma. Let G be a finite group. Let R be a G-ring spectrum which admits
Thom isomorphisms for complex representations, and suppose moreover that RG

is a Landweber exact ring spectrum of finite height. Then the ordinary spectrum
ΦGR is Landweber exact and locally descendable.
Proof. As R admits Thom isomorphisms for complex representations, we may iden-
tify ΦGR � RG[e−1] where e is the oriented Euler class of the reduced complex
regular representation of G, see [tD79, Section 7.4] or [MNN19, Section 5]. As
localization is exact, it follows that ΦGR is Landweber exact and finite height, so
we may conclude by Lemma A.4.6. �

We now consider the spectra bG(En). We focus on the case where G is an
elementary abelian p-group, as here all Weyl groups act trivially. We expect that the
following observations extend to all abelian p-groups, but proving this would require
developing additional techniques for determining when an object of Fun(BG, Sp) is
locally descendable.
A.4.8. Proposition. Let B be an elementary abelian p-group. Then bB(En) is
locally descendable and bB(En)-localization preserves B-E∞ rings.
Proof. By Theorem A.3.1, to show that bB(En) is locally descendable it suffices to
show that the ordinary spectrum ΦAbB(En) is locally descendable for all A ⊂ B.
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Indeed, bB(En)A = E
BA+
n is a free En-module, and therefore Lemma A.4.7 applies.

That bB(En)-localization preserves B-E∞ rings now follows from Proposition A.3.4.
�

As with equivariant K-theory, it is possible to be more explicit. In the following,
we take the convention that E0 = HQ and En = 0 for n < 0. Given an elementary
abelian p-group A, write rk(A) for the rank of A, i.e. the dimension of A viewed as
a vector space over Fp.

A.4.9. Lemma ([Tor02]). Let A be an abelian p-group of rank t. Then 〈ΦAbA(En)〉
= 〈En−t〉.
Proof. As ΦAbA(En) is p-local and Landweber exact, it is Bousfield equivalent to
Ed where d is maximal for which

ΦAbA(En)/(v0, . . . , vd−1) 
= 0.
As

ΦAbA(En)/(v0, . . . , vd−1) � ΦAbA(En/(v0, . . . , vd−1)),
[MNN19, Proposition 5.28] says that this is nonzero if and only if t ≤ n − d, i.e.
d ≤ n− t, proving the lemma. �

Abbreviate Ln = LEn
and Lb

n = LbB(En).
A.4.10. Proposition. Let B be an elementary abelian p-group and let X be a
B-spectrum. Then

ΦALb
nX � Ln−rk(A)ΦAX,

and Lb
nX admits a finite filtration with

gr(Lb
nX)B �

⊕
A⊂B

Ln−rk(A)(ΦAX)hB/A,

this sum being over the subgroups of B.
Proof. The identification of ΦALb

nX follows from Proposition A.1.8 and
Lemma A.4.9, and the filtration from Proposition A.2.6. �

We end our discussion of the localizations Lb
n with the following observation.

A.4.11. Proposition. Let B be an elementary abelian p-group. Then
(SB)(p) � lim

n→∞
Lb
nSB .

Proof. By Corollary A.2.7 and Proposition A.4.10, the map (SB)(p) →
limn→∞ Lb

nSB is an equivalence provided the following condition holds. Let D ⊂
C ⊂ B be subgroups, write A = WCD = C/D, and suppose that C is of rank t.
Then the map

(BA+)(p) → lim
n→∞

Ln−tBA+

is an equivalence. This in turn holds if and only if S(p) � limn→∞ LnS and
Σ∞BA � limn→∞ LnΣ∞BA. The first condition is exactly the classical chro-
matic convergence theorem [Rav92, Theorem 7.5.7]. The second condition asks
that chromatic convergence holds for Σ∞BA.

Barthel [Bar16] has shown that if X is a spectrum, then limn→∞ LnX � X(p)
provided that X has finite projective BP -dimension. Work of Johnson–Wilson
[JW85] shows that if A is an elementary abelian p-group, then BA has projective
BP -dimension equal to rk(A). Combining these proves the proposition. �
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We end with an orthogonal class of examples. Combining Proposition A.3.5
with [GS96, Theorem 1.1] shows that LbG(K(n))X � bG(LK(n)UX) for any finite
group G and G-spectrum X. Let us just focus on the simplest case, which may be
interpreted more conceptually.
A.4.12. Proposition. Let G be a p-group. Then for any X ∈ SpG, we have

LKUG/(p)X � bG(LKU/(p)UX).
Proof. By the p-adic version of Atiyah’s completion theorem [Ati61, Theorem 7.2],
[AT69, III §1, Proposition 1.1], there is an equivalence KUG/(p) � bG(KU/(p)).
By [GM95, Theorem 13.1], (KU/(p))tG = 0 for any finite group G. The proposition
then follows from Proposition A.3.5. �

We deduce Corollary A.4.13, which was also independently obtained in [BGS22,
Proposition 6.3] for p odd.
A.4.13. Corollary. If G is a p-group, A is a finite G-spectrum, and k ∈ Z×

p

projects to a topological generator of Z×
p /{±1}, then there is a fiber sequence

(25) LKUG/(p)A (KOG ⊗A)∧p (KOG ⊗A)∧p
ψk−1

.

If p is odd, then we may replace KO by KU provided k is a topological generator
of Z×

p .
Proof. The assumptions that G is a p-group and A is finite ensure that Eq. (25) is
equivalent to

bG(LKU/(p)UA) bG((KO ⊗ UA)∧p ) bG((KO ⊗ UA)∧p )bG(ψk−1) ;

in other words, that Eq. (25) is the image of the standard fiber sequence for
LKU/(p)UA under the functor bG. The corollary follows as bG is exact. �
A.4.14. Remark. Let us relate Proposition A.4.12 to the body of the paper. If R
is an E∞ ring and G is a finite group, then bG(R) is a G-E∞ ring. If K ⊂ G is a
subgroup of index m and α ∈ RO(K), then the norm

Pα : πK
α bG(R) → πG

IndG
K

αbG(R)

may be identified as the composite

[Th(α ↓ BK), SK(1)] → [Th(α ↓ BK)⊗m
hΣm

, SK(1)]
∼= [Th((ρm ⊗ α) ↓ B(Σm �K)), SK(1)] → [Th((IndG

K α) ↓ BG), SK(1)],
where the first map is an ordinary power operation and the last map is restriction
along a suitable map BG → B(Σm �K).

In particular, take G = Cp, and suppose that R is p-local. As the map

(Sn)⊗p
hCp

→ (Sn)⊗p
hΣp

is p-locally the projection onto a summand, norms for bCp
(R) are determined

by the pth symmetric powers for R discussed in Subsection 6.1. In light of
Proposition A.4.12, we may therefore regard our computation in Section 6 as de-
scribing norms on LKUCp/(p)SCp

, although to make this completely explicit would
require describing the effect of the projection (Sn)⊗p

hCp
→ (Sn)⊗p

hΣp
on K(1)-local

cohomotopy.
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