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Abstract—We consider the effect of vacancies on the low-energy excitation spectrum of a quantum spin liquid
realized in the exactly solvable Yao–Lee model [H. Yao and D.-H. Lee, Phys. Rev. Lett. 107, 087205 (2011)].
Physically, vacancies can appear for different reasons (e.g., because of zero magnetic moments on the lattice,
or the presence of nonmagnetic impurities, or a random reduction of local bonds of magnetic moments with
the remaining lattice). It is shown numerically that the finite density of random vacancies in this model leads
to the accumulation of states near zero energy, which can be detected from the change of the behavior of heat
capacity at low temperatures. Moreover, it is shown that the low-energy modes are localized more strongly
than remaining eigenmodes. This effect is illustrated using the inverse participation ratio (IPR). In the case
of time reversal symmetry breaking (e.g., due to the presence of a magnetic field), a gap is opened in the fer-
mion spectrum of the model, and vacancy-induced localized states appear. The energies of these states
depend on the structure of the interactions responsible for the time inversion symmetry breaking.
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1. INTRODUCTION
Recent investigations have revealed that topology,

frustration, and disorder are the key factors for the
emergence of peculiar phases of matter in solid-state
systems with a strong spin–orbit interaction [2]. In
weakly correlated systems, the spin–orbit interaction
leads to the realization of topologically nontrivial
states, among which a topological insulator is one of
the most striking examples [3–5]. In strongly cor-
related systems (so-called Mott insulators), a quantum
spin liquid (QSL) can be realized.

Quantum spin liquids were predicted theoretically
by Anderson in 1973 [6]. A quantum spin liquid pos-
sesses peculiar properties. Magnetic moments (spins)
in QSLs are disordered, and all of them are entangled
with one another in the ground state. In other words,
the spin direction at a site depends on the spin direc-
tion at another site irrespective of the distance between
them. Moreover, magnetic excitations in QSLs carry a
spin of 1/2 (i.e., are fermions). Quantum entangle-
ment and the fractional nature of elementary exci-
tations impart interesting properties to QSLs. For this
reason, various models realizing QSLs attract consid-
erable attention and are actively investigated [6–12].
For example, the spin–orbit interaction and strong
correlations between electrons make it possible to real-
ize the Kitaev model on a hexagonal lattice [13]. This
model is of special importance as the first exactly solv-

able QSL model in two dimensions [13]. At present,
other models with exact solution, the ground state of
which is a QSL, are also known [1, 14–18].

A spin liquid is a very rare magnetic state of matter,
and not a single substance has been found, which can
be unambiguously treated as a QSL. Nevertheless,
many magnetic materials have been obtained in recent
years, which can apparently be adequately described
by QSL models. Such materials are actively investi-
gated experimentally [9, 11, 12]. In some of such mate-
rials (mainly in compounds of transition metals with a
strong spin–orbit interaction and the corresponding
three-coordinate geometry [19, 20]), the Kitaev inter-
action appears, in which spin components of only one
type are interacting on each edge of the lattice. This
makes it possible to study the properties of a Kitaev
QSL in actual materials [13].

Unfortunately, a direct experimental observation of
QSL is quite problematic since the absence of the
long-range magnetic order does not mean that the
ground state of the system is a spin liquid. For exam-
ple, the absence of the long-range order in the system
can be due to its disorder, and since absolutely pure
materials do not exist in nature, it is important to find
out whether the spin ordering suppression is due to
intrinsic properties of a QSL or is associated with dis-
order in the system.
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534 POLYAKOV, PERKINS
The disorder effect were studied in the Kitaev  QSL
[21–28], and it was shown  that in may respects they
resemble localization of electronic states in the pres-
ence of disorder [29, 30]. This is due to the fact that the
fermionic quasiparticles describing excitations in the
Kitaev QSL even in the presence of frozen-in disorder
remain noninteracting and, hence, the ideas of the
Anderson localization are inapplicable [29]. More-
over, the fact that the Kitaev model with disorder
remains exactly solvable makes it possible to perform
direct numerical calculations. It has been shown in
previous publications that a low vacancy concentra-
tion generally preserves the spin-liquid behavior in the
Kitaev model, but leads to certain changes in its low-
energy spectrum [25, 26, 28]. In particular, the Majo-
rana states associated with vacancies form a peak in
the density of states at low energies; the shape of this
peak is successfully described by a power law. In addi-
tion, the states within this peak are more localized
than other states in the system [26]. The localization of
low-energy states is especially strong when the time
inversion symmetry is broken by the three-particle
interaction, which is an effect of the external magnetic
field. A different situation takes place in the Kitaev
QSL with disorder in bonds [23], where localization
occurs not at low, but at high energies, forming the so-
called Lifshitz tails [30].

This study is aimed at analysis of low-energy quasi-
localized Majorana states that appear in the Yao–Lee
model [1] in the presence of vacancies. The Yao–Lee
model is exactly solvable, and its ground state is a QSL
[1]. At present, there is no material that can be
described by this model; however, the possibility of
obtaining in future the Kitaev interactions between
Jeff = 3/2 in 2D Van der Waals magnets [40] is an
experimental motivation for studying the nature of this
exotic QSL. The Yao–Lee model has not only the spin
degrees of freedom, but also additional local orbital
degrees of freedom, which, analogously to the Kitaev
model, can be represented using Majorana fermions
[1]; however, in contrast to the Kitaev model, its fer-
mion representation includes three types of Majorana
fermions.

The Yao–Lee model exhibits gauge symmetry Z2
with Z2 f lux excitations that are determined exclusively
in terms of the orbital degrees of freedom. When the
time reversal symmetry (TRS) is broken, each type of
the Majorana fermions behaves as a Bogoliubov qua-
siparticle in a chiral (p + ip) superconductor [1]. As a
result, each Z2 f lux operator connects three zeroth
Majorana modes protected by the SU(2) symmetry. In
this article, we demonstrate that like in the Kitaev
model with disorders at sites [21, 22, 25], a vacancy
leads to the emergence of a mode with zero energy and
a quasi-localized wavefunction at the boundary of the
packet associated with it (on another sublattice around
a vacancy), which is called the p mode. In addition,
when TRS is not broken or when the external field vio-
JOURNAL OF EXPERIMENTAL AN
lating it is weak, the vacancy and the Z2 f lux form a
bound state. Therefore, in the case of TRS breaking, a
vacancy acquires a topologically protected zero-
energy mode, known as the f mode. The number of
such topological modes depends on the type of inter-
action breaking TRS: if it preserves the SU(2) symme-
try, we have three Majorana modes with zero energy;
however, if the interaction violates this symmetry, the
number of zero-energy modes is smaller.

2. DESCRIPTION OF THE MODEL
The Yao–Lee model [1] is defined on a hexagonal

lattice in which each site is formed by three connected
vertices (Fig. 1),

(1)

where the summation is performed over all vertices of
the hexagonal lattice, which are denoted by i, j; Si =
Si,1 + Si,2 + Si,3 is the total spin of each triangle, and

operators  describing the orbital degrees of freedom
are defined as

If   Jλ, assuming that all the bonds Jλ have the
same interaction strength, we can consider only the
states with the total spin

on each triangle, where  denote the Pauli spin matri-
ces. In such a situation, the first term in expression (1)
is constant, while the second term can be written as

(2)

Analogously to the Kitaev model [13], it is convenient
to express the spin operators in terms of the Majorana
fermions in the extended Hilbert space so that the spin
and orbital operators are represented as [1]:

(3)

Here, we have used the vector notation for the Majo-
rana fermions,

with the commutation relations defined as
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Fig. 1. Schematic diagram of the Yao–Lee model in the
form of a hexagonal lattice in which three spins are located
equidistantly on each site (at the vertices of triangles); the
spins are coupled by the exchange Ising interactions Jλ.
Three types Jx, Jy, and Jz of the Ising interaction at bonds
x, y, and z are shown by red, green, and blue lines, respec-
tively. Triangles are denoted by letters i and j; the vertices
inside each triangle are denoted by 1, 2, and 3. Letters 
and p denote the vacancy center and the center of the hexa-
gon, on which operators  and Wp are defined, respec-
tively. A pair of vacancies with a f lux attached to each of
them is formed in accordance with the following scheme:
(i) a pair of adjacent vacancies is randomly placed on the
lattice; (ii) the sign of variable uij on the common bond
changes from u = +1 to u = –1 (black line) so that the two
fluxes are produced and attached to two vacancy
plaquettes; (iii) one of vacancies in a pair moves at random
direction and, simultaneously, the chain of variables uij
changes sign so that the f luxes are always attached to the
moving vacancy.
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It is convenient to express the Pauli matrices in terms
of the Majorana fermions:

(4)

Substituting these expression into (2), we obtain the
Hamiltonian in terms of Majorana fermions ci with

coupling operators  = –i :

(5)

This Hamiltonian describes three types of noninter-
acting Majorana fermions , κ = x, y, z, which are
connected with Z2 gauge field . Operators  are the
first integrals of this Hamiltonian. Therefore, uij = ±1.
In addition, Hamiltonian (5) has global symmetry
SO(3), which is associated with the rotation in the
space of three types of Majorana fermions, and is a
consequence of the SU(2) symmetry of initial spin
model (1). In accordance with the Lieb theorem [41],
as well as in the Kitaev model [13], the ground state
has zero f lux through each cell p, i.e., Wp = Πijuij = 1
(if Wp = Πijuij = –1, we assume that the f lux is pres-
ent). Each set Wp corresponds to several sets of {uij}
differing in the gauge transformation that does not
change the Hamiltonian. We assume that the gauge
uij = 1 on all edges corresponds to zero f luxes in the
ground state. Further, all three Majorana fermions
have the same dispersion for any f lux distribution, i.e.,
the fermion spectrum is three-fold degenerate in the
entire Brillouin zone. In the case of zero f lux in the
ground state, their dispersions are identical to those
obtained in the Kitaev model [13], i.e., they are either
gapless with a linear dispersion, or have a gap depend-
ing on the relation between parameters Jλ:

where  denotes the vector directed from any vertex
in sublattice A to its nearest neighbors in sublattice B.

2.1. Time Reversal Symmetry Breaking
TRS breaking usually occurs in a nonzero magnetic

field. The problem with a magnetic field, which is
included into the Hamiltonian in the form of the Zee-
man interaction, cannot be solved exactly because the
inclusion of the field does conserve f luxes. However,
one can still add to the Hamiltonian the interaction
that breaks TRS and imitates the effect of the mag-
netic field, but preserves the exact solvability of the
model. Following Kitaev’s idea [13], we apply the per-
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turbation theory to the ground state with zero f lux and
obtain the effective Hamiltonian in a fixed gauge,
which can be represented as before in terms of Majo-
rana fermions ci and operators  = –i .

Let us consider the isotropic Kitaev interaction
Jx = Jy = Jz = J and write the perturbation in form

(6)

It can easily be seen that only in the fourth order of
perturbation theory f luxes through hexagonal cells are
unchanged, while TRS is is broken. The fourth order
correction to the Hamiltonian must contain three
terms with h and one more term with K:

(7)

where Δk is the energy change after the application of

the operator , and Δjk is the energy change after the

application of the operator .

λ
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Another (more general) form of perturbation (6) is

(8)

Here, Kλμ includes all nondiagonal terms allowed by
symmetry. Assuming that

and using the Majorana representation for spins σ and
pseudospins τ, we can write the perturbed Hamilto-
nian as

(9)

where ij and ik denote the nearest and next to

nearest neighbors, respectively, and κ ~ 6  and

η ~ 6  (here, we have taken advantage of the

fact that the f lux energy is proportional to binding
strength  ≡ J, like in the Kitaev model [13]).

2.2. Majorana Fermion Spectrum

In the state with fixed f luxes, operators  in Ham-
iltonian (9) can be replaced by corresponding eigen-
values uij so that Hamiltonian (9) becomes quadratic
in the operators of the Majorana fermions. Since each
unit cell l in the hexagonal lattice has two vertices 
and , which determine sublattices A and B, Hamil-
tonian (9) can be written as

(10)

where the first term describes the nearest neighbor
hopping of the Majorana fermions with the hopping
matrix  with elements  = –  when vertices

 and  are connected by a bond of type λ (where,
for convenience, we have changed the notation for
operator from  to ), otherwise, Mll' = 0. The sec-
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next nearest neighbors with matrix
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Hamiltonian (10) can be diagonalized in the
momentum space if the translation invariance is not
violated. Since we can replace all coupling operators in
the ground state by their eigenvalues uAB = 1, the Ham-
iltonian in the momentum representation takes form

(11)

where  = ( , , , , , ), and matrix
iA(q) has form

(12)

In this expression, the following notation has been
used:

(13)

In the isotropic limit, we have

where

 Here, the diagonal terms

and

describe the hopping between the next nearest neigh-
bors, appearing when TRS  is broken.

If κ = η = 0 and TRS is not broken, the Majorana
fermion spectrum  = |f(q)| contains three degener-
ate branches, each of which has two Dirac points at the
corners ±K of the Brillouin zone. Once TRS is broken
(i.e., κ ≠ 0 or η ≠ 0), at least one of the spectral
branches acquires a gap. If κ ≠ 0, but η = 0, all three
spectral branches have a gap, but still remain degener-
ate. Therefore, when η = 0, the spectrum in the Yao–
Lee model is exactly the three-fold degenerate spec-
trum of the Kitaev model. If, however, η ≠ 0, the
Majorana modes are hybridized with one another, and
the degeneracy is partly removed; however, two modes
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Fig. 2. Spectrum E(k) of the Majorana fermions in the
Yao–Lee model [1] with broken TRS (9). The upper spec-
tral branch is nondegenerate and is defined by Eq. (14),
while the lower branch is doubly degenerate and is
described by Eq. (15). In calculations, we assumed that κ =
η = 0.2. All energies are given in the units of J.
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still remain degenerate (Fig. 2). In this case, the eigen-
values of the perturbed Yao–Lee model (9) are
defined as

(14)

(15)

(16)

3. VACANCIES IN THE YAO–LEE MODEL

A vacancy in the lattice is usually just the absence
of an atom at a site or at several nearest sites. However,
in this study, we will use this term in a wider sense (for
example, for describing nonmagnetic impurities or for
magnetic atoms that are coupled very weakly with
their neighbors). To distinguish between these two
cases, the second type of the local defect will be
referred to as quasi-vacancy.

Let us consider randomly distributed quasi-vacan-
cies in the isotropic Yao–Lee model. For this, we
write the first term in the expression (9) as

(17)

where J'  J determines the interaction of the spin on
a defect with the remaining spins of the lattice; 
denotes the set of normal vertices of the lattice, and 
is the set of vertices with quasi-vacancies (see Fig. 1).
Further, for simplicity, we will not distinguish between
vacancies and quasi-vacancies, presuming that in the
limit J'  J, the vertices belonging to  behave as
quasi-vacancies, while in the limit J' → 0, the vertices
become actual vacancies, in which Majorana fermions

 at the vacancy center have zero amplitudes of jumps
to neighboring neighbors. We will also consider only
the realizations of disorder, for which the number of
vacancies in sublattices A and B is the same.

Hamiltonian (10) can still be diagonalized in the
presence of vacancies in spite of the fact that the num-
ber of degrees of freedom in the limit J' → 0 effectively
decreases because three plaquettes are combined into
one near each vacancy (the exact solution in the orig-
inal model exists since the number of spin degrees of
freedom is equal to the number of conserved quanti-
ties) [25]. The diagonalization of the Hamiltonian can
be performed numerically on finite-size clusters with
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periodic boundary conditions. The diagonalized
Hamiltonian has form

(18)

where ψn are complex fermions. The eigenenergies
≡ ({Jij}, {uij}) can be obtained for each realization

of disorder and flux distribution.

3.1. Vacancies with a Bound Flux

 The analysis of vacancies in the Kitaev model has
revealed the emergence of an eigenmode with an
extremely low energy (close to zero) and a wavefunc-
tion quasi-localized at the sites of the other sublattice
around the vacancy center [21, 22, 25]. Additionally,
studies have demonstrated that a vacancy binds the Z2
flux [21, 22]. For the gapped phase of the Kitaev
model, this can be shown analytically [21]. For the
gapless phase, analytical calculations are impossible,
but it has been verified numerically that the f lux is
attached to a vacancy as before [26].

Let us verify whether this remains true for vacan-
cies in the Yao–Lee model. As mentioned earlier, the
ground state in the unperturbed Yao–Lee model has
zero f lux [1]. To estimate the binding energy between
the f lux and the vacancy, we have considered two
vacancies separated by distance ~L/2, where L is the
linear size of the system, one of the vacancies belong-
ing to sublattice A and the other to sublattice B (see
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Fig. 3. Dependence of the gain in energy from the attach-
ment of the f lux to a vacancy on parameters of Hamilto-
nian (9), calculated for a finite-size system with L = 40.
The energy was calculated for a system with two vacancies
separated by maximal distance L/2. The binding energy
and the model parameters are given in the units of J.
Dashed line is the straight line on which the gap in two
from three branches in the Majorana fermion spectrum is
closed. It can easily be seen that the binding energy
decreases as this straight line is approached.
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Fig. 1). The binding energy is defined by the difference
between the energy of the system, in which each
vacancy bounds the f lux (Ebound) and the energy of the
system with zero f lux (Ezero):

(19)

The dependence of the binding energy on parame-
ters κ and η determining the strength of the interac-
tions that break TRS is shown in Fig. 3. It can be seen
that with increasing κ and η, a transition occurs from
the ground state with the f luxes attached to vacancies
to the ground state with zero f lux (the line of the tran-
sition between the two phases is shown by the solid
curve). It should be noted that the existence of a finite
density of vacancies can shift the boundary between
the phases, but the situation should remain qualita-
tively unchanged. The binding energy between the f lux
and a vacancy also decreases as straight line κ = η/2 is
approached (dashed line), on which the gap in the
spectrum of two from three Majorana bands closes.

3.2. Density of States and IPR
In this section, we discuss how the presence of

vacancies affects the low-energy density of states of the

−= bound zero
bind .

2
E EE
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Majorana fermions in the Yao–Lee model. The den-
sity of states is defined as

(20)

where the averaging is performed over the indepen-
dent realizations of disorder. Since the density of states
contains information only on the spectrum of the sys-
tem, but not on the degree of localization of states in
the spectrum, we have also calculated the inverse par-
ticipation ratio (IPR) describing the measure of local-
ization of each state. The IPR is defined as

(21)

where subscript n labels the wavefunctions φn, i of
states, while index i labels the sites on the lattice. For a
delocalized mode, IPR varies upon an increase in size
N of the system as ~1/N because the probability den-
sity is distributed over the lattice almost uniformly. If,
however, the state is localized, its IPR is independent
of the size of the system because it is determined only
by the probability on a finite number of sites [26].

Figure 4 shows the density of states n(E) in the
presence of 2% of vacancies. Figure 4a shows n(E) for
a system with unbroken TRS (κ = η = 0), in which a
flux is bound to each vacancy,  = –1, but Wp = 1 at
all other plaquettes, and the f lux is zero. Figures 4b
and 4e show n(E) for a system with broken TRS (κ =
η = 0.2), in  the bound  and zero f lux sectors, respec-
tively. Figures 4d and 4f show the same densities of
states, but only for low energies.

To construct various realizations of disorder with
bound f lux, we have used the algorithm proposed in
[25]; namely, each pair of vacancies to which the f lux
is attached is formed as follows: (i) a pair of vacancies
with a common edge is arranged at random in the sys-
tem; (ii) the sign of variable uij at one of common edges
changes from u = +1 to u = –1 so that two fluxes
attached to two vacancion plaquettes are created;
(iii) one of the vacancies moves at random and,
simultaneously, the chain of variables uij changes sign
so that the f luxes are always attached to the moving
vacancy, and the f luxes through other cells remain
unchanged.

Irrespectively to the f lux sector, vacancies induce
low-energy states leading to the formation of a peak in
the density of states near zero energy. The width of this
low-energy peak is determined by the value of
exchange interaction J' = 0.01, which leads to hybrid-
ization of zeroth modes induced by vacancies with the
remaining states of the system. It can be seen that even
with unbroken TRS (i.e., in the absence of the gap in
the spectrum), the states contributing to this peak are
quite localized (this can be seen from higher values of
IPR in Fig. 4c, indicating the low-energy part of n(E)
in Fig. 4a). It should be noted that for κ = η = 0, each
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Fig. 4. Density of states n(E) in the Yao–Lee model in the presence of 2% of vacancies. (a, b) Densities of states n(E) for a system,
in which a f lux (  = –1) is attached to each vacancy, are calculated for κ = η = 0 and κ = η = 0.2, respectively. (c, d) The same
densities of states, but only for low energies. The width of the low-energy peak is determined by the exchange interaction J' = 0.01,
which leads to hybridization of zero modes induced by vacancies with the remaining eigenstates of the system. (e) Density of states
n(E) in a system with a nonzero flux (all  = 1 and all Wp = 1), calculated for κ = η = 0.2. (f) The same density of states, but
only for low energies. Numerical calculations were performed for a finite system with L = 40 using periodic boundary conditions.
All results were averaged over 40 random realizations. Red bullets correspond to the values of IPR shown on the same scale as
n(E) (IPR is multiplied by 4 in (a) and (c)). All energies are given in the units of J.
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vacancy in the Yao–Lee model generates two types of
tree-fold degenerate low-energy states. Like in the
Kitaev model with vacancies [25], the first type of
bound states is localized exactly at the vacant vertex
that is weakly coupled by J' with their neighbors. The
other type of states is localized at the plaquette
periphery around the vacancy, at the sites of the other
sublattice.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
The distinctions between the zero and bound flux
sectors become apparent when TRS is broken, giving
rise to a gap in the Majorana spectrum.  If the gap is
sufficiently large (i.e., parameters κ and η determining
the gap width are large enough), the spectrum can be
effectively described 

by the hybridization of in-gap states localized at the
same vacancy. Additional weak hybridization occurs 
YSICS  Vol. 137  No. 4  2023
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Fig. 5. Temperature dependences of C/T on T (on loga-
rithmic scale) for different values of κ = η, each of which
is shown by its own color. Numerical values of T, κ, η, and
J' = 0.01 are given in the units of J. All calculations were
performed for 2% of vacancies.
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occurs between in-gap states at different vacancies,
resulting in an increased width of the in-gap peaks as
the density of vacancies increases. Furthermore, a
comparison of Figs. 4d and 4f reveals that the struc-
ture of in-gap states, especially the number of peaks
within the gap, is influenced by the f lux through the
vacancies. In the case of zero f lux, two broad peaks
emerge within the gap at finite energies, and the peak
near zero vanishes. In the presence of bound flux,
additional states emerge, forming a peak in the density
of states near zero energy. When vacancies are far from
each other and inter-vacancy hybridization is vanish-
ingly small, these states manifest as Majorana zero
modes, akin to excitations with anionic statics [36].

Although such a behavior resembles the situation in
the Kitaev model [25], it’s crucial to note that each
vacancy in the Yao–Lee model generates three times
as many states compared to the Kitaev model. In addi-
tion, the existence of additional TRS breaking term
η ≠ 0, changes the very structure of in-gap states. In
the general case, the number of resonance peaks in the
gap corresponds to the number of localized modes
near each vacancy, and the structure of peaks depends
on their hybridization.

3.3. Effect of Vacancies on Thermodynamics

Let us consider the effect of vacancies on low-tem-
perature heat-capacity. If the temperature is lower
than the energy of f lux excitation on the hexagonal
plaquette, we can assume that all f luxes are fixed. In
JOURNAL OF EXPERIMENTAL AN
this case, the contribution to the heat capacity comes
only from the free Majorana fermions,

(22)

where nF(E, T) = (eE/T + 1)–1 is the Fermi function and
n(E) is the density of states.

Figure 5 shows the temperature dependences of
C/T (on the logarithmic scale) for different values of
κ = η ∈ [0.02, 0.17]. A transition from the phase with
bound fluxes to the phase with zero f luxes occurring
approximately for κ = η  0.1 (see Fig. 3) can be seen
from the change in the behavior of the heat capacity.
If the system is in the bound flux phase (i.e., for κ =
η < 0.1), C/T exhibits the power-law divergence at low
temperatures, which appears due to the peak existing in
the density of states near zero energy.  In the zero flux
phase, (i.e., for κ = η > 0.1), the value of C/T tends to
zero at temperatures tending to zero. In the latter case,
the heat capacity at finite temperatures has a broad peak
reflecting the existence of state inside the gap, overall
showing a two-hump structure.

4. CONCLUSIONS

In this work, we have studied the effects of disorder
and localization in a 2D QSL realized in the exactly
solvable Yao–Lee model [1]. It is shown that the pres-
ence of vacancies in this model leads to the formation
of a peak in the density of states at low energies, which
is manifested, for example, in the behavior of the low-
temperature heat capacity. In spite of the fact that the
low-energy part of the spectrum depends on specific
model parameters such as the type of interactions
breaking TRS, these states are more localized than
other states of the system. The effect of localization
has been analyzed numerically using the inverse par-
ticipation ratio (IPR); it is shown that the localization
of low-energy states is manifested especially strongly
when each vacancy has a nonzero f lux attached to it,
and there is a field breaking the time inversion sym-
metry. If, however, this field is strong enough, it is
more advantageous energetically to have zero f lux
through all plaquettes; however, the localization
becomes weaker in this case. It is interesting to note
that low-energy states in the gap with broken TRS are
an example of a network of quasi-localized Majorana
states, which can be used in quantum computations.
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