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Following the entangled state of filaments

California blackworms serve as a template for the topological design of active matter

By Eleni Panagiotou

any physical systems, from human
cells to bird nests, are composed
of entangled filamentous matter.
The entangled state of filaments,
whether through intentional tying
or by natural occurrence, is particu-
larly hard to unravel. Nature, however, has
means to efficiently control the organization
of material, including filaments, in contexts
where it is beneficial for function and sur-
vival. For example, multiple macromolecules
actively organize to drive major functions
such as cell division. How do filaments en-
tangle and disentangle, thereby controlling
their function and mechanical properties,
in the appropriate space and time? On page
392 of this issue, Patil et al. (I) describe their
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study of California blackworms, a fascinat-
ing system in which the organisms entangle
and spontaneously disentangle. The authors
show that single-chain locomotion at specific
frequencies is at the core of collective en-
tanglement and disentanglement. This may
point to methods for controlling and engi-
neering entanglement in many contexts.
California blackworms assemble in min-
utes and disentangle in milliseconds to con-
trol, for example, their temperature or to es-
cape predators. By using ultrasound imaging,
the conformations of blackworms can be vi-
sualized. The snapshots of their tangled state
can be used in mathematical modeling. But
what is the best way to describe such an en-
tangled state, and how can it be quantified?
Physical entanglement has been formally
studied in polymer physics to describe the
viscoelastic properties of polymer melts and
solutions (2). In those contexts, entanglement
is typically understood as a discrete number

of local obstacles that a polymer chain meets,
according to Edwards’s tube model (3-5).
This viewpoint, however, cannot measure
the complexity of the collective entangle-
ment as a whole. Indeed, Edwards already
had pointed out both that entanglement is
something more complex and the relevance
of mathematical topology in this context (6).

In mathematics, topology and, in particu-
lar, knot theory focus on characterizing and
classifying the conformations of simple closed
curves in three-dimensional (3D) space (7). In
this scenario, two knots or links are equiva-
lent if one can be deformed into the other
without cutting and pasting. However, under
this notion of topological equivalence, linear
filaments (seen as open curves in 3D space),
whose endpoints can be different and lie any-
where, are all trivial (every open mathemati-
cal curve in 3D space can be untied without
cutting and pasting). This barrier has been
one of the reasons why mathematical topol-
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Understanding how California blackworms
(Lumbriculus variegatus) form a topologically
complex tangle may guide the development of
tangling and untangling strategies for filaments.

ogy has not been used to study polymer en-
tanglement more broadly, despite the success
that traditional knot theory has provided to
enzymology since the 1980s to study circular
DNA (8-10). Topologists and polymer physi-
cists have tried to measure the entanglement
of linear polymers by artificially closing the
linear chains to identify knot types. Such
tools have led to the identification of knots in
proteins (ZI). It is only recently that methods
to define knotting and linking have appeared
without any approximation, extending the
theory of knots and links to open curves in
3D space (12).

Patil et al. used topology to capture both
local and global pairwise entanglement in
a system of worms—information that can
serve as a characterization of the system’s
overall topological state. More precisely, the
authors used the Gauss linking integral of
linear chains—a measure of the degree that
one filament turns around the other—to
capture pairwise entanglement of filaments.
They propose a method to bridge the local
versus global pairwise linking effects by in-
troducing the contact linking number. The
latter reflects the degree of interwinding of
two worms that are in physical contact. This
approach quantifies topological entangle-
ment and thus enables an assessment of the
mechanical implications of entanglement on
the system. By characterizing the entangled
state of a system with rigorous mathematical
methods, Patil et al. are able to model entan-
glement and address the question of how fila-
ments attain such a conformation and how
active matter regulates it.

It is known that entanglement varies
with the stiffness and length of filaments.
Theoretical results predict how the prob-
ability of knotting varies as a function of the
length of mathematical curves (13). However,
these results do not explain how an initially
unentangled system will entangle or subse-
quently disentangle. Recent results suggest
that activity and fluid-structure interactions
can alter the topological state of a system (14,
15). For example, molecular simulations of
dense solutions of circular polymers contain-
ing (active) segments, modeled at thermal
fluctuations of uneven temperature, have
revealed that the interplay of the activity
and the topology of polymers generates an
unprecedented glassy state of matter, which
bears similarities to the conformation and
dynamics of a DNA fiber in the living nucleus
of a higher eukaryotic cell (I4). As another
example, simulations of chromatin as a con-
fined flexible chain acted upon by molecular
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motors show that coherent motions emerge
and are accompanied by large-scale chain re-
configurations and nematic ordering (15).

Patil et al. propose a new way to advance
these ideas by looking for answers in a real
system of California blackworms. They dem-
onstrate how experimentally obtained tra-
jectories of the worms can be mapped on a
full 3D filament model of Kirchhoff filaments
(elastic rods) with heads moving at varying
turning angular speed and direction. This
reproduces the collective slow entangling
and fast untangling behavior of the worms,
as measured by the contact linking number.
Moreover, Patil et al. could derive a mean
field model for the system (based on a 2D
approximation of it) as a snakelike motion
around an array of obstacles. Their results
predict a large space of tangling and untan-
gling strategies. They also predict that there
are stable tangle topologies that are not ac-
cessed by the worm tangles, which indicates
a space of unexplored possibilities.

Through a combination of methods from
topology, applied mathematics, and engineer-
ing, Patil et al. derive a general model of ac-
tive entanglement and disentanglement that
provides new insights into the organization
of active matter. The generality of the model
prompts the question of whether it can be
applied to systems at different lengths and
timescales. If so, the approach could give rise
to new materials that markedly change their
mechanical properties when their topology is
modulated. Furthermore, one might exam-
ine whether the same model could apply to
macromolecules in confined environments,
such as chromatin in a cell’s nucleus. One
could envision new means to control DNA
structure and function, opening new biotech-
nological interfaces related to the design of
dynamic DNA topology in cells.
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Learning
photons go
backward

Efficient learning algorithms
are implemented in a

silicon photonic neural
network chip

By Charles Roques-Carmes

ince the invention of the laser, it has

been known that light can carry infor-

mation. Light beams can be mixed and

processed at speeds that far exceed

those of electronics, an observation

that initiated the field of optical com-
puting in the 1960s (7, 2). Recent technologi-
cal achievements in photonic circuits (3, 4),
as well as the necessity to develop alternative
hardware platforms for artificial intelligence
(AI), have reawakened interest in photonic
and hybrid optoelectronic computing plat-
forms. However, the path toward realistic
applications of photonic circuits in Al was
hindered by the absence of at least two key
ingredients: the demonstration of on-chip
nonlinear operations (required in AI neu-
ral networks); and the ability to efficiently
train photonic chips to learn a specific task.
On page 398 of this issue, Pai et al. (5) make
progress on the training problem by imple-
menting a method called “backpropagation”
on a photonic chip.

The motivation behind photonic comput-
ing finds its roots in fundamental physics: At
low optical intensities, photons typically do
not interact with one another, remaining in
the regime of so-called “linear optics.” This
behavior enables the parallel and energy-
efficient implementation of linear operations
(such as vector-to-matrix multiplications).
Most neural network architectures rely on a
combination of two types of transformations:
vector-to-matrix multiplications, where the
vector represents input data and the matrix
is composed of trained weights of the net-
work; and nonlinear activation functions,
which enable the network to learn complex
patterns in the training data.

One of the most popular photonic ar-
chitectures for optical vector-to-matrix

Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, MA, USA.
Email: chrc@mit.edu

28 APRIL 2023 - VOL 380 ISSUE 6643 341

€20 ‘8¢ [1dy uo eIeqieg eiues LIUIOfE)) JO AJISIOAIUN) 1 S10°0UsI0s mmm//:sd)y WOl popeojumo(]



Following the entangled state of filaments
Eleni Panagiotou

Science, 380 (6643), .
DOI: 10.1126/science.adh4055

View the article online

https://www.science.org/doi/10.1126/science.adh4055
Permissions

https://www.science.org/help/reprints-and-permissions

Use of this article is subject to the Terms of service

Science (ISSN 1095-9203) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science is a registered trademark of AAAS.

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

€20 ‘8¢ [1dy uo eIeqieg eiues LIUIOfE)) JO AJISIOAIUN) 1 S10°0UsI0s mmm//:sd)y WOl popeojumo(]


https://www.science.org/content/page/terms-service

	ONL_sci0428p0340e
	ONL_sci0428p0341e

