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Function theoretic characterizations
of Weil-Petersson curves

Christopher J. Bishop

Abstract. The Weil-Petersson class is the closure of the smooth closed curves in
the Weil-Petersson metric on universal Teichmiiller space defined by Takhtajan and
Teo. We give some new characterizations of this class of curves and some new proofs
of previously known characterizations. In particular, we give a new, more geometric
characterization of the conformal weldings of such curves and characterize the curves
themselves in terms of Peter Jones’s S-numbers.

“Busca una situacion en la que tu trabajo te dé tanta felicidad como tu tiempo libre.”

— Picasso.

For Antonio Cordoba and José Luis Ferndndez. I hope they enjoyed discovering their
results as much as the rest of us enjoyed reading about them.

1. Introduction

This paper is a companion to [11] which gives twenty equivalent definitions of the Weil—
Petersson class of closed Jordan curves. The definitions given in that paper mostly involve
smoothness properties of the curve I' or curvature properties of a surface in hyperbolic
space that has I" as its asymptotic boundary. In both these cases, the definitions extend to
curves in R” and are proven equivalent in that setting. In this paper, we deal with the defi-
nitions that are purely 2-dimensional, such as those involving properties of the conformal
map onto the domain bounded by I', the conformal welding corresponding to I', and the
complex dilatation of quasiconformal reflections across I'. To state our results precisely,
we need to recall a few definitions.

A quasicircle is the image of the unit circle T = {|z| = 1} under a quasiconformal
mapping f of the plane, e.g., a homeomorphism of the plane that is conformal outside the
unit disk D, and whose dilatation i = fz/ f belongs to BS®, the open unit ball in L>°(D).
The collection of planar quasicircles corresponds to universal Teichmiiller space 7'(1) and
the usual metric is defined in terms of ||| 00. Motivated by problems arising in string
theory (e.g. [14,15]), Takhtajan and Teo [51] defined a Weil-Petersson metric on universal
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Teichmiiler space 7'(1) that makes it into a Hilbert manifold. With this topology, 7'(1)
has uncountably many connected components, but one of these components is exactly the
closure of the smooth curves; this component is called the Weil-Petersson class and is
denoted Ty(1).

Suppose I' is a closed curve in the plane and let f be a conformal map from the unit
disk D = {z : |z| < 1} to €, the bounded complementary component of I'. If f is con-
formal on D, then f” is never zero, so ® = log f” is a well defined holomorphic function
on D. Recall that the Dirichlet class is the Hilbert space of holomorphic functions F on
the unit disk such that | F(0)|> + [ |F'(z)|* dxdy < co. We will define a curve I" to be
in the Weil-Petersson class if and only if the conformal map f:D — € is such that log f’
is in the Dirichlet class. Theorem 1.12 of the Takhtajan and Teo paper [51] shows that this
is equivalent to the definition described above.

Saying log f” is in the Dirichlet class means that

"
(1.1) / (og 'Y 12 dxdy _/ ‘f dxdy < co.
This can also be written as
(1.2) /D [og (=)' (1 — |2 dA(z) < oo,

where dA, is the hyperbolic area on D and the integrand is now invariant under pre-
compositions by Mobius transformations of the disk.
The space H'/2(T) c L?(T) is defined by the finiteness of the seminorm

D(f) = // |Vu(z)|? dxdy = _/2” /2” f(e”) fe)?

sin 5 (s—t)
2
s [ [ UOSOE

where u is the harmonic extension of f to D. The equality of the first and second integrals
is called the Douglas formula, after Jesse Douglas who introduced it in his solution of the
Plateau problem [20]. See also Theorem 2.5 of [3] (for a proof of the Douglas formula)
and [44] (for more information about the Dirichlet space). See [1] and [19] for additional
background on fractional Sobolev spaces.

It follows from these definitions that for a conformal map f, log f/(z) is in the Dirich-
let class on I if and only if the radial limits log | f’| and arg(f’) are in H'/2(T). It is
known this implies f’ € L!(T), and hence that a Weil-Petersson curve is rectifiable;
indeed, it is known that they are chord-arc curves, i.e., there is a M < oo so that any
two points x, y € [ are connected by a subarc of length at most M |x — y|. See Sec-
tion 2 of [11]. Since arg( f’) can be an unbounded function, it is, perhaps, surprising that
f € H'Y? is equivalent to f'/|f'| € H'/2, but this is the case.

Theorem 1.1. A curve T' = f(T) is Weil-Petersson if it is chord-arc and f']|f’'] €
H'Y2(T).

dsdt
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This is essentially Theorem 5 in [25]. One direction is easy. As noted above, Weil—
Petersson curves are chord-arc, and if log f "=log| f’| + iarg f’ is in the Dirichlet class,
then arg /' € H'/?(T). Using |e!* — ¢”| < |x — y| and the Douglas formula, we get

elag f'(x) _ piarg f1(¥) 2 _
// e ‘ dxdy<//‘argf(x) arg /() |? dxdy < oo,

Thus exp(iarg /') € H 1/ 2(T). The converse direction seems harder. As noted above, one
proof is given in [25]; we give another in Section 8 of this paper; a much less direct proof
is givenin [11].

It is standard fact (e.g., Lemma 10.2) that if F is holomorphic on D, then

|F(0)]? +/ |F'(z)|?dxdy < oo
D
if and only if
|F(0)]> + |F'(0)] +/ |F"(z) (1 = |z*)* dxdy < oo.
D

Applying this to F = log f”, we see that (1.1) could be replaced by the condition

(13) / ( f f ) (1 —|z[2)2 dxdy < oo.

This integrand is reminiscent of the Schwarzian derivative of f given by
f// f// f/// f//

(1.4) SU) = (f’)__(_f’) f’__<f')'

For a Mobius transformation sending D to a half-plane, the Schwarzian is constant zero,
but the expression in (1.3) blows up to infinity at a boundary point. However, for conformal
maps into bounded quasidisks, the integrals involving these two quantities are known to
be simultaneously finite or infinite, see [13]. Cui [18] proved the following.

Theorem 1.2. A curve T is Weil-Petersson if and only if it is a quasicircle and T" = f(T),
where [ is conformal on D and satisfies

(1.5) /DIS(f)(Z)Iz(l —|z?)?dxdy < co.

See also Theorem II.1.12 of Takhtajan and Teo’s book [51] and Theorem 1 of [39] by
Pérez-Gonzélez and Rittyad. As with (1.2), we can rewrite (1.5) as

(1.6) L ISP = 122)* an) < .
If f is univalent on D, then

(1.7) sup IS(H@I(1 = |z]*)? < 6.

See Chapter II of [30] for this and other properties of the Schwarzian. If f is holomorphic
on the disk and satisfies (1.7) with 6 replaced by 2, then f is injective, i.e., a conformal
map. If 2 is replaced by a value ¢ < 2, then f also has a K-quasiconformal extension
to the plane, where K depends only on 7. This is due to Ahlfors and Weill [4], who gave a
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formula for the extension and its dilatation:

1=z /()

1.8 = ;
o T =IO )
(19 pw) = —3 (1= P S,

where w € D* and z = 1/w € D. See also Section 4 of [17], Formula (3.33) of [36], or
equation (9) of [42].

Theorem 1.3. A curve I is Weil-Petersson if and only if T’ = f(T), where f is a quasi-
conformal map of the plane that is conformal on D* and whose dilatation |1 on D satisfies

|l (2))? 2
(1.10) / —dxdyz/ |lu(z)|dA, < oo.
p (1—[z[*)? D ?
This is also due to Cui; see Theorem 2 of [18].
Another variation on this theme is to consider the map R(z) = f(1/f~1(z)). This is
an orientation reversing quasiconformal map of the sphere to itself that fixes I" pointwise,
swaps the complementary components of I", and whose dilatation satisfies

(1.11) / l1(2)]? dA,(z) < oo,
QUQ*

where dA, is hyperbolic area on each of the domains Q and ©2*.

Corollary 1.4. A curve I is Weil-Petersson if and only if it is the fixed point set of a
quasiconformal involution of the sphere whose complex dilatation ( is in L? with respect
to the hyperbolic metric on the complement of T'.

A circle homeomorphism ¢: T — T is called a conformal welding if ¢ = f~'o g
where f and g are conformal maps from the two sides of the unit circle to the two sides of
a closed Jordan curve I'. There are many weldings associated to each I', but they all differ
from each other by compositions with Mobius transformations of T. Not every circle
homeomorphism is a conformal welding, but weldings are dense in the homeomorphisms
in various senses; see [10].

A circle homeomorphism is called M -quasisymmetric if it maps adjacent arcs in T
of the same length to arcs whose length differ by a factor of at most M ; we call ¢ qua-
sisymmetric if it is M -quasisymmetric for some M . The quasisymmetric maps are exactly
the circle homeomorphisms that can be continuously extended to quasiconformal self-
maps of the disk, and are also exactly the conformal weldings of quasicircles. See [2, 10].
Weil-Petersson weldings were first characterized by Shen [48]. He proved:

Theorem 1.5. A curve I is Weil—Petersson if and only if log¢' € H'/2(T).

To see necessity, observe that log /' is in the Dirichlet class on D if and only if its
radial boundary values satisfy log f’ € H'/2(T). Thus log f’ in the Dirichlet space
implies log f’ € H'/2(T). Similarly for the conformal map g from {|z| > 1} to the
region outside I'. There are several ways to see this, e.g., Theorem 1.7 below clearly
implies that Weil-Petersson curves are invariant under inversion through points not on



Function theoretic characterizations of Weil-Petersson curves 2359

the curve, so g can be written as f for the inverted curve followed by the inversion.
Then we have log ¢’ (x) = —log f'(¢(x)) + log g’(x). Beurling and Ahlfors [9] proved
that H '/2(T) is invariant under pre-compositions with quasisymmetric circle homeomor-
phisms, so log f" o ¢ € H2(T) and hence log ¢’ € H/2(T). Thus Shen’s condition is
necessary for I' to be Weil-Petersson.

We will give a new proof of sufficiency by showing that Shen’s condition implies the
following more geometric condition on ¢. If I C T is an arc, let m (/) denote its midpoint.
For a homeomorphism ¢: T — T, define

lp(m(1)) —m(p(I)|
o))

Theorem 1.6. A curve I is Weil-Petersson if and only if ¢ satisfies

gs(p, 1) =

(1.12) > as?(p. 1) < C < o,
1

where the sum is over any dyadic decomposition of T, and C is independent of the choice
of decomposition.

A dyadic interval / in R is one of the form (27" j,27"(j + 1)]. Dyadic intervals on T
are defined in an analogous manner by repeated bisection, starting from some base point,
usually chosen tobe 1 € T. A dyadic square in R? is the product of two dyadic intervals of
the same length. This length is called the side length of Q and is denoted £(Q). Note that
diam(Q) = +/2¢(Q). For a positive number A > 0, we let AQ denote the cube concentric
with Q but with diameter Adiam(Q), e.g., 3Q is the “triple” of Q, a union of Q and eight
adjacent translates of itself. We let Q7 denote the parent of Q; the unique dyadic cube
containing Q and having twice the side length. Q is one of the four children of Q7.

Given a set E C R” and a dyadic cube Q, define Peter Jones’s S-number as

1
B(Q) =Be(Q) = diam(0)

where the infimum is over all lines L that hit 3Q. Peter Jones invented the -numbers as
part of his traveling salesman theorem [28]. One consequence of his theorem is that for a
Jordan curve T,

(1.13) ¢(I") ~ diam(T") + > _ Br(Q)* diam(Q).
9

iEfsup{dist(z,L) 1z €e3Q0NE},

where the sum is over all dyadic cubes Q in R”. The following result shows that Weil—
Petersson curves satisfy a strong form of rectifiability.

Theorem 1.7. A curve T is Weil-Petersson if and only if

(1.14) > Br(Q)* < co.
0

where the sum is over all dyadic cubes.
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All the results described so far can be summarized as follows.

Theorem 1.8. With notation as above, the following are equivalent for a closed chord-arc
curve I in the plane:

(1) u(z) € L*(dAy),

) S(f)(2) (1 —|z]*)? € L*>(dAp),
(3) (log f(2))'(1 = |z|?) € L*(dAp),
@ f'/If'| € HY(T),

(5) logg’ € H'/(T),

©) > as(p, 1)* < oo,

(M) X0 B7(0) < co.

Conditions (1)-(3), (5) were previously known to be equivalent; conditions (4), (6)
and (7) are new. The implications (3) = (5) and (3) = (4) were already discussed above.
In the remainder of the paper, we will prove the new implications (5) = (6) = (1), (3) =
(7 = (1), (4) = (3), and sketch new proofs of the known implications (1) = (2) = (3),
Together, these prove the equivalence of conditions (1)—(7).

The definition of the Weil-Petersson metric by Takhtajan and Teo [51] was motivated
by problems coming from string theory. Furthermore, one of the characterizations given
in [11] involves minimal surfaces in the hyperbolic 3-space that have I" as an asymptotic
boundary: I" is Weil-Petersson if and only if such a surface S has finite total curvature.
An equivalent formulation is that S has finite renormalized area, a concept with has strong
motivations arising from string theory and quantum entanglement, e.g., [34,45, 50]. See
the introduction of [5] for further details and references. Also see [41], where the authors
argue that Weil-Petersson curves are the correct setting for 2-dimensional conformal field
theory.

Other results in [11] describe the Weil-Petersson class as the curves with arclength
parameterization in H3/%(T), finite Mdbius energy (a concept arising in knot theory),
and also characterize them as curves whose length is well approximated by inscribed
polygons in a precise sense. The Weil-Petersson class also arises in computer vision: see
the papers of Sharon and Mumford [46], Feiszli, Kushnarev and Leonard [23], and Feiszli
and Narayan [24]. Indeed, the problem of geometrically characterizing Weil-Petersson
curves was originally suggested to me by David Mumford in December of 2017. Fur-
ther connections of the Weil-Petersson class to Brownian motion, Loewner energy and
Schramm-Loewner Evolutions (SLE) are described in [43,47,52-55]. In fact, my initial
results on the Weil-Petersson class were directly motivated by a lecture on these connec-
tions given by Yilin Wang at an IPAM workshop in January of 2019.

Finally, we recall some standard notation. Given two quantities A, B that both depend
on a parameter, we write A < B if there is a constant C so that A < CB holds independent
of the parameter. We write A 2 B if B < A, and we write A ~ B ifboth A < Band A 2 B
hold. The notation A < B means the same as the “big-Oh” notation A = O(B).
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2. Analogous results

Before starting the proof of Theorem 1.8, I would like to point out that it is completely
analogous to other known results when the Dirichlet space is replaced by other spaces of
analytic functions on the unit disk. See Table 1. Each column (after the first) of the table
represents a theorem: the top entry is the name of a function space X so that log /' € X,
and the lower rows give various conditions related to f that are equivalent to log ' € X.
The description of these conditions is given in the first column: log f’(z)(1 — |z|?),
S(f)(z)(1 = |z|?)?, the dilatation p of a QC extension of f, the conformal welding
homeomorphism ¢, and I' = f(T). Theorem 1.8 of this paper is the rightmost column of
the table.

log 1/ Bo BMOA VMOA Dirichlet
(log 1) (1 —|z[?) Co(D) CM(D) CMo (D) L%(dAp)
S(N)@) (1 —1z?)? Co(D) CM(D) CMo (D) L*(dAp)
0 Co(D) CM(D) CMy (D) L*(dAp)
_ o1l f . strongly / / 1/2
p=g ‘of symmetric quasisymmetric logg’ € VMO | logy’ € H
. asymptotically Bishop—Jones asymptotically )
['= /M conformal condition smooth 2P <00

Table 1. Each column represents a theorem: each row consists of different conditions that can be
placed on a quantity associated to a conformal map f:ID — € that is equivalent to log /' € X,
where X is the space named at the top of the column. The conditions grow more stringent as we
move left-to-right in the table. The proofs of the equivalences in the center three columns come from
many sources including: [6,7,13,18,21,22,33,40,49].

Here are the definitions needed to interpret Table 1. We let By denote the little Bloch
class of holomorphic functions on D such that

Bo = {/ 1sup;ep | /') (1 —|z*) = Oas |z] — 1},

or, more concisely, | /(z)|(1 — |z|?) € Co(D) (continuous functions that tend to zero at
the boundary). A Carleson measure on D is a non-negative measure u so that

w(D(x,r)) = Cr,
for some fixed C < oo and all x € T, r > 0. We define
CM(D) = {f : | fI*(1 —|z|/*)"1dxdy is a Carleson measure},
and define CM(D) C CM(ID) to be the functions so that

1
lim —
r—>0r

|f2( |z~ dxdy = 0.
DND(x,r)
The space BMOA (bounded mean oscillation) on the unit circle has several equivalent

definitions (see Chapter VI of Garnett’s book [26]); a convenient one to use here is that
f € BMO if its harmonic extension u to D satisfies |[Vu(z)|(1 — |z|?) € CM(D). BMOA
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is the subspace of functions such that the harmonic extension u is holomorphic. A function
f € BMOA is in VMOA if | f/|(1 — |z|?) € CMo(D). The space L?(d A,) is defined as

42(D) = {f : /D @) dAy(z) = [D [f@P (1~ [z dxdy < oof.

For a circle homeomorphism ¢, symmetric means ¢(1)/¢(J) — 1, for adjacent intervals
with |[7| = |J| — 0, and ¢ is strongly quasisymmetric if for there are §, & > 0 such that
|E| < §|1|implies |¢(E)| < ¢|I| for every measurable E C I,andarc I C T.

The geometric conditions in the bottom row of Table 1 are perhaps the hardest to state
and understand. Given an arc y with endpoints z and w, let L be the line through z and w
and let B(y) = max;e, dist(z, L)/|z — w|. A curve I is called asymptotically conformal
if B(y) — 0 as diam(y) — 0, and a rectifiable curve is called asymptotically smooth if
A(y) = £(y) — crd(y) = o(crd(y)) as diam(y) — 0. Asymptotically smooth curves are
rectifiable by definition, but asymptotically conformal curves need not be, e.g., one can
construct a variant of the the usual snowflake curve in which the triangle heights tend
to zero at smaller generations, but do not give a rectifiable curve. The most awkward
condition to state is the Bishop—Jones condition [13]: this says that there isa M < 00 so
that for each z € Q@ = R? \ T there is a subdomain U, bounded by a M -chord-arc curve,
so that z € U, C Q and such that

dist(z, 3U,) ~ £(dU.) ~ €U, NT).

The paper [37] by Pau and Peldez describes another possible column of Table | corre-
sponding to Q, spaces and, no doubt, further such results remain to be discovered.

3. B-numbers and multi-resolution families

Before starting the proof of Theorem 1.8, we recall some facts about multi-resolution
families and B-numbers. Recall that a standard dyadic interval in R is an interval of the
form [k27", (k 4+ 1)27") for integers k and n. Below we will also consider translates of
the standard dyadic family by a constant, usually 1/3. The standard dyadic intervals on
the circle T are images of the dyadic intervals on R under the map x — exp(27ix). This
family can be rotated to form other dyadic families on the circle.

A multi-resolution family in a metric space X is a collection of bounded sets {X}
in X such that there are N, M < oo so that

(1) foreach r > 0, the sets with diameter between r and Mr cover X,
(2) each bounded subset of X hits at most N of the sets Xj, with diam(X)/M <
diam(Xy) < Mdiam(X),
(3) any subset of X with positive, finite diameter is contained in at least one X; with
diam(X;) < Mdiam(X).
Dyadic intervals on T or R are not a multi-resolution family, e.g., X = [—1, 1] C R is not
contained in any dyadic interval, violating (3). However, the family of triples of all dyadic
intervals (or cubes) do form a multi-resolution family. Similarly, if we add all translates
of dyadic intervals by +1/3, we get a multi-resolution family (this is sometimes called
the *“3-trick”, [35]). The analogous construction for dyadic squares in R2 is to take all
translates by elements of {—1/3,0, 1/3}2.
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The following simple lemma shows that in many computations, the choice of a partic-
ular multi-resolution family is not important.

Lemma 3.1. Suppose {X;} and {Yi} are two multi-resolution families on a space X and
that « is a function mapping subsets of X to [0, 00) that satisfies «(E) < a(F), whenever
E C F and diam(F) < diam(E). Then

Za(xj) ~ Zoe(Yk).
J k

Proof. By condition (3) above, each X; is contained in some set Yy ;) of comparable
diameter. Hence o (X;) < a(Y(;y) by assumption. Each Y is contained in a comparably
sized X,,, and X, can contain at most a bounded number of comparably sized subsets X;.
Thus each Y is only chosen boundedly often as a Yy ;). Thus Z‘j a(X;) S Yo ap).
The opposite direction follows by reversing the roles of the two families. ]

If we have a multi-resolution family on the unit circle then its image under a confor-
mal map of the unit disk to a quasidisk gives a multi-resolution family on the bounding
quasicircle. This fact is Lemma 9.9 in Tim Mesikepp’s thesis [32].

It will be convenient to consider several equivalent formulations of condition (1.14)
involving Jones’s B-numbers. For x € R? and ¢ > 0, define

1
Br(x,t) = ?igfmax{dist(z, Ly:zeT,|x—z| <t},

where the infimum is over all lines hitting the disk D = D(x, t), and let ,g[‘ (x,t) be the
same, but where the infimum is only taken over lines L hitting x. Although 8 (and its
variations) depend on T', this set is usually clear from context and we will often drop it
from our notation, i.e., we simply write § in place of Sr.

Since ,g is defined as the infimum over a smaller collection of lines than B, clearly
B(x, 1) < E(x, t), and it is not hard to prove that B(x, t) <2B(x,t)if x € I'. Given a
Jordan arc y with endpoints z and w, we let

Bly) = max{dist(z, L) : z € y}’

|z —wl

where L is the line passing through z and w. The following “well-known” fact says that
the various formulations of the S-numbers are equivalent, and is Lemma B.2 of [12].

Lemma 3.2. If T is a closed Jordan curve or a Jordan arc in R" such that (1.14) holds,
then T is a chord-arc curve. Moreover, (1.14) holds if and only if any of the following
conditions holds:

o dxdt
(3.1 /0 /]R" B*(x.1) prETE
(3.2) / / B2(x.1) dsf’ < oo,
o Jr !

(3.3) > BAT)) < oo,

J
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where dx is volume measure on R", ds is arclength measure on T, and the sum in (3.3)
is over a multi-resolution family {I'j } for T". Convergence or divergence in (3.1) and (3.2)

is not changed if ;" is replaced by fOM forany M > 0.

4. Theorem 1.8: (3) = (7)

We want to show that if log f” is in the Dirichlet class, then the unweighted f2-sum (1.14)
for I' is finite. We start with some standard definitions that we will use throughout the
remainder of this paper. Given an arc I C T = 0D of length |/ | less than 1, we define the
corresponding Carleson square Qj as

Qr={zeD:z/|z|el,1—|z| <|I|}.
We define the “top half” of Qy as
Wy =T(Qr)={zeD:z/lz|el,|I]/2 <1—|z| <|I|}.

When [ ranges over the dyadic subintervals of T these sets (together with a single disk

around the origin) form a Whitney decomposition W of D, i.e., collection of closed sets W
with disjoint interiors that cover D and satisfy diam(W) ~ dist(W, D).

For each element W € ‘W, let

f’//

W) = 1 n/ 1— 2 — J

n(w) g;aWXI(ogf) [(1—1z]) max 7

Standard results, e.g., Theorem VIL.2.1 of [27], imply that n(W) < 6 for all W € ‘W

and any conformal f. Each element W € ‘W has hyperbolic area comparable to 1, and

Euclidean area comparable to (1 — |z|?)? for any z € W. Hence

[1l e =2 |5
(=)

u(z) =
1)
Since u is a holomorphic function, the mean value property and the Cauchy—Schwarz
inequality imply

(1—1z*).

2
dxdy ) n(W)>.
w

Let

and B, = D(z,(1 —|z])/2).

u@P = (

2 1 5
/Bzu(z)dxdyD < m . lu(z)|” dxdy.

Thus the maximum of |u|?> over W is bounded above by the integral of |u|?> over the
union of W and a bounded number of adjacent Whitney boxes (enough to cover the
set Uzew B;). Each Whitney box is only used a bounded number of times, so we see
that (3) of Theorem 1.8 is equivalent to

4.1) Z n(W)? < oco.

Wew

area(B;)
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The next step closely follows a calculation from Pommerenke’s paper [40]. Pom-
merenke’s result implies that if n(W) < ¢ for all Whitney boxes inside 2Qy, then f(/)
is a quasi-arc with small constant. Clearly (4.1) implies that this holds for all sufficiently
small Carleson boxes, say smaller than some r > 0. The conformal map f restricted to
such a Carleson square Q,; has a K-quasiconformal extension to the reflection of Oy
across 2/, with K close to 1. Hence a consequence of Mori’s theorem (Theorem III.C
of [2]) is that if J C [ is a sub-arc, then

diam(f(J)) <C (diam(J))a
diam(f(I)) = \diam(I)/ °

for some C = C(«) < o0, and where we may take o < 1 as close to 1 as we wish, if r is
small enough. For our purposes, it will suffice to take « = 3/4 (any value > 1/2 would
work). Henceforth, we assume r has been chosen so that (4.2) holds with @ = 3/4 for all
arcs of length less than r.

For z, w € D, let p(z, w) denote the hyperbolic distance between z and w. Note
that Whitney squares are approximately unit size in the hyperbolic metric: each has uni-
formly bounded hyperbolic diameter and contains a hyperbolic ball of radius bounded
uniformly away from zero. Suppose zg € W = T(Qy) € ‘W, and suppose z € 2Q;. Let
W = Wy,..., Wy be the list of Whitney squares hit by the hyperbolic geodesic y from zq
to z; note that N = N(z) >~ 1 + p(z¢, z) and that the boxes can be ordered so that Wy = W,
k >~ 14 p(Wy, Wy), and (taking Euclidean diameters)

“4.2)

4.3) diam(Wy) ~ diam(Wy) exp(—p(Wo, Wi)).

Moreover, we can choose points zx € y N Wy that are ordered by increasing distance
from zy. See Figure 1.

L8] 7y

Figure 1. The chain of Whitney boxes connecting zg to z»s. The hyperbolic geodesic from zg to z
is denoted y.

By a linear rescaling of f we may assume f’(zo) = 1, without changing the values
of (log f’)" and hence without changing the 7’s. It is convenient to truncate the sequence
of Whitney boxes in some cases. Define M < N to be the first index where

M

(4.4) Y W) = 1,

k=0
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or set M = N if there is no such index. If M = N, let z)y = z; otherwise let z3s be
some point in y N Wy . Note that by our assumptions either z3s = z or, as a consequence
of (4.2),

diam(Wps)\«
Feae) = £ diam 7o) (Gt D)) S diam( £ Wo) - exp(-aip (W W)
If zps # z then (4.4) holds, so
M
|/ o) = f()] S diam(fWo)) (D n(Wi) ) exp(—cp(Was, Wo)
k=0
M
< diam(f(Wo)) ( 3 n(Wi) exp(—ap(Wi, Wo))).
k=0

Similarly, either zpy = z or
lzm — z| < diam(Wpy) < diam(Wo) exp(—p(Wpr. Wo))

M
< diam(Wp) (Z n(Wk)) exp(—ap(War, W)
k=0

M
< diam(Wo) (Y n(Wi) exp(—ap(We., Wo))-
k=0

Pommerenke’s estimate (see his proof of (i) = (ii) in Theorem 1 on page 201 of [40]),
says thatif z, € y N W,

"

z Z41 n—1
jog 'zl < [ Z [ o Nz £ 3 0o,

1) =
Thus .
/G =11 = exp (€ Y- (W) -
k=0

Integrating, and using e* — 1 < x for x € [0, 1],

e~z < [ e (c S nw0) 1]
M=1 .z, k-1 e M—1 k—1
Y [T a0m) iz £ Y dammo[ 3now)]
k=0 v %k j=0 k=0 j=0

M-1

M-1
n(Wy) > diam(We) S Y n(W;) diam(W)).
j=0 k=j+1 j=0
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The last inequality uses that fact that the {diam(W)} decreases approximately geomet-
rically (the geodesic I' can hit more than one Whitney box of the same size, but only
boundedly many, so the sequence of sizes is O(A¥) for some A < 1). Hence the sum
above is dominated by a multiple of its largest term. Using (4.3) and the fact that ¢ < 1,
we see that

M
(Fem) = f(20) = (2at — 20) = O(diam(Wo) Y n(W) exp(—ap(Wo. W) ).
k=0

Thus by adding f(z) — f(z) and z — z to both sides and rearranging, we get

M
F2) = f(z0) = (2 = 20) + O( D n(Wi) diam(We) ) + (£(2) = fzm)) + (2 = 21)

k=0

M
= (= — z0) + O(diam(Wo) D n(Wi) exp(—ap(Wo, Wi))).
k=0

The last equation holds since we have previously shown that each of the last three terms
in the first line is dominated by the sum in the second line above, and that |z — zps| ~
|z — zo| =~ diam(Wp). This equation says that f restricted to / is linear with a small error,
hence f(I) will be close to a line segment with small error. More precisely, since f has
a quasiconformal extension to the plane, and we have normalized so f’(zo) = 1, we have
diam( f(1)) >~ |I| and

M(z)

B() S sup > n(Wi) exp(—ap(W. Wi))).
zel

In particular, for each W = T(Qy) € W that is small enough, we can choose a point
zg € W, a boundary point z € 2/, the geodesic segment yy connecting zo to z, and
the chain of adjacent Whitney boxes € (W) hitting yw, so that the corresponding sum
is within a factor of 2 of the supremum over all points z € 2/. Next choose s so that
1 < s < 2a = 3/2. Then summing over all sufficiently small Whitney boxes in D and
using the Cauchy—Schwarz inequality gives

Y PemX (X ) expapv.w)’

W:diam(W)<r W We€eW)
SY (X Povyexa=sowwm)( D0 exp((s — 200 oW, W)
W WeeWw) wee(w)

Since s — 2¢ < 0 and the distances between W and W' grow linearly, the sum in the
second term of the product is a geometric sum, and hence converges to a number bounded
independent of W. Thus if Iyy C T denotes the base interval of W and o = f(Iw),

Yo Bow) S W) Y exp(—sp(W. W)
e

W:diam(W)<r w-w'ee(W)
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Since s > 1, the second sum above is bounded. Hence we obtain
> Bow) S YW
w w’

The collection {/y } is not itself a multi-resolution family for T, but a finite family of
rotations of D gives such a family (the %—trick) and the proof above applies equally well
to each family. Thus the 82-sum is finite over some multi-resolution family of arcs for I,
and hence (3) implies (1.7) using Lemma 3.2.

5. Theorem 1.8: (7) = (1)

In this section we show that if the 2-sum is finite, then I is the quasiconformal image of
the circle under a map with dilatation in L? for hyperbolic area.

Suppose © C R? is open and x € 2. Then there is a maximal closed dyadic square Q
containing x so that diam(Q) < %dist(Q, d€2). The collection of such squares covers 2
and have pairwise disjoint interiors and is called a Whitney decomposition of 2 using
dyadic squares.

Assume (7) holds in Theorem 1.8. Since ZQ ﬂl%(Q) < 00, only finitely many of
the B’s can be larger than 1/1000. Let U(¢) denote the e-neighborhood of T, and choose ¢
so small that U(g¢) only contains dyadic Whitney squares Q with Br(Q) < 1/1000. Form
a triangulation of €2 by connecting the center of each square to the vertices on its boundary.
Note that neighboring triangles have comparable diameters and that all angles are bounded
uniformly above 0 and below 7.

We will define a reflection across I that is defined on a neighborhood of T" and that is
piecewise affine on the above triangles. Let Sy be the collection of squares Q in the Whit-
ney decomposition so that £(Q) = 27k andlet § = Uk>k, Sk» Where kg is chosen so that
the elements of § are all contained in U(go/100). Order the elements of {Q;}7° = §
so that side lengths are non-increasing. Now, for each Q;, choose a dyadic square Q}
of comparable size that hits I" and so that 3Q; contains Q. Note that Q7 C U, so fr(Q})
is small. To begin, choose a line L; that minimizes the definition of ,BF(Q;) Reflect all
four vertices of O across L. In general, reflect each vertex v of Q; across L; to a
point v* in %, if it was not already reflected by belonging to some Qf with k < j. See
Figure 2.

The main point is that each vertex v belongs a uniformly bounded number of Q ;’s
and the different possible reflections v* of v corresponding to these different squares all
lie within distance f8; - dist(v, I') of each other, where Q; is any of the Whitney squares
having v as a corner and ; = ﬂp(Q}). This occurs because all the lines we might use
have directions that differ by at most O(f;), and they all pass within O(8 jE(Q})) of
some point in Q}. We now define affine maps on each element of our triangulation that
lies inside U(g(/1000) by sending each vertex to its reflection v*. Suppose T is a triangle
associated to Q;. Then diam(7") =~ dist(7, I'). The reflected vertices of 7' form a trian-
gle T* that is within O(f;) of being congruent to 7. Thus the following simple result
applies:



Function theoretic characterizations of Weil-Petersson curves 2369

Figure 2. Each vertex on one side of I' is reflected across a line approximating I'. Since different
vertices may use different lines the corresponding triangles become distorted, but since the lines
come within O(f) of each other and have angles differing by O(f), the triangles are related by an
affine map that is quasiconformal with dilatation O ().

Lemma 5.1. Suppose T = (v1, va, v3) is a planar triangle of diameter 1 and that the
three interior angles are bounded uniformly away from 0 and . Suppose T’ is another
triangle whose vertices (v}, vy, v3) are each within € of the corresponding vertex of T.
Then the affine map that extends v; — vj’., Jj = 1,2,3, is quasiconformal with complex
dilatation bounded by O((¢).

Proof. One way to check this is by an explicit computation: the affine map that sends
{0,1,a} to {0, 1, b} with a, b in the upper half-plane is z — «z + BZ where @ = (b —
a)/(a —a) and B = 1 — «. From this one sees that the complex dilatation is the constant
n=p/a = (a->b))/(b—a) = tanh(p(a, b)), where p denotes the hyperbolic metric
on H?2. m

Extending the map between vertices linearly, we get an affine map from 7T to T* that
is quasiconformal with dilatation bounded O(f;). Putting together the different triangles
we get a piecewise affine map.

The homeomorphism R constructed above on a neighborhood of U of I' C R? is
clearly quasiconformal on U \ T'. Since I is a quasicircle, it is removable for quasicon-
formal homeomorphisms and hence our map is quasiconformal on all of U, i.e., we have
defined a quasiconformal reflection across I' on a neighborhood U of I". Each triangle T
has hyperbolic area ~ 1, so

/T L dAy(2) = O(BE(Q)).

for some dyadic square Q with diam(Q) ~ dist(Q, T') ~ diam(7T"). Therefore
| n@P are) = of L)

since each Q occurs for only boundedly many 7. We now extend this map diffeomorphi-
cally (and hence quasiconformally) to the rest of €2 to obtain a reflection satisfying (1.11).
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6. Theorem 1.8: (5) = (6)

In this section we prove that if the conformal welding satisfies log ¢’ € H /2, then it also
satisfies >_; gs(¢, I)* < oo. First we give some notation and prove a series of preliminary
lemmas. Suppose ¢ is a circle homeomorphism that is absolutely continuous and such that
both ¢’ and log |¢’| are in L!(T). Let U be the harmonic extension of |¢’| from T to D.
Let u be the harmonic extension of log |¢’| from T to D. As before, let I C T be an arc,
let Q =Qr={z:z/|z| € I,1—£(I) <z <1} C D be the Carleson square with base I,
let
T()=TQr) ={z€Qr:z=1-4I)/2}

be the top half of Q, and let z; be the center of the top edge of T(1). Let T*(Q) be the
union of T (Q’) for all Q' so that T(Q’) touches T(Q), i.e., this is approximately a unit
hyperbolic neighborhood of 7(Q).

Let u; = [, uds/{(I) be the average of u over I. For u harmonic on D, Q a dyadic
Carleson square and 0 < « < 1 define (the sum is over dyadic Carleson subsquares of 3Q)

e, 0,a) = (Qgg /T(Q/) |Vu|2<%)l_a dxa’y.)l/2

Note that ¢ < o’ implies e(u, Q, ) < e(u, @,’). In what follows, the constant in inequal-
ities of the form < e(u, Q, o), may depend on « (but for our proof, we will only need one
value, say o = 1/2).

Suppose W C W’ C D are domains so that if Q and Q' are Carleson squares so
that Q C W and Q' C 3Q, then T(Q’) C W’. For our application, we will simply take
W={z:7/8<|z| <1}and W' =D.

Lemma 6.1.

Z e2(u, Q. a) §/ |Vu|? dxdy < oo.

ocw w
Proof. Note that

Z 2, Q,a) = Z Z /7: |Vu|2<@)l_a dxdy

ocw ocw g0:0'c3p ’T(@) Q)
(X / VuPaxdy)( > (@)H) 5/ \Vul? dxdy,
Q'cw’ (2" 0:0'C30; E(I) w’

since the second sum (the one over Q) is dominated by a geometric series whose largest
term is >~ 1. ]

Recall that u is the Poisson integral of log |¢’|. If Q is a Carleson square with base /
and top edge E, then the averages of u over / and E will be denoted u; and u7, respec-
tively. Our first goal is to prove

(61) |M(ZI)_MI|2§8(M’ Q,O)ZES(L{, Q’a)z'

We will do this in two steps.
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Lemma 6.2. With notation as above,

k12 2 (Q)
©2) e il 5 [l G e

Proof. If u is harmonic, then the vector field Vu has a natural interpretation as a holo-
morphic function, and thus it satisfies the mean value property. So for z € T(Q), the
Cauchy—Schwarz inequality implies

dzdy , dzdy \1/2 / ) /2
\% \Y \Y \Y
| u(Z)lS/BI u'area(B) 5(/B| ul area(B)) ‘6(1) |Vu| dzdy) ,

where B is a ball of radius (1 — |z])/2 around z. Thus

s

(6.3) max |u(z) u(w)|< max |Vu(z)| d1am(T(Q))<(/ |Vu|2dzdy)l/2,
eT(Q T*(Q)

where T*(Q) is the union of all top halves of dyadic Carleson cubes touching 7'(Q).
Hence the difference between u(z7) and u7 is bounded by the right side of (6.2). ]

Since Q' C T*(Q) implies £(Q) >~ £(I), and since T*(Q) C 30, we see that (6.2)
implies

Q")
I70)

6.4) lu(zr) —uﬂ2 §/ |Vu|? dxdy < e(u, Q,0)2.
*(Q

Lemma 6.3. With notation as above,
(6.5) lur —ui* < e(u, Q,0)%

Proof. The difference of averages u; — uj can computed by applying Green’s theorem,

v ou
Av—vAu)dxdy = — d
/Q(u v—vAu)dxdy /8Q (u P 8n) s,

on Q with the functions u and v = log 1/|z|. Both interior terms vanish by harmonicity.
The boundary integral along I equals u;£([), the boundary integral along the top edge E
of Q gives —uj{(I) plus a term bounded by

1/2
6(1)/|Vu|dsgz(1)(/ vl dzay)"”
J T*(Q)

which is less than the right side of (6.5) times £(7).

The normal derivative of v over the radial sides of Q is zero, so the integrals over these
sides of Q can be bounded using (6.3) and the Cauchy—Schwarz inequality (break each
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radial side of Q into intervals by intersecting with top halves of dyadic sub-squares):

1—|z7| 1/2
|[Vulrdr < Q") / |Vu|?dzdy
I L O] Fuiz)

Q0:0'NIQ#0

(ZaQ) Z / |W|26(Q’>dzdy)”2
1/2
< e Vul>£(Q")dzd ,
< Vi ;/T*(Q,)| ul? £(Q") d=dy)

where the sum is over cubes Q' C 3Qj that hit the sides of Qy; this sum is dominated by
the sum over all Q' C 3Qy, so this proves (6.5). ]

Lemma 6.4. Assume u(zy) = 0. With notation as above
(exp((a/2u?) — 1) — < &2(u, Q1. ).
[1 p((a/ E( 1) 0

Proof. This estimate is essentially Theorem 1 of [38], which itself is a simpler version
of results in [8], [16] and [31]. First note that for u in the Dirichlet class and z € Q, the
Cauchy—Schwarz inequality implies

) 1/2 |1
lu(z) —u(zy)| < ( [Vu| dxdy) 1+ ,/log .
0 1—|z|
One can prove this by integrating |Vu| over the line segment from z; to I, applying the
Cauchy-Schwarz inequality and the fact that Vu satisfies the mean value inequality.
Hence if the Dirichlet integral of u over Q is small enough, and z € Q = Qj then

1—|zg|
()] = u() —u(e)] < 1+ flog T
This holds for all small enough squares. Set W(z) = exp(%u(z)z) — 1. Then explicit
calculation shows

VW2 < IVu()? - [u(2)]* explalu(z)?)

SIVUEP - (14 Tog 1) (1= 2D £ [T (1 = )

and
AW =20 || (1 + (a/2)|u|?) exp (%|u|2)

satisfies a similar estimate.

Now apply Green’s theorem with u = log 1/|z| and v = W. The boundary integral
along I, the base of O, is what we want to bound. The estimate given above for AW
shows the interior integral is bounded by a multiple of

2 /T(Q) ue )|2 Z((%))) dxdy < &*(u. Q. ),
o'co
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as desired. The boundary integrals are similarly handled by the Cauchy—Schwarz inequal-
ity and the estimate for |VW| given above. |

Corollary 6.5. Assume u(zy) = 0. With notation as above,

/ fexp(u(s)) — 1] M < e, 0.0).

Proof. By the Cauchy—Schwarz inequality,

[ fesputon - 155

- (exp(u(s)) — 1)2  ds \1/2 1/2
- ( 1 exp(au?(s)/2) — 1 K(I)) (/I (exp(au®(5)/2) = 1) m> '

Note that (e* — 1)2/ (e"‘xz/ 2 — 1) is bounded on R by some constant C(«): the numerator
and denominator of the fraction are both ~ x2 near = 0 and the ratio tends to zero as
x /" oo. Thus the first integral is bounded depending only on «. Lemma 6.4 implies
second integral is bounded by e(u, Q, «). |

Recall that U is the harmonic extension of |¢’|. Thus, very roughly, we expect that
log U ~ u. We make this precise as follows. Let Uy be the average of U over I. This is
also the average of |¢’| over I, so Uy = £(p(1))/4(1)).

Lemma 6.6. Forany0 <a < 1,0 <log(U;) —uy < e(u, Q,).

Proof. The first inequality is Jensen’s inequality: since log x is concave down, there is an
affine function L(x) such that log x < L(x) for all x > 0, with equality at x = Uy, and
hence

log Uy = /""'az) :/,L(' ')M—[ g|¢|m—m.

To prove the second inequality, note that multiplying ¢’ by a constant C changes both
log Ur and uy by the same additive constant log C, so their difference is unchanged.
Hence we may assume ©#; = 0 and Uy > 0. Then using logx < x — 1,

foa(Un) =10g [ 16/6)| 535 = 1og [ expuo) ;5 = [ fexptutn = 1157

The last term is bounded by (u, Q, o) by Corollary 6.5. ]

Lemma 6.7. Suppose I C T is a dyadic interval. With notation as above,

[€((J)) —exp(u(zr) E(T)| < Lle(T)) - e(u. Q. ),

where J is either the left or right half of 1.
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Proof. Note that since ¢’ is absolutely continuous,

amm=ﬁww=ﬁwmmw&

SO

_ Ue() B ~ s
exp(u(z))€(J) ) ‘[ [exp(u(s) —u(z1)) 1]13(]) < e(u,0,),

by Corollary 6.5. Thus
[6(e())) —exp(u(zr) ()| S exp(u(zn) () e(u. Q. ).
Note that by Jensen’s inequality (as in Lemma 6.6) u(zy) < log Uy, so

Up(1)
D = 3 () .

Lemma 6.8. If J is either the left or right half of I, then

66) el ) < 5 Uy -6 =

[(e(J)) — %ﬁ(fﬂ(l))l S e) -e(u, Q. ).

Proof. Observe that

[t(e(J)) — %KW(I))I =< [tle(J)) —exp(u(zr) £(J)] + [exp(u(zr)) €(J) — %ﬁ(w(l))l
= [l(p())) —exp(u(zr) {(S)| + £(J) [exp(u(zr)) — Ut

The first term in the last line is bounded using Lemma 6.7. The second term is bounded
using the fact that x < y implies e” — e* < e”(y — x) (since the derivative of e’ is less
than e” on [x, y]):

lexp(u(zr)) — Ur| = [exp(u(zr)) — exp(log(Ur))|
= Ur |u(zr) —log(Up)| S Ur -(u, Q. a).
Since Uy = £(¢(1))/£(I) by definition, we get
(1))
L)

Proof of (5) = (6). Assume log |¢'| € H2(T) c VMO C L'; hence ¢’ is also in L’
by the John—Nirenberg theorem (or one can use sharper results for H 1/2 i [8,16,29,31]).
Therefore, the harmonic extension u of this function satisfies [ |Vu |2 dxdy < oco. Note
that

€ [explutzr)) = Ul = 00) " fu(z) — log(U)] = 5 o1 etu, 0.). m

1
(1) = me()] < max |E( (/) = 5 Lle(1)].
where the maximum is taken over J being the left or right half of 7. Thus by the preceding
lemmas,
p(m(1)) —m(p(1))?
as*(¢. 1) =
(1))

where Q is the Carleson square with base /. Summing over all dyadic intervals / is finite
by Lemma 6.1. ]

<é&*(u,Qr, ),
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7. Theorem 1.8: (6) = (1)

Next we want to show that if Y qs(¢, 1)? < oo for a homeomorphism ¢: T — T, then ¢
can be extended to a quasiconformal self-map of D.

For each dyadic interval I C T with £(/) < m/4, triangulate 7' (Q) using its four
corners and the center of its lower edge as vertices. This gives a triangulation of an annulus
{r < |z| < 1} as shown in Figure 3. Given a circle homeomorphism ¢ and an interval /
with left endpoint x, we can map each vertex x(1 — £(7)) to ¢(x)(1 — €(¢(1)) and we
extend this to a piecewise linear map of the triangulation, just as we did in Section 5. If
the distortion is small enough (less than some fixed constant), the image triangle has the
same orientation as the original, and the affine map of each triangle onto its corresponding
image defines a homeomorphism of the annulus.

Figure 3. Triangulating the top half of each dyadic Carleson square gives a triangulation of the
upper half-plane. The vertices can be mapped based on the boundary map, and the resulting image
triangulation gives a piecewise linear quasiconformal map with the given boundary values (at least
near the boundary where the quasisymmetric constant is small).

We want to show the quasiconformal distortion p of these affine maps is bounded in
terms of the quasisymmetric distortion of the boundary map ¢. See Figure 4.

Let D be a dyadic decomposition of T, I € D a dyadic interval, and J the adjacent
dyadic interval of the same length counterclockwise from /. From elementary geometry,
it is easy to see that the dilations of the three affine maps corresponding to the dyadic
interval / are bounded by a constant times the maximum of the terms gqs(¢, K) where K
is ranges over I, J and / U J. By assumption, / and J come from the same dyadic
decomposition D of T. If I U J were also an interval from this decomposition, then
the || would be bounded in terms of three terms for the form gqs(¢, K) summed over this
decomposition, and we would be done: the integral of |11|? with respect to hyperbolic area
could be bounded by O(>_ gs(¢, K)?).

In general, however, I U J need not be an interval from D, the dyadic decomposition
containing / and J (i.e., I and J are adjacent, but do not have a common parent). How-
ever, by considering all translates of dyadic intervals by £1/3, we get a multi-resolution
family 7~ (recall the “3-trick™), so there is element of this family K that contains I U J
and has comparable size. We claim gqs(¢, I U J) can be bounded using a sum over inter-
valsin 7.
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Figure 4. Here I’ = ¢(I), and similarly for the other intervals. If K = I U J is a dyadic interval,
then p can be bounded directly in terms of qs(¢, 1), qs(¢, J), qs(e(I U J)). In general, I U J is
not in the same dyadic family as / and J, so we have to estimate the last term using a sum over the
multi-resolution family obtained by the *“z-trick”.

Lemma 7.1. Suppose ¢:[0, 1] — [0, 1] is an increasing homeomorphism and 0 < x < 1.
Then

X — ()| <> as(@. 1) o)
n=0

where I, is the dyadic interval of length 27" containing x. If x is the endpoint of a dyadic
interval I, we need only sum over intervals strictly larger than I .

Proof. This is obvious if x € {0, 1}, since these points map to themselves. The lemma is
also clear for x = 1/2, and we only need to take the n = 0 term of the sum. In general,
assume the inequality holds for both endpoints of a dyadic interval Iy of length 2=,
where the bounding sum is only over larger dyadic intervals Iy D I5 ... containing /.
If y is the midpoint of / and z is the midpoint of ¢(7), then by definition,

lo(y) —z| = gs(e. 1) lp(D)].
Moreover, by the induction hypothesis, the endpoints of ¢ (/) are within

N—-1
> " as(@. 1n) o).
n=0

of the endpoints of /. Thus z is within the same distance of y. Thus,

N
o) =yl < le() =zl + 12 =y < Y as(o. In) o).

n=0

This proves the lemma for dyadic rationals. The general case follows since ¢ is continu-
ous. ]

This lemma implies that qs(¢, I U J)£(I U J) can be bounded in terms of a sum of
the form ) kee) 48(¢, K)|K|, where €(I) is the collection of intervals from the multi-
resolution family 7~ that contain an endpoint of / or J and have length < |/ U J|. Since
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¢: T — T is quasisymmetric, it is also Holder continuous, so there isa 0 < A < 1 so
that every dyadic interval / of length 27" maps to an interval of length at most A”. The
collection €(/) has only a bounded number of intervals of each length 27"|7|, and the
image lengths also decay geometrically, so

> oK) S le)].

Kee(I)

Thus, by Cauchy-Schwarz, the sum of the dilatations over all triangles in our infinite
triangulation of the disk is bounded by

0 (K)| 0(K)|
2< 2
LIP3 (2 ek <1)|) 2 2wl K7

IeD Ke€() IeD Ke€e()
le(K)|
=Y as(p. K> P Zq (¢. K)2.
KeT IeD,Ke€(1) ¢

The last inequality holds because for a fixed K the sum over I decays geometrically (there
are a bounded number of /’s in each generation associated to K, and their image lengths
increase geometrically with the generation). Thus the dilatations are square summable
over the set of triangles. Since each triangle has uniformly bounded hyperbolic area, we
see that (6) implies (1) in Theorem 1.8.

8. Theorem 1.8: (4) = (3)

Now we show that if f’/|f’| € H'/2, then log f’ is in the Dirichlet class. First, some
notation. For a point z € D, |z] > 1/2,let I, C T be the arc centered at z/|z| with length
2(1 —|z|). For M > 0, M - I denotes the concentric arc with length M |1 .

Letu(z) =exp(iarg f'(z)) and let g = u|t denote its boundary values. The function u
is a mapping of the unit disk into the unit circle. Let v(z) be the harmonic function on D
with the same boundary values, i.e., v is the Poisson extension of g. Then v maps D into
itself, and we claim this map is proper, i.e., if {z,} C D and |z, | /' 1, then |v(z,)| /1. To
prove this, note that by the John—Nirenberg theorem (see, e.g., Theorem VI.3.1 of [26]),
if g € H'/2 ¢ VMO, then for any M < 0o and §, & > 0 we have

Kx e MI;:|g(x)—v(z)| > 8} <e|l|

for all sufficiently short arcs / C T. Since g(x) only takes values in the unit circle, this
implies |v(z)| > 1 — § if |z| is close enough to 1. In particular, there is an annulus A, =
{r <|z| < 1} where |v(z)| > 3/4.

Next we claim that |u(z) — v(z)| < 1/4 for z close enough to T. Since g(x) is close
to constant on most of M [,, the image of M I, under f is a sub-arc y of I' = f(T), and
on this sub-arc the tangent directions are close to the constant value t = izg(z)/|zg(z)|
except on a small fraction of its length. Here we are using the fact that for chord-arc curves,
harmonic measure and length are A°°-equivalent, e.g., small harmonic measure implies
small length in a quantitative way. See Section VIL.4 of [27]. This implies y is o(diam(y))
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close to a line segment in direction 7 in the Hausdorff metric. Since I is chord-arc and
diam(y) > dist(f(z), ") if M is large, this implies

dist(f(z), T\ y) 2 diam(y) > dist(f(z), ).

Thus near z, f approximates a linear map and u(z) is as close to g(z) as we wish, if z is
close enough to T. Hence |u — v| < 1/4 on A, if r is close enough to 1.

We have now shown that v maps A, = {r < |z| < 1} into A3/4 = {3/4 < |z| < 1},
and that |[v — u| = |v —exp(i arg f’)| < 1/4 on A,. In particular, since |u| = 1, the argu-
ments of v(z) and u(z) differ by less than sin"!(1/4) < /4 on A,. Define a function
V(z) = logv(z) on A, by choosing the branch of the logarithm satisfying [Im(V(z)) —
arg f'(z)| < m/4. Then V is continuous since arg f’ is continuous, and V maps A, into
the vertical strip {x + iy : log% < x < 0}.

The map V has a radial limit wherever v does, and this limit L satisfies exp(iL) =
g(x). Since |L —arg f'(x)| < 1/4, we deduce that L = arg f'(x). Since v has radial
limits almost everywhere, so does V. Moreover, the gradient of V' at z is comparable to
the gradient of v at z (locally, V' is the composition of v with a branch of the logarithm,
and the latter map has derivative close to 1 in the annulus). Thus

/ |VV|*dxdy 5/ |Vv|? dxdy < oo
A, D

since v is in the Dirichlet class (recall that the boundary values of v equal g = exp(i arg f”)
€ H'2(T) by assumption). By smoothing off V along the inner boundary of A, we can
create a smooth function ¥ on I that has bounded Dirichlet integral and boundary values
arg f' almost everywhere. This proves arg f’ € H'/2 by the Sobolev trace theorem. (One
can also use Dirichlet’s principle that the existence of such a V implies the harmonic
extension of arg f’ also has finite Dirichlet integral; everything can be justified in an
elementary manner by replacing f(z) by f(rz), 0 < r < 1 and taking limits as r " 1.)
This completes the proof of (4) = (3).

Figure 5. The snowflake (and an enlargement) stopped on certain horizontal segments. Here,
exp(iarg /') = l ae., butarg f' & H'/2.

We note that the chord-arc assumption in Theorem 1.1 is necessary; assuming I" is a
quasicircle is not enough. Suppose I" is given by the usual construction of the von Koch
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snowflake, but stopping on every segment that is horizontal and points to the right (in the
usual counterclockwise orientation of the curve). See Figure 5. In the limiting curve, these
horizontal segments have full harmonic measure, so if f is a conformal map from H?2,
then arg f” is a multiple of 27 on each, so exp(i arg /') = 1 almost everywhere. However,
it is easy to check I' has infinite length, so it is not Weil-Petersson.

9. Theorem 1.8: (1) = (2)

This is the implication that having dilatation in L2 (for the hyperbolic area) implies the
Schwarzian derivative is in a certain weighted L? space. As noted in the introduction,
this part of Theorem 1.8 is known; we merely sketch the proof in [6] for completeness.
Assume I' = f(T), where f is quasiconformal on the plane, conformal on D* and has
dilatation p supported in D. In [6], Astala and Zinsmeister use the identity

[/ fo@dxdy = = tim w*S(f)w),
D 6 w—oo

a change of variables, and the Cauchy—Schwarz inequality to deduce

S 2 2_1 2 < _ —4 2d d )
ISP (2 - 1) N//Dhu 2 [u(w)]? dudv

Integrating this with respect z, and reversing the order of integration gives

// ISP (1 = 2P dxdy < f/ @) (1 = [w]P)~ dudov.
D D

10. Theorem 1.8: (2) = (3)

In this final section, we show that if the Schwarzian derivative is in the weighted L? space
given by (1.5), then log f” is in the Dirichlet space. This implication is already known, but
we give an alternative proof using ideas from [13]. The following is Lemma 3.4 of [13].

Lemma 10.1. Givene > 0, n € N, there are C = C(g) > 0 and § = 8(e,n) > 0 so that
the following holds. Suppose Q is a Carleson square and |S(f)(z)| < 8(1 — |z|?)72,
for all z € T(Q). Then there is a hyperbolic geodesic y so that every z € Q with 1 —
2| 2 27"€(Q) and |(log f'(2))'| = f"20/f"(2)| = ¢/ (1 — |z|?) satisfies dy(z,y) < C.
Moreover, for every n > 0 there is a § > 0 so that if yg is a sub-arc of y connecting zgy €
T(Q)tozy € QN{z:1—|z| =27"L(Q)}, then | f'(z1)| = 22"~ f'(z0)|. (In other
words, f' grows almost as fast as (1 — |z|)~2 along y).

First we use this lemma to show that if I" is a quasicircle for which (1.5) holds, then
we must have

(10.1) " @)/ f @) <&/ —z]?)

for z € Q, when Q is small enough. Note that if (1.5) holds, then we have, as |z| ' 1,
IS(f)(2)|(1 — |z]?)?> — 0 (we can apply the mean value theorem to S(f)). Hence for
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any § > 0, the hypothesis of Lemma 10.1 holds for all sufficiently small Carleson squares.
Suppose zy and z; are as in the lemma. The Koebe %-theorem implies that there is an
arc J C T containing the base I of Q and whose image has chord length comparable to
| £/ (z0)|(1 — |zo|) (choose one endpoint of J from each component of 37 \ I). Similarly,
there is a subarc y; C yo with chord length (and hence diameter) comparable to

(1—n)
FEl =l = 1 el () A= D

20 _
=1l =1z (=) = Gl = o) 27072
If n < 1/2, then this tends to infinity with n, and this implies that T" is not a quasicircle,
contrary to assumption. Therefore, if Q is small enough, (10.1) holds. Given this, we can
now follow the proof of Lemma 1 in the paper of Astala and Zinsmeister [6]. First we
recall another standard estimate. Set F = log f”.

Lemma 10.2. If F is holomorphic on D, then ff]D |F'(z)|? dxdy < oo if and only if

. MEN2 (1 — 121232
I = //D|F @))" (1 =|z|")*dxdy < oo.

Proof. Assume F has the power series expansion F(z) = Y 2 b,z". Then a simple
computation in polar coordinates leads to

o} 1 00
// |F'(z)|?>dxdy = 27 Zn2|bn|2/ P2 tdr = " (n) |bal?.
D n=1 0 n=1

and hence
1= [ 1P @R Q- R ardy
=2n Zn (n —1)2|b, |2/ P2t =2 4+ Yy rdr
n=1
1 2 1
-9 200 — D2 1b, 12 _~ )
”2_:" (n = 1)%15n| (2n—2 TRETES)
> n(n
- 2
—g n+1 o) anb >
Thus both infinite series (and hence both integrals) diverge or converge together. ]

Next we must show [ is finite. Using (1.3) and (1.4), we see that

1"(2)
1)

F') = SN — 5 (1520) = sthHie) - 5 (Fe),
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and hence

I = /[ F" ()P (1 = 2P dxdy
D
= [[ sthera-ErRdxay + 5 [ 1P 0 - P dvay
+ // SCO@PIF @R - |22 dxdy
D

1
=L+~ 1L+ 15
4
Note that since |xy| < (x2 + y2)/2, we get

1 1
IS(HOIF () < 3 le F'(2)* + 3 IS(H @I
and hence I3 < %I 1+ %12. Therefore

(10.2) I < ) I + > I

. =;ht gl
Now we use our assumption that | F’(z)| (1 — |z|?) < & is small on the annulus 4 = {z :
r < |z| < 1}. This implies

I, = / |F'(2)[* (1 = |z*)? dxdy < 82/ |F'(z)|?dxdy < e?MI.
A A

If € is small enough, then I, < I, and then (10.2) becomes I < %11 + %I, which implies
I <61, < oo. This proves F = log f” is in the Dirichlet class.
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