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Abstract
Many special classes of simplicial sets, such as the nerves of categories or groupoids,
the 2-Segal sets of Dyckerhoff and Kapranov, and the (discrete) decomposition spaces
of Gálvez, Kock, and Tonks, are characterized by the property of sending certain
commuting squares in the simplex category� to pullback squares of sets.We introduce
weaker analogues of these properties called completeness conditions, which require
squares in� to be sent to weak pullbacks of sets, defined similarly to pullback squares
but without the uniqueness property of induced maps. We show that some of these
completeness conditions provide a simplicial set with lifts against certain subsets of
simplices first introduced in the theory of database design. We also provide reduced
criteria for checking these properties using factorization results for pushouts squares
in �, which we characterize completely, along with several other classes of squares in
�. Examples of simplicial sets with completeness conditions include quasicategories,
many of the compositories and gleaves of Flori and Fritz, and bar constructions for
algebras of certain classes of monads. The latter is our motivating example.

Keywords Simplicial sets · Weak pullbacks · Lifting properties · 2-Segal · Databases

Communicated by George Janelidze.

B Brandon T. Shapiro
brandonshapiro@virginia.edu

Carmen Constantin
carmen.constantin@mansfield.ox.ac.uk

Tobias Fritz
tobias.fritz@uibk.ac.at

Paolo Perrone
paolo.perrone@cs.ox.ac.uk

1 Mansfield College, Oxford, UK

2 Department of Mathematics, University of Innsbruck, Innsbruck, Austria

3 Department of Computer Science, University of Oxford, Oxford, UK

4 University of Virginia, Charlottesville, VA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-023-00334-1&domain=pdf


478 C. Constantin et al.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
2 ∨-Decompositions and ∨-products in the simplex category . . . . . . . . . . . . . . . . . . . . . 482
3 Pushout squares in � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4 Completeness and exactness properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5 Lifting conditions and acyclic configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
6 Examples of (inner) span completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

1 Introduction

Compositional structures, such as categories, are most commonly defined in terms of
algebraic operations satisfying certain algebraic laws. But there is a powerful alterna-
tive picture in which compositional structures are considered as certain combinatorial
structures with merely extra properties (and no algebraic structure). For example,
taking the nerve of a category produces a combinatorial structure—in the form of
a simplicial set—from which the category can be recovered; and conversely, every
simplicial set which has a property known as the Segal condition encodes a category
under this correspondence.

Moreover, this combinatorial perspective suggests far-reaching generalizations of
the concept of category, obtained by suitable relaxations of the Segal condition. The
most prominent of these is the generalization toquasicategories [13],which are defined
as simplicial sets with the additional property that every configuration consisting of n
n-simplices with shared faces arranged in the shape of an inner horn, can be obtained
from the faces of an (n + 1)-simplex, called a filler of the inner horn. Since the filler
is merely required to exist and is generally non-unique, quasicategories are a compo-
sitional structure that is not algebraic.1 Another example that has gained prominence
recently is that of 2-Segal sets [3], also known as (the discrete case of) decomposition
spaces [9]. These again are compositional structures coming in the form of simplicial
sets satisfying certain (in this case unique) filler conditions [3]. They arise naturally
in many different ways in combinatorics [3, 9].

In this paper, we introduce new compositional structures defined in such combi-
natorial terms. These structures are motivated by partial evaluations [7], which is
the idea that an algebraic expression like 3 + 1 + 4 can not only be “totally” eval-
uated to 8, but it can also be “partially” evaluated to 3 + 5. This is formalized in
terms of the bar construction of Eilenberg–Moore algebras of monads; on a concrete
category, this bar construction results in a simplicial set whose 1-skeleton describes
partial evaluations. As shown in [7], these partial evaluations can often be composed
(non-uniquely). This naturally raises the question whether the entire bar construction,
considered as a simplicial set, has properties which encode a compositional structure
similar to quasicategories or 2-Segal sets. As we show in our companion paper [2], the
bar construction of many monads, including many of those which describe commonly

1 It is worth noting that the theory of (∞, 1)-categories, which is modeled by quasicategories, also has
closely related algebraic models [17].
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occurring algebraic structures, display the compositional properties that we study in
this paper.

We start in Sects. 2 and 3 with a thorough study of pushouts in the simplex category
�. This is based on the ∨-decomposition of objects, morphisms, and more general
diagrams in� that we introduce in Sect. 2. The associated∨-product on� amounts to
a partially defined monoidal structure which glues two morphisms f1 : [n1] → [m1]
and f2 : [n2] → [m2] to

f1 ∨ f2 : [n1 + n2] −→ [m1 + m2]

whenever f1 preserves the final vertex, as in f1(n1) = m1, and f2 preserves the
initial vertex, as in f2(0) = 0. By making judicious use of the ∨-decomposition and
∨-product, we obtain several characterization results on pushouts in �. Theorem 3.2
characterizes pushout squares as∨-products of four minimal types of pushout squares
with [0] or [1] in the upper left corner. Corollary 3.3 then characterizes when a span in
� has a pushout at all, and Theorem 3.10 factors every pushout square in� into certain
basic pushouts and trivial pushouts. Corollary 3.13 lists 8 particular pushout diagrams
in � such that all others arise from these by composition and ∨-products, with all
but two of these squares having parallel identity morphisms in at least one direction.
Theorem 3.16 and Corollary 3.17 provide similar results for balanced squares in
�, which are those squares of coface maps that are pushouts of finite sets (but not
necessarily pushouts in �).

In Sect. 4, we consider the classes of squares in � that a given simplicial set
X : �op → Set sends to (weak) pullbacks. Our philosophy is that this encodes
compositional properties enjoyed by X : we consider a square in � being sent to a
weak pullback a completeness property, amounting to the existence of certain fillers,
while being sent to a pullback is an exactness property where the fillers are in addi-
tion unique. Based on the previous results on the characterization of pushouts in �,
Theorems 4.4 and 4.11 then reduce completeness and exactness with respect to entire
classes of squares to simpler ones.

Thus for every class of squares in �, postulating completeness or exactness with
respect to these squares specifies a type of compositional structure defined in terms of
filler conditions. For example, 2-Segal sets can be defined in this way [3, Proposition
2.3.2].Of particular interest to us in the context of the bar construction [2] are simplicial
sets that we call inner span complete. A span complete simplicial set is one which
sends all balanced squares of coface maps to weak pullbacks (Definition 5.1), while an
inner span complete simplicial set only needs to send pushout squares of coface maps
to weak pullbacks (Definition 5.2). These are characterized by the possibility to fill
any pair of (n − 1)-simplices that overlap on an (n − 2)-simplex face to an n-simplex
(for all n ≥ 2), with an “innerness” restriction of these pairs in the inner span case
analogous to the restriction of horns to inner horns when generalizing Kan complexes
to quasicategories.

While these compositional propertiesmay sound ratherweak,we show inTheorems
5.9 and 5.14 that they are sufficient to imply the existence of much more general
fillers, namely fillers for all (directed) acyclic configurations. Among the most basic
instances of this is the consequence that any string of 1-simplices of length n, as in
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the Segal condition, has an n-simplex filler. In general, these acyclic configurations
are (directed) simplicial complexes characterized in Theorems 5.5 and 5.11 in terms
of combinatorial acyclicity conditions that are not homotopy invariant, but are closely
related to notions of shellability and collapsibility in combinatorial topology. While
our definition of directed combinatorial acyclicity is new, the undirected version has
a long history in database theory [16].

Finally, Sect. 6 concludes the paper with a presentation of some first examples
of (inner) span complete simplicial sets unrelated to the bar construction examples
considered in [2]. We note in Proposition 6.2 that quasicategories are inner span
complete, while the converse is not true. We then relate (inner) span completeness to
the compositories and gleaves from [5], noting that some of the examples considered
there are also span complete or inner span complete simplicial sets. This includes an
inner span complete simplicial set of higher spans in any category, a span complete
simplicial set where the n-simplices are joint probability distributions of n+1 random
variables, and a closely related one in which they are the tables with n + 1 columns
in a relational database.

Weakly cartesian squares

We now present some basic background in weak pullbacks.
One of the main ideas we consider is replacing definitions involving pullback

squares with analogues using instead weak pullback squares, which have a weaker
universal property than pullbacks (which we sometimes call strong pullbacks for
emphasis) in that induced maps need not be unique.

Definition 1.1 [12] A diagram

A B

C D

f

g m

n

(1.1)

in a category C is called a weak pullback, or weakly cartesian square, if for every
object S and every commutative diagram

S

B

C D

p

q
m

n

in C there exists an arrow S → A making the following diagram commute.

S

A B

C D

p

q f
g m

n
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Weak cartesian properties of simplicial sets 481

If we are in the category Set, the diagram (1.1) is a weak pullback if and only if for
every b ∈ B and c ∈ C with m(b) = n(c) there exists a ∈ A such that f (a) = b and
g(a) = c. Note that if we moreover require the map S → A to be unique, we recover
the ordinary notion of pullback (or cartesian square).

Like strong pullbacks (and by the same argument), weak pullbacks are closed under
horizontal and vertical composition of squares. Strong pullbacks further satisfy the
following standard pullback lemma, also known as the prism lemma in the homotopical
setting (see for instance [9, Lemma 1.11]).

Lemma 1.2 In any diagram as below, if the right square and outer rectangle are strong
pullbacks, then so is the left square.

· · ·
· · ·

A fundamental difference between strong and weak pullbacks is that this does not
hold for weak pullbacks in general.

Example 1.3 Consider the diagram below in Set:

{∗}

{∗} {a, b} {∗}

{∗} {∗} {∗}

b

a

Both the right square and the outer rectangle areweak pullbacks, and the kite shaped
subdiagram commutes, but there is nomap h : {∗} → {∗}with ah = b. The left square
is therefore not a weak pullback.

In categorieswith all pullbacks such as Set, the following is a useful characterization
of weak pullback squares, which follows immediately from considering the induced
maps in both directions between weak and strong pullbacks of the same cospan.

Lemma 1.4 A commutative square in a category with all pullbacks is a weak pullback
if and only if the induced map into the pullback of its cospan is split epic.

The following lemma will be particularly useful when f or g is a degeneracy map
of a simplicial set, which is always (split) monic.

Lemma 1.5 If the square below is a weak pullback and f or g is monic, then the square
is a strong pullback.

A B

C D

f

g
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Proof Assume f is monic (the argument for g is analogous), and let p : S → B,
q : S → C be maps which commute over D. Any two induced maps h, h′ : S → A
with f h = f h′ = p are equal as f is monic. 	


Simplicial terminology

Throughout the paper, � denotes the simplex category, i.e. the category of nonempty
finite ordinals

[n]:={0, . . . , n}

for n ∈ N as objects and monotone maps as morphisms. Its generating coface maps
are the morphisms

dn,i : [n − 1] −→ [n]

for i = 0, . . . , n, given by the inclusion of [n − 1] into [n] omitting the element i .
The generating codegeneracy maps are likewise the morphisms

sn,i : [n + 1] −→ [n]

for i = 0, . . . , n, given by the map which hits i twice but otherwise acts like the
identity. A coface map or codegeneracy map in general is a composite of generating
ones.

A simplicial set is then a functor �op → Set. As usual, when the simplicial set
under consideration is clear from the context, then we denote the face and degeneracy
maps (the functor’s action on cofaces and codegeneracies) using subscripts, dn,i and
sn,i , or merely di and si .

When discussing commuting squares in�, we implicitly identify a square as below
left with its mirror image as below right:

[m] [p]

[q] [n]

f

g h
k

[m] [q]

[p] [n]

g

f k
h

We call a square trivial if either pair of parallel arrows are identities, and note that
trivial squares are automatically pushouts.

2 ∨-Decompositions and∨-products in the simplex category

With the goal of reducing the description of pushouts and other classes of squares in�

to simpler cases inmind,wenow introduce ourmain technical tool of decomposingdia-
grams in� into families of simpler diagrams of the same shape: the∨-decomposition.
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The key observation is that a morphism f : [r ] → [n] in � decomposes [n] into r + 2
pieces, namely the subsimplices

[n0] := {0, . . . , f (0)},
[ni ] := { f (i − 1), . . . , f (i)} for 1 ≤ i ≤ r ,

[nr+1] := { f (r), . . . , n},

and conversely that these simplices assemble into [n] by an operation we call the
∨-product, which behaves like a partially defined monoidal structure. We will sub-
sequently exploit the fact that both the ∨-decomposition and the ∨-product can be
expressed as colimits in order to argue that they are well-behaved with respect to
pushouts.

Definition 2.1 Let [r ]/� denote the undercategory of [r ] in �, whose objects are
maps [r ] → [n] in � and whose morphisms ([r ] → [n]) → ([r ] → [m]) are maps
[n] → [m] commuting with the maps from [r ]. We denote by ∨ : [r ]/� → � the
forgetful functor sending [r ] → [n] to [n] and forgetting the commuting property of
the morphisms.

As alluded to above, we will think of a map f : [r ] → [n] as a decomposition of [n]
into r + 2 pieces, which we call ∨-components. We recall now a general categorical
property of undercategories, which we make extensive use of in this section.

Lemma 2.2 ∨ is a discrete opfibration. That is, for any map f : [n] → [m] in � and
a lift of [n] to g : [r ] → [n] in [r ]/�, there is a unique lift of [m] to h : [r ] → [m] in
[r ]/� such that f lifts to a map from g to h in [r ]/�.

Proof Define h to be the composite f g and this follows immediately. Concretely, this
decomposes [m] into the ∨-components

[m0] := {0, . . . , f (g(0))},
[mi ] := { f (g(i − 1)), . . . , f (g(i))} for 1 ≤ i ≤ r ,

[mr+1] := { f (g(r)), . . . ,m}.

	

We will call a lift of [n] to [r ]/� for some r a ∨-decomposition of [n]. The lemma

shows that ∨-decompositions push forward along maps in �. This lets us further
extend a ∨-decomposition on [n] to more general diagrams in �.

Corollary 2.3 Let J be a category with an initial object I , and D : J → � a diagram.
Then every ∨-decomposition of D(I ) extends uniquely to a ∨-decomposition of the
whole diagram D; that is, D lifts along ∨ to a diagram D′ : J → [r ]/�.

Proof This is a standard property of discrete opfibrations. 	
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This allows us to ∨-decompose spans and squares in � according to a ∨-
decomposition of their initial object. For our purposes, we will take the ∨-
decomposition of D(I ) identifying separately its endpoints and each of its edges
as follows.

Definition 2.4 The canonical ∨-decomposition of [n] is id : [n] → [n] in [n]/�, or
equivalently the expression of [n] as [0] ∨ [1] ∨ [1] ∨ · · · ∨ [1] ∨ [0] (with n copies
of [1]).

For D a diagram as above, the canonical ∨-decomposition of D is the decompo-
sition induced by the canonical ∨-decomposition of D(I ).

∨ can also be expressed as a colimit.

Lemma 2.5 Consider diagrams in � as below, where we specify a morphism out of
the singleton set [0] = {0} by its image in the target:

[n0] · · · [nr+1]

[0] · · · [0]
n0 0 nr 0

We denote the shape of these diagrams by Vr+1. Then:

(a) [r ]/� is isomorphic to the category Fun∨(Vr+1,�) of diagrams of this form and
natural transformations.

(b) The functor Fun∨(Vr+1,�) ∼= [r ]/� ∨−→ � is naturally isomorphic to the colimit
functor sending such a diagram to its colimit [n0 + · · · + nr+1].

Proof (a) Given such a diagram, construct amap g : [r ] → [n0 + · · · + nr+1] sending
i to n0 + · · · + ni for 0 ≤ i ≤ r . Conversely given a map g : [r ] → [n], construct
such a diagram by setting

n0 := g(0)

ni := g(i) − g(i − 1) for 1 ≤ i ≤ r ,

nr+1 := n − g(r).

These constructions are easily checked to be inverse to one another, defining a
bijection between objects in [r ]/� and Fun∨(Vr+1,�).
Natural transformations in Fun∨(Vr+1,�) from the diagram given by
([n0], . . . , [nr+1]) to another one given by ([m0], . . . , [mr+1]) correspond to
tuples of maps fi : [ni ] → [mi ] such that f0, . . . , fr preserve the maximum
element and f1, . . . , fr+1 preserve the minimum element. Morphisms in [r ]/�
from g : [r ] → [n] to h : [r ] → [m] amount to a family of monotone maps like
this:

f0 : {0, . . . , g(0)} −→ {0, . . . , h(0)}
fi : {g(i − 1), . . . , g(i)} −→ {h(i − 1), . . . , h(i)} for 1 ≤ i ≤ r ,

fr+1 : {g(r), . . . , n} −→ {h(r), . . . ,m},
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Weak cartesian properties of simplicial sets 485

such that f0, . . . , fr preserve the maximum element and f1, . . . , fr+1 preserve
the minimum element. These two types of morphisms are in an obvious bijection,
matching the bijection on objects defined above and preserving composition.

(b) The composite functor Fun∨(Vr+1,�) ∼= [r ]/� ∨−→ � indeed sends the pictured
diagram to [n0 + · · · + nr+1], so it remains to show that this is a colimit.
A cocone from this diagram to some [m] consists of r + 1 elements x0 ≤ . . . ≤ xr
in [m] and monotone maps fi : [ni ] → [m] for i = 0, . . . , r + 1 satisfying

fi+1(0) = xi , fi (ni ) = xi

whenever i=0, . . . , r . This data uniquely determines amap f : [n0 + · · · + nr+1]
→ [m] by defining, for any i = 0, . . . , r + 1 and 0 ≤ j ≤ ni ,

f (n0 + · · · + ni−1 + j):= fi ( j),

where the above compatibility conditions between the fi guarantee that this is
well-defined. f is by definition monotone on every subset from n0 + · · · + ni−1
to n0 + · · · + ni , which implies monotonicity overall. f restricts to fi along the
inclusions [ni ] → [n0 + · · · + nr+1] sending 0 to n0 + · · · + ni−1 and ni to
n0 + · · ·+ ni . Since these inclusions are moreover jointly surjective, this property
uniquely determines f . 	

This equivalent perspective motivates the following alternative notation for ∨.

Definition 2.6 For any finite sequence n0, . . . , nr+1 ∈ N, define the ∨-product [n0]∨
· · · ∨ [nr+1] as [n0 + · · · + nr+1]. Furthermore, for maps fi : [ni ] → [mi ] in � with
i = 0, . . . , r + 1, their ∨-product

f0 ∨ · · · ∨ fr+1 : [n0] ∨ · · · ∨ [nr+1] −→ [m0] ∨ · · · ∨ [mr+1] (2.1)

is defined (as above) precisely when the f0, . . . , fr preserve maximum elements and
the f1, . . . , fr+1 preserve minimum elements.

More generally, the ∨-product of a finite sequence of diagrams of the same shape
exists precisely when all morphisms in the diagrams satisfy these preservation condi-
tions. In the binary case,∨ defines a functor�max×�min → �, where�max,�min are
the subcategories of � containing all maps which preserve the maximal (resp. mini-
mal) element. The intersection of these subcategories, containingmapswhich preserve
both endpoints, is the category of active maps �act of [9, 2.4]. The restriction of our
∨ to �act × �act is precisely the amalgamated ordinal sum functor ∨ in that setting,
which by [9, Lemma 6.2] agrees with the ordinal sum on �

op
+ ∼= �act. In this sense, it

is appropriate to view∨ as an ordered sum of the edges, not vertices, of the ordinals [n]
in�. It is straightforward to check that∨ is unital (with respect to [0]) and associative
in the appropriate senses.

We can also express the extraction of each∨-component as a colimit.While perhaps
themore intuitive relationship between a∨-product and its components is the inclusion
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[ni ] → [n0] ∨ · · · ∨ [nr+1], more helpful for proving that ∨-products reflect pushouts
is the surjectivemap [n0]∨· · ·∨[nr+1] → [ni ] acting as the identity on the component
[ni ] and as the constant map to 0 or ni on the components [n j ] for j < i or i < j
respectively.

Lemma 2.7 Given g : [r ] → [n] exhibiting [n] as [n0]∨· · ·∨[nr+1] and 0 ≤ i ≤ r+1,
let

g−
i , g+

i : [1] −→ [n]

be the maps with

g−
i (0) = 0, g+

i (0) = n0 + · · · + ni ,

g−
i (1) = n0 + · · · + ni−1, g+

i (1) = n.

Then the ∨-component [ni ] is the colimit of the following diagram.

[1] [1]

[0] [n0] ∨ · · · ∨ [nr+1] [0]

g−
i g+

i

Proof A cocone out of this diagram is precisely a map [n0] ∨ · · · ∨ [nr+1] → [m]
constant on each of the subobjects [n0]∨ · · ·∨ [ni−1] and [ni+1]∨ · · ·∨ [nr+1]. These
maps are in obvious bijection with maps [ni ] → [m], so [ni ] is the colimit of the
diagram. 	


3 Pushout squares in1

We provide three different characterizations of the pushout squares in �, first in terms
of ∨-products, then in terms of composition, and lastly a combination of the two.
We then use our techniques to additionally characterize those squares of coface maps
which are sent to pushouts by the forgetful functor � → Set.

Pushouts via∨-products

With the machinery of ∨-decompositions and ∨-products in place, we can now apply
it to pushouts.

Proposition 3.1 Let

[mi ] [pi ]

[qi ]

fi

gi
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for i = 0, . . . , r + 1 be a sequence of spans in � whose ∨-product exists. Then:
(a) If the above spans all have pushouts, then the ∨-product of these pushout squares

exists and is a pushout square for the ∨-product span.
(b) Conversely, if the ∨-product span has a pushout, then so do the above spans, and

the ∨-product of their pushouts is again the pushout of the ∨-product span.

Proof We first show that a commuting square

[m] [p]

[q] [n]

f

g h
k

with jointly surjective h and k is such that if f and g preserve the maximum element,
then so do h and k. Indeed since the square commutes, the assumption on f and g
implies that it is enough that one of h or k preserves the maximum element and the
other one follows. But clearly at least one does since h and k must be jointly surjective.
A similar argument shows that if f and g preserve the minimum element, then so do
h and k.

(a) The ∨-product of the pushout squares exists since the relevant preservation con-
ditions are implied by the statement from the previous paragraph. Using the
description of ∨-products as colimits then shows that the resulting ∨-product
square is a pushout as well since colimits commute with colimits.

(b) For 0 ≤ i ≤ r+1, consider the following diagram D : J → Span(�), where Span
denotes the category of spans and J is the shape of the diagram in Lemma 2.7. The
objects in J sent to [0] and [1] in Lemma 2.7 are sent by D to the constant spans at
[0] and [1] respectively, and the object sent to [n0] ∨ · · · ∨ [nr+1] in Lemma 2.7
is sent to the ∨-product span of the postulated sequence, with the analogous maps
as in Lemma 2.7 for each of q,m, p.
Each of these spans has a pushout, with the constant spans pushing out to [0]
and [1] respectively and the ∨-product span having a pushout by assumption. The
functor J → � picking out the pushout objects has a colimit since it is of the
form in Lemma 2.7, selecting the i th component of the pushout. The diagram D
therefore has an overall colimit. As colimits commute with colimits, this means
that the i th component of the pushout of the ∨-product span is the pushout of the
i th span above. 	


This lets us reduce the characterization of pushouts in � to pushouts among the
minimal ∨-components, the squares in which m as in the square above is 0 or 1. This
is our first result on the decomposition of pushouts in �.

Theorem 3.2 A span in � has a pushout if and only if its canonical ∨-decomposition
is made up of the spans in the following pushout squares (and their mirror images), in
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which case its pushout is the corresponding∨-product of the pushout squares below:

[0] [p]

[0] [p]

p

p

[1] [p]

[1] [p]

0p

0p

[1] [p]

[0] [0]

0p [0] [p]

[0] [p]

0

0

Note that for p = 0 the first and fourth square coincide, and the second square for
p = 0 is the mirror image of the third for p = 1, but otherwise these squares are all
distinct.

Proof By Proposition 3.1, a span has a pushout if and only if the components of
its canonical ∨-decomposition have pushouts, which ∨ then preserves. It therefore
remains to show that the leftmost and rightmost ∨-components of a pushout square
are always of the forms above left and above right, respectively, and that the middle
components are always one of the two middle squares above.

In the rightmost component of a ∨-decomposition, all maps preserve minimal ele-
ments, so as the right square in the theorem is a trivial pushout it suffices to show that
no square as below is a pushout for p, q > 0.

[0] [p]

[q] [n]

0

0 h
k

(3.1)

Without loss of generality we can assume h(1) ≤ k(1). Define φ : [p] → [1] and
ψ : [q] → [1] by

φ(0) = 0 = ψ(0), φ(i) = 1, ψ(i) = 0, i > 0.

φ, ψ commute with the span from [0], but this square does not factor through the puta-
tive pushout, as this would require φ(1) ≤ ψ(1) by h(1) ≤ k(1), using monotonicity
of the induced map. The argument for the leftmost component is entirely analogous.

For the middle components, we first show that the center right square above is a
pushout. If φ : [p] → [n] and ψ : [0] → [n] as above commute with the span,
then φ(0) = φ(p) = ψ(0) ∈ [n]. But as φ is monotonic, it must then be constant.
Therefore φ,ψ both factor through ψ : [0] → [n], which is unique with respect to
this property, hence the square is a pushout.

It remains then to show that the center left and center right squares above are the
only pushout squares with [1] as the source and all maps preserving minimal and
maximal elements, as any middle ∨-component must. We therefore show that the
following square is not a pushout for p, q > 1.

[1] [p]

[q] [n]

0p

0q h
k

(3.2)
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Again assuming h(1) ≤ k(1), define φ : [p] → [1] and ψ : [q] → [1] by

φ(0) = 0 = ψ(0), φ(p) = 1 = ψ(q),

φ(i) = 1 (0 < i < p), ψ( j) = 0 (0 < j < q).

φ, ψ commute with the span from [1], but again there can be no induced map from
[n] as by monotonicity this would require φ(1) ≤ ψ(1). 	


In particular, this construction shows that pushouts of coface maps are again coface
maps. We also give an elementwise description of this characterization, which follows
immediately from the theorem.

Corollary 3.3 A span

[m] [p]

[q]

f

g

has a pushout in � if and only if the following three conditions hold:

(a) for every i with 1 ≤ i ≤ m, we have f (i) ≤ f (i − 1)+ 1 or g(i) ≤ g(i − 1)+ 1;
(b) f (0) = 0 or g(0) = 0;
(c) f (m) = p or g(m) = q.

Property (a) fails if f (i +1) > f (i)+1 and g(i +1) > g(i)+1, as f and g should
not both “add an extra element” in between two consecutive elements of [r ] as in
square (3.2); the pushout cannot exist as these two elements cannot be totally ordered
in a canonical way. The same issue arises when neither f nor g hit the maximum (or
minimum) element of their codomains as in square (3.1), in which case (c) (or (b))
fails. For coface maps, the necessity of having a unique total order on the union of [p]
and [q] can be expressed as follows:

Corollary 3.4 A commutative square of coface maps as below is a pushout if and only
if it is a pushout in Set, and for every i = 0, . . . , n − 1, the edge {i, i + 1} ⊆ [n] is in
the image of h or k.

[m] [p]

[q] [n]

f

g h
k

We call the second property the spine condition. Considering [n] as the geometric
n-simplex, the extra condition states that h and k must jointly cover the spine of [n].
Proof The square is a pushout of sets if and only if it induces a bijection

[n] ∼= ([p] 
 [q]) /∼,
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where ∼ is the equivalence relation generated by f (i) ∼ g(i) for all i ∈ [m]. This is
the case for each pushout square of coface maps in Theorem 3.2, and is preserved by
∨-products as the colimits in Lemma 2.5 defining the ∨-product are preserved by the
forgetful functor � → Set and colimits commute with pushouts. The same argument
applies to the spine condition, which holds in each pushout square of coface maps in
Theorem 3.2 and is preserved by ∨-products.

To see that these two conditions are sufficient for the square to be a pushout in
�, we could show that upon taking the canonical ∨-decomposition of the square,
these conditions guarantee each component to be of one of the forms in Theorem 3.2.
However, we give a more direct proof demonstrating the uniqueness of the total order
on [n] when the square is a pushout of sets satisfying the spine condition.

Let φ : [p] → [n′], ψ : [q] → [n′] be maps in � satisfying φ f = ψg. As the
square above is a pushout of sets, there is a unique map of sets γ : [n] → [n′] with
φ = γ h and ψ = γ k. It remains to show that γ is a morphism in �, which is to say,
that γ is monotone. By transitivity it suffices to show that γ (i) ≤ γ (i + 1) for all
{i, i+1} ⊆ [n]. By the spine condition, noting that h, k are monotone andmonic, each
such pair {i, i + 1} lifts along h or k to some { j, j + 1} in [p] or [q], respectively. We
can assume without loss of generality that { j, j + 1} ⊆ [p], so that as φ is monotone
we have

γ (i) = γ (h( j)) = φ( j) ≤ φ( j + 1) = γ (h( j + 1)) = γ (i + 1).

Therefore, γ is monotone and so [n] is a pushout in �. 	

Taking [n′] = [n] in this proof shows that any jointly surjective φ,ψ to [n] induces

the identity map [n] → [n], so that φ = h and ψ = k. This is the uniqueness property
alluded to above for the order on the union of [p], [q].

Pushouts via composition

We now proceed to describe another characterization of pushout squares in � using
factorization and composition of squares.

Definition 3.5 The defect δ f of a map f : [n] → [m] in � is

δ f :=(|[n]| − | im( f )|) + (|[m]| − | im( f )|) = n + m + 2 − 2| im( f )|.

The idea of the defect is to measure how far a map in � is from an identity: all
identity maps have defect 0, every element of the codomain outside the image adds 1
to the defect, and every pair of adjacent elements in the domain which are identified
by f adds 1 to the defect. Conveniently, the defect is additive with respect to ∨:
Lemma 3.6 For maps f : [n0] → [m0] with f (n0) = m0 and g : [n1] → [m1] with
g(0) = 0, we have δ f ∨g = δ f + δg.

Note that the equations f (n0) = m0 and g(0) = 0 are relevant only for ensuring
that the ∨-product f ∨ g exists.
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Proof First observe that f ∨g : [n0 + n1] → [m0 + m1]. Since both the left and right
parts of f ∨ g have m0 ∈ [m0 + m1] in their image, and the images are otherwise
disjoint, we have | im( f ∨ g)| = | im( f )| + | im(g)| − 1. We then calculate

δ f∨g = n0 + n1 + m0 + m1 + 2 − 2| im( f )| − 2| im(g)| + 2

= (n0 + m0 + 2 − 2| im( f )|) + (n1 + m1 + 2 − 2| im(g)|)
= δ f + δg.

	

The maps with defect 1 are exactly the generating coface and codegeneracy maps,

since they either identify one pair of elements in the domain or map injectively into a
codomain with one additional element. From this perspective, the defect of f can be
seen as counting theminimal number of generatingmaps in� that f factors into, since
each identification in the domain requires a generating codegeneracy and each element
in the codomain outside the image requires a generating coface map. A factorization
of f into such a minimal number of generators is what we call efficient, and in this
case the defects of the factors (all 1) add up to the total defect of f . More generally,
we declare the following.

Definition 3.7 A factorization f = h ◦ g of a map in � is efficient if δ f = δh + δg .

All maps h and g satisfy δh◦g ≤ δh + δg as h ◦ g can, at worst, be factored into the
defect 1 maps which generate h and g. However, as an example of an inefficient fac-

torization, consider [0] 0−→ [2] 011−−→ [1], which compose to [0] 0−→ [1]. The composite
has defect 1, but the factors have respective defects 2 and 1 adding up to 3, hence this
factorization is not efficient.

Any map f has an efficient factorization into δ f generating maps as described
above; this can be chosen such that the generating cofacemaps follow the degeneracies,
as the Reedy factorization.2 of a map is efficient. In fact, let f = ds be the Reedy
factorization, so that s is a codegeneracy map and d a coface map. Then δ f is the
sum of the degree changes of d and s, which determine the number of coface and
codegeneracy maps in such an efficient factorization of f into generators.

For our purposes, efficiency of a factorization guarantees that the factors of amap do
not take unnecessarily large steps that could prevent the factorization from extending
to pushout squares of the composite.

Proposition 3.8 For a pushout square as below left and an efficient factorization f =
f1 ◦ f0, the square factors into a horizontal composite of pushout squares as below
right.

[m] [p] [m] [�] [p]

[q] [n] [q] [�′] [n]

f

g h

f0

g

f1

g′ h
k k0 k1

2 See for example [19, Section 14.2].
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Proof If the square above left is trivial, as in g, h are identities and f = k, then any
factorization of f extends to a pair of trivial squares as above right with g′ also an
identity.

By Lemma 3.6 and Theorem 3.2, it suffices to check this for the four squares from
Theorem 3.2. Three of those squares are trivial, so we need only consider the following
square:

[1] [p]

[0] [0]

0p

An efficient factorization of [1] 0p−→ [p] consists of two endpoint preserving coface

maps [1] f0−→ [p′] f1−→ [p]. The vertical map g′ : [p′] → [0] makes the left square a
pushout by Theorem 3.2, and the right square is then a pushout by the pushout lemma
(dual to Lemma 1.2). 	


The defect also plays nicely with pushouts as follows.

Lemma 3.9 For a pushout square in � as below, assume that f is a coface map or g
is a codegeneracy map. Then δk ≤ δ f .

[m] [p]

[q] [n]

f

g h
k

Proof By Lemma 3.6 and Theorem 3.2, it again suffices to check this property on the
four squares from Theorem 3.2. For the three trivial squares parallel maps have the
same defect so δk = δ f , so it suffices to check the two reflections of the remaining
square:

[1] [p]

[0] [0]

0p [1] [0]

[p] [0]
0p

In the left square, whose left map g is a codegeneracy, the top map f has defect
|p − 1|, and the bottom map k has defect 0, so δk ≤ δ f . In the right square, the top
map f is not a coface map and the left map g is only a codegeneracy if p = 0, which
makes it also of the form of the left square, so we can ignore this case. 	


These results can be combined to prove that any pushout in � can be factored
into a grid of pushout squares with spans having both maps generating cofaces or
codegeneracies. We call these squares basic pushouts.
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Theorem 3.10 A square in � is a pushout if and only if it can be obtained from hori-
zontal and vertical composition of basic pushouts and trivial pushouts of generating
maps.

Proof The “if” direction follows immediately from the fact that pushouts are closed
under composition. For the “only if” direction, consider a pushout square in � as
below

[m] [p]

[q] [n]

f

g h
k

First, assume that g is a generating coface map, and factor f efficiently into
generating coface and codegeneracy maps f1, ..., fδ f . This factorization extends to
horizontally factor the pushout square by Proposition 3.8, as pictured below. By
repeated application of Lemma 3.9, since δg = 1 all of the vertical maps gi and
h have defect 1 or 0. Therefore, each of the factor squares is either a basic pushout or
a trivial pushout of fi .

[m] [m1] · · · [mδ f −1] [p]

[q] [q1] · · · [qδ f −1] [n]

f1

g

f2

g1

fδ f −1 fδ f

gδg−1 h
k1 k2

kδ f −1 kδ f

Next, assume that g is a generating codegeneracy map and factor f efficiently into
generating codegeneracies f1, ..., f� followed by generating cofaces f�+1, ..., fδ f . By
Proposition 3.8, this factorization extends to horizontally factor the pushout square, as
pictured above. By the previous case, each square above with fi a generating coface
factors into basic pushouts as desired. By repeated application of Lemma 3.9, as g
has defect 1, for i ≤ � each vertical map gi has defect either 1 or 0, so the leftmost �
squares are each either a basic or trivial pushout of fi .

Finally, for an arbitrary pushout square in � as above, factoring f or g efficiently
into generators extends to a factorization of the entire square into pushout squares with
one map a generating coface or codegeneracy, again by Proposition 3.8. The previous
two cases then show that each of these squares factors into basic pushouts and trivial
pushouts of generators, hence so does the entire square. 	


We now list the basic pushout squares, namely the commuting squares in � whose
span consists of generating maps and which satisfy the conditions of Corollary 3.3.

(i) Pushouts of two generating coface maps are of the form3

3 Although the diagram still commutes when i = j − 1, it is then no longer a pushout, as the single
nontrivial ∨-component of its span is one of the following:

[1] [0] [1] [2] [1] [2] [1] [0] [1].d0 d0 d1 d1 d1 d1

123



494 C. Constantin et al.

[n − 2] [n − 1]

[n − 1] [n]

di

d j−1 d j

di

(0 ≤ i < j − 1 ≤ n − 1)

(3.3)

(ii) Pushouts of one generating coface and one generating codegeneracy map are of
the form

[n] [n + 1]

[n − 1] [n]

di

s j−1 s j

di

(0 ≤ i < j ≤ n)

[n + 1] [n + 2]

[n] [n]

di+1

si si sisi si+1

(0 ≤ i ≤ n)

[n] [n + 1]

[n − 1] [n]

di+1

s j s j

di

(0 ≤ j < i ≤ n)

(3.4)
(iii) Pushouts of two generating codegeneracy maps are of the form

[n + 2] [n + 1]

[n + 1] [n]

si

s j+1 s j

si

(0 ≤ i ≤ j ≤ n)

[n + 1] [n]

[n] [n]

si

si

(0 ≤ i ≤ n)

(3.5)

Immediately from the construction of the factorization in Theorem 3.10, we can
further characterize the following special types of pushouts:

Corollary 3.11 Consider a pushout square as below in �.

[m] [p]

[q] [n]

f

g h
k

(a) If f , g are both coface maps, then the square factors into basic squares of the form
in (3.3).

(b) If f , g consist of one coface and one codegeneracy, then the square factors into
basic squares of the form in (3.4).

(c) If f , g are both codegeneracy maps, then the square factors into basic squares of
the form in (3.5).

(d) If δ f = δk or δg = δh, then the square factors into the squares above that share
this property, omitting the middle squares in (3.4) and the right squares in (3.5). If
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f , g further consist of one coface and one codegeneracy, the square factors into
the left and right squares in (3.4).

A pushout square with the property in part (d) is in particular a concrete pushout,
meaning a pushout preserved by the forgetful functor � → Set. The right pushout
squares in (3.5) are also concrete, but the middle squares in (3.4) are not.

Remark 3.12 Related classes of squares in � have been considered in [3], [9], and
[10]. In particular, the squares of [9, Figure (8), Lemma 3.10] sent to pullbacks by
a decomposition space include all basic pushouts except for the pushout squares of
cofaces in [9, Lemma 2.10] between outer face maps and the middle squares in (3.4).
As decomposition spaces agreewith the 2-Segal spaces of [3] by [4], the squares which
factor into these restricted basic pushout squares ought to be those pushouts which are
preserved by the standard functor from � to Connes’ cycle category �, according to
[20, Theorem 2].

Pushouts via∨-products and composition

Finally, we can further decompose the basic pushout squares using both ∨ and com-
position.

Corollary 3.13 Pushout squares in � are generated under ∨ and composition by the
following pushout squares and their mirror images:

[0] [0]

[0] [0]

[1] [1]

[1] [1]

[0] [1]

[0] [1]

d0

d0

[0] [1]

[0] [1]

d1

d1

[1] [0]

[1] [0]

s0

s0

[1] [2]

[1] [2]

d1

d1

[1] [0]

[0] [0]

s0

s0

[1] [2]

[0] [0]

d1

s0

Proof By Theorem 3.10, each pushout square factors into basic pushouts and trivial
pushouts of generators, or equivalently pushouts of spans whose maps have defect 0
or 1. By Lemma 3.6, if a ∨-product of pushout squares has this property then so do
its ∨-components, which must then be among the squares of Theorem 3.2 with this
property. These are precisely the squares above. 	


It is straightforward to check that the analogous generators for concrete pushouts
include all but the bottom right square above.

Balanced coface squares

Recall that every coface map in � is a composite of generating coface maps di :
[n − 1] → [n] for 0 ≤ i ≤ n. The generating relations between these generators are
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given by simplicial identities of the following form:

[n − 2] [n − 1]

[n − 1] [n]

di

d j−1 d j

di

(0 ≤ i < j ≤ n)

(3.6)

We call these squares (and their reflections) basic coface squares. These are slightly
more general than the squares in (3.3), as the case i = j − 1 is now included. While
that square is not a pushout in �, it becomes a pushout after applying the forgetful
functor � → Set. We show below that any square with this property factors into
squares of the above form.

Definition 3.14 A commuting square of coface maps in� is balanced if it is a pushout
of finite sets.

This terminology is motivated by the following characterization.

Lemma 3.15 A square of coface maps in � as below is balanced if and only if it is
jointly surjective and p + q = m + n.

[m] [p]

[q] [n]

f

g h
k

Proof If the square is a pushout of finite sets with injections f and g, then [n] ∼=
[p] ∪[m] [q], so n = p + q − m and the square is jointly surjective. If the square
is jointly surjective and p + q = m + n, then by joint surjectivity the induced map
[p] ∪[m] [q] → [n] is a surjection, but as n = p + q −m, this is a surjection between
finite sets of the same cardinality, hence an isomorphism. 	


Note that a pushout ofmonomorphisms of sets is also a pullback. In terms of defects,
the equation p + q = m + n is equivalent to δ f = δk and also to δg = δh .

Theorem 3.16 A nontrivial commuting square of coface maps in � is balanced if and
only if it can be factored into a grid of basic coface squares.

Proof The “only if” direction is immediate as pushouts are closed under composition.
For the “if” direction, we consider a balanced square as below and prove the exis-

tence of a factorization by induction on the total defect δ f + δg = δh + δk .

[m] [p]

[q] [n]

f

g h
k
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The basic coface squares are precisely the balanced squares between maps with
defect 1. Therefore using induction and reflection symmetry, it suffices to show that if
δ f = δk > 1, then the square can be factored horizontally into two nontrivial balanced
squares.

As f is a nontrivial coface, there exists a choice of i ∈ [p]\ im( f ). For such an
element i ,we can factor f uniquely as f ′ : [m] → [p − 1] followedbydi : [p − 1] →
[p], as in the diagram below. The same is true for k with respect to h(i) ∈ [n], which
is not in im(k) as the original square is a pullback and h(i) is by assumption not in
im(h f ). We then have the following factorization into squares, where h′ is defined as
the restriction of h along di , ensuring that both squares commute.

[m] [p − 1] [p]

[q] [n − 1] [n]

f ′

g h′

di

h
k′ dh(i)

The objects in both squares clearly satisfy the size equation of Theorem 3.16, so
to show they are balanced it remains only to show that they are jointly surjective.
In the right square, the only element of n not in the image of dh(i) is h(i), which
is definitionally in the image of h. In the left square, restricting h along di excludes
only h(i) from the joint image, but h(i) is also excluded from [n − 1] (with respect
to the factorization through dh(i)), so joint surjectivity follows from that of the outer
rectangle. 	


Corollary 3.17 Balanced squares in � are generated under ∨ and composition by the
following squares and their mirror images:

[0] [0]

[0] [0]

[1] [1]

[1] [1]

[0] [1]

[0] [1]

d0

d0

[0] [1]

[0] [1]

d1

d1

[1] [2]

[1] [2]

d1

d1

[0] [1]

[1] [2]

d0

d0 d0

d1

[0] [1]

[1] [2]

d1

d1 d1

d2

[1] [2]

[2] [3]

d1

d1 d1

d2

For this to make sense, we note that it is straightforward to check that ∨ preserves
balanced squares using Lemma 3.15.

Proof By Theorem 3.16 any balanced square factors into basic squares or trivial
squares on generating cofaces. This collection of squares is preserved by taking ∨-
components, so it suffices to list the basic squares and trivial squares on generating
cofaces which arise as canonical ∨-components, and these are precisely the squares
above. 	
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4 Completeness and exactness properties

In this section, we consider properties of the set of squares in� that a given simplicial
set X sends to pullbacks or weak pullbacks in Set.

Completeness

We say a simplicial set X is complete with respect to a given collection of squares in
� if it sends those squares to weak pullback squares. This terminology is motivated
by the following section on lifting properties, where completeness corresponds to the
ability to “complete” a certain type of diagram in X to a simplex according to the
maps in the square. For fixed X we consider the largest collection of squares with this
property.

Definition 4.1 For a simplicial set X , let Comp(X) denote the set of all squares in �

sent to weak pullbacks by X .

Many squares in � belong to Comp(X) for any X .

Proposition 4.2 Comp(X) contains all trivial squares, pushouts of codegeneracy
maps, and squares of the form below with f a coface map.

[m] [m]

[m] [n]
f

f

Proof Trivial squares are sent to trivial squares, which are always pullbacks. Pushouts
of codegeneracies are absolute pushouts by [14, Theorem 1.2.1], meaning any con-
travariant functor sends them to pullbacks. X sends the square above to the following.

Xn Xm

Xm Xm

X f

X f

The pullback of the cospan is the identity square on Xm , with induced map from Xn

necessarily given by the split epimorphism X f , so the square is a weak pullback by
Lemma 1.4. 	


From weak pullbacks being closed under composition, we immediately get analo-
gous properties of Comp(X).

Proposition 4.3 Comp(X) contains all trivial squares and is closed under horizontal
and vertical compositions of squares in �.

We can now use the factorization results of the previous sections to characterize
when X is complete with respect to various collections of squares.
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Theorem 4.4 Let X be a simplicial set. Then:

Comp(X) contains all If and only if it contains the squares of

Pushouts of coface maps (3.3)
Pushouts of one coface and one degeneracy map (3.4)
All pushouts (3.3) and (3.4)
Concrete pushouts (3.3) and the left and right squares in (3.4)
Balanced squares Basic coface squares

Proof The first two claims follow from Corollary 3.11 and Proposition 4.3. The next
two claims additionally rely on Proposition 4.2 which removes the need to check for
pushouts of codegeneracies. The final claim follows from Theorem 3.16 and Proposi-
tion 4.3. 	

Proposition 4.5 If Comp(X) contains the squares of the form below for 0 ≤ i ≤ n,
then X is discrete.

[n + 1] [n + 2]

[n] [n]

di+1

si si si

[n − 2] [n − 1]

[n − 1] [n]

di

di di+1

di

Proof Observe the squares below left compose to the square below right.

[n] [n + 1] [n]

[n + 1] [n + 2] [n]

di

di

si

di+1

di si si

[n] [n]

[n + 1] [n]
di

si

As both of the squares above left are in Comp(X), so is the square above right by
Proposition 4.3. Furthermore, as si is a split epic si : Xn → Xn+1 is a split monic,
the right square is sent to a strong pullback by Lemma 1.5. si is then a pullback of the
identity, and hence an isomorphism. It follows that all face and degeneracy maps of
X are isomorphisms, so that X is discrete. 	


In particular, this is the case if Comp(X) contains both pushouts and balanced
squares.

Exactness

Analogously to completeness, X is exact with respect to a collection of squares in �

if it sends those squares to strong pullbacks.

123



500 C. Constantin et al.

Definition 4.6 For a simplicial set X , let Ex(X) denote the set of all squares in � sent
to pullbacks by X .

The following was shown in the proof of Proposition 4.2.

Proposition 4.7 Ex(X) contains all trivial squares and pushouts of degeneracies.

As any strong pullback is a weak pullback, Ex(X) ⊆ Comp(X). Some squares have
the property that if they belong to Comp(X) they must further belong to Ex(X).

Proposition 4.8 Ex(X) contains all squares in Comp(X) of the form below with either
h or k a codegeneracy.

[m] [p]

[q] [n]
h

k

Proof If h or k is split epic, X sends it to a split monic, so X sends the square to one
of the form in Lemma 1.5. 	


Closure of pullbacks under composition, along with the pullback lemma, give us
the following.

Proposition 4.9 Ex(X) is closed under composition and left- or upper-cancellation of
squares.

Unlike Comp(X), we can give conditions for Ex(X) to be closed under∨-products.
Proposition 4.10 If Ex(X) contains all squares of the following form, then it is closed
under ∨-products.

[0] [a]

[b] [a + b]

a

0

Proof As ∨ is associative, by induction it suffices to show this for binary ∨-products.
Assume the squares above belong to Ex(X), as well as two generic squares which
admit a ∨-product:

[m0] [p0]

[q0] [n0]

[m1] [p1]

[q1] [n1]
By assumption, the squares below left (i = 0, 1) and center are pullbacks, along with
those like below center with n replaced with r , p, q. Since limits commute with limits,
the square below right is also a pullback.
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Xni X pi

Xqi Xri

Xn0+n1 Xn0

Xn1 X0

Xn0+n1 X p0+p1

Xq0+q1 Xr0+r1

	

This lets us use the results on generators under ∨ and composition to give much

simpler conditions for a simplicial set X to be exact with respect to various classes of
squares.

Theorem 4.11 Let X be a simplicial set.

(a) Ex(X) contains all concrete pushouts if and only if it contains the squares below
left.

(b) Ex(X) contains all pushouts if and only if it contains the squares below left and
center left.

(c) Ex(X) contains all balanced squares if and only if it contains the squares below
left, center right, and right.

[0] [a]

[b] [a + b]

a

0

[1] [2]

[0] [0]

d1

s0

[0] [1]

[1] [2]

d0

d0 d0

d1

[0] [1]

[1] [2]

d1

d1 d1

d2

Proof For the “only if” directions, note that for all a, b the square above left is both a
concrete pushout and balanced, the center left square is a pushout, and the left, center
right, and right squares are balanced. We now consider the “if” direction.

Ex(X) is closed under composition, so if it is also closed under ∨ by containing
the squares above left, it contains all (concrete) pushouts if and only if it contains the
generators of (concrete) pushouts under ∨ and composition. By Corollary 3.13, for
concrete pushouts these generators are all trivial squares or pushouts of codegeneracies
which are automatically in Ex(X), and for general pushouts they additionally contain
the square above center left, proving the first two claims.

For the third claim, it follows from Corollary 3.17 that Ex(X) contains all balanced
squares if and only if it contains their generators under ∨ and composition, assuming
it includes the squares above left. The only nontrivial generators are the center right
and right squares above along with the following square, so further containing these
suffices to show that Ex(X) includes all balanced squares.

[1] [2]

[2] [3]

d1

d1 d1

d2

We show that if Ex(X) contains the center right and right squares, it contains this one
as well. Observe that the following two diagrams have the same composite square.
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[0] [1] [2]

[1] [2] [3]

d0

d0

d1

d1 d2

d0 d1

[0] [1] [2]

[1] [2] [3]

d0

d0

d0

d1 d2

d0 d0

The right square in the right composite is the∨-product of the following trivial squares
and therefore in Ex(X).

[1] [1]

[2] [2]
d1 d1

[0] [1]

[0] [1]

d0

d0

Therefore using Proposition 4.9, the left composite above is in Ex(X) and by cancel-
lation so is its right square, completing the proof. 	

Remark 4.12 This shows that Ex(X) contains all concrete pushouts if and only if X
is the nerve of a category. Indeed, we have shown that Ex(X) contains all concrete
pushouts precisely when Xa+b ∼= Xa ×X0 Xb for all a, b, equivalent to having Xn =
X1 ×X0

n· · · ×X0 X1 for all n, the Segal condition for X to be a nerve.
Now let us consider the more specific situation where Ex(X) contains all pushouts,

and ask what this means for the category of which X is the nerve. X sending the square
above center left to a pullback is then equivalent to whenever a composable pair of
morphisms (an element of X2) has as composite arrow (in X1) an identity (in the image
of s0 : X0 → X1), both morphisms must be identities (in the image of X2 → X0). In
other words, X is the nerve of a category in which no nontrivial morphisms compose
to the identity.

In the third case, when Ex(X) contains all balanced squares, the center right square
above being sent to pullbacks ensures that every pair of morphisms f : y → z,
g : x → z in X complete to a triangle with h : x → y and f h = g, so setting
g = idz provides any morphism f with a right inverse h. Likewise the right square
sent to a pullback provides each morphism with a left inverse, so that X is the nerve
of a groupoid.

Example 4.13 Another class of simplicial sets defined by an exactness property is the
(discrete special case of) decomposition spaces of [9] (or equivalently 2-Segal sim-
plicial sets) which send the squares of Remark 3.12 to pullbacks. [9, Proposition 3.5]
shows that it suffices to check this for a smaller collection of squares, a result much
like the cases considered in Theorem 4.11.

Example 4.14 A simplicial set X for which Ex(X) contains the left and right squares of
(3.4) is a stiff simplicial set in the sense of [10, 4.1]. That X being stiff implies that all of
the left and right squares of (3.4) are contained in Ex(X) is given by [10, Lemma 4.3],
and that this condition implies all codegeneracy/inert pushouts are in Ex(X) follows
from Corollary 3.11, as these are among the concrete codegeneracy/coface pushouts
which factor into these basic squares.
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Example 4.15 If Ex(X) contains all of the squares of (3.4), it is split in the sense of
[10, 5.1]. Ex(X) containing the middle squares of (3.4) means X has indecomposable
units in the sense of [10, 5.5], containing the left and right squares of (3.4) makes X
stiff as described above, and any simplicial set X is complete in the sense of [10, 2.1]
as degeneracy maps are always monomorphisms (unlike in the setting of simplicial
spaces). Completeness in this sense also follows from Proposition 4.7 following [10,
2.7] relating the condition to sending certain pushouts of degeneracies to pullbacks,
which is always true in the discrete setting. By [10, Proposition 5.9], X is split precisely
when it is stiff, complete, and has indecomposable units, hence exactly when Ex(X)

contains the squares of (3.4). By Corollary 3.11, split simplicial sets can equivalently
be defined as those which send to pullbacks all pushouts in � of one coface and one
codegeneracy map.

5 Lifting conditions and acyclic configurations

We now give an equivalent description of completeness properties via lifting condi-
tions, and explore additional lifting properties of simplicial sets complete with respect
to either pushouts or balanced squares of face maps.

Like many conditions considered for simplicial sets, such as the (inner) horn filling
conditions defining Kan complexes (resp. quasicategories), completeness with respect
to a class of squares can be expressed in terms of lifting properties. For a square in �

as below left and X a simplicial set, the square below center is a weak (resp. strong)
pullback if and only if X has (unique) lifts against themap from the pushout�p

f
g�q

of simplicial sets to �n induced by h, k. That is, any map from this pushout into X
extends (uniquely) to an n-simplex as in the lifting diagram below right.

[m] [p]

[q] [n]

f

g h
k

Xn X p

Xq Xm

Xh

Xk X f
Xg

�p
f 
g �q X

�n

kh

This lets us interpret completeness properties geometrically, and we now describe
several different completeness properties which admit simple geometric descriptions
in terms of these filler conditions.

Definition 5.1 A simplicial set X is span complete if Comp(X) includes all balanced
squares of coface maps.

We say a span (of cofaces) in X is a pair of simplices which share a face, which
is equivalent to a span of coface maps in the category of elements for X . In a span
complete simplicial set, any span in X extends as above to a “filler” simplex between
all of the vertices of the span.

By Theorem 4.4, X is span complete if and only if Comp(X) contains the basic
coface squares, or equivalently any basic span consisting of a pair of (n−1)-simplices
in X which share an (n − 2)-simplex face can be filled to an n-simplex in X (for all
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n ≥ 2). That is, any (n− 1)-simplices x, y in X with di x = d j−1y, for i < j , extends
to an n-simplex z with d j z = x and di z = y. The following figures illustrate this for
n = 3, with i = 2, j = 3 and i = 0, j = 2, respectively.

1 3

0 2

1 3

0 2

However, asking for all basic span fillers rules out all nerves of categories but
groupoids, as fillers against the basic span inclusions �1

d0 
d0 �1 ↪→ �2 and
�1

d1 
d1 �1 ↪→ �2 require that for any morphism a, the diagrams below complete
to commuting triangles, hence a must have both left and right inverses.

·
· ·

a
·

· ·
a

A generalization of span complete simplicial sets which allows for any nerve of a
category (as well as quasicategories, see Proposition 6.2) restricts the desired fillers
to inner spans analogous to the restriction of horns to inner horns when generalizing
Kan complexes to quasicategories. Where the general spans above contain all vertices
of the desired n-simplex, an inner span further contains all of the spinal edges, such
as in the right span within the 3-simplex pictured above. In the nerve of a category
then, this means that all of the morphisms in an n-simplex are provided by the span,
and filling it to an n-simplex amounts to simply adding in the missing composites. By
Corollary 3.4, these spans are precisely those arising from a pushout square of coface
maps in �, which motivates the following definition.

Definition 5.2 A simplicial set X is inner span complete if Comp(X) includes all
pushout squares of coface maps.

By Theorem 4.4, X is inner span complete if and only if Comp(X) contains the
basic pushout squares of face maps in (3.3). Equivalently, X is inner span complete
precisely when any basic inner span consisting of a pair of (n − 1)-simplices in X
which share an (n − 2)-simplex face and together include a string of n successive
edges can be filled to an n-simplex in X (for all n ≥ 2). Such a span contains all but
one edge of the desired n-simplex, and the innerness condition requires that this edge
is not in the spine.

Inner span complete simplicial sets describe settings in which edges can be com-
posed in a manner respected by higher simplices but without requiring the uniqueness
or coherence properties of categories and quasicategories, respectively. In [2] we show
that this precisely describes the compositional structure possessed by the bar construc-
tion of algebras of a broad class of monads. This generalizes the composition of partial
evaluations [7] to higher simplices. By definition, a partial evaluation is an edge in
the bar construction of an algebra of a monad. We have found that the compositional
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structure of partial evaluations established in [7] for a large class of monads extends to
the higher-dimensional simplices: the bar construction is an inner span complete sim-
plicial set. Potential applications to algebraic rewriting theory remain to be explored.

Combinatorial acyclicity

In this subsection,we prove the existence of certain additional fillers in a span complete
simplicial set X , obtained by iterating the filling condition for basic spans.

For the moment we will work in the undirected context, considering (abstract)
simplicial complexes, in the standard sense of collection of subsets of a finite ground
set which are downward closed, and such that the union of all these subsets is the
ground set. We will treat nonempty simplicial complexes as subsimplicial sets of the
representable simplex on the ground set, where for now the order of the vertices will
not matter (although it is specified). In the directed context that follows afterwards,
we discuss how to modify these definitions to account for directed edges.

A vertex in a simplicial complex is extremal if it is contained in only one maxi-
mal simplex. A combinatorial sphere is a simplicial complex with at least 3 vertices,
containing precisely the proper subsets of the ground set. One can visualise it geomet-
rically as a hollow triangle, or a hollow tetrahedron, or in general the boundary of a
simplex.

The following definitions and the characterization of Theorem 5.5 are well-known,
but they do not seem to be easy to find in the literature in this exact form. Much of
the related literature is in the area of relational database theory, where often more
general hypergraphs rather than simplicial complexes are considered4, resulting in
greater generality and complexity than what we need here.

Definition 5.3 [11] A simplicial complex S is Graham acyclic if it satisfies the fol-
lowing recursive definition: S is empty, or S contains an extremal vertex v and S\{v}
is Graham acyclic.

Here, S\{v}:={A\{v} | A ∈ S} denotes the new simplicial complex obtained by
removing v from all simplices as well as from the ground set. Applying this recursive
elimination of vertices to a simplicial complex is called Graham reduction. For a
Graham acyclic simplicial complex, the reduction results in the empty complex,5

while otherwise the process terminates at a non-empty complex.
Note that there are similarities with the notions of collapsibility and shellability in

combinatorial topology. In particular, Graham acyclicity is by definition equivalent
to Wegner’s 1-collapsibility [21]. Also the following notion is standard, see e.g. [22,
Definition 5.3.15].

Definition 5.4 A chordal graph is an undirected graph in which all cycles with at least
4 edges have a chord, i.e. an edge which connects two vertices non-adjacent in the
cycle.

4 See e.g. [1], or [16, Chapter 13] for a textbook account.
5 It is known that Graham reduction can be performed in any order, i.e. it is impossible to get stuck.
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Applying this definition repeatedly shows that in a chordal graph, a cycle of any
length can be triangulated, which is why chordal graphs are also sometimes called
triangulated graphs.

The following characterization theorem is well-known in its hypergraph version in
the literature on acyclic database schemes, see e.g. [1] or [16, Theorem 13.2], while the
proof is somewhat simpler in our setting of simplicial complexes. The condition (a) is
easy to check algorithmically, while condition (b) is useful for mathematical proofs.
Condition (c) is the one which will facilitate our reduction to inner span fillers in the
directed case below, and is generally useful when working with algebraic or combi-
natorial structures on simplicial complexes, such as the tables in a relational database.

Theorem 5.5 The following are equivalent for a simplicial complex S:

(a) S is Graham acyclic.
(b) Every combinatorial sphere in S has a filler, and the 1-skeleton of S is a chordal

graph.
(c) S has the running intersection property: the maximal simplices of S can be ordered

as T1, . . . , Tm such that for every k = 1, . . . ,m there is j < k with

Tk ∩
(
k−1⋃
i=1

Ti

)
⊆ Tj .

Moreover if S is connected, then the T1, . . . , Tm in (c) can be chosen such that Tk ∩⋃k−1
i=1 Ti is nonempty for all k = 2, . . . ,m.

We include a proof for convenience.

Proof (a) ⇒ (b): We use induction on the number of vertices of S, with the statement
being trivial if S is empty. For the induction step, suppose that S is Graham acyclic
with extremal vertex v.

Now consider a combinatorial sphere in S. If this sphere does not contain v, then
it has a filler by the induction assumption applied to S\{v}. If this sphere contains v,
then it must also have a filler, since otherwise v would be contained in more than one
maximal simplex.

Similarly, consider a cycle of length ≥ 4 in the 1-skeleton of S. If v is not part of
this cycle, then it again has a chord by the induction assumption, so suppose that v is a
vertex in the cycle. Then both neighboring vertices of v in the cycle are also members
of the unique maximal simplex containing v, and therefore so is the edge between
these vertices, resulting in a chord.

(b) ⇒ (a): A vertex v in a graph G is called simplicial if every two neighboring
vertices of v are themselves adjacent. A standard graph-theoretic result is that a graph
is chordal if and only if there is an ordering {v1, . . . , vn} of its vertices such that each vi
is simplicial in the subgraph induced by the vertices {v1, . . . , vi } [22, Theorem 5.3.17].
In the case of a simplicial complexwhose 1-skeleton is a chordal graph, as long as there
are no unfilled combinatorial spheres, such an ordering can be reversed to provide an
ordering for the Graham reduction process. This is because every complete subgraph
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of the 1-skeleton has to be a simplex in S by assumption, in particular making vn
extremal in S.

(c)⇒ (a): If the running intersection property holds, then putting k = m shows

that there is a j < m such that Tm ∩
(⋃m−1

i=1 Ti
)

⊆ Tj . This implies that there is

some vertex v ∈ Tm which does not belong to any of the other maximal simplices
from 1 to m − 1, making v extremal. Considering the reduced complex S\{v}, there
are now two possibilities: it may be that S\{v} has maximal simplices T1, . . . Tm−1 as
maximal simplices, in which case the running intersection property still holds trivially;
or S\{v}may in addition have the maximal simplex Tm\{v}, in which case the running
intersection property still holds with Tm replaced by Tm\{v} in the new ordering. In
either case, the induction assumption finishes the argument, again with the empty
simplicial complex as the base case.

(a)⇒ (c): We once more use induction on the number of vertices, where the empty
base case is obvious. For the induction step, suppose that v is an extremal vertex in
S, belonging to a unique maximal simplex T . Since S\{v} is still Graham acyclic, the
induction hypothesis shows that there exists an ordering T1, . . . Tm−1 of the maximal
simplices of S\{v} which satisfies the running intersection property.

Then we again have two cases. First, if T \{v} is still maximal in S\{v}, then it must
coincide with some Tk . Then T1, . . . , Tk ∪ {v}, . . . , Tm is an ordering of the maximal
simplices of S which witnesses the running intersection property. Second, if T \{v} is
no longer maximal in S\{v}, then it must be properly contained in some Tj . Then the
sequence of maximal simplices

T1, . . . , Tm, T

witnesses the running intersection property for S, because of T ∩⋃m
i=1 Ti = T \{v} ⊆

Tj .
Moreover, the final claim on connectedness follows by an inspection of the previous

argument: if S is connected, then so is S\{v}, and it is straightforward to check that
every Tk ∩ ⋃k−1

i=1 Ti is nonempty provided that this holds likewise on S\{v}, which it
does by the induction assumption. 	

Remark 5.6 It should be noted that the acyclicity property characterized by Theorem
5.5 is not homotopy invariant, and in particular distinct from notions of acyclicity
familiar fromalgebraic topology. This applies similarly to our directed analogue below.

Definition 5.7 An acyclic configuration inside the n-simplex is a connected simplicial
complex S with ground set [n] which satisfies the conditions of Theorem 5.5.

Example 5.8 A span of simplices is an acyclic configuration inside their union. Indeed,
any combinatorial sphere is the boundary of a face of one of the two simplices and
hence has a filler. The 1-skeleton is the union of two complete graphs along another
complete graph. In particular, every cycle has a chord: while this is obvious for a cycle
contained in one of the complete subgraphs, a cycle not contained in either needs to
have at least two vertices in the intersection, where again a chord exists.

Acyclic configurations have the following relevance in our context.
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Theorem 5.9 A simplicial set is span complete if and only if it has fillers for all acyclic
configurations in the n-simplex (for every n).

Proof The “if” direction follows from the acyclicity of spans in the example above.
For the “only if” direction, we use condition (c) of Theorem 5.5 characterizing acyclic
configurations. Let X be span complete and consider a map to X from acyclic S ⊆ �n

with maximal simplices {T1, T2, ...}. We show by induction on k that every induced
subcomplex on vertices

⋃k
i=1 Ti has a filler. There is nothing to prove in the base

case k = 1, so assume k > 1. Then the induced subcomplex on vertices
⋃k−1

i=1 Ti
has a simplex filler by the induction assumption. But now with the inclusion maps as
morphisms, the diagram6

Tk ∩ ⋃k−1
i=1 Ti Tk

⋃k−1
i=1 Ti

⋃k
i=1 Ti

is a square of coface maps in � and evidently a pushout of finite sets. Since Tk ∩⋃k−1
i=1 Ti ⊆ Tj for some j , we know that the filler of

⋃k−1
i=1 Ti agrees with Tk on the

face with vertices those of Tk ∩ ⋃k−1
i=1 Ti , as both must agree with the corresponding

face of Tj . These simplices therefore form a span and have a filler in X which extends
the restriction of the original map to

⋃k
i=1 Ti , completing the induction step. 	


Directed acyclicity

Wenowdescribe corresponding collections of fillers for inner span complete simplicial
sets, obtained by iterating the filler condition for inner spans. To this end, we propose
a version of the above acyclicity notion in a directed setting which accounts for the
orientations of edges and triangles, respectively. A directed simplicial complex S is a
downward closed collection of subsets of a finite nonempty totally ordered set, which
without loss of generality we take to be given by

[n] = {0, . . . , n} =
⋃

S,

thereby identifying a directed simplicial complex on n vertices with a simplicial sub-
complex of the n-simplex. As before we write S\{v} = {A\{v} | A ∈ S}, where now
this reduced directed simplicial set lives on [n − 1], so that the indices of all vertices
beyond v must be reduced by 1.

All notions for which we do not introduced directed or 2-directed versions, such as
extremality of a vertex, are used as in the undirected setting above.

Definition 5.10 A directed simplicial complex S ⊆ 2[n] is directed Graham acyclic if
n = 0, or if S has an extremal vertex v ∈ [n] such that:
6 Note that the assumption of connectedness guarantees that the set-theoretic intersection Tk ∩ ⋃k−1

i=1 is
nonempty.
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(a) If v > 0, then {v − 1, v} ∈ S.
(b) If v < n, then {v, v + 1} ∈ S.
(c) S\{v} is again directed Graham acyclic.

We then have a characterization analogous to that of Theorem 5.5.

Theorem 5.11 The following are equivalent for a directed simplicial complex S ⊆
2{0,...,n} with

⋃
S = {0, . . . , n}:

(a) S is directed Graham acyclic.
(b) Every combinatorial sphere in S has a filler, and the 1-skeleton of S is a chordal

graph which contains the entire spine.
(c) S has the directed running intersection property: the maximal simplices of S can

be ordered as T1, . . . , Tm such that for every k = 1, . . . ,m there is j < k with

(
k−1⋃
i=1

Ti

)
∩ Tk ⊆ Tj ,

and for every two vertices v < w which are consecutive in
⋃k

i=1 Ti , we have
{v,w} ⊆ Tk or {v,w} ⊆ ⋃k−1

i=1 Ti .

Note that each one of these conditions implies its undirected counterpart given in
Theorem 5.5.

Proof It is enough to show that the additional conditions relative to Theorem 5.5 imply
each other, assuming that the underlying undirected simplicial complex of S is acyclic.

Assuming (a), a simple induction argument indeed shows that S contains the whole
spine. For if v ∈ [n] is as in Definition 5.10, then S\{v} can be assumed to contains its
entire spine by the induction assumption, and the extra condition on v then implies that
S also contains the additional spinal edges not implied by those of S\{v}. Conversely
if (b) holds, then the conditions {v − 1, v} ∈ S for v > 0 and {v, v + 1} ∈ S for v < n
are part of the assumption that S contains the entire spine.

For the equivalence between (b) and (c), it is now enough to prove that the extra con-
dition in (c) is equivalent to S containing the entire spine, provided that the undirected
acyclicity of Theorem 5.5 holds. Thus if (c) holds, we now argue that {v, v + 1} ∈ S
for every v < n. To this end, consider the smallest k with {v, v + 1} ⊆ ⋃k

i=1 Ti . Then
the assumption implies the desired {v, v+1} ⊆ Tk , since {v, v+1} ⊆ ⋃k−1

i=1 Ti would
contradict the minimality of k.

In the other direction, suppose that S satisfies the undirected running intersection
property and contains the entire spine. Let v < w be two vertices consecutive in⋃k

i=1 Ti . We will use backwards induction on k to prove the desired property {v,w} ⊆
Tk or {v,w} ⊆ ⋃k−1

i=1 Ti , or equivalently that the induced subcomplex on
⋃k

i=1 Ti
contains its entire spine. This is clear in the base case k = m: for then we must have
w = v + 1, so that the containing the entire spine assumption applies.

For k < m, suppose first that v and w are still consecutive in
⋃k+1

i=1 Ti . Since the
induced subcomplex on

⋃k+1
i=1 Ti contains the entire spine by the induction assumption,
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we must have {v,w} ⊆ Th for some h ≤ k + 1. For h ≤ k we are done, so assume
h = k + 1. Then the running intersection property implies that there is j ≤ k with
Tk+1 ∩⋃k

i=1 Ti ⊆ Tj . We therefore also conclude that {v,w} ⊆ Tj , which is enough.
Finally if v and w are no longer consecutive in

⋃k+1
i=1 Ti , then there are nonzero

many elements u1, . . . , u� ∈ Tk+1\⋃k
i=1 Ti such that the sequence

v, u1, . . . , u�, w

consists of consecutive vertices in
⋃k+1

i=1 Ti . The induction assumption together with
u1, ..., u� /∈ ⋃k

i=1 Ti then gives us that the edge formed by any two consecutive
vertices in this list is in Tk+1. But then also {v, u1, . . . , u�, w} ⊆ Tk+1, and in particular
{v,w} ⊆ Tk+1 ∩ ⋃k

i=1 Ti . But then again the running intersection property implies
{v,w} ⊆ Tj for some j ≤ k, as was to be shown. 	

Definition 5.12 A directed acyclic configuration inside the n-simplex is a directed
simplicial complex S on [n] satisfying the conditions of Theorem 5.11.

Note that the connectivity requirement which we had made in the undirected case
(Definition 5.7) is now automatic by inclusion of the spinal edges.

Example 5.13 All inner spans define directed acyclic configurations, as follows. Sup-
pose that the diagram below is a pushout of coface maps in �.

[m] [p]

[q] [n]

f

g h
k

Then consider the directed simplicial complex on [n] given by

S := {A ⊆ [n] | A ⊆ im(h) ∨ A ⊆ im(k)}.

This S is a directed acyclic configuration: the underlying undirected complex of S is
a union of two simplices glued along a common face, and is therefore (undirected)
acyclic by Example 5.8. Since it moreover contains the entire spine by Corollary 3.4,
directed acyclicity follows.

In particular, all basic inner span inclusions define directed acyclic configurations:
for 0 ≤ i < j − 1 ≤ n − 1, the directed simplicial complex

S := {A ⊆ [n] | i /∈ A ∨ j /∈ A}.

is directed acyclic. Using the same S with i = j − 1 would not work, since then the
spine condition would be violated due to the spinal edge { j−1, j} not being a member
of S.

The relevance of directed acyclicity in our context is the following general result.

Theorem 5.14 A simplicial set is inner span complete if and only if it has fillers for
all directed acyclic configurations in the n-simplex (for every n).
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Proof The proof is a straightforward modification of the proof of Theorem 5.9, as
inner spans are directed acyclic as shown above, and in the induction argument, if S
is assumed directed acyclic then the condition on consecutive vertices in (c) ensures
that the square

Tk ∩ ⋃k−1
i=1 Ti Tk

⋃k−1
i=1 Ti

⋃k
i=1 Ti

is a pushout in � by Corollary 3.4. 	

Example 5.15 Consider the spine inclusions of the edges 0 → 1 → · · · → n into �n

for n ≥ 1. These define a directed simplicial complex with the maximal simplices
given by

T1 = {0, 1}, . . . , Tn = {n − 1, n}.

Since this directed simplicial complex has no cycles or combinatorial spheres, and
trivially contains the entire spine, it defines a directed acyclic configuration. Theorem
5.14 thus implies that in an inner span complete simplicial set, every string of n edges
is the spine of an n-simplex. This is a weak version of the 1-Segal condition in which
the fillers are not required to be unique. Unlike the ordinary 1-Segal condition, in this
case these fillers alone do not imply the existence of fillers for inner spans.

Example 5.16 Consider any triangulation of the (n + 1)-gon for n ≥ 2, with vertices
labeled in order from 0 to n as in the two examples below for n = 3.

1 2

0 3

1 2

0 3

Then the edges and triangles of the triangulation define a directed acyclic configuration
in the n-simplex. Indeed the configuration contains the spine of the n-simplex, as the
spinal edges are among the outer edges of the n-gon. As a triangulation, the 1-skeleton
of this configuration is a chordal graph, and the only combinatorial spheres are the
filled triangles. By Theorem 5.11(b), this is a directed acyclic configuration.

Theorem 5.14 thus shows that inner span complete simplicial sets also satisfy a
weak version of the Dyckerhoff-Kapranov formulation of the 2-Segal property in
terms of polygon triangulations [3, Definition 2.3.1], and that this is implied by the
weak analogue of the corresponding exactness conditions in [9] and [20]. In contrast to
the strong case, the converse does not since non-unique fillers against 2-dimensional
triangulations do not provide away to fill inner spans of simplices of dimension greater
than 2.
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Example 5.17 Any triangulation of a polytope on vertices 0, . . . , n has fillers of com-
binatorial spheres, and forms a directed acyclic configuration of the n-simplex if its
1-skeleton is a chordal graph containing the spinal edges. For example, the cyclic
polytope on vertices 0, 1, . . . , n in d-dimensional space (with n ≥ d) is the convex
hull of any n + 1 points on the moment curve t �→ (t, t2, . . . , td) for t ∈ R [8]. Any
triangulation of such a polytope automatically contains the spinal edges, so to show
these triangulations are directed acyclic it remains only to show that their 1-skeletons
are chordal.

When d > 3, by [8, Theorem 1] the 1-skeleton of each cyclic polytope is a complete
graph, hence chordal, so these triangulations form directed acyclic configurations.
When d = 3, for example by Gale’s evenness criterion [8, Theorem 3], the 1-skeleton
of the cyclic polytope on 0, . . . , n consists precisely of the spinal edges along with
edges from0 to any vertex and from any vertex to n. As the only edges between vertices
other than 0 and n are the spinal edges from i to i + 1, any cycle must then contain 0
or n, which has an edge to every vertex in the cycle, so the 1-skeleton is chordal, and
therefore any triangulation of the polytope by 3-simplices forms a directed acyclic
configuration.

Dyckerhoff andKapranov suggest in [3] that a “d-Segal condition” could be defined
for any d ≥ 1 as a simplicial set having unique fillers against the inclusion into �n of
any d-simplex triangulation of the d-dimensional cyclic polytope on 0, . . . , n. This
definition is made precise by Poguntke ([18, Definition 2.2]), who restricts to just the
“upper” and “lower” triangulations of the cyclic polytopes (fillers against just those two
triangulations for each cyclic polytope suffice to provide fillers for all triangulations,
but only if the fillers are unique, which is easy to see when d = 2).

The fact that cyclic polytope triangulations form directed acyclic configurations
shows, thanks to Theorem 5.14, that inner span completeness subsumes a weak ver-
sion of the triangulation-style d-Segal condition for all d. In fact, this requires only
that a simplicial set X is complete with respect to the pushouts of coface squares in
Remark 3.12 excluding basic pushouts of the first and last coface maps. It is possi-
ble to formulate another even stronger notion of acyclicity corresponding to lifting
properties which follow from this weak analogue of the 2-Segal condition, but that is
beyond the scope of this paper.

In [20], Walde formulates equivalent characterizations of the d-Segal conditions in
terms of exactness with respect to higher dimensional cube diagrams in �, recovering
the appropriate squares of [9] for d = 1, 2. It is possible that weak versions of these
conditions are also implied by inner span completeness, but this too is beyond our
current scope.

6 Examples of (inner) span completeness

We now discuss several examples of span complete and inner span complete simpli-
cial sets. We quickly show that any any quasicategory is inner span complete and note
that any Kan complex is span complete, and give several examples of span complete
simplicial sets which are not quasicategories. The motivating example for the devel-
opment of inner span complete simplicial sets is the bar construction of algebras for
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certain types of monads, which we discuss in a follow-up paper [2]. Each of these
examples can now benefit from Theorem 5.9 or Theorem 5.14, with simple (directed)
acyclicity conditions describing a broad class of configurations which have n-simplex
fillers.

The examples we discuss can also be found in [5] as examples of compositories:

Definition 6.1 [5, Definition 2.2.2] A compository is a simplicial set X for which inner
spans of the type

�p
r ′ 
�′ �q X

�n

r�, (6.1)

have specified fillers, and these fillers satisfy certain coherences in the form of asso-
ciativity and partial naturality properties. Here, � : �p → �n is the left inclusion
dn · · · d p+1 and r : �q → �n is the right inclusion d0 · · · d0, and similarly �′ and r ′
are the left and right inclusions of the intersection simplex �p+q−n .

Compositories describe simplicial sets in which some of the inner span inclu-
sions we consider, namely the spans containing the first and last (n − 1)-faces of
the n-simplex, are assigned coherent choices of fillers. In many of the examples of
compositories, however, these fillers are not unique and additional weak filler condi-
tions are satisfied making them (inner) span complete simplicial sets. The structure of
(inner) span completeness does not subsume that of compositories, but rather offers
a complementary perspective on simplicial sets whose simplices can be combined to
form higher dimensional simplices with varying degrees of uniqueness.

Quasicategories

Among the most basic classes of simplicial sets defined by filler conditions is the
class of quasicategories. By definition, quasicategories have n-simplex fillers for all
n-dimensional inner horns.

Proposition 6.2 Quasicategories are inner span complete.

Proof Consider a basic inner span omitting respectively the i th and j th vertices of
the n-simplex where j − i > 1. Choose k to lie between i and j . Observe that this
span contains precisely the faces of �n not containing the edge from i to j . By [15,
Lemma 4.4.5.5] applied with J = {i, j}, the inclusion of the basic inner span into the
n-simplex is inner anodyne, and therefore has fillers in any quasicategory. 	


Moreover, it is straightforward to see that every Kan complex is span complete.

Finite metrics

[5, Section 3.3] describes the simplicial set of finite metric spaces, which we now show
tobe span complete.Recall that apseudometric ona set S is a functiond : S×S → R≥0
such that
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� (Reflexivity) d(x, x) = 0 for all in x ∈ S,
� (Symmetry) d(x, y) = d(y, x) for all x, y ∈ S,
� (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

Pseudometrics differ from metrics in that they do not require the non-degeneracy con-
dition that d(x, y) = 0 only when x = y in S. This weakening of the definition is
necessary in order to define the degeneracy maps in the simplicial set constructed
below. This construction would work just as well without imposing the symmetry
condition on pseudometrics, so the thus inclined reader may as well drop the sym-
metry property. In the following, we will simply say metric to refer to either type of
pseudometric.

Example 6.3 Let M1(n) be the set of metrics on the set [n] of n + 1 points. For each
map f : [m] → [n] in� and metric d on [n], define the metric f ∗d by ( f ∗d)(x, y) =
d( f (x), f (y)) for x, y ∈ [m]. When f is a coface map, then f ∗ takes a metric on [n]
and restricts it to the image of [m] under f , and when f is a codegeneracy map, it
replaces each point i in [n] with the set f −1(i), all of which have zero distance from
each other and such that they have the same distances to any other point in [m].

A span inM1 amounts to a choice of metrics dp, dq on [p], [q] which agree upon
restriction along the span’s coface maps [m] → [p] and [m] → [q]. A filler of this
span is a metric dn on [n] = [p + q − m] ∼= [p] ∪[m] [q] which restricts to dp, dq on
[p], [q], respectively. A canonical (but not generally unique) choice of dn is given by

dn(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
dp(i, j) if i, j ∈ [p],
dq(i, j) if i, j ∈ [q],
min
k∈[m](dp(i, k) + dq(k, j)) if i ∈ [p]\[m], j ∈ [q]\[m],

generalizing [5, Definition 3.3.2] to any inclusions of [m] into [p] and [q]. Note that
the first two cases are not disjoint, but result in the same value for i, j ∈ [m] due to
the assumption of equal restriction.

Unlike the compository structure on M1, the property of span completeness does
not single out this particular filler over other possible ones, but it does capture fillers
of more spans (namely for any span of cofaces [p] ← [m] → [q] rather than just the
one where [m] is embedded as the initial or final face, respectively).

By [5, Figure 5], M1 is not a Kan complex. It follows that Kan complexes are a
strict subclass of span complete simplicial sets.

Higher spans

Following [5, Section 3.2], higher spans describe sequences of adjacent spans in
a category equipped with choices of the data necessary to “compose” them, in the
following sense.
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Definition 6.4 For n ∈ N, we let Spn be the poset category pictured below.

(0, n)

(0, n − 1) (1, n)

. .
.

(1, n − 1) . . .

(0, 1) . .
. . . . (n − 1, n)

(0, 0) (1, 1) · · · (n − 1, n − 1) (n, n)

Sp forms a cosimplicial object in Catwhere the coface map di : Spn−1 → Spn acts
componentwise via the usual

j �−→
{
j + 1 if j ≥ i,

j if j < i,

and similarly the codegeneracy si : Spn+1 → Spn acts componentwise via the usual

j �−→
{
j − 1 if j > i,

j if j ≤ i .

Equivalently, Sp : � → Cat is the composite of the inclusion functor � → Cat with
the twisted arrow category functor Cat → Cat.

Definition 6.5 An n-span in a category C is a functor Spn → C.

Conceptually, an n-span describes a sequence of n adjacent spans and coherent
choices of “composite” spans for each connected subsequence of spans.

Example 6.6 For a category C, let SC be the simplicial set with n-simplices the set of
n-spans Sp → C, with simplicial structure maps induced by the cosimplicial structure
of Sp.

This means that the i th face map di forgets all objects of the span with an i in
either component, and then composes the remaining maps as needed, while the i th
degeneracy map si repeats the i th row and column with identities between them.

An inner span (in our usual sense) in the simplicial set SC consists of a p-span
and a q-span sharing an m-span as a face, and together containing a sequence of n
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adjacent 1-spans between their bottom objects. Below are two schematic examples of
basic inner spans in SC.

x0,3

x0,2 x1,3

x0,1 x1,2 x2,3

x0,0 x1,1 x2,2 x3,3

x0,3

x1,3

x0,1 x1,2 x2,3

x0,0 x1,1 x2,2 x3,3

In the basic inner span above left, consisting of the first and last faces of a 3-span, a
3-span filler requires the additional data of the top span making the resulting square
commute. This will always exist (albeit non-uniquely) if C has pullbacks (or more
generally if C is cofiltered, but this will not be enough to fill the other inner spans).

The example above right shows an inner span consisting of the faces {0, 1, 3} and
{1, 2, 3} in the 3-simplex. These two together contain all of the data of a 3-span except
for the object x0,2 and its maps

x0,3 → x0,2, x0,2 → x0,1, x0,2 → x1,2.

These can be filled by taking x0,2 to be the pullback of x0,1 and x1,2, with the map
x0,3 → x0,2 induced by the universal property of the pullback, which also shows
that the resulting upper square commutes. These fillers cannot be expected to be
unique, however, as for instance this inner span has a different filler given by setting
x0,2 := x0,3.

More generally, a basic inner span consisting of the i th and j th faces of a potential
n-span, with j − i > 1, contains all the data of an n-span except for the object xi, j
and the four maps into and out of it, as below.

xi−1, j+1

xi−1, j xi, j+1

xi−1, j−1 xi+1, j+1

xi, j−1 xi+1, j

xi+1, j−1

To fill this data to an entire n-span, wemust specify an object xi, j and four maps filling
the diagram above into a 2 by 2 commuting grid. Generalizing both of the previous
examples, we can take xi, j to be a pullback xi, j−1 ×xi+1, j−1 xi+1, j , the two maps out
of xi, j the canonical projections to xi, j−1 and xi+1, j , and the two maps into xi, j those
induced by

xi, j−1← xi−1, j−1← xi−1, j → xi+1, j and xi, j−1← xi, j−1 → xi+1, j+1 → xi+1, j
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respectively using the universal property of the pullback, which also ensures that the
left and right squares of the grid commute. The universal property also guarantees that
the top square commutes, as either side satisfies the defining property of the unique
map xi−1, j+1 → xi, j induced by xi, j−1 ← xi−1, j+1 → xi+1, j .

This shows every basic inner span has a filler to an n-simplex, so if C has pullbacks
SC is inner span complete by Theorem 4.4. Note that SC is not generally span complete
even when C has pullbacks, as in the above if j = i + 1 the object xi,i+1 cannot be
recoveredby apullback, though it canbe recovered in a similar fashion as xi,i×xi+1,i+1
if C has products, in which case SC is span complete again by Theorem 4.4.

In [5, Section 3.2], C is further assumed to be gaunt,7 so that pullbacks are strictly
unique. This implies the relevant coherences for the resulting fillers, and the difficul-
ties of making SC into a compository when pullbacks are not strictly unique are also
sketched. Inner span completeness provides a different description of the structure of
SC which allows for such non-uniqueness of inner span fillers, but in return does not
describe the up-to-isomorphism coherence properties of pullbacks that the composi-
tory structure captures when the pullbacks are unique. A more complete description
of this particular structure on SC when C has pullbacks remains open.

Moreover, [5, Example 3.2.5] shows that when C is the category with a single
commuting square ofmorphisms,SC is not a quasicategory, providing another example
of how span filling properties are strictly weaker than horn filling.

Gleaves on FinSet

Many of the known examples of compositories such as the simplicial set of finite
metric spaces above —with the higher span example as a notable exception—are in
fact (augmented) symmetric simplicial sets in a natural way, or equivalently gleaves
on FinSet [5, Section 5]. While we will not need the precise definition here, we only
note that every gleaf on FinSet is in particular a span complete simplicial set: the filler
condition for basic coface squares (3.6) holds for i = 0 and j = n as part of the
algebraic structure carried by a gleaf (as it already does for compositories), and this
is enough to prove the filler condition in general by symmetry.

Our final two examples are particular instances of this general construction of span
complete simplicial sets from gleaves.

Example 6.7 (Joint probability distributions) We now sketch the main example of [5]
coming from probability theory. Fix a finite set S, representing the set of possible
values of some randomvariables; the finiteness assumption on S ismerely for technical
simplicity. Then define an n-simplex to be a joint distribution of (n+1)many S-valued
random variables, i.e. a probability measure on the cartesian product S×(n+1). Taking
the pushforward of this measure along a projection to a subproduct is thenwhat defines
the faces of such a simplex, and similarly taking the pushforward along the diagonal
S → S × S is involved in the definition of the degeneracy maps, which intuitively
amounts to duplicating the value of a variable. We thus obtain the desired simplicial
set in which the n-simplices are the joint distributions of n + 1 random variables. The

7 A category is gaunt if the only isomorphisms are the identities.
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fillers of (6.1) then acquire the following significance. Suppose that we are given a
set of n + 1 random variables and write it as the union of subsets containing p + 1
and q + 1 random variables, respectively. Then if we are given a joint distribution of
the p + 1 variables and a joint distribution of the q + 1 variables, and if these two
agree when marginalized to the subsubset of variables contained in both subsets, then
there is joint distribution for all n + 1 variables which marginalizes to the given ones.
And indeed there is a distinguished choice for this overall joint distribution: we can
make all variables contained in the first subset but not the second to be conditionally
independent of those in the second set but not the first, conditionally with respect to
the variables contained in both, which is exactly the conditional product that we also
used in [2, Example 2.8]. In particular, this simplicial set is span complete.

However, fillers for (inner or outer) 3-horns do not generally exist as soon as |S| ≥ 2.
For then, we can consider without loss of generality S = {0, 1}, and four random
variables A, B,C, D where D = 0 with probability 1, and the other three such that
they take either value with probability 1/2, but are correlated such that they take
opposite values with probability 1. This defines joint distributions of ABD, ACD
and BCD, thereby forming a 3-horn in the corresponding symmetric simplicial set.
Similar to the examples in the proof of [2, Theorem 4.7], this 3-horn is such that
already its missing 2-face cannot be filled: there is no joint distribution of ABC which
would make all three variables take opposite values with probability 1, since there is
not even a single assignment of values in S which would assign opposite values to
every pair.

We also refer to [6, Section 12], where a more general construction of gleaves of
this type has been proposed. This in particular applies in the context of infinite S and
measure-theoretic probability.

Example 6.8 (Relational databases) A closely related example comes from the theory
of relational databases [16]. Again fixing a set S for possible values, which now plays
the role of the set of possible values for the entries in a table of a database, in this case
an n-simplex is defined to be a subset of S×(n+1) (rather than a probability measure
as in the previous table). The idea is to interpret the individual factors of S×(n+1) as
the columns in a table of a database, so that the subset is the set of rows that appear in
the table.

These simplices assemble into a simplicial set, where the face maps are given
by projecting a subset to a subproduct (deleting one or more columns in a table and
eliminating duplicates), and the generating degeneracymaps are defined again in terms
of pushforward along the diagonal S → S×S (duplicating a column).More abstractly,
this simplicial set can be described as the composite functor

�op FinSetop Set SetS(−) 2(−)

Moreover, it is in a canonical way a symmetric simplicial set with respect to permu-
tation of the factors.

This simplicial set has properties closely analogous to the previous example. In
particular it has fillers for all inner spans, which we now describe with the database
terminology. We thus assume that A ⊆ S p+1 and B ⊆ Sq+1 are tables in a database
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with p + 1 and q + 1 columns respectively, and that they have m + 1 columns in
common, so that dropping the other columns from either table results in the same
(m + 1)-column table (after removing duplicates). Then there is a maximal way to
create a table with n+1 columns, where n = p+q−m, given by using all conceivable
rows whose restriction to the p + 1 attributes of A occurs in A and whose restriction
to the q + 1 attributes of B occurs in B. This is known as the join of A and B [16,
Section 2.4].

Therefore the simplicial set is indeed span complete. In particular, we also obtain
fillers for all acyclic configurations by Theorem 5.9. This is a classic result of relational
database theory [16].8
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