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Abstract—Different mechanisms are used for the discovery of
materials. These include creating a material by trial-and-error
process without knowing its properties. Other methods are based
on computational simulations or mathematical and statistical
approaches, such as Density Functional Theory (DFT). A well-
known strategy combines elements to predict their properties and
selects a set of those with the properties of interest. Carrying out
exhaustive calculations to predict the properties of these found
compounds may require a high computational cost. Therefore,
there is a need to create methods for identifying materials with a
desired set of properties while reducing the search space and,
consequently, the computational cost. In this work, we present a
genetic algorithm that can find a higher percentage of compounds
with specific properties than state-of-the-art methods, such as
those based on combinatorial screening. Both methods are
compared in the search for ternary compounds in an
unconstrained space, using a Deep Neural Network (DNN) to
predict properties such as formation enthalpy, band gap, and
stability; we will focus on formation enthalpy. As a result, we
provide a genetic algorithm capable of finding up to 60% more
compounds with atypical values of properties, using DNNs for
their prediction.

Keywords— genetic algorithm, deep learning, materials
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I. INTRODUCTION

The discovery of materials is an essential task in the world
of science since it allows for creating technological elements
that are more efficient, resistant, economical, and
environmentally friendly. Different mechanisms have been
developed to discover materials based on various methods,
including mathematical, statistical, and, more recently, Deep
Learning (DL). Among the mathematical and statistical methods
is the Density Functional Theory (DFT), which is mainly based
on the two theorems by Hohenberg and Kohn [1] [2]. The first
theorem states that the ground-state electron density determines
the electronic wave function and, consequently, all ground-state
properties of an electronic system. The second theorem states
that the energy of an electron distribution can be described as a
functional of the electron density, which is a minimum for the
ground-state density [3].
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Calculations through DFT have great utility in multiple areas
of science [4]. DFT calculations for multiple compounds, are
used to create databases such as The Open Quantum Materials
OQMD is a collection of consistently calculated DFT total
energies and relaxed crystal structures [5] [6]. In addition, it
provides the calculation for the DFT thermodynamic and
structural properties of 1,022,603 materials, and this total keeps
increasing.

A. DNNs methods

Machine Learning (ML) and Deep Neural Networks (DNN)
models have been used for different tasks [7] by using available
information to predict a behavior or make decisions. DNNs
perform better than traditional ML methods in some
applications, such as predicting properties in chemical
compounds. In [8], the authors compare methods such as
random forest and a DNN showing that DNN methods lower
Mean Absolute Error (MAE). Also, the authors compare
different amounts of data, finding that for a small number of
data, the ML methods obtain a better performance than the
DNN.

In our preliminary work, a deep neural network based on a
ElemNet [8] model was implemented to predict material
properties using only the elemental composition. The model was
trained with the OQMD dataset to predict formation enthalpy.
Its performance was compared with conventional ML
approaches. The results showed that a better performance in
terms of speed and accuracy was obtained by using the DNN
model.

The deep regression network with individual residual
learning (IRNet) [9] is another model that has been used for
material discovery. This model has been trained and evaluated
with the OQMD and Materials Project (MP) data. The model
was trained to predict formation enthalpy, bandgap, energy, and
volume properties. The results show an improvement of the
performance when compared to traditional ML techniques such
as Random Forest, Kernel Ridge Regression, Lasso, and
Support Vector Machine. A comparison between a plain
network and a stacked residual network (SRNet) with shortcut
connections was also performed after a stack of multiple layers

[9].

DNN models with different architectures have recently been
published [10, 11]. Further work [12], includes variations of the
aforementioned models to improve the accuracy on predicting
the formation enthalpy. The main characteristic of these
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networks is that they have residual jumps between the layers,
allowing the increase of parameters without having the well-
known gradient problem of the DNNs [13]. Nevertheless, DNN
models are expected to be less accurate than the experimental
calculations made, or by using the DFT [14]. Thus, the method
to achieve such task can be selected on the required confidence
level.

B. Material discovery

Currently, there are several challenges to achieve a
systematic method for the discovery of materials. Such as
computational limitations and the specific knowledge that some
methods require [15]. For example, in the case of ternary or
higher-order compounds, making combinations of elements to
find some that have specific properties is an intractable task [14].
Therefore, using mathematical methods such as DFT to perform
a combinatorial screening remains [15]. Machine Learning
(ML) and DL methods provide an alternative to scan millions of
compounds and ranking them in term of the predicted property
[15] [16]. In this context DNNs methods are capable of
predicting properties with a small error compared to ML
methods [8]. More recent work consists of implementing
methods that vary the number of elements and restricting the
number of atoms. Subsequently, they predict the properties for
stable compounds with a Convex Hull [8]. Performing a
combinatorial screening using 86 elements and some restrictions
leads to the prediction of around 450M compounds (binary,
ternary and quaternary).

Recently, another screening method has been implemented,
changing how elements are combined [16]. For example,
authors in [16] propose a greedy screening, which initially
selects a material, selects the constituent elements of an
identified material, and performs all possible combinations of
these elements. This method uses databases to select initial
materials and materials with combinations of the elements of
interest. Despite its innovation in the greedy algorithm,
searching databases can cause limitations.

C. Genetic Algorithm (GA)

Material discovery can be described as a combinatorial
optimization problem. A combination of elements results in a
compound that may or may not have a target property [17]. The
number of elements defines the space dimensionality, for
example in [16], the combinatorial problem is seen as an n-
dimensional knapsack problem. To solve this type of problem
evolutionary algorithms are a good alternative [18].

Genetic algorithms (GA) are a type of evolutionary
algorithms that were introduced several decades ago primarily
as a stochastic method for solving combinatorial and
optimization problems. GAs have been used for polymer
design [21], vehicle routing problems [22], designing mixed
refrigerant cryogenic processes [23], and more applications in
the field of materials science and engineering.

GAs start from an initial population, in which crossover and
mutation operations are subsequently performed. For the
discovery of materials, these operations generate a new evolved

population with the potential of containing the target material
properties [20] [19].

II. METHODS

The materials studied in [8] are binary (4.,Bx), ternary
(44B:Cy), and quaternary (A4.B.C,D:) compounds. All the
possible combinations of compounds were considered under the
following restrictions: 4, B, C, and D represent one out of the 86
possible elements in OQMD, where the order of elements varies
based on the electronegativity (Equation 1); w, x, ¥, and z are
positive integers representing the amount of the corresponding
element in the composition, and satisfy Equation 2. Here, we
only consider the ternary compounds; Equation 3 shows the total
of possible combinations.

86 )
ABC = ( A ) = 1,022,34
fw+ x +y <10|w,x,y € N} = 109 (2)

AwB:C, = 1,022,340 x 109 = 11,155,060 3)

A. DNNs to predict formation enthalpy

The IRNET-CV architecture has been reported as a model
to predict material properties such as stability and bandgap
[12]. In this work a IRNET-CV of 17 was used to predict the
formation enthalpy property (Figure 1). The model receives a
list of 86 elements as an input, where each position of the list
represents an element of the periodic table. Each element is
described by the element’s percentage of atoms in the
compound.

Input
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Fig. 1. IRNET Architecture: The orange rectangles represent fully connected
layers (FC) with a batch normalization and a Relu activation function. The blue
rectangle represents a FC layer with a linear activation function. The numbers
in the bottom are the number of units of each layer.

The model was trained with data from the OQMD. For the
training and testing phases 307,305 and 34,145 compounds
were used respectively. This resulted in a MAE of 0.035
similarly to the FCUnet, and FCMnR architectures reported in
the literature [12]. One of the advantages of DNN models is
that a trained architecture allows to load different weights
(compound elements distribution) to predict different
properties.

B. Genetic Algorithm

To address the problem of finding materials with specific
properties, we build a GA using five functions as follow:
Initialize population, evaluate fitness, Selection, Crossover, and
New population (reproduction) as described in Figure 2.

1) Initialize population: This function randomly generates
N compounds each of three elements without repetitions, with
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a random proportion of atoms (to satify equation 2). The
compount are generated with the following elements (the same
set of elementos used in DNNs training) :H, Li, Be, B, C, N, O,
F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru,
Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os,
Ir, Pt, Au, Hg, Tl, Pb, Bi, Ac, Th, Pa, U, Np, Pu. The N
compounds are returned in a N x 86 matrix.

2) Evaluate fitness: This function will be executed in each
generation. The model and the compound properties are
evaluated. We make use of the IRNET trained model to predict
the formation for the N compounds. The output of this function
is an array of dimensions (N,n_properties); in our case (N, 1).

3) Selection: This function receives the predictions of the
compounds and a range of values to evaluate the property. For
our case, the minimum and maximum value of formation
enthalpy was used. This function can be modified to predict
only stable compounds or those with other specific properties.
The returned elements are stored as possible desired
compounds and are part of the final output of the algorithm.
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Fig. 2. Diagram of the Genetic Algorithm proposed for the discovery of
candidate materials.

4) Crossover: Up to this point, the algorithm remains a
combinatorial screening. After executing this and the following
functions, the GA evolves the search after executing multiple
generations.

In the crossover function, two compounds are received, and
their elements are combined to create new child compounds,
while maintaining the same proportion of atoms. In the case of
ternary compounds, we replace the first parent’s element with
the second parent’s first element, resulting in a new compound.
Then the second element of the first compound is exchanged
for the second element of the second compound. Finally, the
same process is repeated with the third element. Subsequently,
the same procedure uses the second parent as a base compound.
Figure 3 shows a particular case of two randomly generated
compounds. Their vector representation is shown for each one,
having the proportion of atoms in the position of each element.
Figure 4 shows the resulting compounds after the crossover
operations described above, with a total of 6 Child compounds.

5) Reproduce population: This function ranks the
compounds with properties equal to or close to the target. Those
compounds with properties outside the range are also randomly
selected. Next, the top and random compounds are selected as
parents to enhance a crossover of all these. After obtaining all
the children of the compounds, we eliminate repetitions and
finally evalute the new generation. Once this new generation of
compounds is created, the steps of evaluating the population’s
fitness, selection, and reproduction are repeated. The number of
times this process is performed corresponds to the number of
generations.

The GA is created parametrically, thus that performing
experiments by varying the compounds properties becomes less
complex. The main variables of the algorithm are min property,
max property, model, random parents, top parents, generations,
and the number of the initial population. In the next section, we

will show different experiments that include the variation of
these parameters.
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Fig. 3. Example of parents to be used in the Crossover function.
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Fig. 4. Resulting children generated by the Crossover function
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III. RESULTS

Initially, we perform an exhaustive combinatorial screening,
testing all possible combinations of ternary compounds with the
abovementioned restrictions. The prediction of the formation
enthalpy was performed for 11,155,060 ternary generated
compounds. The predicted average value of this property was
—0.043 with a standard deviation of 0.717 (see Figure 5).

A first experiment, consisted of searching for compounds
with different values of formation enthalpy, ranging from
medium values such as —0.05 and 0.05 to less common values
such as —1.25 and —1.20. As we see in Figure 6, the selection
percentage per generation increases after the first generation.
Although the selection for the last generations is between 15%
and 20%, some compounds may be present in more than one
generation. Therefore, in the following experiments, we focus
on the percentage of finds instead of selections. Figure 5 shows
that the values from —1.25 to —1.20 are more challenging to find.
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Fig. 5. Formation enthalpy of ternary compounds predicted by IRNet.
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Fig. 6. Selection percentage for each generation and each range of desired
formation enthalpy. GAs use 1M compounds as the initial population, 500 top
parents, and five generations.

Another experiment consisted of generations (GA)using
unique compounds. The percentage of finds for each range was
compared to the results obtained with the combinatorial
screening method (generation 0). As shown in Figure 7 the GA

can find 60% more unique compounds than the combinatorial
screening for those property values far from the mean value.

Another experiment consisted of varying the number of
generations. For this, we used an initial population of 1.5M.
Figure 8 shows a comparison of the percentage of selections and
the finds per generation. It is observed that around the 3rd
generation, the percentage of finds starts to decrease.
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Fig. 7. Percentage of the difference between GA and combinatorial screening
for each range of formation enthalpy. GA uses 1M compounds as the initial
population, 500 top parents, and five generations.
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Fig. 8. Selection percentage and finding percentage using different numbers of
generations, GA using 1.5M compounds as the initial population and 500 top
parents.

These experiments were performed with 500 top parents. In
other words, the new generations were created after a crossover
of these 500 compounds for the formation enthalpy.

Figure 9 shows the percentage of finds of the GA after varying
the number of top parents for an initial population of 1M
compounds. It should be noted that if the number of parents is
greater than the number of selected compounds (in the property
range), then the crossover is performed for the last number of
compounds. If the initial population decreases, fewer possible
parents are found, and the performance is therefore changed.
Finally, we find that for several cases, increasing the number of
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random parents (without satisfying the property in the range)
decreases the percentage of finds; this can be seen on Figures
10 and 11.
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Fig. 9. Finds percentage using different amounts of top parents, GA using 1M
compounds as the initial population and five generations.
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Fig. 10. Finds percentage using different amount of top and random parents.
GA using 100K compounds as initial population and 5 generations.
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Fig. 11. Finds percentage using different amount of top and random parents.
GA uses 1M compounds for the initial population and 5 generations.

Figure 10 shows an apparent improvement in the percentage
of finds when using up to ten random parents and 490 top
parents; however, after ten random parents the find percentage
starts to decrease. Similarly, as the initial population is increased
to 1M, there is a decrease in the number of finds, as shown in
Figure 11.

IV. CONCLUSIONS AND FUTURE WORK

After the different experiments with the GA, we found a
higher percentage of finds in the combinatorial screening
method, for compounds that are randomly generated. After
experimenting with different search ranges of the formation
enthalpy property, we determined that the GA is more effective
in finding compounds. However, we note that the crossover
process between compounds with the same properties will likely
generate more compounds with similar properties values. Even
though there were repetitions between generations, the single
population is still greater than that found by the combinatorial
screening. Additionally, including random compounds with
properties outside the desired range does not significantly
impact the number of finds.

Although the GA requires a smaller number of compounds
to be analyzed there is more complexity in performing the
crossover and reproduction when compared to the combinatorial
screening method. However, if a complex method such as the
DFT is used to predict the properties, it is expected that the GA
will perform faster.

The focus of these experiments was on the number of
compounds that can be found for specific properties. In future
work, an analysis of time and computational complexity will be
performed.
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