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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES

WILLIAM BALDERRAMA

ABSTRACT. We describe how power operations descend through homotopy
limit spectral sequences. We apply this to describe how norms appear in the
C2-equivariant Adams spectral sequence, to compute norms on 7 of the equi-
variant K U-local sphere, and to compute power operations for the K(1)-local
sphere. An appendix contains material on equivariant Bousfield localizations
which may be of independent interest.
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1. INTRODUCTION

Let G be a finite group. The best analogue of a commutative ring in the context
of G-equivariant stable homotopy theory is that of a G-E., ring, or G-equivariant
commutative ring spectrum in the sense of [HHR16]. If R is a G-Eo, ring, then not
only is R equipped with the usual ring operations of addition and multiplication,
but also with multiplicative norms

NYR - R
for all subgroups K C G, reflecting a higher form of commutativity present on R.
Here, N is the Hill-Hopkins-Ravenel norm [HHRI6]; informally, N¢R = RO®G/K,
with equivariance intertwining the action of K on R and the action of G on G/K.

This additional structure is reflected in algebra. If R is a G-E, ring, then the col-
lection myR = {mf R : K C G} carries the rich algebraic structure of a G-Tambara
functor [Tam93|, [Bru07]. This means that, in addition to the linear structure of re-
strictions, transfers, and products, one has multiplicative but generally nonadditive

norm maps
NE: TR — ﬂ'g; R,
Received by the editors September 16, 2022, and, in revised form, April 18, 2023, August 16,
2023, and September 6, 2023.
2020 Mathematics Subject Classification. Primary 19147, 19L20, 55P43, 55P60, 55T05.

(©2024 by the author

Licensed to Univ of Virginia. Prepared on Wed Jun 5 08:03:58 EDT 2024 for download from IP 199.111.228.13.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/9073

2 WILLIAM BALDERRAMA

interacting with the linear structure in rich ways. More generally, norms exist
outside degree 0 as maps

. K G
PQ'WQR_)’/TInd?{aR

defined for all subgroups K C G and virtual orthogonal representations o €
RO(K). This rich algebraic structure has seen extensive study over the past decade,
e.g. [Stri2l[Nak12|[Ull13alHil17,[BHI8[AB18,[HM19]. However, despite this wealth
of theoretical work, relatively few specific computations are available, outside cer-
tain well behaved cases. One need not go all the way to equivariant homotopy
theory to see this: ordinary E., rings already carry power operations, but rela-
tively few computations are available, outside the most well-behaved examples of
Eo rings in positive characteristic and certain complex-oriented theories.

Consider the problem of computing just the groups 7w, R. The homotopy theo-
rist’s tools of choice for such computations are a wide array of spectral sequences,
which arise whenever one has a way of building R out of simpler pieces. In some
cases, these simpler pieces may even be simple enough that one can understand
their norms. This leads to the question: how can we take this information and
descend it through the spectral sequence?

Norms in spectral sequences have been considered previously, such as in the
context of the slice spectral sequence in [UII13b] Section I.5] and [HHRI7, Section 4].
Our own interest is in situations that are orthogonal to this; in short, in spectral
sequences where Fuler classes are detected on the 0-line. Moreover, we care not
just about norms of G-E, spectra, but also other operations of a similar nature,
such as power operations for ordinary E., rings [BMMS86] and power operations
in the global equivariant context [Schi8[Sta21].

This paper describes how such operations may be computed in homotopy limit
spectral sequences (HLSSs), such as generalized Adams spectral sequences and ho-
motopy fixed point spectral sequences. We then give applications which demon-
strate how this plays out in practice. In fact these applications, described in
[Subsection 1.1l might be considered the core of the paper, although it is the tools
used which seem more widely applicable. Let us describe these in the context of
equivariant norms as above.

Let R: J — Commg be a diagram of G-E., ring spectra. From the underlying
diagram of G-spectra, one may produce for all K C G and o € RO(K) an HLSS
which we shall index as

KB = (@ mfaR) = ml im R()).

Here, we have written H™(J;—) for the nth right derived functor of limjey:
Fun(g, Ab) — Ab. For example, when J = A, this is the usual spectral sequence of
a cosimplicial object.

Write Z5t and B! for the r-cycles and r-boundaries of this spectral sequence,
and write a§ € wf_R[G / K]SG for the class represented by the inclusion of fixed
points St — SRIG/K],

1.0.1. Theorem (Subsection 3.2).

(1) The composite a?(Pa 1s additive. In particular, for t > s > 0 there are
induced maps

G\t K pstagtta G 5+Ind$ o, t+Ind$ o
Qa = (QK) Pt+a' E2 — E’2 K K
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G G
(2) QO((KZﬁ+o<,t+a) I GZf'HndK a,t+Ind% a fO’F £>5>0.

(3) Qu(KBstattay GB}H_Indg vt Indig o fort>s>-—1
T fall [l .
(4) For z € KEsTotre with s > 0, we have

Qal(dr(2)), t>1

Quo(dr(2)) + c(dr(x),x), t=s=0;
where c is related to the addition formula for P,. For example, when
K =e and G = Cs, we have ¢(d,(x),x) = tr(d,(x)-T) with T the involution
applied to x.

(5) Ifz € ES™ is a permanent cycle detecting f € 7 limjcg R(j), then the
permanent cycle Q. () detects P,(f) modulo classes in higher filtration.

dr(Qa(r)) = {

Informally, P, is modeled in filtration ¢ by (a%)!Piio. This is immediately
applicable to computations, and we give applications below. As usual, the develop-
ment was the other way around: we found ourselves with various computations we
realized we could carry out, and questions we could answer, if only we had some
theorem along these lines. It was clear from the start that such a theorem should
follow by a consideration of the space-level norm

(1) Po: Mapg,x (S resf R) — Mapg,a (Slndﬁ “ R),
and in fact most of [Theorem 1.0.1] does follow quickly from an inspection of[Eq. (1)]

the main observation being that m P, = (a?()tPHa. The bulk of the work in
the proof of [Theorem 1.0.1] stems from the additional care needed to handle what
happens on the fringe; for example, to describe da(Py(z)) for x € H°(J; 75 R).
Although the applications we give below do not need this more refined information,
we expect it will be useful in future work.

1.1. Applications. Let us now describe applications. We begin with an applica-
tion to the Cy-equivariant Adams spectral sequence. Let

A% = 71, (HFy ® HF,), A% = 7% (HFS? ® HFS?)
denote the classical and Cs-equivariant dual Steenrod algebras, and write
Extg = H*(A%),  Extg, = H*(A?)

for their cohomology, serving as the Es-pages of the classical and Cs-equivariant
Adams spectral sequences [HK01, Section 6], [GHIR20]. Algebraically, the latter is
of the form
Extc, = Extr @ Extyc .

Here, Extg C Extc, is the cohomology of the R-motivic Steenrod algebra, the
inclusion of which is compatible with Adams differentials, and Exty¢ is some other
summand. Let p = aS? € 7_,S¢, denote the Euler class of the sign representation.
By [DI17, Theorem 4.1], there is an isomorphism Extg[p~!] & Extq[pT!], with a
suitable shift in degrees. In fact, the proof gives rise to an explicit splitting

(2) Exte, & Exta[p] ® Extd ™" @ Extye,
where the copy of Ext.; is given as follows. Write
(3) A =TFylé1, 6o, ],
AR =TFo[r, pllér, &, -+ 70, 1, /(77 4 T+ p(T0Ei1 + Ti1))-
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Then the map
(4) P: AT s AR C A%, PG)=¢&

is a map of Hopf algebroids, and the induced map P: Extq — Extc, picks out the
copy of Ext, in

The isomorphism Extg[p™!] = Exta[p®!] extends to an isomorphism Extc, [p™!]
>~ Extq[p*!], and both of these isomorphisms have a direct geometric interpreta-
tion: the first models real Betti realization, and the second models taking geometric
fixed points. On the other hand, the map P appears at first glance to be purely
algebraic: for example, it does not preserve permanent cycles. It turns out to have
the following geometric significance.

1.1.1. Theorem (Section 4l). Let x € Exte be a class in filtration f. If z survives
to the E,-page, then pf P(x) € Extc, survives to the E,-page, and

d, (! P(2)) = p* " P(d, (x)).

Moreover, if x is a permanent cycle detecting o € 7,S, then the permanent cycle
p! P(z) € Extc, detects the symmetric square Sq(c) € Ty (140)Sc, -

[Theorem 1.1.] is not surprising, given the general shape of Extc,. If x € Extq
detects o € 7,5, then as the geometric fixed points of Sq(a) are «, one finds
that Sq(a) is detected by some preimage of a under the localization Extc, —
Extc,[p!] & Exta[p®!]. If @ is in filtration f, then this indicates that Sq(a) is
detected by pf P(z) plus possible p-torsion error terms. [Theorem 1.1.1]says that in
fact Sq(a) is detected by pf P(z) on the nose, and describes what happens when z
is not a permanent cycle. The proof amounts to relating to the norms on
7, (HFS? @ HFS?), and then applying [Theorem 1.0.1}

1.1.2. Example. We have pP(h1) = phga, and thus Sq(7q) is detected by the same
class detecting pvc,, where 7 is the nonequivariant complex Hopf fibration and
v, is the Cy-equivariant quaternionic Hopf fibration. As Sq(na) must also lift 77,
by consulting the tables in [DI17] and using the fact that m.Sc, agrees with 7, .S
in this range, we find that the only possibility is

Sa(ne) = nanc, + pve,-

This was originally computed by Araki-Iriye [AI82] Theorem 10.12], and its compu-
tation via [Theorem 1.1.1] can be considered overkill: as soon as one knows 7S¢,
in these degrees, Sq(n.1) is determined by the fact that it lifts % and has geometric
fixed points 7.

1.1.3. Example. Consider pP(hs) = phys. As hsz is a permanent cycle, it follows
that phy is a permanent cycle, as was first shown by Belmont—Isaksen [BI22]. More-
over, phy detects Sq(o), a fact closely related to the Mahowald invariant R(c) = o2.
This was observed in [BCQ21], Theorem 7.4.7], which was one of the inspirations for
[Theorem 1.1.01 This example illustrates that the additional p’s in [Theorem 1.1.11
are necessary: hg = P(h3) itself supports the differential do(hy) = hoh3, and

phy = pP(h3) is not divisible by p on the Es-page.
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Our next applications are to power operations in the context of chromatic homo-
topy theory, at chromatic height 1. We begin with the following. In recent work,
Bonventre-Guillou—Stapleton have shown that if G is an odd p-group, then there
is an isomorphism

ToLrvsSe = RQ @ moLiu S = RQe]/(2¢, €?)

of Green functors [BGS22, Theorem 1.1, Proposition 6.7]. Here, Lxy,Sq is the
localization of the G-equivariant sphere spectrum with respect to G-equivariant
K-theory, and RQ is the Green functor whose value at K C G is the rational
representation ring of K. They also verify that KUg-localization preserves G-E.,
structures for G' an odd p-group. This gives my Lk, Sc the structure of a Tambara
functor, but they are only able to determine its norms in the case where G = Cpn
is cyclic [BGS22, Proposition 10.6]. [Theorem 1.0.1] allows us to directly compute
norms in contexts like this, and in the end we find the following.

1.1.4. Theorem (Subsection 5.4). Fiz an odd p-group G and subgroup K C G.

Let Q[G/K] = Coker(Q — Q[G/K]) be the reduced permutation representation of
the G-set G/K, and define

e(G/K) = (~1)"A"(Q[G/K]) € RQ(G).

n

Then the norm
Ng: RQ(K)[/(26,@) - RQ(G)[d)/(26,)
arising from the G-Eo structure of Lxy,Sc satisfies
NE(0) = e(G/K) - .

In particular, if K C G is normal, then N$(€) # 0 if and only if G/K is cyclic,
in which case N (e) = Q[G/N] - € where N C G is the unique subgroup of index
p containing K.

The proof of Mheorem 1.1.4lamounts to using [Theorem 1.0.1]to show that N (e)
is detected in the KUg-based Adams spectral sequence by e(G/K) - €. In fact this
is true for an arbitrary finite group G and subgroup K C G, not just for odd
p-groups. For this and other reasons, the correct context for our computation is
not G-equivariant homotopy theory for any particular group G, but rather global
equivariant homotopy theory.

Let Glob be the category of global equivariant spectra with respect to the family
of finite groups, and let KU the global spectrum of equivariant K-theory, both as
developed by Schwede in [Schi8]. There are forgetful functors Ug: Glob — 8p@
satisfying Us KU = KUyg; as far as we are concerned, this can be treated as the
definition of KUg. In order to ensure compatibility between statements made in
the global context and statements made in the context of [BGS22|], we prove the
following.

1.1.5. Proposition (Proposition A.4.4)). Let Glob,; be the category of global equi-
variant spectra with respect to the family of finite nilpotent groups

(1) Bousfield localization in Globyy with respect to KU is smashing, agrees
with KU -nilpotent completion, and preserves ultracommutative ring spec-
tra;
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(2) If G is nilpotent, then Bousfield localization in Sp® with respect to KUg
is smashing, agrees with KUg-nilpotent completion, and preserves G-Eo
ring spectra;

(3) In particular, UgLxuS ~ Lxy,UcSc for G nilpotent.

The proof of|[Proposition 1.1.5|requires some general theory regarding equivariant
Bousfield localizations. This theory is interesting in its own right, and also applies
to other examples of interest in chromatic equivariant homotopy theory. For this
reason, we have separated out our discussion of equivariant Bousfield localizations
into which may be read independently of the rest of the paper.

Now let us return to considering power operations. Observe that [Theorem 1.1.4]
is a genuinely integral result, mixing 2-primary homotopy with odd-primary equiv-
ariance. If instead of working integrally we work K (1)-locally, then equivariant
norms amount to ordinary K (1)-local power operations (see [Remark A.4.14). In
[Hop14], Hopkins explains how one may use K (1)-local splittings

(5) LyyBYp+ >~ Sk1) @ Sk

to define the structure of a 8-ring on g of an arbitrary K (1)-local E., ring spectrum
(see Remark 6.4.4). At p = 2, the f-ring structure of TS (1) = Za[e]/(2¢, €2) has
been clarified only recently by Carmeli—Yuan Theorem 5.4.8], who prove
that 0(e) = e.

The story should not stop with my. However, the picture quickly becomes less
clear, as there is no analogue of for LK(l)(Szn)fgp when n # 0. One of the
original motivations for this paper was a desire to be able to compute with these
more complicated examples, where power operations cannot be described as some
clean algebraic object, such as a -ring. Using a suitable variant of [Theorem 1.0.1]
we carry out the following computation.

1.1.6. Theorem. Let Sk (1) = Lxu/p)S. Then the pth total power operation
P:[S", Sk@)] — [(Sn)%pasxu)]
is as given in [Theorem 6.3.2) for p odd and [Theorem 6.4.3] for p even, modulo a

certain indeterminacy at p = 2 when n =1 (mod 8) and n # 1.

1.2. Organization. This paper is organized as follows. In [Section 2, we study
the naturality of the HLSS of a diagram of spectra with respect to its underlying
diagram of pointed spaces. This analysis is well-suited for any homotopy operations
obtained from pointed functors between stable categories, and in [Section 3l we make
this explicit in the case of the m-fold smash power functors P™: §p& — Sp>mtC.

Both sections culminate in [Subsection 3.2] which puts everything together into
a form suitable for applications, including [Theorem 1.0.1] and variants. The reader
interested in the applications may wish to start here.

We then give the promised applications. In [Section 4l we prove [Theorem 1.1.1F
in we prove [Theorem 1.1.4F and in we carry out the compu-
tation of [Theorem I1.1.61 In [Appendix A] we give some material on equivariant

localizations, including [Proposition 1.1.5]

2. UNSTABLE NATURALITY OF THE HOMOTOPY LIMIT SPECTRAL SEQUENCE

This section studies the naturality of stable HLSSs with respect to unstable maps.
We begin by recalling the construction of the HLSS in the form most convenient
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 7

to us in [Subsection 2.1] and [Subsection 2.2l In [Subsection 2.3l we consider the
analogous unstable construction, and in we compare the two. We
state and prove the main naturality theorem, [[heorem 2.5.3] in [Subsection 2.5l

In some sense, this material should be known to those who have worked with
extended homotopy spectral sequences in the sense of Bousfield-Kan [BK72, Ch.
IX, §4]. The main naturality theorem holds by construction, and most of our
work in this section is to recall enough of the construction that we may be sure
of this. Moreover, we package this unstable information entirely into the context
of ordinary spectral sequences, thereby removing any need to contend with the
extended spectral sequences lurking in the background.

2.1. The spectral sequence of a tower. Let
F(t+1) F(t) F(t—-1)
s Xt +1) — X () — X[ —-1) —— -
be a tower of spectra, where F(t) = Fib(X (¢t) — X (t—1)). Then there is a spectral
sequence
(6) Byt = nF(t) = 7, lim X(n),  dot: ESt - p3mbttr—l
n—roo
Write Z5t and B! for the r-cycles and r-boundaries of this spectral sequence, so
that
0=By'cByCc---CczZy'czZy =nF(t), EX =2 /BM,.

We will find it convenient to interpret the differentials in this spectral sequence as
relations, just as in [Bou89|, so we begin by recalling the construction in this form.
Define

(7) DY =mF(t) Xpxoy Im (e X (t+ 71— 2) - 7, X (t) x ms1 F(t+7—1)),
where 7 X (t + 7 —2) = ws_1F(t +r — 1) is obtained from the boundary map
X({t+r—2)— XF(t+r—1). Note that

Dyt Cm F(t) x my 1 F(t+7—1) = 27" x Z77 11
Recall the following basic fact about additive relations.

2.1.1. Lemma. Let M and N be abelian groups and R C M x N a subgroup.
Define
Z=Im(R— M) K =ZKer(R— M)
B =1Im(K — N) C = Coker(B — N).
Then the relation Im(R — Z x C) gives a well-defined function Z — C.

The spectral sequence of [Eq. (6)|is now given as follows.

2.1.2. Lemma (Definition). The following hold, where Z;"* = w,F(t) = E5" as
above.
(1) 2ty =Im(Dy' — Z7"");
(2) By = Im(Ker(D3t — Z7') — Z7 B,
(3) ast: 72t — zz BTl BT T s the function associated with the
relation D$*t;
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8 WILLIAM BALDERRAMA

(4) Z3t =Ker(Dst — z7~ V),
(5) By~ bttr=l =Im(Dpt — z7 M),

2.2. The homotopy limit spectral sequence. Given a diagram M : J — Ab of
abelian groups, let H(J; M) denote the limit of the composite

g My oAb —H 8p
and let
H"(3; M) = Q>7"H(F; M), H™(3; M) = 7_,H(3; M) = mH" (d; M).

We may identify H"(J; —) as the nth right derived functor of lim;cg: Fun(g, Ab) —
Ab. Given a diagram X : J — 8p, each m X is a diagram J — Ab. The HLSS

By = H'™*(@;mX) = m, lim X ()
Jj€

is then the spectral sequence associated to the tower
EHH(F; T X) SIH(F; m X) B w1 X)
\ \ 1

= limyeg (X (J) <e1) — limyeg (X () <o) — limyeg (X () <e—1) — -+
Note in particular
DS C H5(J;m X)) x H"5(F; miqr 1 X)

and
ESt' =0 for t<s.

2.3. Unstable homotopy limits. The preceding construction is not quite suffi-
cient for our purposes, as it lacks the naturality properties we require. If X, Y : J —
Sp are two diagrams of spectra, then a natural transformation X — Y does induce
a map of HLSSs in the usual way; however, we are interested in the more exotic
situation where we are given a natural transformation Q°X — QY of diagrams
of spaces, not necessarily stable. Here, one may suppose without loss of generality
that X and Y are valued in connective spectra.

All of our applications described in are of this form, requiring
a space-level analysis of unstable natural transformations. For example,
[Theorem 1.0.1] will follow from a consideration of the natural norm map

Po: Q°8pE (S*, res§ R) — Q°8pC(S™mik @ R)

of where R is a diagram of G-E., rings. This map is pointed, but is
essentially never stable. To access naturality with respect to this sort of map, we
need a construction of the HLSS which depends on only the underlying diagram of
spaces.

Let T be a space. Then T has a Postnikov tower:

'-'—>T§t+1—>T§t—>T§t,1—>~“—>TS1—)TSOZW()T.

The layers of this tower are determined by suitable k-invariants. If 7" is simply
connected then these are of the form T<;_y — K(mT,t + 1), but the situation
is more subtle in general: if T is merely pointed and connected then the target
must take into account the natural action of 77T on m;T', and in the most general
case one must instead consider a variant of K (7T, ¢+ 1) which regards “m;T” as a
bundle of groups over the fundamental groupoid of 7.
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 9

We are in a certain reasonably pleasant middle ground where T need not be
connected, but for all points x € T and ¢ > 1 the natural action of 71(T,z) on
(T, x) is trivial. Call such a space simple. Informally, a simple space is a disjoint
union of connected spaces for which the theory of Postnikov towers is at its simplest.
For n,m > 1, let B pI1,T = [[,c, 7 K(7n(T,t), m). Then we have the following
standard fact.

2.3.1. Lemma. If T is a simple space, then there are Cartesian squares

K(’]Tt(T, $), t) Tgt 7TOT

T

{pe(x)} ——— T<yy —— BLILT

where the right square always exists naturally in T, and the left square exists
naturally in T and the choice of a point x € T<,, provided such a point exists.

In other words, B;ﬁ%HtT, treated as a bundle of abelian groups over the discrete
space moT, is the correct replacement for K (m:T,t+ 1) in the theory of Postnikov
towers for non-connected simple spaces. It is, in particular, natural in 7. This
bit of maneuvering would not be necessary if we restricted ourselves to considering
only the case where T is connected. In the context of the main theorem of this
section, [Theorem 2.5.3), it is needed only to account for what happens with the path
components living at the very fringe of the spectral sequence.

Now say that T': § — Gpd, is a diagram of simple spaces. Let

H°(3; moT) = lim mT ().
Jj€EJ

Observe that as T is simple, if x € H°(J; moT) and t > 1, then (T, z) is naturally
a g-shaped diagram of abelian groups. Let

HEL (3 ILT) = limy BTGy~ [T (@ m(T, 2)).
z€HO(J;moT)
2.3.2. Lemma. There are Cartesian squares
F (@ (T, 7)) — lim;ey (T(j)<t) —— HO(3;m0T)
| J Lo
{pi(2)} ———— lim;eg(T(j)<i—1) —— HL LG TLT)

where the right square always exists naturally in T, and the left square exists
naturally in T and the choice of a point x € limjcy(T(j)<¢), provided such a
point exists.

Proof. This follows by taking limits over [Lemma. 2.3.1 O

Fix s >0,t>0,r >2and « € molimjeg(T(j)<t4+r—2), and write the same for
the image of x in 7o lim;ey(T(j)<n) for n < t+r — 2. Define

(8) D&t =lim (Wspgl(x) — T <lirr81(T(j)<t),x> — If;) ,
: je < :
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10 WILLIAM BALDERRAMA

where

JjEJ

Irs,’; = Im (Ws <lim(T(j)<t+r2),x)

— Mg <£1£(T(])<t),x> X g (f}fﬁg;(g, Ht+T,1X),£E) ) .

When s = 0, we extend this notation to be defined having fixed just = €
7o limjeg(T(j)<¢—1). We will only make use of the simplest case, where T is pointed
and either s = t = 0 or x is the basepoint, but make no such restriction for the
moment. Observe that D3 C J2! where
. H3(F;my (T, ) x HF"=5(F; mpyr 1 (T, 1)), s>1;
(9) S = t(dq. t+r(q. _
{H (@7 (T,2)) x Iyenogirgry H (& m0r1(Ty), 5 =0.

Let S: J — Gpd,, be another diagram of simple spaces, and f: T'— S a map of
diagrams. This induces maps

[ %,igg(T(j)gt) - gigg(s(j)gt)

of spaces, and for x € H°(J; moT) and t > 1, a map
frmi(T ) = mi(S, f(x))

of diagrams of abelian groups. Combined, these yield
FTRT) = T30 ()

2.3.3. Lemma. The map f: J3H(T) —>Jf’;(m)

Proof. This is clear from the construction. O

(S) satisfies f(D3:4(T)) C D}y, ().

2.4. Comparing the stable and unstable constructions. Let X be a spec-
trum, and consider the underlying simple space 2*°X. For = € mX, write QX
for the path component of 2°°X corresponding to z. As Q°°X is a group, there
are equivalences

Yo: QX = QF X, ve(a) =a— x.
2.4.1. Lemma. The above patch together into an equivalence
QX ~mX x QF X,
compatible on Postnikov towers with equivalences
B ILX 2 moX x K(m X, t+1)

fort > 1. These equivalences are natural with respect to Q°°X as a group object.

Now say that X is a diagram of spectra, and consider the underlying diagram
Q>°X of simple spaces. For s > 0 and r > 2, define

10 = {Ht_s(ﬂ;mX) x H 7 (G, X), s> 1,

HY(J;mX) x H(J;m0X) x HH"(J;mpyr1X), s=0.
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 11

2.4.2. Lemma. Let D} and J3! and be defined as in[Eq. (8)] and[Eq. (9)| for the

T
diagram QX . Then there are isomorphisms

s,t ~ 78,t
Jr,’x:Jr”

and
Dyg s>1,
Dyt = D% s =0 and we have a lift of x to molimjecg(X<i4r_2),
1] otherwise,

as subsets of JSt. These identifications are natural in QX as a diagram of
group objects.

Proof. As X is a diagram of spectra, 2*°X is a diagram of group objects. The
lemma, then follows by applying [Lemma 2.4.1] to the constructions of the sets in-
volved. (|

There are obvious maps
(11) g I = H™ (@ mX) x HY 5 (Fymppp) = 27" x 27700771
given by the identity for s > 1 and the projection g(w, z,y) = (w,y) for s = 0.

2.4.3. Lemma. Recall D' € H5(J;mX) x HY"5(J;mpyr1X) and Di:é C
Jf”é ~ J5t from[Eq. (7) and [Eq. (8). We have

Dyt =Tm (q: Dy — H'™*(3;mX) x H 5 (J;mpqp 1 X))

for s > 0. Moreover,
D:,’(th s> 1
¢ (D)) = {(2,0,y) : (z,y) € DY}, s=0,t>1;
{(z,2,y) : (v,y) € D0}, s=t=0.

Proof. Immediate from the definitions. O

The following now relates the stable construction of [Lemma. 2.1.2| with the above
unstable constructions.

2.4.4. Lemma. The HLSS for X satisfies the following for s > 0.
(1) 2y =Im(Dy — H'™*(J;mX));

2) Zp' = TIm(Dyg X gese(gimy s,y x) {0} = H' (33 mX));

) Bf:i7t+r_1 = Im({O} XHt=3(g;m X) Di:é - HH—T_S(H; 7rt+r—1X)):'

4) By bl In(D - B (Gimie, 1 X)),

5) For ze B3t and y € ES~ V=1 we have d,.(z) =y if and only if x and y
lift to elements of H'™*(J;m X ) and H*T"~5(J; my1r—1X) respectively with
the property that

(a) If s > 1, then (x,y) € Df:é;
(b) If s=0 and t > 1, then (x,0,y) € Dg;é;
(c) If s=t=0, then (z,z,y) € Dg)’g.

Proof. These follow from [Lemma 2.1.2] and [Lemma 2.4.3| (|

w

(
(
(
(
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12 WILLIAM BALDERRAMA

2.5. Naturality with respect to pointed maps. Let X and Y be spectra, and
“ F: Q%X — QY
be a map of pointed spaces. For n > 0, let
(12) Q: X = mY
be the map induced by 7, (—,0). For z € mpX and n > 1, write
(13) Qo =0 o Mn(—2) 077"t X 2 m(X,2) = malY, Q1)) = m,Y.
In particular, Q¢ = Q.
2.5.1. Lemma. Define
Q_:mX x K(mX,t+1) = mY x K(m Y, t+ 1), Q-_(z,y) = (Q(z), Q. (y))-
Then the diagram
B ILX —— mX x K(mX,t+1)

JF JQ—
BELILY —=— moY x K(mY,t+1)
commutes, where the left vertical map is that naturally induced from the map
F: QX — Q%Y of simple spaces.
Proof. This holds by construction. O

Now suppose that X,Y: J — 8p are diagrams of spectra, and fix a map
F: QX — QY
of diagrams of pointed spaces. As before, write
Q: X — mY

for the map on path components. Following[Lemma 2.3.3land discussion it succeeds,
there are maps
F: J2HO®X) — Jf’é(m)(QwY),
and these satisfy
st s,t
F(DT7$) - DT7Q(w)
for s > 0. On the other hand, because F' is a map of diagrams of pointed simple
spaces, there are maps
Qu: mX = mY
of diagrams of groups for x € HY(J;moX) and ¢t > 1, induced by We
abbreviate Qg to Q. These induce maps on H*(J; —).

2.5.2. Lemma. Recall the sets J5' from[Fq. (10)} Define
Qi1 JP(X) = J(Y)

for s >0 by
Q+(w,y) = (Q(w), Q(y)), 5> 1;
Q+(w,z,y) = (Qw),Qx),Qy)), s=0,t>1
Q+(w,x,y): (Q(w)vQ x)’Qz(y))v s=1t=0

Licensed to Univ of Virginia. Prepared on Wed Jun 5 08:03:58 EDT 2024 for download from IP 199.111.228.13.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 13

Then Q4+ = F, in the sense that the diagram
D (Q°X) —— D} (%)

| |
JRHX) — s J(Y)
commutes, where the top horizontal map is as in [Lemma 2.3.9)

Proof. By[Lemma 2.3.3], this diagram commutes should we replace the bottom map
with F': J7(X) = J 5 (V). By Lemma 242, Q and F have isomorphic domain
and codomain, and we must only check that @, = F under this isomorphism. For
t > 1, the map F is just that induced by the pointed map F: QX — QY
on homotopy groups at the basepoint, which is exactly as described by Q4. Now
consider s =t = 0. Define

Q_: H(J;m0X) x H T (J;m.X) — H°(J;m0Y) x H" T (F; 7, Y),
Q-(z,y) = (Q(z), Qz(y))-
Taking limits over [Lemma.2.5.1], we find that the diagram

HO(3; m0X) x H (gm0 X) —2=s HO(F: moY) x HH(F: 7, Y)

| |

limjeg QOO(XST_l) —_—> hmjeg QOO(YST_l)

l l

HO(g; m0X) Q HO(g; moY)

commutes. By definition, F = Q x Q_ as maps J>°(X) — J2°(Y), and this is
exactly @4 as described. O

We can now give the main naturality theorem.

2.5.3. Theorem. Given diagrams X,Y : J — 8p of spectra and map F: Q*X —
QXY of diagrams of pointed spaces, the maps Q and Q. of[FEq. (12)| and|Eq. (13)]
interact with the HLSSs for limjeg X (j) and limjeg Y (j) as follows.

(1) QZP'(X)) € ZpH(Y) for s > 0;

(2) Q(BX(X)) C BY(Y) for s > —1;

(3) If v € Z00(X) then Q.(B, 1y (X)) C B,y ' (Y);

(4) For x € E>'(X) with s > 0, we have

QU (), t=1,
Qz(dr(x)), t=s5=0;
(5) Fors >0, ifrc ES'(X) is a permanent cycle detecting f € mglimjeg X (5),

then the permanent cycle Q(z) € E3'(Y) detects Q(f) modulo classes in
higher filtration.

Proof. (1)—(4) follow from [Lemma 2.5.2] which describes the map Df”é (Q*X) —
Df:é (Q°°Y) induced by F, and [Lemma 2.4.4] which explains how cycles, boundaries,
and differentials are naturally defined in terms of Di:é. Let us just illustrate this
with a proof of (3).

dr(Q(z)) = {
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14 WILLIAM BALDERRAMA

Let 2 € Z2°(X) and y € B, !y !(X). This implies (z,2,y) € Dyg(Q°X
and thus (Q(z), Q(x), Q.(y)) € DS;g(QOOY). Taking y = 0 shows Q(x) € Z%0(Y).
As Q(z) € Z%°(Y) and (Q(z),Q(z),Qx(y)) € DYO(Y), it follows that Q.(y) €
B Y7HY) as claimed.

(5) holds as @ is compatible with the maps limjcg Q> (X<;) — limjeg Q> (Y<y).

(]

),
)

3. LOOPING POWER OPERATIONS

If € is a stable category, then for any X,Y € € one may form the mapping
spectrum C(X,Y’). This construction preserves limits in Y, allowing one to form
HLSSs for diagrams in arbitrary stable categories. If N: € — D is a pointed functor
between stable categories, then for any X,Y € € one obtains a map

Q™C(X,Y) = Mape(X,Y) = Mapy, (NX, NY) = Q*D(NX, NY)

of pointed spaces. [Theorem 2.5.9] describes how these maps appear in HLSSs, at
least once one understands how they behave on higher homotopy groups. This
section describes explicitly what happens in the main example of interest, eventually
leading to [Theorem 3.1.11 In [Subsection 3.2] we put everything together, yielding
[Theorem 1.0.1] and variations thereon.

3.1. Looping power operations. Fix a compact Lie group G, let 8p© be the
category of G-spectra, and for m > 0 write

P §p¢ — §pEmi¢
for the m-fold smash power functor. These are the functors denoted A™ in [BohI14].
Note that the group G will not play a real role in the following. Write p,, for the
permutation representation of X, on R™, and observe that
Pm(sa) ~ Spm®a
for « € RO(G). Thus, external power operations in this context take the form

m. G 2 lGpm
Py X —>7Tpm®a]P> X

for X € 8p©. Given z € 1, X and n > 1, write

m,(n). G G m
Paw : 7rn+aX — 7Tn+pm®aP X

for the composite
7Tn+aX = Tn(MapSpG (Sa, X), IE)

— 7 Mapgys,,.0 (S 9% P X), P (x)) = mopif o P X,

the inner map being induced by functoriality of P". The goal of this subsec-
tion is to describe the operations P;'?g’g(") explicitly. This description is given in
[Theorem 3.1.11 the proof of which amounts to a collection of standard observations
about the behavior of the functors P, which we now make.

3.1.1. Euler classes. Write p,,, for the reduced permutation representation of ¥,,.
This may be regarded as a representation of ¥,, ! G by restriction along the pro-
jection X, 1 G — %,,. Write a,, € W?%”GSZMG for the Euler class of p,,,, i.e. the

m

class represented by the inclusion of poles S® — SP=, or what is equivalent, the
inclusion of fixed points S! — §Pm.
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 15

3.1.2. The addition formula. The functors P™ satisfy
P"(A® B)~ P Indg"'y (P'(4)RP/(B)),
1+j=m
where ¥; ; = %; x X; C ¥;4; and P/(A) X P/(B) is P*(A) @ P/(B) considered with
its natural X; ; ! G-action. This allows us to identify the operation
Pirgy: me X x 16X = [S* @ 87, X] — [P™(5% & S°), P X]

as
7nG 7 j
PRy (@y) = D g (Pi(e) - Py(y)).

1+j=m
Here, the products appearing on the right are external products of signature

3G i ZG YGxXNG i j B 0G sz m
ToeaP X @m S iPIX — O (PX RIPIX) =m0t press G P X

3.1.3. Colimit comparison maps. For a space F and object A, write F - A =
colimgcp A for the unbased tensor with F. The basepoint of S™ yields a natu-
ral retraction

A—S"-A— A,
and this gives rise to a splitting
(14) S"-A~Y"A® A
Observe that there are natural colimit comparison maps

S™-PM(A) —» P(S™ - A).
As P™ is compatible with the monoidal structure, these are determined by their
effect when A = S°, i.e. by the map
(15) " @ 80 = S P(S0) = PT(S™ - 80 = P Indgri ST
i+j=m
This is the map given by the unreduced suspension spectrum of the diagonal
S?’L — (S'IL) Xm
map of spaces. The splitting of the target in as a direct sum amounts to
the standard splitting (X1 x -+ x X)) 2 XV gy ny Aser Xis valid for pointed
spaces X1,...,X,,. The restriction of to SO is just the inclusion into the
i = 0 summand. On S, one has maps
G i ®
St — Indgi’sz Sprien.

which are seen to be adjoint to the inclusion of fixed points al': S™ — SPi®",

3.1.4. Looping operations. Abbreviate Map, = Mapg,c, and consider the diagram

Mapg(S™T*, X) = Mapy, ,o(P™(S™ - S%)/P"SY,P"X) + Mapy, _,o(X"P™(5%),P™X)

| | |

Mapg(S™ - 5%, X) — Mapy,_,o(P™(S" - 5),P"X) — Mapy,_,o(S™ - P"(5%),P™X)

| | b

Mapg (5%, X) ——— Mapy_,o(P"(5%),P"X) ——— Mapy,_,o(P"(5%),P™X)
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16 WILLIAM BALDERRAMA

of spaces. Here, the bottom vertical maps are induced by the basepoint of S™, and
the columns are fiber sequences. By definition, Py 55(”) is the induced map

moq”H(x) = mop ™ (P (2))-
Here, under the splitting of we may write the inner row as
Mapg (S"1*, X) x Map (S X) ~ Map (S"T* @ S, X)
— Mapy, ,o(P™(5"* @ $5%),P"X)
> Mapy, 6(§™PnE° @ §mee prx)
~ MapEM?G(S"”m@a,}P’mX) X MapEmrzc(Sp’"@a,}P’mX),

(16)

and identify
¢~ (x) = Mapg (5", X) x {x},
p~H (P (x)) = Mapg, 6 (S" T8, X) x {Py'(2)}.

Putting this together for all z, on path components the composite yields
the map

P 78 X x aSX = il o PX X O X
P (f,0) = (P (), P ().
3.1.5. Putting everything together.
3.1.1. Theorem. Fiz X € 8p®, a € RO(G), and x € 7, X. Then the operation

P pl X = G P

n+pm o
is given by
P = 30 o5l g (@ Pigalf) - P @)
0<i<m
Proof. The first map in:Eq. - is described in [Subsubsection 3.1.2) and the second

map is described in Subsubsection 3.1.9l Tracing through these descriptions and
identifying Pé%(n)(f) as the first coordinate of Pys ;™) (f,x) yields the theorem. O

3.2. Power operations in the HLSS. Let R: J — 8p® be a diagram of G-
spectra. For each o € RO(G), one may take mapping spectra levelwise to obtain a
diagram 8p“(S%, R) of spectra, with limcg Sp©(S*, R(j)) ~ 8p% (S, lim,cg R(j)).
Thus there is an HLSS

B5*O = B (G R) = w8 lim ()
J

The composite P R: § — 8p>=¢ is likewise a diagram of ¥,,, { G-spectra for each
m, with its own HLSS E}’;,. For each o € RO(G) and m > 1, there are maps

P7: Mapg,e (S, R) — Mapg,s,..c (S”"“*, P™R)

of diagrams of pointed spaces. The extent to which this induces a map Ex™ — Ei'y,
of spectral sequences is exactly as described in [Theorem 2.5.3] once one under-
stands how P7' behaves on higher homotopy groups, which is then as described in
[Theorem 3.1.11 Putting everything together, we learn the following.

As before, write a,, for the class induced by the inclusion S — SPm of fixed
points, where p,, is the permutation representation of ¥,
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TOTAL POWER OPERATIONS IN SPECTRAL SEQUENCES 17

3.2.1. Theorem. With notation as above,
(1) The composite a,, P is additive. In particular, for s > 0 there are maps

m __ t m sta,t+a S+ pmPa,t+pm Qa
Qo = a, P, By — Ez,m .

(2) QZL(Zﬁ—HX’t—i_a) C Zﬁ’%pn@a,t-&pm@a for s > 0;
(8) Qi (B4 C BEpnonttnnse for s> —1;
4) For x € E3T®tT® with s > 0, we have

r

Qu (dr(2)), t>1
QA (2)) + Lpcsam 15" s (Qa(dr () - QUi (), s =1=0.

(5) If x € ES'™ s a permanent cycle detecting f € w5 limjeg R(j), then
Q' (x) detects PI'(f) € szy’n”éi limjeg P R(j) modulo classes in higher
filtration.

We now describe three specializations of [MTheorem 3.2.11  The first is
[Theorem 1.0.01 Let G be a finite group and R a G-E., ring. Let K C G be a
subgroup of index m and o € RO(K), and consider the norm

dr(Q3' (7)) = {

K G
P,:m, R— TInd$ B

This factors as

pm
K « Yl K mpym re G Yl K mm
- P = r P
T R Tomgal R WresgmzK(me@a) ®Sa R
~ G G Ngc G
71-Indg aNKR Trlnd?( aR :

Here, the restriction is along a suitable embedding G C ¥,,, { K, and the final map
is induced by the G-E, ring structure on R. The behavior of the first map with
respect to HLSSs is what was described in [Theorem 3.2.11 The remaining maps are
stable, and entirely compatible with HLSSs. Thus we may regard [Theorem 1.0.1]
as a specialization of [Theorem 3.2.11

For the second, let R be an ordinary E., ring. Then for n € Z and m > 1, the
mth total power operation

P™: m,R=[S",R] = [(S")& | R]
is the map induced on path components by the composite
Mapg, (5™, R) = Mapg,=,, (S7€", P R)
—— s Mapg, ((S™)i¥,, Riyt!, ) —— Mapg, ((S")i" , R)-

The situation is analogous to the G-E, case.

For the third, let R be an ultracommutative ring spectrum in the sense of [Sch18|
Definition 5.1.1]. Then R is equipped with strictly ¥,,-equivariant maps R®™ — R
within the category of orthogonal spectra. Following [Sch18 Theorem 4.5.25], we
may produce from R the G-spectrum Ug R by considering the orthogonal spectrum
R as an orthogonal G-spectrum with trivial G-action. The X,,-equivariant maps
R®™ — R may then be considered as maps P"UgR — Us, ,¢R, and this yields
norms

m. G 2nlG
PlmgR—m, "o R
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18 WILLIAM BALDERRAMA

for « € RO(G). The situation is now analogous to the previous examples. See
[Schi8, Chapter 5], [Sta21] for more on power operations in the global equivariant
context, as well as [GM97] for earlier related material.

4. NORMS IN THE C5-EQUIVARIANT ADAMS SPECTRAL SEQUENCE

We now proveTheorem L1l As HFS? is a Cy-E., ring, so too is HFS? @ HFS?,
and thus there are norms

(17) A = n(HFS? @ HFS?) —» w8, ) (HFS® @ HFS?) = A .

The main point of the proof is to understand something about these.

We must first recall some of the structure of A€?; we mostly follow the treatment
in [GHIR20, Section 2]. Let M = 7, HFS? and M® = 7, HFS be the bigraded co-
efficient rings of Cs-equivariant and R-motivic mod 2 homology respectively. Then

M® =Falr,p, M%==MF@NC, NC=Fpf—1p:j>0k>1},
pIT

where these symbols have homological degrees
|7 =1—o, lp| = —o, |v| =0 — 1.
Moreover,
‘AR - MR[SD 527 ey TO5 Ty e - ']/(TZ2+T§i+1+P(TO§i+1 +Ti+1))> AC? = MC2 ®MR‘AR‘

The right unit for A2 restricts to define an AR-comodule structure on the sum-
mand NC c M. Conversely, the A®-comodule structure on NC makes M into
a comodule algebra over AR, and this enables one to endow A®2 = M®? @yr AR
with the structure of a Hopf algebroid. In particular, this construction extends to
show that if I ¢ M2 is an A®-comodule ideal, then the quotient (M2 /T) @ AR
still carries the structure of a Hopf algebroid.

The norms of [Eq. (17)|are not additive, but they are additive modulo transfers.
Using the Cs-equivariant cofiber sequence Co, — S° £y 57, one finds that the
transfer ideal equals the annihilator of the Euler class p. Explicitly, the transfers
on M are given by

0 n> -1,

(1=o)’ T n S _2a

c
tr: Fp — M2 tr(l) = {
T
as these are the only classes in their respective degrees killed by p. If we write I,
for the transfer ideal in M2 or A2, then

A% /T, =2 (M2 /1,,) @y AR,
and this retains the structure of a Hopf algebroid.

4.0.1. Lemma. The group of primitives in A2 /I, is zero in degrees of the form
I€n] = (2" = 1) (1 + o) forn > 2.

Proof. We may identify the primitives Prim(A®2/I;,) as an Ext group:
Prim(A“? /1) = BExtyc, /7, (M /Tie, M /11,) = Extye (M®, M /I,).

Abbreviate M = M2 /I;,. The groups Exthm (ME, M) may be computed via a
Koszul complex of the form

AR[0] @pe M —2 AR[1] @pe M —25 AR[2] @y M —— -+

)
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where AR is the R-motivic lambda algebra; see [BCQ21, Remark 2.3.5]. It therefore
suffices to show that Ker(d;) = 0 in degrees of the form || for n > 2.

Note that AR[1] @ym M is generated by elements of the form A,z with r > 0 and
x € M, and that internal algebraic degrees we have

= [5) 1 5]

Given an object x with RO(C2)-degree a + bo, write v(z) = a — b. Then

1 7r even,

U(gn) =0, U(T) =2, U(p) =1, U(’Y) =2, U()\T) - {O r odd.

Thus if v(Arz) = v(&,) = 0 then 2 = 1 and r is odd. The only such elements in
Ker(d1) are those of the form Aga_; for @ > 1, and these are not in the degree of
& forn > 1. (|

4.0.2. Proposition. The norm N: A% — ACQHU

given on generators by N(&,) = &,. In other words, N is compatible with the map
P of By (1)

Proof. The structure maps in the Hopf algebroid A2 are obtained from various
Cs-Eo, maps between the spectra (HIF‘g"‘)‘@’C for £ > 1. It follows by naturality
that norms commute with these structure maps. As A2 /I, is a quotient Hopf
algebroid of A®2, the same is true for N: A% — Af(ua)/jtr' As this map is
moreover additlve, it is a map of Hopf algebroids. We induct on n to show that
N(&n) =&, for n > 1.

First consider n = 1. Even before modding out by the transfer ideal, N(&;) €
Alcjg must be some class lifting £2 under the forgetful map A2 2, — AS. The class
& e A1+o is the only possibility.

Next let n > 2 and suppose we have verified N (&;) = & in A2 /I, for all i < n.
As N is a map of Hopf algebroids, we find

A(N () = N(A N &8

/Ity is a map of Hopf algebroids,

O<z<n
NE) @1+ > N(Ei)* @ N(&) +1@ N(E,)
0<i<n v
=NE)®1+ > &,0&4&+18N (),
0<i<n

where the last equality is an application of our inductive hypothesis. It follows that
the difference N(&,) — &, is primitive, and thus N(&,) = &, by Lemma 4011 O

We have now all but given the following.

Proof of [Theorem 1.1.1l Consider the HLSS associated to the canonical resolution

Sc, — lim (HFS?)®n 1,
o, nlerg( 5%)

This yields the Cy-equivariant Adams spectral sequence upon taking fixed points,
and the classical Adams spectral sequence upon taking underlying spectra. This
puts us squarely in the context of [Theorem 1.0.1] which tells us that Sq: 7,5 —
Tw(14+0)Sc, is modeled in filtration f by p/ N, with N the norm for (HFS?)®/+1,
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When f =0, the norm is simply given by N(1) = 1. When f > 1, as p annihilates
the transfer ideal, |[Proposition 4.0.2]implies pN = pP, and the theorem follows. [

5. NORMS ON 7wy OF THE EQUIVARIANT KU-LOCAL SPHERE
We now consider [Theorem 1.1.4] and related matters.

5.1. Preliminaries. We begin by recalling some background on equivariant K-
theory. Fix for now a finite group G, and write KUg for the G-equivariant spec-
trum of G-equivariant complex K-theory. Equivariant Bott periodicity takes the
following form: If V' € RU(G) is a virtual complex G-representation, then there is
an invertible Bott class
BY e KU (sY).

As usual, there are two natural choices of Bott classes, related by complex conju-
gation. With notation from [Ati68], we shall take our Bott classes to be defined
by Y = Ay when V is a G-representation. In particular, 3 = g€ =1 - L €
KU°(S?%) = mKU, where £ — S? is the canonical line bundle. It is this choice that
is well-behaved with respect to power operations in K-theory (see [Lemma 5.1.1]).

If V is a complex G-representation, then the Euler class e(V) € RU(G) of V, i
the sense of [tD79, Chapter 7], is defined as the image of 3" under the map

KU(SV) — KUg(S°) = RU(G)

given by restriction along the inclusion of poles S® — SV. We will discuss these
further in

Now let Glob denote the homotopy theory of global equivariant spectra with
respect to the family of finite groups, formalized as in [Schi§], and let KU be the
global spectrum of equivariant complex K-theory constructed in [Schl8, Section
6.4]. This is a refinement of the G-equivariant spectra KUg, in the sense that there
are symmetric monoidal functors Ug: Glob — 8p% and KUg ~ UgKU. For our
purposes, we may take this as the definition of the G-spectra KUg, to be assured
that the G-E, structure on KUg is compatible with the ultracommutative ring
structure of KU; it is not obvious whether the G-E., structure on KU is unique,
see for instance [BHIT22.

The ultracommutative ring structure on KU gives rise to maps P""KUg —
KUs, ¢, and this in turn induces power operations of the following form: if X is
a G-space, then X*™ is naturally a X, ! G-space, and there are power operations

P™: KU&(X4) = KUY a(XE™).
If X is a based G-space, then one may instead consider
P KUZ(X) = KU o (XM™).
We round out this discussion by noting the following.
5.1.1. Lemma. IfV is a virtual complex G-representation, then
PT(8Y) = Bon®Y € KUY, (577,

Proof. This is essentially classical, so let us just sketch how the pieces fit to-
gether. By multiplicativity, we may reduce to the case where V is a complex
G-representation. The proof of [Schl8, Theorems 6.3.32(iii)] extends to show
that if X is a G-space and E € KU2(X) is the class of a vector bundle, then
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P"E € KUY o(X[") is the class of the external tensor power E¥™. Put an-
other way, the power operations arising from the ultracommutative ring structure
on KU agree with the classic power operations constructed by Atiyah in [Ati66].
At this point, with notation from [Ati68], one computes that P™(5Y) = P™(A\y) =
A" = A, ev = BPm®V. This is where we have used our choice of Bott classes, as
for example P?(AL) = —\%, o ¢, still with notation from [A£i6S]. O

5.2. The main proposition. In the appendix (Proposition A.4.4) we verify
[Proposition 1.1.5 This implies, among other things, that the global ultracom-
mutative ring spectrum Spy = limpea KU®" ! refines the G-spectra Lyku,Sa,
at least for G a finite nilpotent group. Now define

L= WOSI/EU.

Then L is a global power functor for the family of finite groups in the sense of
[Sch18, Chapter 5]. This means that for each finite group G we are given an abelian
group L(G), together with restrictions along arbitrary homomorphisms, transfers
along injective homomorphisms, external pairings L(G) ® L(K) — L(G x K), and
power operations

P L(G) = L1 G),
all subject to a number of compatibilities. When the group G is clear from context,
we shall write P™ = PJ. The assertion that if G is nilpotent then Sg; refines the
G-spectrum Lgp,Sa says, among other things, that

L(G) = W(?LKUGSG-

Each myL gy, Sc is a G-Tambara functor, and this is contained in the global power
structure of L. In short, if K C G is a subgroup of index m, then the norm
N¢: L(K) — L(G) is recovered by postcomposing Pi?: L(K) — L(3,, { K) with
restriction along a suitable embedding G — ¥,, 1 K. See [Schl8 Remark 5.17] for
a more detailed discussion.

We do not know the value of L(G) in general, even as a mere abelian group. When
G is an odd p-group, L(G) = RQ(G)[€]/(€%,2¢) [BGS22, Theorem 1.1, Proposition
6.7]. It is also not hard to show directly that the same is true for G = Cs. It seems
plausible that L(G) might be approachable via an analysis of the KUg-based Adams
spectral sequence. We shall not attempt to carry out any such analysis here, but
for the interested reader point out that the descent from KUg to KOg is fully
described in [MNN17, Example 9.19], and it may be fruitful to start with KO¢g
rather than KUg.

As L is equipped with restrictions along arbitrary homomorphisms, the sequence
e — G — e shows that, for every group G, the ring L(G) is an augmented L(e)-
algebra. We may identify L(e) explicitly as

L(e) = moLiuS = Z[e]/(2¢,€2).

In particular, the class € resides in L(G) for any group G, and we would like to
understand how power operations behave on e. Observe that

Pg(e) = P™(resgy(€)) = resy” o (F"(€)-
Thus, to determine PZ*(e), it suffices to consider the case where G = e, at least
once the underlying global Mackey functor of L is known. Although we have not

computed L(X,,), we can say the following.
Write ﬁ% for the reduced complex permutation representation of ¥,,.
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5.2.1. Proposition. The class P™(e) € L(X,,) is detected in the KUy, -based
Adams spectral sequence by e(pS)) - €.

Proof. Consider the KU-based Adams spectral sequence. This is the HLSS asso-
ciated to the canonical resolution
Sgy ~ lim KU®™t!
ko = lim KUS™,
and gives, for every finite group G and o € RO(G), the KUg-based Adams spectral
sequence of signature

G pstat+a G ®t—s+1 G
Ey =Tha(KUG ) = T aLlrusSa,

compatible with all restrictions and transfers.

When G = e, this is the nonequivariant K U-based Adams spectral sequence. The
class € € moLiy S is detected by some class € € eEg 2 in filtration 2. It follows from
Mheorem 3.2.11that P™ (e) is detected by Q(€) € *m ES?, where Q: ¢Ey? — »m EJ?
is induced by

ap, Ps": w5 KU — w0 KUs,, — w5 KUs,,.

m

By [Cemma. 5.1.1] we may identify this as
Z{B} = RU(S,,){B8"} = RU(S.){8},

where the first map acts by g — ﬂ”?n and the second map acts by ﬂpgn = e(pS) -
5. More succinctly, the map @ is given by multiplication with e(ﬁgl)7 and the
proposition follows. O

5.3. Euler classes. To translate from[Proposition 5.2.1|to[Theorem 1.1.41 we must
recall some information about Euler classes. Let G be a finite group. Given a
complex G-representation V| the Euler class (V) may be identified explicitly as

e(V) =Y (-1)"A™(V) € RU(G).
This follows from the definition of e(V') and the construction of the Bott class 3V,
see for instance [AT69, IV §1]. In particular, write C1(G;C) for the ring of class
functions on G, and for V- € RU(G) write x(V, —) € Cl(G; C) for its character. For a
complex G-representation V and g € G, write f(V, g)(t) € C[t] for the characteristic
polynomial of the linear map g: V' — V. Then we obtain the following identification
of the character of an Euler class.

5.3.1. Lemma. LetV be a complex G-representation. Then x(e(V),g)=f(V,g)(1).

Proof. The claim is that the characteristic polynomial of g: V' — V evaluated at 1
agrees with the alternating sum of the traces of g: A»V — A™V. This is a standard
fact from linear algebra, see for instance [Bou48| §8, no. 11]. O

Given a finite G-set X, let
C[X] = Coker(C — C[X])
be the associated reduced permutation representation, and set
e(X) = e(C[X]) € RU(G).
We then have the following.
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5.3.2. Proposition.

(1) Given a finite G-set X, we have e(X) # 0 if and only if there exists some
g € G such that the cyclic group (g) acts transitively on X.

(2) Let p be a prime, and suppose that K C G is a normal subgroup such that
G/K is cyclic of order p™. Let N C G be the unique subgroup of index p
containing K. Then e(G/K) = p"~*(pC — C[G/N]).

(3) In particular, in the situation of (2), if p is odd then e(G/K) = C|G/N]
(mod 2).

Proof. (1) Given g € G, we may identify

FELX].g) (1) = LEXLDO,

It follows from [Cemma 5.3.1] that y(C[X], g) # 0 if and only if 1 is not a repeated
root of f(C[X],g)(¢). The element g acts on C[X] by a permutation matrix, and
an elementary computation shows that this holds if and only if g acts transitively
on X. The claim follows as e(X) # 0 if and only if x(C[X], g) # 0 for some g € G.

(2) Write ¢: G — G/K = Cpn. Then e(G/K) = ¢*e(Cpn), so we may reduce
to the case where K = e and G = Cj». An elementary computation, following the
ideas in (1), shows that

" if g generates Cpn;

0  otherwise.

X(e(Cyn), 9) = {p

A second elementary computation shows that p™~'(pC — C[Cpn /Cpn-1]) has the
same character, implying that e(Cpn) = p"~*(pC — C[Cpn /Cpn-1]) as claimed.

(3) If p is odd, then p"~(pC — C[G/N]) = C — C|G/N] = C|G/N] (mod 2) in
RU(G). O

5.4. The proof of [Theorem 1.1.4l Note the following immediate corollary of
[Proposition 5.2.1] and the interaction between the power operations P and the
norms Ng.

5.4.1. Corollary (Of[Proposition 5.2.1). Let K C G be a subgroup. Then N (e) €
L(G) is detected in the KUg-based Adams spectral sequence by e(G/K) - €.

We are now in a position to prove [Theorem 1.1.4l Let us again recall the main
players. Fix an odd prime p. In [BGS22, Theorem 1.1, Proposition 6.7], Bonventre—
Guillou-Stapleton prove that if G is a p-group, then there is an isomorphism

7oL rxveSa = RQ[e]/(2¢, €2)

of Green functors, where RQ is the Green functor whose value at a subgroup K C G
is the rational representation ring RQ(K). In our context, this says that if G is
any p-group, then

(18) L(G) = RQ(G)[€]/(2¢, €?).

This easily extends to an identification of the restriction of the global Green functor
L to the family of p-groups. We now give the following.

Proof of [Theorem 1.1.4l. Consider the norm
NS$: RQ(K)[€]/ (26, €%) — RQ(G)[€]/(2¢, ).
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By N¢(e) is detected in the KUg-based Adams spectral sequence
by e(G/K)-e. As all elements of RQ(G)[e]/(2¢, €?) are detected either on the 0-line,

as an element of RQ(G), or on the 2-line, as the product of an element of RQ(G)
with €, we may deduce that N (e) = e(G/K) - € on the nose. The final claims
regarding the case where K C G is normal follow from [Proposition 5.3.2] O

6. POWER OPERATIONS FOR THE K (1)-LOCAL SPHERE

This section carries out the computation promised in [Theorem 1.1.6l

6.1. Generalities on power operations. We begin by recalling some basic prop-
erties of power operations, cf. [BMMSS86, Chapter VIII]. Fix a prime p, and for a
spectrum R define

o wb(R) = [Z°7P*(S*)7% | R] = RP~D"~* Th(wp, | BL,)
= To—puwtwpy F(ESp, i R).

These are all different names for the same object; the third term is the R-cohomology
of the Thom spectrum of a multiple of the reduced permutation representation p
of ¥,, and the fourth term is a piece of the ¥, -equivariant spectrum obtained as
the Borel construction on R with trivial action. There are maps

a: Tswb(R) = Ts_(p—1)w,w—10(R), i: msR — ms 0b(R),
resy: mswb(R) = msR, try: msR — 7 wb(R),

given by multiplication with the Euler class of p,,, inflation, restriction, and transfer.
We shall write tr = tr,, and res = res,, when w is clear from context, and shall use
i to regard m. R as a subobject of m, ob(R).

Now suppose that R is a p-local E, ring. Then the pair (7, R, 7, .b(R)) is a good
device for understanding power operations on R. The pth total power operation
for R takes the form

P: mpR = Tpnnb(R),
and the behavior of P may be encoded in structure present on 7r*’*b(R)7 as we Now
recall.

First, 7, .b(R) is a bigraded ring, and P is multiplicative, i.e. P(xy) = P(x)P(y)
for x € m, R and y € m,, R. Second, define

try (1)
hiw] = R,
ST
and abbreviate h = h[0]. These elements satisfy
a - hlw] = 0.

Let C(x,y) = p~1((z +y)? — 2P — yP). Then for z,y € 7, R, we have
P(z +y) = P(x) + C(z,y) - hn] + P(y).

In particular, for k € Z we have

(19) Pk) =k —

Third, we note that aP is additive, and if R arises as a limit of E,, rings then
P is modeled in filtration f of the associated HLSS by afP, as described in
Mheorem 3.211
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6.2. Morava E-theory. Let E be a Morava E-theory with formal group G —
Spf Ey. See [Pet1§] for a textbook reference. We wish to describe the general shape
of m, «b(E). Let

w=mE, R = moob(E) = E'BY,, L =my;-1)2b(E) = E°Th(C ®p,).

Then R is a commutative Fy-algebra and L is an invertible R-module. Writing
L™ = L®R™ we have the following picture:

R—9 -1

That the FEuler class a annihilates h is standard, and that the resulting map
R/(h) = m_(p—1),—1b(F) is an isomorphism may be found in dual form in [Rez09,
Proposition 7.2, Remark 7.4]. Note in particular that postcomposing the product
on R/(h) with a gives a map

(20) R/(h) ® R/(h) — R/(h) — L.
6.2.1. Lemmma. There are isomorphisms
Toa(p—1)+2b,2a0(E) = w’ ®p, L7,
T(2at1)(p—1)+2b2a+10(E) = w’ ®p, L* @ R/(h),
all other degrees being zero. The ring structure is induced by the canonical iso-

morphisms (w* ®pg, L*) ®r (W ©g, L) = WPV @p, LT applying the Euler
class as in|Eq. (20)| when needed.

Proof. The Morava E-theory of BY, is concentrated in even degrees [HKRO00, The-
orem E]. The lemma then combines the above discussion with the Thom isomor-

phisms 7T(a+2a/)(p71)+2(b+b/),(a+2a’)b(E) = 7T-a(pfl)Jr2b,ab(E‘) R 7T2a’(p71)+2b,2a/b(E)'
]

6.2.2. Proposition. The Adams operation ¢* for k € Zy acts on L* by multipli-
cation with (1 — 5(1 - ke (P=1)p).

Proof. First we consider the case a = 0, where LY = R = E°BY,,. Here we are
claiming that ¢* acts trivially on E°BY,. By Strickland’s theorem [Str98], R/(h)
is the Ey-algebra classifying rank p subgroups of G. The Adams operation )*
corresponds to the automorphism [k]: G — G defined over Spf Ey. This fixes all
subgroups of G, and so ¥* acts trivially on R/(h). As the transfer is split K (n)-
locally [CMI7], it follows that 1* acts trivially on R.

Now consider general a. As 1" acts on w® by multiplication with k¢, it suffices
to show that 1* acts on w® ® L% by multiplication with k%(1 — %(1 — ker=1yp),
Observe that this is exactly the element P(k®) seen in Choose a generator
u € w, so that we have P(u®) € w*®pg, L*. As P(u®)-P(u~?%) = P(1) = 1, we find
that P(u®) gives a trivialization of the invertible R-module w® ®g, L*. As 1* acts
trivially on R, it thus suffices to show that ¢¥*(P(u®)) = P(k*)P(u®). Indeed, as
¥ acts on E by E. automorphisms, we have

PF(Pu®)) = P(g*(u")) = P(k*u®) = P(k*)P(u®)
as needed. [l
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Now write KU, for the spectrum of p-adic complex K-theory. We consider
complex K-theory to be oriented as described in [Subsection 5.1l

6.2.3. Proposition. Let 772 € m2b(KU,) be the Thom class of ﬁ;c,, i.e. the Bott
class of pg —pC, and abbreviate d = a®772 € moob(KU,). Then h =p—d and

77*7*b(KUp) = Zp[ﬁila Ti27 a]/(ah)

The Adams operation * for k € Z, acts by ring automorphisms, and is deter-
mined by

WA = kB, WHr?) = 2L+ L = 1)),
Power operations are determined by general properties and
P(B) = pPr 2.
Proof. Restriction along C, C ¥, identifies KUI?BE,, as the subring of KUI?BCP
fixed under the action of Aut(C)). It follows quickly that h is the image of the
permutation representation pg under the completion map R(X,) = KU)BY,, and
that
KU)BY,, = Zy[h]/(h* — ph).
On the other hand, d = a?57~2 is the Euler class of ﬁ;c,. By [Proposition 5.3.2] both

d and p — h have the same image in KUZ?BCP, and thus d = p—h in KUZ?BEP. It
follows that

KU.BY, = Z,[d]/(dh).
The full identification of 7, KU, then follows from the recipe of [Lemma 6.2.1]
where now we have fixed trivializations g¢P~1D+br=2¢ ¢ Wb @p L The action of
the Adams operations was given in [Proposition 6.2.2] The identity P(3) = pP12
was given in [Lemma 5.1.1l In this Borel context, it may also be regarded as a
consequence of the fact that the map MUP — KU classifying our choice of periodic
complex orientation is H,. O

6.3. Odd primes. Let p be an odd prime and fix a topological generator k € Z,;.
Then there is a fiber sequence

k_
(21) Ska) — KU, =5 KU, .

We can use this to easily compute power operations for Sk (). For a spectrum X
and class x € KU} X, write [z] € S’?(J(rll)X for the image of  under the boundary

map associated to We then have
T0SK (1) = Lp, Ton—1SK (1) = Zp/ (K" — D{[8"]},
all other groups being zero. So it suffices to compute
P([8"]) € m2n-1)p,2n—10(Sk(1))-
6.3.1. Lemma. We have
T(an—1)p2n-10(Sk (1)) = Zp/ (K" — 1){[aB""77"]}.
Proof. By [Proposition 6.2.3] we have
Toon-1b(KUy) = Zp [ {ap" 772"}, F(aBP"r7%") = K a7 7",
The lemma then follows from O
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6.3.2. Theorem. The pth total power operation
P: T, 1SKk1) = Ten—1)p,2n—10(SK (1))
is additive, and satisfies
P([8"]) = [ap""u™"].
Proof. The long exact sequence associated to the fibering of [Eq. (21)| can be inter-
preted as the HFPSS
H*(Z{$*}; KU,) = m KUY 2 1 50y

As P(B™) = prrr—2" it follows from [Theorem 3.2.1] that P(k[3"]) is detected in
the HFPSS by k[aP"72"] for k € Z. As there is nothing in higher filtration, we
must have P(k[3"]) = k[aBP"7~2"] on the nose. O

6.4. Even primes. Now consider p = 2. There is a fiber sequence
$°-1
(22) SK(I) — KOy —— KOs s

and we may compute power operations for S (1) following the same approach as
for odd primes, only by descent from KO, rather than KU,. We begin by recalling
the structure of the former. Write nc, € m1,1b(S5) for the Cy-equivariant Hopf map.
This is characterized by

h=2+anc,.
Also write 1 € .5 C m1,0b(S) for the nonequivariant Hopf map.
6.4.1. Lemma. Write
T KOy = L[, 267, 1a1) /(2 - net, 28" - mer, iy, (28°)% — 458°).

Then
ﬂ-*,*b(KO?) = Z2[5i47 Ti4a Cl, 77027 T2h7 2625 627’2}7/7 ncl]/Ia

where I is generated by a number of relations, including p - T 28%h = 17027731.
The Adams operation V> fizes all torsion classes, and otherwise is determined
by the map 7, b(KO32) — m, b(KUs), which sends to classes of the same name,
only where moreover 1. +— 0 and nc, — —aBt=2. The norms P: 7, KOy —
Tonn0(KO2) are determined by general properties and

P(ph) =875 P@2f%) =@ +anc,)B'mt, Pia) = nanc,-

Proof. See for instance [Bal21] or [Bal22]; for the former note that our 7, ,,b(KO2)
is its s s—ywb(KO) and ne, = —no, and for the latter note m, ,b(KO2) =
7T(sfw)erUI(OCz ® Z3 and Ncy, = —No- U

One may compute the groups 7. .b(Sg (1)) from this, using [Eq. (22), This com-
putation was also carried out in [Bal21], but our situation is much simpler: the hard
work there was to pin down the ring structure on 7r*,,kb(SK(1))7 which we don’t need,
and even for the additive structure we need only the particular groups 72, Sk (1)-
Because we need details of the computation, it is easier to just proceed directly.
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Write [z] for classes in Sk (1)-cohomology detected in the boundary of [Eq. (22))

Define
pn = [B*"] € sn_15k (1), €n = [28*"?] € Tsn+3SK (1),
tin = Bl € T8n11SK (1),
P = [T71B"] € Tgn—1,4n0(SK (1)), fing =T " € T8n+1,4nb(SK(1))-

These names are chosen to be compatible with [Bal21]; note, however, that s .,
here is 75 s_,, there, and that we write a instead of wy below. A choice must be
made here: in writing u, = "9, we mean that u, is some class detected by
B4 € 7gnr1KOo, and there are two such classes, and likewise for tn,n- This
choice is relevant to the indeterminacy in [[heorem 6.4.3] and carefully handled in
[Bal21], but for our purposes it does not matter what choice is made.

6.4.2. Lemma. The nonzero homotopy groups of Sk are moSk 1)y = Zo{1} @
Z/(2){napo}, and otherwise

Zo/(3' —=1){pa} i=8n—T;

Z/(2){napn} i =8n;
TSk ) = § Z/@{nipns i} i =8n+1;
/(2){napn } i =8n+ 2;
Z/(8){&n} 1=8n+ 3.
Moreover, we have
ZQ/(?’zn = D{apnn} i =4n—1;

Z/(2){n01pn,na anClnCQPn,n} 1= 47’1,,
Z/(2){ngln02pn,n7 Mn,n’r]CQ} i =4n =+ 1;
0 1 =4n + 2;

m2i,ib(Sk (1)) =

only with an additional summand of the form Zy{1,anc,} in m0b(Sk))-

Proof. These follow by a direct computation from [Eq. (22)] only one must verify
that mg,115k (1) # Z/(4) and Tgpy24n+1Sk ) # Z/(4), for which we cite [Rav84,
Theorem 8.15] and [Bal21l, Lemma 3.3.3]. O

6.4.3. Theorem. The symmetric squares
P:m,Sk 1) = TannSK(1)
are additive for n # 0, and satisfy
P(pn) = apzn 2n,

P(napn) = ananc, p2n2n;
P(nZpn) =

P(un) € uzn 2nCs + Z/ (2){n2mc, pan.an},
P(napn) =

( ) 2ap2n+41,2n41-

Moreover,
P(na) = nanc, (1 + napo)-
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Proof. Both P(p,) and P(&,) may be computed along the same lines as the odd-
primary case. Combining [Iheorem 3.2.1land [Lemma 6.4.1] we find

P(pn) = P([ﬁém}) = [aﬂ8n778n] = apP2n.2n

and
P(fn) _ P([264n+2]) _ [a(2—|—h)ﬁ8n+47'_8n_4] _ 2a[58n+47—8n—4] — 2@P2n+1,2n+1-

That P(pn) € pon2nnc, + Z/(2){n4nc, p2n2n} follows by comparison with KOs.
Despite the indeterminacy, this is sufficient to deduce the remaining values of P by
multiplicativity. We have been unable to resolve this indeterminacy in general, but
can describe what happens in the case n = 0.

There is a Hurewicz map m, .Sc, — TS K(1) from the Cs-equivariant sta-
ble stems, compatible with all power operations, sending a Cs-equivariant map
f:8etbe — 80 to the induced map (ST ),c, =~ Z‘l_b(Sb)%z2 —+ 8 = Sk In
Ty x5C,, We have

P(na) = nanc, + ave,,

where ve, € w325c, is the Cs-equivariant quaternionic Hopf fibration
(Example 1.1.2} note a = p). As S k(1) detects the nonequivariant quaternionic
Hopf fibration, b(Sg (1)) must detect vc,. We may compute from and
[Lemma 6.4.1] that

m3.2b(SKk (1)) = Z/(8){[r 28]},

and so the only possibility is that v, is detected by some odd multiple of [r~232h].
As

a-[r7*B%h] = [a- 774h] = [nnc.] = nanc. po,
the identity P(nc1) = N, (1 + neapo) follows. O

6.4.4. Remark. If R is any K (1)-local E., ring, then there is a natural isomorphism
7T07()b(R) = 7TOR{1, h}

Following [Hop14], if we define §: moR — moR by declaring —6(z) to be the coeffi-
cient of h in P(x), then 6 makes mg R into a f-ring. This applies at any prime p, but
let us continue focusing on p = 2. Write € = n1po, so that moSk (1) = Zz[€]/(2€, €2).
As anc, = —h (mod 2), it follows from [Theorem 6.4.3] that the action of 6 on
70 Sk (1) satisfies

O(e) =e.

In fact this already follows from [Proposition 5.2.1] This yields an alternate proof
of [CY23, Theorem 5.4.8], using completely different methods.

APPENDIX A. EQUIVARIANT BOUSFIELD LOCALIZATIONS

This appendix, which may be read independently of the rest of the paper, gives
some general material on Bousfield localizations in equivariant stable homotopy
theory. See especially [Hil19,[Car22] for prior work on the topic; our approach differs
in that we focus primarily on the role of nilpotent completion. Insofar as the body
of the paper is concerned, this appendix contains the proof of [Proposition 1.1.5] (in
[Proposition A.4.4)).
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A.1. Bousfield localizations. We begin by reviewing some of the general the-
ory of Bousfield localizations. Nothing in this subsection is new, we just collect
everything we need in one place and in the form most convenient for us. In par-
ticular, most of this material is either routine or may be found in some form in
[Bou79l [HPS97, Mat15,Mat18]. Fix for this subsection a presentable symmetric
monoidal stable co-category M with unit denoted S, together with an object R € M.

A.1.1. Definition. Fix X € M.

(1) X is R-acyclicif R® X ~0;

(2) X is R-local if M(C, X) ~ 0 for any R-acyclic C;

(3) X =Y is an R-equivalence of R® X - R®Y is an equivalence;

(4) The R-localization of X is an R-local object LrX € M equipped with an
R-equivalence X — LpX.

(5) The Bousfield class of R shall be the class (R) = {X € M : R® X} of
R-acyclics.

Observe that R-localization depends only on the Bousfield class of R, and that
(R) C (T") when there is a natural transformation Lr — Lp. The functor of R-
localization is lax symmetric monoidal, and in particular there is a natural map
X ® LrS — LrX for each X € M.

A.1.2. Definition. R-localization is smashing if X ® LgrS ~ LrX for all X € M.

Suppose from now on that R carries a unital product; we shall just say that R is
aring. Let R = Fib(S — R), let A(R) = {R®"} be the R-Adams tower [Bou79, §5],
and let C(R) = {Cof(R®* — S)} be the associated tower under S.

A.1.3. Definition.
(1) The R-nilpotent completion of X € M is Xp = lim(X ® C(R)).
(2) Say that X is R-convergent if the natural map LpX — X5 is an equiva-
lence, or equivalently if the natural map X — X7 is an R-equivalence.

A.14. Lemma. Let N be another presentably symmetric monoidal stable oo-
category, and let F': M — N be a symmetric monoidal, conservative, and limit-
preserving functor. Then
(1) F(Xp) ~ F(X)/J}(R) for X € M.
(2) If F(X) is F(R)-convergent, then X is R-convergent, and F(LrX) ~
Lpr)yF(X).
(3) If F(R)-localization is smashing and F(X) is F(R)-convergent for all
X € M, then R-localization is smashing.

Proof. (1) As F is limit-preserving, it is exact. As F' is symmetric monoidal and
exact, F(X ® C(R)) ~ F(X)® C(F(R)). Thus F(Xp) = F(limX ® C(R)) ~
lim (F(X) ® C(F(R))) = F(X) g

(2) Suppose that F'(X) is F'(R)-convergent. We must show that R® X — R Xp
is an equivalence. As F' is conservative, it suffices to show that F(R® X) —
F(R ® Xp) is an equivalence. As F is symmetric monoidal, and by (1), this map
is F(R)® F(X) - F(R) ® F(X)IA?(R), which is an equivalence as F(X) is F(R)-
convergent. Thus X is R-convergent, and F(LrX) ~ F(Xp) ~ F(X)
L F(X).

(3) Suppose that F(R)-localization is smashing and that F(X) is F(R)-conver-
gent for all X € M. We must show that X @ LrS — LgX is an equivalence. As F'

A ~
F(R) —
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is conservative, it suffices to show that F(X ® LgS) — F(LgX) is an equivalence.
As F' is symmetric monoidal, and by (2), this is F/(X)® Lpr)F(S) = Lrr)F(X),
which is an equivalence as F'(R)-localization is smashing,. O

Write Thick® (R) for the thick ®-ideal of M generated by R. Following [Mat15}
Section 3], let Tow (M) denote the category of towers {X,} ={--- = X1 — X} in
M, let Tow™(M) be the category of towers {X,,} for which there exists some r > 0
such that all X,, — X,,_, are null, and let Tow's*(M) be the category of towers
{X,,} for which the associated tower Fib ({lim X,,} — {X,,}) is in Tow™(M), where
{lim X, } is the constant tower on lim{X,}.

A.1.5. Definition. Say that R is locally descendable if C'(R) € Tow™st(M).

Given towers X = {X,,} and Y = {V,,}, write X ~ Y if {X,, },,>5 ~ {¥}, }n>s for
some s. Observe that X € Tow!s*(M) if and only if X ~ C @ N with C a constant
tower and N € Tow™!(M), and in this case C' ~ lim X.

A.1.6. Proposition. Consider the following conditions:

(1) R is locally descendable, i.e. C(R) € Towst(M);

(2) LrA(R) € Tow™(M);

(3) The map LS — Cs(R) admits a retraction for some s;

(4) R-localization is smashing and agrees with R-nilpotent completion;

(5) LgrS € Thick®(R);

(6) For all X € M, the spectral sequence associated to the tower M(S, X ®
C(R)) of spectra collapses at a finite page with a horizontal vanishing line
independent of X ;

(7) For all F € M compact, the spectral sequence associated to the tower
M(F,C(R)) of spectra collapses at a finite page with a horizontal vanishing
line independent of F'.

Always (1)=(2)<(3)=(4), (5), (6), (7). If R-localization is smashing, then
(5)=(1), (2), (3). If M is a Brown category [HPS97, Definition 4.1.4], then
(M)<(1), (2), (3). If all compact objects in M are dualizable, then (6)=(7).

Proof. Abbreviate A = A(R) and C = C(R) for this proof.

(2)<(3). As R-localization is exact, there is a fiber sequence of towers LgA —
LrS — LrC, these localizations taken levelwise. As C, € Thick® (R) for each s,
we have LrC ~ C. Thus there is a fiber sequence LrA — LrS — C. Now, if
LrA € Tow™! (M), then LrpR®* — LgS is null for some s, and thus LpS — C;
admits a retraction. Conversely, if LrS — C, admits a retraction, then LrR®* —
LS is null. Any s-fold composite LrR®"t* — LrR®" in LrA is obtained by
applying Lr to R®" ® LRR®* — R®" ® LgS, and must therefore be null, proving
LrA € Tow™(M).

(2), (3)=(1). If LrS — Cy admits a retraction, then C' ~ LS & LrA. As
LrA € Tow™(M), it follows that C' € Tow!™s*(M).

(1)=(4). Suppose that C € Tow*(M). Then C ~ Spad K with K € Tow™(M).
It follows that if X € M, then Xp ~1lim(X®C) ~ X @ Sp@lim(X®K) ~ X @53,
the last equivalence being as X ® K € Tow™!(M). Applied to X = R, as Rj ~ R,
we find that S — S} is an R-equivalence, so that LrS ~ Sp. Combining these
gives X ~ X®LpS. In particular, X ® LrS is R-local, and thus X @ LrS ~ LpX.
Altogether, this proves (4).
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(1), (4)=(3). Suppose C € Tow®*(M). Then C ~ SH® F with F € Tow™(M).
By (4), we know Spy ~ LS, and this implies (3).

(3)=(5). This holds as Cy € Thick®(R) for each s.

(5)=(3) assuming R-localization is smashing. One may prove by filtering
Thick®(R) (cf. [Bou79, Lemma 3.8] or [Matl8, Construction 2.5]) that if X is
R-nilpotent then X ® A € Jow™!(R). In particular, if LrS € Thick®(R) and
R-localization is smashing, then LrA ~ LrS ® A € Tow™!(R).

(1)=(6), (7). These follow from the construction of the spectral sequence of a
tower, cf. [Mat15| Proposition 3.12].

(6)=(7) assuming that all compact objects in M are dualizable. This holds as
M(F,C(R)) ~M(S,DF ® C(R)) for F dualizable, where DF is the dual of F.

(7)=(1) assuming M is a Brown category. Let K = Fib(Sp — (), so that
R is locally descendable if and only if K € Tow™!(M). By [Matl5, Proposition
3.12], condition (7) ensures that there exists some r > 0 such that for all FF € M
compact, all r-fold composites in the tower [F, K| of abelian groups vanish. In other
words, there exists some r > 0 such that all r-fold composites in K are phantom
maps. [HPS97, Theorem 4.2.5] proves that all composites of phantom maps are
nullhomotopic. Thus all 2r-fold composites in K are nullhomotopic, proving that
K € Jow™(M) and so C € Tow®st(M). O

A.1.7. Corollary. Let T € M be another ring. Suppose that R € Thick®(T) and
(RY C (T). If R is locally descendable then T is locally descendable.

Proof. As R € Thick®(T), we have (T) C (R). Thus R and T have the same
Bousfield class. As R is locally descendable, R-localization is smashing. As R and
T have the same Bousfield class, it follows that T-localization is smashing. As
T-localization is smashing and LS = LgS € Thick®(R) C Thick®(T), it follows
that T is locally descendable. O

A.1.8. Proposition. Let N be another presentably symmetric monoidal stable oo-
category, and let F: M — N be an exact and symmetric monoidal functor. If R is
locally descendable, then F'(R) is locally descendable, and F(LrX) ~ Lpp)F(X)
for any X € M.

Proof. Suppose that R is locally descendable, and write C(R) ~ LrS & K with
K € TJow™!(M). As F is exact and symmetric monoidal, we have C(F(R)) =~
F(C(R)) ~ F(LgS) ® F(K). As K € Tow™!(M) and F is exact, we have F(K) €
Tow™!(N). Thus C(F(R)) € Tow™!(N), implying that F(R) is locally descendable.
Moreover, Lpg)S ~ lim C(F(R)) ~ lim (F(LgS) ® F(K)) ~ F(LgrS). As both
R-localization and F'(R)-localization are smashing and F' is symmetric monoidal,
it follows that F'(LpX) ~ F(X ® LrS) ~ F(X) ® Lpr)S ~ Lpr)F(X) for any
X eM. O

A.2. Isotropy separation. Fix a finite group G. This section records some tech-
niques that allow one to relate a G-spectrum R to its geometric fixed points ®¥ R.
We expect that this material is well known to the experts; the reader may observe
that the basic approach appears in the proof of the tom Dieck splitting [tD75],
and similar statements appear in [LMSMS86, Chapter 2] and [GM95, Part IV].
Recently, more sophisticated theorems have appeared which give complete recon-
structions of G-spectra from their geometric fixed points and appropriate gluing
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data [Glal7[AMR19], though our purposes turn out to be better served by a more
elementary approach.

We begin by fixing some notation. We continue to write Sp& for the homotopy
theory of genuine G-spectra. Given a category C, write Fun(BG, C) for the category
of objects in € with G-action. Given a subgroup K C G and G-spectrum X, write
res? X for the underlying K-spectrum of X, and X* and ®¥ X for the genuine and
geometric K-fixed points of X. Both XX and ®X X carry residual actions by the
Weyl group WK = Ng(K)/K, the former via the formula X% = §p%(G/K, , X)
and the latter as ®X X is a localization of X*. In particular, we may regard ®¥
as a functor

®K: $p¥ — Fun(BWg K, 8p).

Recall that a family of subgroups of G is a collection F of subgroups of G
closed under subconjugacy. Given such a family, write O5(G) for the associated
full subcategory of the orbit category of G, consisting of those G-sets G/H with
H € F. Associated to any family F are two G-spaces EF and E?, which fit into a
cofiber sequence

EF, - 5° = EF,

and are characterized by the fixed points

_ 0
pgt = [ K¢g, zoc_ [$° K¢9,
S Kedg; x Ke7.

The suspension spectra of these spaces play a central role in equivariant stable
homotopy theory; see especially [MNNI7,MNNT19] for a modern account, and [tD79]
Chapter 7] for a classical account. We will make use of the following formula for
EF, see [MNN19, Appendix A].

A.2.1. Lemma. There is an equivalence EF ~ colimg,pco,(a) G/H.

A G-spectrum X is said to be F-nilpotent if the map FF, ® X — X is an
equivalence, and 5~ !-local if the map X — EF®X is an equivalence. An important

special case of F~1-localization is the following, see for instance [MNNIT, Section
6.2].

A.2.2. Lemma. Let P be the family of proper subgroups of G. Then
(EP® X)¢ ~ 06X,

and ®C gives an equivalence from the category of P~'-local G-spectra to the cat-
egory of ordinary spectra.

An inclusion of families 7 C F5 induces a map EFyy — EF5y, and so any G-
spectrum X may be filtered by the G-spectra EF; @ X. Our main observations in
this subsection concern the layers of this filtration. Given families 7 C Fs, define

E[Fy,F5) = Cof (EF1, — EFoy) ~ EF @ EFo,.
Note that for any G-spectrum X, there is a natural square
X+—EF, ®X

(23) | |

EF, @ X +—— E[F;,F] ® X.
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A.2.3. Lemma. The square[Eq. (23)| consists of equivalences if and only if &7 X ~
0 for all H ¢ F5\ F1. In particular, the homotopy type of E[F1,Fs] depends only
on Fy \ Fy.

Proof. Note that ®# X ~ 0 for all H ¢ F, \ F; if and only if @7 X ~ 0 for all
H ¢ F5 and all H € F;. The condition that ®7 X ~ 0 for all H € J; is equivalent
to X > EF, @ X being an equivalence, and the condition that ®7 X ~ 0 for all
H ¢ F5 is equivalent to EFy; ® X — X being an equivalence. This shows that if
consists of equivalences, then ®# X ~ 0 for all H ¢ F,\ F1, as well as half
of the converse. The other half follows by applying the same argument to EFi®X
and EJay @ X. O

Given a subgroup K C G, one says that a pair F; C Fy is adjacent at K if
Fa\F1 = (K). In this case, we write E[K| = F[F1, F»|; Lemma A.2.3 ensures that
the homotopy type of E[K] depends only on the conjugacy class of K. Say that a
G-spectrum X is concentrated at K if X ~ E[K|® X.

A.2.4. Proposition. If X is concentrated at K, then
XC 2 (@5 X ).

Moreover, ®X defines an equivalence from the full subcategory of G-spectra con-
centrated at K to Fun(BWg K, Sp).

Proof. First, note that if X is concentrated at K, then res?( X is (P[_(l—local, where
Px is the family with respect to K of proper subgroups of K. In particular,
[Cemma A.2.2 implies that X% ~ &K X,
Now, let <k be the family of subgroups of G subconjugate to K. As X is
concentrated at K, it is F<g-nilpotent, and thus
X~ (EFcr @ X)¢ ~ colim (G/H® X)% ~ colim X%,
= G/HEOs_ . (G) G/HEF<x
If H € F<k is not conjugate to K, then the condition that X is concentrated
at K implies that X¥ ~ 0. This ensures that, though the inclusion BWgK ~
B Aut(G/K) C O5_, (G) need not be cofinal as K C G need not be normal, this
inclusion still induces an equivalence
li X" ~ colim X* ~ (XK ~ (PF X .
o/h ™ SR = (o = (07 v
It remains to verify that ®¥: 8p® — Fun(BWgK, 8p) is an equivalence when
restricted to the full subcategory of G-spectra concentrated at K. First we claim
that it is fully faithful. Indeed, let X and Y be G-spectra concentrated at K. Then
the same argument as above shows

S$pY(X,Y) ~ lim Spf(res& X, resG V) ~ Sp&(res@ X, res@ YV)EWe kK,
P ( ) G/HEOs. () p" (resp aY) p" (resg kY)

[Cemma A-2.2limplies that SpX (res@ X, res$ V) ~ Sp(®X X, #XY), and so we have
SpY(X,Y) ~ 8p(dX X, Ky )hWe kK,
This is the mapping spectrum in Fun(BWgK, 8p), so that ®¥ is fully faithful on
G-spectra concentrated at K as claimed.
Next we claim that it is essentially surjective. As ®% preserves colimits, it suffices

to show that if T is a WgK-set then ¥°T € Fun(BWgK,8p) is in its essential
image. To that end, it suffices to produce a pointed G-space X satisfying X% = T,
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and X = % for H not conjugate to K, for then ¥*°X € 8p% is concentrated at
K and satisfies @EL°X = ¥9°T'. Indeed, one easily constructs a presheaf on the
orbit category O(G) of G satisfying

T, H conjugate to K,

* otherwise,

G/HH{

and with Autgq)(G/K) = WgK acting on Ty in the prescribed manner. This
then gives rise to the necessary G-space by Elmendorf’s theorem. (]

A.2.5. Lemma. Any G-spectrum X admits a natural finite filtration with
g X ~PEK| X,
(K)
this sum being over the conjugacy classes of subgroups of G.

Proof. Any maximal chain Fy C ¥ C .-+ C F, of families of subgroups of G has
the property that each F; C F;;;1 is adjacent at some subgroup, and that every
conjugacy class appears as F; 1 \ F; for exactly one i, so the associated filtration
EFpy; @ X = EF 14 ® X — --- = EJ,; ® X has the desired properties. (]

A.2.6. Proposition. Any G-spectrum X admits a natural finite filtration with
gI‘XG ~ @(‘I)KX)}IWGK,
(K)

this sum being over the conjugacy classes of subgroups of G.

Proof. Combine [Lemma A.2.5] and [Proposition A.2.4] O

A.2.7. Corollary. Let F: J — 8Sp© be a diagram of G-spectra, and f: X —
limjey F(j) be a map of G-spectra. For f to be an equivalence, it suffices that f
induces an equivalence

(" X)uwy k ~ lim (25 F(§))nw, k)

li
Jj€d
of ordinary spectra for all subgroups K C H C G.

Proof. The map f is an equivalence if and only if it induces an equivalence

7 X" — limjeg F(5)" for all subgroups H C G. By [Proposition A.2.6, both
source and target admit a natural finite filtration, with

gr fH: @(‘I)KX)hWHK — @hm (((I)KF(j))hWHK) )
(K) (K) 7€

these sums being over the conjugacy classes of subgroups K C H. The corollary
follows as f is an equivalence provided gr f is an equivalence. O

A.3. Equivariant Bousfield localizations. We are now in a good position to
discuss equivariant Bousfield localization. Fix a ring G-spectrum R. Our main
observation is the following.

A.3.1. Theorem. R is locally descendable if and only if each ®KR is locally
descendable as an object of Fun(BW¢gK,8p). If WeK acts trivially on ®KR,
then this holds if and only if ®X R is locally descendable as an ordinary spectrum.
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Proof. [Proposition A.1.8|implies that if the G-spectrum R is locally descendable,
then each ®* R € Fun(BWgK, 8p) is locally descendable; and that if WgK acts
trivially on ®X R, then ®¥ R is locally descendable in Fun(BW¢K, 8p) if and only
if it is locally descendable in Sp.

Now suppose that each ®*R € Fun(BWgK,8p) is locally descendable. By
[Cemma A25] C(R) admits a finite filtration with filtration quotients of the form
E[K] ® C(R). As Jow™'(8p®) C Tow(Sp“) is a thick subcategory, it suffices
to show that E[K] ® C(R) € Tow'®!(8§p¥) for all K C G. Under the embed-
ding of [Proposition A.2.4] E[K] ® C(R) corresponds to the tower C(®XR) €
TJow(Fun(BWg K, 8p)), so this follows from the assumption that ®X R is locally
descendable in Fun(BWg K, Sp). O

We can extend this to the global equivariant context. First, some notation. For
our purposes, a global family shall be a collection F of finite groups closed under
products, subgroups, and quotients. Schwede [Sch1§| has shown that to each global
family &, there is a good symmetric monoidal and stable category Slobs of global
spectra with respect to F.

Associated to any G € F is a symmetric monoidal functor

Ug: Sloby — 8p%,

which preserves limits and colimits [Sch18, Theorem 4.5.25]. Moreover, these func-
tors are jointly conservative as G is taken to range through ¥, and are compatible
with each other in the sense that res?( Ug = Uk for K C G.

Associated to any X € Globy and G € F are the genuine and geometric fixed
points X& and ®“X. The genuine fixed points X are represented by the global
suspension spectrum of the global classifying space Bg1G, in the sense that X G~
Globg(Bg G+, X) [Schl8, Theorem 4.4.3]. In particular, X carries a natural action
by the space Aut(BgG) of automorphisms of the global classifying space BgG. This
in turn is equivalent to the space of automorphisms of the ordinary classifying space
BG@, as can be easily seen from the orbispace model for global spaces [Korig].

Genuine and geometric fixed points are compatible with the functors Ug, in the
sense that (Ug)® ~ XX and ®¥UgX ~ ®XX. Following the discussion after
[Sch18, Theorem 4.5.25], if we write L for the left adjoint to Ug, then the natural
equivalences Globg(Bg K, X) ~ X& ~ §p%(G/K,,UsX) ~ Globs(L(G/K)4, X)
show that L(G/Ky) ~ By K for K C G. It follows that Wg K acts on XX through
its action on BK ~ EG xg (G/K).

A.3.2. Theorem. Let F be a global family, and suppose that for oll G € F and
K C G, the spectrum ®X R is locally descendable as an object of Fun(BWg K, 8p).
Then R-localization is smashing and agrees with R-nilpotent completion, UgR €
8p© is locally descendable for all G € F, and UgLpX ~ LyorUgX for all X €
Slobg.

Proof. The hypotheses ensure that we may apply [Theorem A.3.1] to deduce that
UgR € 8p© is locally descendable for all G € F. The remaining assertions follow
by applying [Lemma A T4 to (Ug)ges: Sloby — [Taes SPO. O

In general, it seems difficult to determine when a ring R € Fun(BG, 8p) is locally
descendable when G acts nontrivially on R. We will make use of the following simple
case.
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A.3.3. Lemma. Let G be a finite group and R € Fun(BG, 8p) be a ring. If |G|
acts invertibly on R and the ordinary spectrum R"C is locally descendable, then
R is locally descendable.

Proof. As there is a G-equivariant map i: R:“ — R of rings, we have (R2Y) C (R).
As G acts invertibly on R, the composite R"® — R — Ry — R, with last map
the transfer, is an equivalence. Thus R"® € Thick®(R), and the lemma then follows
from [Corollary A.1.7] O

We also need the following.

A.3.4. Proposition. Suppose that R is a G-Eo, ring. Then R-nilpotent com-
pletion preserves G-Eo 1ings. In particular, if all G-spectra are R-convergent,
such as if R is locally descendable, then R-localization preserves G-Eo, rings. The
same statements hold with G-Eo, ring spectra replaced by global ultracommutative
ring spectra.

Proof. If R is an A, ring, then C(R) may be identified as the tower of partial
totalizations of the cosimplicial object [n] — R®"*! [MNNI17, Proposition 2.14],
and thus R-nilpotent completion is given by XA = lim,ca(X ® R"!). When
moreover R and X are G-E., rings, this is the totalization of a cosimplicial diagram
of G-E, rings, and is therefore itself a G-E., ring. The same proof applies in the
global ultracommutative case. O

So far we have focused on localizations with particularly good finiteness prop-
erties. We also note an orthogonal case. First, a bit more notation. The forgetful
functors U: §p¥ — Fun(BG, 8p) and U: Globg — Sp admit right adjoints, which
we shall denote bg and bg respectively. In particular, bgU(X) ~ F(EG4, X),
where EG is the classifying space for the family {e}.

A .3.5. Proposition. Let T be an ordinary ring spectrum.
(1) If T =0, then Ly, X =~ bg(LrUX) for all X € 8p©.
(2) If T =0 for all G € F, then Ly, X ~ by(LyUX) for all X € Globsg.

Proof. The proof is essentially the same in both cases, so we shall just prove the
first. The assumption that T is a ring and T*¢ = 0 implies that ®*bg(T) = 0 for
all nontrivial subgroups K C G [MNN19, Proposition 2.13]. At this point, we could
deduce (1) by observing that bg(T") is Bousfield equivalent to G ® T' and applying
[Car22l Proposition 3.21]; however, we shall give the direct proof that also applies
in case (2).

First we show that bg(L7UX) is bg(T)-local. Fix C € 8p® which is bg(T)-
acyclic. As U(bg(T) ® C) ~T @ UC, it follows that UC is T-acyclic. Thus

8pa(C,ba(LrUX)) ~ 8p(UC, LyUX )P ~ 0,

and this implies that bg(LrUX) is bg(T')-local as claimed.
Next we show that X — bg(LrUX) is a bg(T)-equivalence. To that end, we
must show that the map

(24) bg(T) RX — bg(T) & b(;(LTUX)
is an equivalence. It suffices to verify this after applying ®¥ for all K C G. If

K = e, then ®° = U and [Eq. (24)| is the equivalence T @ UX — T ® LyUX.
If K # e, then both sides of vanish as ®¥ is symmetric monoidal and
Kb (T) =0 for K #e.
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Together these prove that X — bg(LrUX) realizes bg(LrUX) as the bg(T)-
localization of X. O

A.4. Examples. We now give examples, beginning with the proof of
[Proposition 1.1.5] Recall that KU denotes the global spectrum of equivariant K-
theory [Schi8, Section 6.4], satisfying Us KU =~ KUg for all G. We need the
following.

A.4.1. Lemma ([tD79, Section 7.7]). For any group G, we have

o otherwise.

Given a subgroup K C G, define Vg K = Im(NgK — Aut(K)); we comment
that |Vo K| = [NgK : CgK| where Cg K is the centralizer of K in G. Say that G
is KU-allowable if for all cyclic subgroups C' C G, the order of V5 C is invertible
in Z[\_él]

A.4.2. Theorem. KUg € $p© is locally descendable if and only if G is KU-
allowable.

Proof. Suppose that G is KU-allowable. By [Theorem A.3.1] we must show that
K KUg € Fun(BWgK, 8p) is locally descendable for all subgroups K C G. By
[Cemma A 41l we need only consider the case where K = C is a cyclic sub-
group of order n. Here ®“KUg = KU[L](¢y) is an Aut(C)-Galois extension of
KU[L], and the Weyl group W C acts on KU[1](¢,) through a natural Aut(BC)-
action extending its Aut(C)-action. As Aut(BC) is 1-truncated and the order of
71 Aut(BC) = C' is invertible in KU[X]((,), the Aut(BC)-action on KU[1](¢y)
factors through the truncation Aut(BC) — mp Aut(BC) = Aut(C). Thus WeC
acts on KU[2]((,) through the natural map WgC' — Ve C, and it suffices to show
that KU[1](¢,) € Fun(BVC, 8p) is locally descendable.

By assumption, the order of VC is invertible in KU[2]((,,), so by [Lemma A.3.3]
it suffices to show that the ordinary spectrum KU[L](¢,)"VeC is locally
descendable.  This assumption moreover implies that . (KU[X](¢,)"Ye%) =
(meKU[2](¢,))VeC; this is in particular a free m,KU[1]-module, and thus
KU[2](¢,)"eC is a free KU[2]-module. Hence by it suffices to
verify that KU [%] is locally descendable. This is the classical example of a lo-
cally descendable spectrum: [Bou79, Corollary 4.7] shows that KU-localization is
smashing and LxyS € Thick®(KU), so the same is true for KU[%], and local
descendability then follows from [Proposition A.1.6]

Now suppose that G is not KU-allowable. We may thus find a cyclic subgroup
C C G of order n, prime p not dividing n, and cyclic p-subgroup D C NgC for which
the composite D — NgC' — Aut(C) is nonzero. Write ®“ KU¢ = KU[1](¢,). By
[Proposition A.1.8, to show that KUg € 8p® is not locally descendable it suffices to
show that KU[1]((,) € Fun(BD, 8p) is not locally descendable. In the following,
abbreviate L = LKU[%](C”).

For a spectrum X write ¢(X) € Fun(BD, 8p) for the corresponding object with
trivial action. Then i(S) is the unit of Fun(BD,8p), so by [Proposition A.1.6| it
suffices to show that Li(S) ¢ Thick®(KU[2](¢,)). Observe that we may additively
identify KU[+]((n) ~ Aut(C)+@KUJ[=]. As the image of D in Aut(C') is nontrivial,

1 1
n n
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it follows that if X € Thick®(KU[](¢,)) then ®Pbp(X) = 0, so it suffices to verify
that ®Pbp(Li(S)) # 0.

Observe that KU[1](¢,) € Fun(BD,8p) has the same Bousfield class as
i(KU[%]). By[Proposition A1.8] as KU[%} is locally descendable, we find Li(S) ~
Liku1api(S) = i(LgyryS). As D is a cyclic p-group and p { n, it is easily verified
that ®Pbp (i(Lgyr)S)) # 0, see for instance [MNNI9, Proposition 5.36], and this
finishes the proof. O

A good supply of KU-allowable groups is given by the following.
A.4.3. Lemma. Suppose that G is nilpotent. Then G is KU-allowable.

Proof. As G is a finite nilpotent group, we may write G = Hp G with G,y C G
the Sylow p-subgroup. It follows that if C' C G is any subgroup, then C' = ]_[p Cp)
with C,) = C NGy, and that VaC = Hp VG, Cpy- Thus if a prime p divides the
order of Vg, then Vi, C(,) # e, implying that C(,) # e and thus that p divides
the order of C. As every prime dividing the order of Vg C divides the order of C,
we find that the order of V(' is invertible in Z[l C‘] and so G is KU-allowable as
claimed. (]

The following now suffices to prove [Proposition 1.1.5]

A.4.4. Proposition. Let § be a family of groups, all of which are KU -allowable.

(1) Bousfield localization in Globg with respect to KU is smashing, agrees
with nilpotent completion, and preserves ultracommutative ring spectra;

(2) If G is KU-allowable, then KUg € 8p© is locally descendable and KUg-
localization preserves G-Eo, Ting spectra;

(3) UgLkuX ~ Lgy,UcX for all G € F and X € Globs.

Proof. Given [Theorem A.4.2] these follow from [Theorem A.3.1] IIhmmm_A..&.ZL
and [Proposition A.3.4]

At this point, we have provided everything needed in the body of the paper. The
remainder of the appendix is dedicated to giving some additional examples of the
theory developed above. We start by noting that the techniques of
may be used to give more quantitative information about equivariant K-theory
localizations.

A.4.5. Proposition. Let G be a KU-allowable group and let X be a G-spectrum.
Then for K C G, we may identify

K )
K Ly, X ~ Lruis) (@FX) K=y,
0 otherwise,
and Ly, X admits a finite ﬁltmtion with
er(LixvsX)%~ P LKU[L (2 X)nwec,
(C) cyclic C

this sum being over conjugacy classes of cyclic subgroups of G.

Proof. The identification of ®X Ly, X follows from [Proposition A.1.8 and
[Cemma A41] and the filtration from [Proposition A.2.6 O
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If G is a p-group, then (KUg)(y) is Bousfield equivalent to bg(KUp,). This
suggests looking at b (E,,)-localization, where E,, is a height n Morava E-theory,
as a higher chromatic analogue of (KUg)-localization. We start by recalling
the smash product theorem [Rav92, Chapter 7] in its strong form. Say that a
Landweber exact spectrum R is of finite height if there exists some n > 0 such that
R./(p,v1,...,v,) =0 at all primes p.

A.4.6. Lemma. Let R be a Landweber exact ring spectrum of finite height. Then
R is locally descendable.

Proof. This is clear if R ~ 0, so we may suppose that R is nonzero. By
[Proposition A.1.6] it suffices to show that for all spectra X, the R-based Adams
spectral sequence for X collapses at a finite page with a horizontal vanishing line
which is independent of X. As p-localization is exact, we may identify the R,-
based Adams spectral sequence for X as the p-localization of the R-based Adams
spectral sequence for X. It therefore suffices to show that the R(,)-based Adams
spectral sequence for X collapses at a finite page with a horizontal vanishing line
which is independent of X, as well as of p for all sufficiently large primes p.

Fix a prime p, and let m < n be maximal for which R./(p,v1,...,0m-1) # 0.
Applying the theory of [HS03|] to the zigzag R,y — R ® E(m) < E(m), we
find that the R(,)-based Adams spectral sequence is isomorphic to the E/(m)-based
Adams spectral sequence from the Fy page on.

If p > m + 1, then the E(m)-based Adams spectral sequence has a horizontal
vanishing line on the E-page of y-intercept at most m? +m [HS99al, Theorem 5.1].
This gives a horizontal vanishing line in the R,)-based Adams spectral sequence
for p > n + 1 which is independent of such p.

It now suffices to show that the R(,)-based Adams spectral sequence has some
horizontal vanishing line for each of the finitely many primes p < n+1. As above, we
may replace the R(,)-based Adams spectral sequence with the F(m)-based Adams
spectral sequence. The lemma then follows from [HS99b| Proposition 6.5]. O

A.4.7. Lemma. Let G be a finite group. Let R be a G-ring spectrum which admits
Thom isomorphisms for complex representations, and suppose moreover that R®
is a Landweber exact ring spectrum of finite height. Then the ordinary spectrum
®CR is Landweber exact and locally descendable.

Proof. As R admits Thom isomorphisms for complex representations, we may iden-
tify @R ~ RY[e~1] where e is the oriented Euler class of the reduced complex
regular representation of G, see [tD79, Section 7.4] or [MNNI9 Section 5]. As
localization is exact, it follows that ®“R is Landweber exact and finite height, so

we may conclude by [Lemma. A.4.6 O

We now consider the spectra bg(E,). We focus on the case where G is an
elementary abelian p-group, as here all Weyl groups act trivially. We expect that the
following observations extend to all abelian p-groups, but proving this would require
developing additional techniques for determining when an object of Fun(BG, 8p) is
locally descendable.

A .4.8. Proposition. Let B be an elementary abelian p-group. Then bg(E,) is
locally descendable and b (E,)-localization preserves B-Eo Tings.

Proof. By [Theorem A.3.1] to show that bg(E,) is locally descendable it suffices to
show that the ordinary spectrum ®4bp(E,) is locally descendable for all A C B.
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Indeed, bg(E,)4 = EY A+ is a free E,-module, and therefore [Cemma A.4.7 applies.
That bp(E,)-localization preserves B-E, rings now follows from [Proposition A.3.4

O

As with equivariant K-theory, it is possible to be more explicit. In the following,
we take the convention that Fg = HQ and E,, = 0 for n < 0. Given an elementary
abelian p-group A, write rk(A) for the rank of A, i.e. the dimension of A viewed as
a vector space over Fp,.

A.4.9. Lemma ([Tor02]). Let A be an abelian p-group of rankt. Then (®4bs(E,))
- <En7t> .
Proof. As ®4b4(E,) is p-local and Landweber exact, it is Bousfield equivalent to
FE; where d is maximal for which
d4bA(En)/ (vo, ... ,vq-1) # 0.

As

dAbA(En)/ (v, ..., va-1) ~ ®A(En/(v0, ... v4-1)),
[MNN19, Proposition 5.28] says that this is nonzero if and only if t < n —d, i.e.
d < n —t, proving the lemma. O

Abbreviate L,, = Lg, and L = Ly, (e,

A.4.10. Proposition. Let B be an elementary abelian p-group and let X be a
B-spectrum. Then
PALLX ~ L, a) X,
and L X admits a finite filtration with
gr(L5,X)P ~ P Loy (@ X)np/a,
ACB
this sum being over the subgroups of B.

Proof. The identification of ®A4L2X follows from [Proposition A.1.8 and
[Cemma A4.9] and the filtration from [Proposition A.2.6} O

We end our discussion of the localizations L® with the following observation.
A.4.11. Proposition. Let B be an elementary abelian p-group. Then
(SB)(p) >~ 7115’1;0 LZSB

Proof. By and [Proposition A.4.10, the map (Sp)y —

lim,, oo LELS B is an equivalence provided the following condition holds. Let D C
C' C B be subgroups, write A = WD = C/D, and suppose that C' is of rank ¢.
Then the map

(BA+)(p) — nh~>n,olo LnftBA_F

is an equivalence. This in turn holds if and only if S(,) =~ lim, , L,S and
Y*°BA ~ limy, o L,2°BA. The first condition is exactly the classical chro-
matic convergence theorem [Rav92l Theorem 7.5.7]. The second condition asks
that chromatic convergence holds for X*°BA.

Barthel [Barl6] has shown that if X is a spectrum, then lim, ;o L, X ~ X(;)
provided that X has finite projective BP-dimension. Work of Johnson—Wilson
[JWR85] shows that if A is an elementary abelian p-group, then BA has projective
BP-dimension equal to rk(A4). Combining these proves the proposition. O
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We end with an orthogonal class of examples. Combining [Proposition A.3.5|
with [GS96, Theorem 1.1] shows that Ly, xn)X =~ ba(Lkn)UX) for any finite
group G and G-spectrum X. Let us just focus on the simplest case, which may be
interpreted more conceptually.

A.4.12. Proposition. Let G be a p-group. Then for any X € $p, we have

LKUG/(p)X ~ bg(LKU/(p) UX).
Proof. By the p-adic version of Atiyah’s completion theorem [Ati61, Theorem 7.2],
[AT69, III §1, Proposition 1.1], there is an equivalence KUg/(p) ~ ba(KU/(p)).
By [GM95, Theorem 13.1], (KU/(p))*“ = 0 for any finite group G. The proposition
then follows from [Proposition A.3.5] O

We deduce [Corollary A.4.13] which was also independently obtained in [BGS22|
Proposition 6.3] for p odd.

A.4.13. Corollary. If G is a p-group, A is a finite G-spectrum, and k € Z;

projects to a topological generator of ) [{+1}, then there is a fiber sequence
k_1

(25) Licvg A — (KOg® A)h =5 (KOg @ A)) .

If p is odd, then we may replace KO by KU provided k is a topological generator
of Z; .

Proof. The assumptions that G is a p-group and A is finite ensure that is
equivalent to

k_
bo(Licw U A) —— ba(KO @ UA)Y) N b (KO @ UA)) ;

in other words, that [Eq. (25)| is the image of the standard fiber sequence for
L/ UA under the functor bg. The corollary follows as bg is exact. O

A.4.14. Remark. Let us relate [Proposition A.4.12] to the body of the paper. If R
is an E, ring and G is a finite group, then bg(R) is a G-E, ring. If K C G is a
subgroup of index m and « € RO(K), then the norm

P,: t5b6(R) — =l a¢ obc(R)

may be identified as the composite
[Th(e | BK), Sk(1y] = [Th(a | BK)E! | Sk
= [Th((pm © @) L B(Em 1 K)). Sky] = [Th((Ind§ @) | BG), Sk,
where the first map is an ordinary power operation and the last map is restriction

along a suitable map BG — B(X,, 1 K).
In particular, take G = C), and suppose that R is p-local. As the map

n\®p n\Qp

(S")ne, = (S")s,
is p-locally the projection onto a summand, norms for bc,(R) are determined
by the pth symmetric powers for R discussed in In light of

[Proposition A.4.12] we may therefore regard our computation in as de-
scribing norms on L KUc, /(p) Sc,, although to make this completely explicit would

require describing the effect of the projection (S”)?gp — (S”)%’p on K(1)-local
cohomotopy.
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