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M
any physical systems, from human 
cells to bird nests, are composed 
of entangled filamentous matter. 
The entangled state of filaments, 
whether through intentional tying 
or by natural occurrence, is particu-

larly hard to unravel. Nature, however, has 
means to efficiently control the organization 
of material, including filaments, in contexts 
where it is beneficial for function and sur-
vival. For example, multiple macromolecules 
actively organize to drive major functions 
such as cell division. How do filaments en-
tangle and disentangle, thereby controlling 
their function and mechanical properties, 
in the appropriate space and time? On page 
392 of this issue, Patil et al. (1) describe their 

study of California blackworms, a fascinat-
ing system in which the organisms entangle 
and spontaneously disentangle. The authors 
show that single-chain locomotion at specific 
frequencies is at the core of collective en-
tanglement and disentanglement. This may 
point to methods for controlling and engi-
neering entanglement in many contexts.

California blackworms assemble in min-
utes and disentangle in milliseconds to con-
trol, for example, their temperature or to es-
cape predators. By using ultrasound imaging, 
the conformations of blackworms can be vi-
sualized. The snapshots of their tangled state 
can be used in mathematical modeling. But 
what is the best way to describe such an en-
tangled state, and how can it be quantified? 
Physical entanglement has been formally 
studied in polymer physics to describe the 
viscoelastic properties of polymer melts and 
solutions (2). In those contexts, entanglement 
is typically understood as a discrete number 

of local obstacles that a polymer chain meets, 
according to Edwards’s tube model (3–5). 
This viewpoint, however, cannot measure 
the complexity of the collective entangle-
ment as a whole. Indeed, Edwards already 
had pointed out both that entanglement is 
something more complex and the relevance 
of mathematical topology in this context (6). 

In mathematics, topology and, in particu-
lar, knot theory focus on characterizing and 
classifying the conformations of simple closed 
curves in three-dimensional (3D) space (7). In 
this scenario, two knots or links are equiva-
lent if one can be deformed into the other 
without cutting and pasting. However, under 
this notion of topological equivalence, linear 
filaments (seen as open curves in 3D space), 
whose endpoints can be different and lie any-
where, are all trivial (every open mathemati-
cal curve in 3D space can be untied without 
cutting and pasting). This barrier has been 
one of the reasons why mathematical topol-
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ogy has not been used to study polymer en-
tanglement more broadly, despite the success 
that traditional knot theory has provided to 
enzymology since the 1980s to study circular 
DNA (8–10). Topologists and polymer physi-
cists have tried to measure the entanglement 
of linear polymers by artificially closing the 
linear chains to identify knot types. Such 
tools have led to the identification of knots in 
proteins (11). It is only recently that methods 
to define knotting and linking have appeared 
without any approximation, extending the 
theory of knots and links to open curves in 
3D space (12). 

 Patil et al. used topology to capture both 
local and global pairwise entanglement in 
a system of worms—information that can 
serve as a characterization of the system’s 
overall topological state. More precisely, the 
authors used the Gauss linking integral of 
linear chains—a measure of the degree that 
one filament turns around the other—to 
capture pairwise entanglement of filaments. 
They propose a method to bridge the local 
versus global pairwise linking effects by in-
troducing the contact linking number. The 
latter reflects the degree of interwinding of 
two worms that are in physical contact. This 
approach quantifies topological entangle-
ment and thus enables an assessment of the 
mechanical implications of entanglement on 
the system. By characterizing the entangled 
state of a system with rigorous mathematical 
methods, Patil et al. are able to model entan-
glement and address the question of how fila-
ments attain such a conformation and how 
active matter regulates it.

It is known that entanglement varies 
with the stiffness and length of filaments. 
Theoretical results predict how the prob-
ability of knotting varies as a function of the 
length of mathematical curves (13). However, 
these results do not explain how an initially 
unentangled system will entangle or subse-
quently disentangle. Recent results suggest 
that activity and fluid-structure interactions 
can alter the topological state of a system (14, 
15). For example, molecular simulations of 
dense solutions of circular polymers contain-
ing (active) segments, modeled at thermal 
fluctuations of uneven temperature, have 
revealed that the interplay of the activity 
and the topology of polymers generates an 
unprecedented glassy state of matter, which 
bears similarities to the conformation and 
dynamics of a DNA fiber in the living nucleus 
of a higher eukaryotic cell (14). As another 
example, simulations of chromatin as a con-
fined flexible chain acted upon by molecular 

motors show that coherent motions emerge 
and are accompanied by large-scale chain re-
configurations and nematic ordering (15). 

Patil et al. propose a new way to advance 
these ideas by looking for answers in a real 
system of California blackworms. They dem-
onstrate how experimentally obtained tra-
jectories of the worms can be mapped on a 
full 3D filament model of Kirchhoff filaments 
(elastic rods) with heads moving at varying 
turning angular speed and direction. This 
reproduces the collective slow entangling 
and fast untangling behavior of the worms, 
as measured by the contact linking number. 
Moreover, Patil et al. could derive a mean 
field model for the system (based on a 2D 
approximation of it) as a snakelike motion 
around an array of obstacles. Their results 
predict a large space of tangling and untan-
gling strategies. They also predict that there 
are stable tangle topologies that are not ac-
cessed by the worm tangles, which indicates 
a space of unexplored possibilities. 

Through a combination of methods from 
topology, applied mathematics, and engineer-
ing, Patil et al. derive a general model of ac-
tive entanglement and disentanglement that 
provides new insights into the organization 
of active matter. The generality of the model 
prompts the question of whether it can be 
applied to systems at different lengths and 
timescales . If so, the approach could give rise 
to new materials that markedly change their 
mechanical properties when their topology is 
modulated. Furthermore, one might exam-
ine whether the same model could apply to 
macromolecules in confined environments, 
such as chromatin in a cell’s nucleus. One 
could envision new means to control DNA 
structure and function, opening new biotech-
nological interfaces related to the design of 
dynamic DNA topology in cells. j
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Understanding how California blackworms 
(Lumbriculus variegatus) form a topologically 
complex tangle may guide the development of 
tangling and untangling strategies for filaments.
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Learning 
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E fficient learning algorithms 
are implemented in a 
silicon photonic neural 
network chip
By Charles Roques-Carmes 

 S
ince the invention of the laser, it has 
been known that light can carry infor-
mation. Light beams can be mixed and 
processed at speeds that far exceed 
those of electronics, an observation 
that initiated the field of optical com-

puting in the 1960s (1, 2). Recent technologi-
cal achievements in photonic circuits (3, 4), 
as well as the necessity to develop alternative 
hardware platforms for artificial intelligence 
(AI), have reawakened interest in photonic 
and hybrid optoelectronic computing plat-
forms. However, the path toward realistic 
applications of photonic circuits in AI was 
hindered by the absence of at least two key 
ingredients: the demonstration of on-chip 
nonlinear operations (required in AI neu-
ral networks); and the ability to efficiently 
train photonic chips to learn a specific task. 
On page 398 of this issue, Pai et al. (5) make 
progress on the training problem by imple-
menting a method called “backpropagation” 
on a photonic chip.

The motivation behind photonic comput-
ing finds its roots in fundamental physics: At 
low optical intensities, photons typically do 
not interact with one another, remaining in 
the regime of so-called “linear optics.” This 
behavior enables the parallel and energy-
efficient implementation of linear operations 
(such as vector-to-matrix multiplications). 
Most neural network architectures rely on a 
combination of two types of transformations: 
vector-to-matrix multiplications, where the 
vector represents input data and the matrix 
is composed of trained weights of the net-
work; and nonlinear activation functions, 
which enable the network to learn complex 
patterns in the training data. 

One of the most popular photonic ar-
chitectures for optical vector-to-matrix 
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