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Abstract—Different mechanisms are used for the discovery of 
materials. These include creating a material by trial-and-error 
process without knowing its properties. Other methods are based 
on computational simulations or mathematical and statistical 
approaches, such as Density Functional Theory (DFT). A well-
known strategy combines elements to predict their properties and 
selects a set of those with the properties of interest. Carrying out 
exhaustive calculations to predict the properties of these found 
compounds may require a high computational cost. Therefore, 
there is a need to create methods for identifying materials with a 
desired set of properties while reducing the search space and, 
consequently, the computational cost. In this work, we present a 
genetic algorithm that can find a higher percentage of compounds 
with specific properties than state-of-the-art methods, such as 
those based on combinatorial screening. Both methods are 
compared in the search for ternary compounds in an 
unconstrained space, using a Deep Neural Network (DNN) to 
predict properties such as formation enthalpy, band gap, and 
stability; we will focus on formation enthalpy. As a result, we 
provide a genetic algorithm capable of finding up to 60% more 
compounds with atypical values of properties, using DNNs for 
their prediction. 

Keywords— genetic algorithm, deep learning, materials 
discovery, materials properties, combinatorial screening 

 

I. INTRODUCTION 
The discovery of materials is an essential task in the world 

of science since it allows for creating technological elements 
that are more efficient, resistant, economical, and 
environmentally friendly. Different mechanisms have been 
developed to discover materials based on various methods, 
including mathematical, statistical, and, more recently, Deep 
Learning (DL). Among the mathematical and statistical methods 
is the Density Functional Theory (DFT), which is mainly based 
on the two theorems by Hohenberg and Kohn [1] [2]. The first 
theorem states that the ground-state electron density determines 
the electronic wave function and, consequently, all ground-state 
properties of an electronic system. The second theorem states 
that the energy of an electron distribution can be described as a 
functional of the electron density, which is a minimum for the 
ground-state density [3]. 

Calculations through DFT have great utility in multiple areas 
of science [4]. DFT calculations for multiple compounds, are 
used to create  databases such as The Open Quantum Materials 
OQMD is a collection of consistently calculated DFT total 
energies and relaxed crystal structures [5] [6]. In addition, it 
provides the calculation for the DFT thermodynamic and 
structural properties of 1,022,603 materials, and this total keeps 
increasing. 

A. DNNs methods 
Machine Learning (ML) and Deep Neural Networks (DNN) 

models have been used for different tasks [7] by using available 
information to predict a behavior or make decisions.  DNNs 
perform better than traditional ML methods in some 
applications, such as predicting properties in chemical 
compounds. In [8], the authors compare methods such as 
random forest and a DNN showing that DNN methods lower 
Mean Absolute Error (MAE). Also, the authors compare 
different amounts of data, finding that for a small number of 
data, the ML methods obtain a better performance than the 
DNN. 

In our preliminary work, a deep neural network based on a  
ElemNet [8] model was implemented to predict material 
properties using only the elemental composition. The model was 
trained with the OQMD dataset to predict formation enthalpy. 
Its performance was compared with conventional ML 
approaches. The results showed that a better performance in 
terms of speed and accuracy was obtained by using the DNN 
model. 

The deep regression network with individual residual 
learning (IRNet) [9] is another model that has been used for 
material discovery. This model has been trained and evaluated  
with  the OQMD and Materials Project (MP) data. The model 
was trained to predict formation enthalpy, bandgap, energy, and 
volume properties. The results show an improvement of the 
performance when compared to traditional ML techniques such 
as Random Forest, Kernel Ridge Regression, Lasso, and 
Support Vector Machine. A comparison between a plain 
network and a stacked residual network (SRNet) with shortcut 
connections was also performed after a stack of multiple layers 
[9].  

DNN models with different architectures have recently been 
published [10, 11]. Further work [12], includes variations of the 
aforementioned models to improve the accuracy on predicting 
the formation enthalpy. The main characteristic of these 
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networks is that they have residual jumps between the layers, 
allowing the increase of parameters without having the well-
known gradient problem of the DNNs [13]. Nevertheless, DNN 
models are expected to be less accurate than the experimental 
calculations made, or by using the  DFT [14]. Thus, the method 
to achieve such task can be selected on the required confidence 
level. 

B. Material discovery 
Currently, there are several challenges to achieve a 

systematic method for the discovery of materials. Such as 
computational limitations and the specific knowledge that some 
methods require [15]. For example, in the case of ternary or 
higher-order compounds, making combinations of elements to 
find some that have specific properties is an intractable task [14]. 
Therefore, using mathematical methods such as DFT to perform 
a combinatorial screening remains  [15]. Machine Learning 
(ML) and DL methods provide an alternative to scan millions of 
compounds and ranking them in term of the predicted property 
[15] [16]. In this context DNNs methods are capable of 
predicting properties with a small error compared to ML 
methods [8]. More recent work consists of implementing 
methods that vary the number of elements and restricting the 
number of atoms. Subsequently, they predict the properties for 
stable compounds with a Convex Hull [8]. Performing a 
combinatorial screening using 86 elements and some restrictions 
leads to the  prediction of  around 450M compounds (binary, 
ternary and quaternary). 

Recently, another screening method has been implemented, 
changing how elements are combined [16]. For example, 
authors in [16] propose a greedy screening, which initially 
selects a material, selects the constituent elements of an 
identified material, and performs all possible combinations of 
these elements. This method uses databases to select initial 
materials and materials with combinations of the elements of 
interest. Despite its innovation in the greedy algorithm, 
searching databases can cause limitations. 

C. Genetic Algorithm (GA) 
Material discovery can be described as a combinatorial 

optimization problem. A combination of elements results in a 
compound that may or may not have a target property [17]. The 
number of elements defines the space dimensionality, for 
example in [16], the combinatorial problem is seen as an n-
dimensional knapsack problem. To solve this type of problem 
evolutionary algorithms are a good alternative [18]. 
 

Genetic algorithms (GA) are a type of evolutionary 
algorithms that were introduced several decades ago primarily 
as a stochastic method for solving combinatorial and 
optimization problems.  GAs have been used for polymer 
design [21], vehicle routing problems [22], designing mixed 
refrigerant cryogenic processes [23], and more applications in 
the field of materials science and engineering. 
GAs start from an initial population, in which crossover and 
mutation operations are subsequently performed. For the 
discovery of materials, these operations generate a new evolved 

population with the potential of containing the target material 
properties [20] [19].   

II. METHODS 
The materials studied in [8] are binary (AwBx), ternary 

(AwBxCy), and quaternary (AwBxCyDz) compounds. All the 
possible combinations of compounds were considered under the 
following restrictions: A, B, C, and D represent one out of the 86 
possible elements in OQMD, where the order of elements varies 
based on the electronegativity (Equation 1); w, x, y, and z are 
positive integers representing the amount of the corresponding 
element in the composition, and satisfy Equation 2. Here, we 
only consider the ternary compounds; Equation 3 shows the total 
of possible combinations. 

 
𝐴𝐵𝐶 ⟹ (

86

3
) = 1,022,34 (1) 

 |{𝑤 +  𝑥 +  𝑦 ≤  10 | 𝑤, 𝑥, 𝑦 ∈  N}|  =  109 (2) 

 AwBxCy ⇒ 1,022,340 × 109 = 11,155,060 (3) 
 

A. DNNs to predict formation enthalpy  
The IRNET-CV architecture has been reported as a model 

to  predict material properties such as stability and bandgap 
[12]. In this work a IRNET-CV of 17 was used to predict the 
formation enthalpy property (Figure 1). The model receives a 
list of 86 elements as an input, where each position of the list 
represents an element of the periodic table. Each element is 
described by the element’s percentage of atoms in the 

compound. 
 

 
Fig. 1. IRNET Architecture: The orange rectangles represent fully connected 
layers (FC) with a batch normalization and a Relu activation function. The blue 
rectangle represents a FC layer with a linear activation function. The numbers 
in the bottom are the number of units of each layer. 
 

The model was trained with data from the OQMD. For the 
training and testing phases 307,305 and 34,145 compounds 
were used respectively.  This resulted in a MAE of 0.035 
similarly to the FCUnet, and FCMnR architectures reported in 
the literature [12]. One  of the advantages of DNN models is 
that a trained architecture allows to load different weights 
(compound elements distribution) to predict different 
properties. 

B. Genetic Algorithm 
To address the problem of finding materials with specific 

properties, we build a GA using five functions as follow: 
Initialize population, evaluate fitness, Selection, Crossover, and 
New population (reproduction) as described in Figure 2. 

1) Initialize population: This function randomly generates 
N compounds each of three elements without repetitions, with 
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a random proportion of atoms (to satify equation 2). The 
compount are generated with the following  elements (the same 
set of elementos used in DNNs training) :H, Li, Be, B, C, N, O, 
F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, 
Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, 
Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, 
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, 
Ir, Pt, Au, Hg, Tl, Pb, Bi, Ac, Th, Pa, U, Np, Pu. The N 
compounds are returned in a N x 86 matrix. 
 

2) Evaluate fitness: This function will be executed in each 
generation. The model and  the compound properties are  
evaluated. We make use of the IRNET trained model to predict 
the formation for the  N compounds. The output of this function 
is an array of dimensions (N,n_properties); in our case (N,1). 
 

3) Selection: This function receives the predictions of the 
compounds and a range of values to evaluate the property. For 
our case, the minimum and maximum value of formation 
enthalpy  was used. This function can be modified to predict 
only stable compounds or those with other specific properties. 
The returned elements are stored as possible desired 
compounds and are part of the final output of the algorithm. 

 
Fig. 2. Diagram of the Genetic Algorithm proposed for the discovery of 
candidate materials. 

4) Crossover: Up to this point, the algorithm remains a 
combinatorial screening. After executing this and the  following 
functions, the GA  evolves the search after executing multiple 
generations. 
 

In the crossover function, two compounds are received, and 
their elements are combined to create new child compounds, 
while maintaining the same proportion of atoms. In the case of 
ternary compounds, we replace the first parent’s element with 

the second parent’s first element, resulting in a new compound. 

Then the second element of the first compound is exchanged 
for the second element of the second compound. Finally, the 
same process is repeated with the third element. Subsequently, 
the same procedure uses the second parent as a base compound. 
Figure 3 shows a particular case of two randomly generated 
compounds. Their vector representation is shown for each one, 
having the proportion of atoms in the position of each element. 
Figure 4 shows the resulting compounds after the crossover 
operations described above, with a total of 6 Child compounds. 
 

5) Reproduce population: This function ranks the 
compounds with properties equal to or close to the target. Those 
compounds with properties outside the range are also randomly 
selected. Next, the top and random compounds are selected as 
parents to enhance a crossover of all these. After obtaining all 
the children of the compounds, we eliminate repetitions and 
finally evalute the new generation. Once this new generation of 
compounds is created,  the steps of evaluating the population’s 

fitness, selection, and reproduction are repeated. The number of 
times this process is performed corresponds to the number of 
generations. 
 

The GA is created parametrically, thus that performing 
experiments by varying the compounds properties becomes less 
complex. The main variables of the algorithm are min property, 
max property, model, random parents, top parents, generations, 
and the number of the initial population. In the next section, we 
will show different experiments that include the variation of 
these parameters. 
 

 
Fig. 3. Example of parents to be used in the Crossover function. 
 

 
Fig. 4. Resulting children generated by the Crossover function 
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III. RESULTS 
Initially, we perform an exhaustive combinatorial screening, 

testing all possible combinations of ternary compounds with the 
abovementioned restrictions. The prediction of the formation 
enthalpy was performed for 11,155,060 ternary generated 
compounds. The predicted average value of this property was 
−0.043 with a standard deviation of 0.717 (see Figure 5). 

A first experiment, consisted of searching for compounds 
with different values of formation enthalpy, ranging from 
medium values such as −0.05 and 0.05 to less common values 
such as −1.25 and −1.20. As we see in Figure 6, the selection 
percentage per generation increases after the first generation. 
Although the selection for the last generations is between 15% 
and 20%, some compounds may be present in more than one 
generation. Therefore, in the following experiments, we focus 
on the percentage of finds instead of selections. Figure 5 shows 
that the values from −1.25 to −1.20 are more challenging to find.  

 

 
Fig. 5. Formation enthalpy of ternary compounds predicted by IRNet. 

 

 
Fig. 6. Selection percentage for each generation and each range of desired 
formation enthalpy. GAs use 1M compounds as the initial population, 500 top 
parents, and five generations. 

Another experiment consisted of generations (GA)using 
unique compounds. The percentage of finds for each range was 
compared to the results obtained with the combinatorial 
screening method (generation 0). As shown in Figure 7 the GA 

can find 60% more unique compounds than the combinatorial 
screening for those property values far from the mean value.  

Another experiment consisted of varying the number of 
generations.  For this, we used an initial population of 1.5M.  
Figure 8 shows a comparison of the percentage of selections and 
the finds per generation. It is observed that around the 3rd 
generation, the percentage of finds starts to decrease. 

 
 
Fig. 7. Percentage of the difference between GA and combinatorial screening 
for each range of formation enthalpy. GA uses 1M compounds as the initial 
population, 500 top parents, and five generations. 

 
 
Fig. 8. Selection percentage and finding percentage using different numbers of 
generations, GA using 1.5M compounds as the initial population and 500 top 
parents. 

These experiments were performed with 500 top parents. In 
other words, the new generations were created after a crossover 
of these 500 compounds for the formation enthalpy.  

Figure 9 shows the percentage of finds of the GA after varying 
the number of top parents for an initial population of 1M 
compounds. It should be noted that if the number of parents is 
greater than the number of selected compounds (in the property 
range), then the crossover is performed for the last number of 
compounds. If the initial population decreases, fewer possible 
parents are found, and the performance is therefore changed. 
Finally, we find that for several cases, increasing the number of 
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random parents (without satisfying the property in the range) 
decreases the percentage of finds; this can be seen on Figures 
10 and 11. 

 
 
Fig. 9. Finds percentage using different amounts of top parents, GA using 1M 
compounds as the initial population and five generations. 

 
 
Fig. 10. Finds percentage using different amount of top and random parents. 
GA using 100K compounds as initial population and 5 generations. 

 
 

Fig. 11. Finds percentage using different amount of top and random parents. 
GA uses 1M compounds for the initial population and 5 generations. 

Figure 10 shows an apparent improvement in the percentage 
of finds when using up to ten random parents and 490 top 
parents; however, after ten random parents the find percentage 
starts to decrease. Similarly, as the initial population is increased 
to 1M, there is a decrease in the number of finds, as shown in 
Figure 11. 

IV. CONCLUSIONS AND FUTURE WORK 
After the different experiments with the GA, we found a 

higher percentage of finds in the combinatorial screening 
method, for compounds that are randomly generated. After 
experimenting with different search ranges of the formation 
enthalpy property, we determined that the GA is more effective 
in finding compounds. However, we note that the crossover 
process between compounds with the same properties will likely 
generate more compounds with similar properties values. Even 
though there were repetitions between generations, the single 
population is still greater than that found by the combinatorial 
screening. Additionally, including random compounds with 
properties outside the desired range does not significantly 
impact the number of finds. 

Although the GA requires a smaller number of compounds 
to be analyzed there is more complexity in performing the 
crossover and reproduction when compared to the combinatorial 
screening method. However, if a complex method such as the 
DFT is used to predict the properties, it is expected that the GA 
will perform faster. 

    The focus of these experiments was on the number of 
compounds that can be found for specific properties. In future 
work, an analysis of time and computational complexity will be 
performed.  
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